1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
38 struct anon_vma_chain;
41 struct writeback_control;
45 extern int sysctl_page_lock_unfairness;
47 void init_mm_internals(void);
49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
52 static inline void set_max_mapnr(unsigned long limit)
57 static inline void set_max_mapnr(unsigned long limit) { }
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
63 return (unsigned long)atomic_long_read(&_totalram_pages);
66 static inline void totalram_pages_inc(void)
68 atomic_long_inc(&_totalram_pages);
71 static inline void totalram_pages_dec(void)
73 atomic_long_dec(&_totalram_pages);
76 static inline void totalram_pages_add(long count)
78 atomic_long_add(count, &_totalram_pages);
81 extern void * high_memory;
82 extern int page_cluster;
85 extern int sysctl_legacy_va_layout;
87 #define sysctl_legacy_va_layout 0
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
101 #include <asm/page.h>
102 #include <asm/processor.h>
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for architectures that don't support memory tagging.
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
124 #define lm_alias(x) __va(__pa_symbol(x))
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X) (0)
139 * On some architectures it is expensive to call memset() for small sizes.
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statements if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
154 unsigned long *_pp = (void *)page;
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
161 switch (sizeof(struct page)) {
182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
201 #define MAPCOUNT_ELF_CORE_MARGIN (5)
202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
204 extern int sysctl_max_map_count;
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
230 #define nth_page(page,n) ((page) + (n))
233 /* to align the pointer to the (next) page boundary */
234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
241 void setup_initial_init_mm(void *start_code, void *end_code,
242 void *end_data, void *brk);
245 * Linux kernel virtual memory manager primitives.
246 * The idea being to have a "virtual" mm in the same way
247 * we have a virtual fs - giving a cleaner interface to the
248 * mm details, and allowing different kinds of memory mappings
249 * (from shared memory to executable loading to arbitrary
253 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255 void vm_area_free(struct vm_area_struct *);
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
261 extern unsigned int kobjsize(const void *objp);
265 * vm_flags in vm_area_struct, see mm_types.h.
266 * When changing, update also include/trace/events/mmflags.h
268 #define VM_NONE 0x00000000
270 #define VM_READ 0x00000001 /* currently active flags */
271 #define VM_WRITE 0x00000002
272 #define VM_EXEC 0x00000004
273 #define VM_SHARED 0x00000008
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277 #define VM_MAYWRITE 0x00000020
278 #define VM_MAYEXEC 0x00000040
279 #define VM_MAYSHARE 0x00000080
281 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
282 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
283 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
287 #define VM_LOCKED 0x00002000
288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290 /* Used by sys_madvise() */
291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300 #define VM_SYNC 0x00800000 /* Synchronous page faults */
301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308 # define VM_SOFTDIRTY 0
311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338 # define VM_PKEY_BIT4 0
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
342 #if defined(CONFIG_X86)
343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364 # define VM_MTE VM_NONE
365 # define VM_MTE_ALLOWED VM_NONE
369 # define VM_GROWSUP VM_NONE
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT 37
374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK VM_GROWSUP
403 #define VM_STACK VM_GROWSDOWN
406 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408 /* VMA basic access permission flags */
409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413 * Special vmas that are non-mergable, non-mlock()able.
415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
417 /* This mask prevents VMA from being scanned with khugepaged */
418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420 /* This mask defines which mm->def_flags a process can inherit its parent */
421 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423 /* This mask is used to clear all the VMA flags used by mlock */
424 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
426 /* Arch-specific flags to clear when updating VM flags on protection change */
427 #ifndef VM_ARCH_CLEAR
428 # define VM_ARCH_CLEAR VM_NONE
430 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433 * mapping from the currently active vm_flags protection bits (the
434 * low four bits) to a page protection mask..
436 extern pgprot_t protection_map[16];
439 * enum fault_flag - Fault flag definitions.
440 * @FAULT_FLAG_WRITE: Fault was a write fault.
441 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
442 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
443 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
444 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
445 * @FAULT_FLAG_TRIED: The fault has been tried once.
446 * @FAULT_FLAG_USER: The fault originated in userspace.
447 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
448 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
449 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
451 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
452 * whether we would allow page faults to retry by specifying these two
453 * fault flags correctly. Currently there can be three legal combinations:
455 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
456 * this is the first try
458 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
459 * we've already tried at least once
461 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
463 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
464 * be used. Note that page faults can be allowed to retry for multiple times,
465 * in which case we'll have an initial fault with flags (a) then later on
466 * continuous faults with flags (b). We should always try to detect pending
467 * signals before a retry to make sure the continuous page faults can still be
468 * interrupted if necessary.
471 FAULT_FLAG_WRITE = 1 << 0,
472 FAULT_FLAG_MKWRITE = 1 << 1,
473 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
474 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
475 FAULT_FLAG_KILLABLE = 1 << 4,
476 FAULT_FLAG_TRIED = 1 << 5,
477 FAULT_FLAG_USER = 1 << 6,
478 FAULT_FLAG_REMOTE = 1 << 7,
479 FAULT_FLAG_INSTRUCTION = 1 << 8,
480 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
484 * The default fault flags that should be used by most of the
485 * arch-specific page fault handlers.
487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
488 FAULT_FLAG_KILLABLE | \
489 FAULT_FLAG_INTERRUPTIBLE)
492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493 * @flags: Fault flags.
495 * This is mostly used for places where we want to try to avoid taking
496 * the mmap_lock for too long a time when waiting for another condition
497 * to change, in which case we can try to be polite to release the
498 * mmap_lock in the first round to avoid potential starvation of other
499 * processes that would also want the mmap_lock.
501 * Return: true if the page fault allows retry and this is the first
502 * attempt of the fault handling; false otherwise.
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 (!(flags & FAULT_FLAG_TRIED));
510 #define FAULT_FLAG_TRACE \
511 { FAULT_FLAG_WRITE, "WRITE" }, \
512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
516 { FAULT_FLAG_TRIED, "TRIED" }, \
517 { FAULT_FLAG_USER, "USER" }, \
518 { FAULT_FLAG_REMOTE, "REMOTE" }, \
519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
523 * vm_fault is filled by the pagefault handler and passed to the vma's
524 * ->fault function. The vma's ->fault is responsible for returning a bitmask
525 * of VM_FAULT_xxx flags that give details about how the fault was handled.
527 * MM layer fills up gfp_mask for page allocations but fault handler might
528 * alter it if its implementation requires a different allocation context.
530 * pgoff should be used in favour of virtual_address, if possible.
534 struct vm_area_struct *vma; /* Target VMA */
535 gfp_t gfp_mask; /* gfp mask to be used for allocations */
536 pgoff_t pgoff; /* Logical page offset based on vma */
537 unsigned long address; /* Faulting virtual address */
539 enum fault_flag flags; /* FAULT_FLAG_xxx flags
540 * XXX: should really be 'const' */
541 pmd_t *pmd; /* Pointer to pmd entry matching
543 pud_t *pud; /* Pointer to pud entry matching
547 pte_t orig_pte; /* Value of PTE at the time of fault */
548 pmd_t orig_pmd; /* Value of PMD at the time of fault,
549 * used by PMD fault only.
553 struct page *cow_page; /* Page handler may use for COW fault */
554 struct page *page; /* ->fault handlers should return a
555 * page here, unless VM_FAULT_NOPAGE
556 * is set (which is also implied by
559 /* These three entries are valid only while holding ptl lock */
560 pte_t *pte; /* Pointer to pte entry matching
561 * the 'address'. NULL if the page
562 * table hasn't been allocated.
564 spinlock_t *ptl; /* Page table lock.
565 * Protects pte page table if 'pte'
566 * is not NULL, otherwise pmd.
568 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
569 * vm_ops->map_pages() sets up a page
570 * table from atomic context.
571 * do_fault_around() pre-allocates
572 * page table to avoid allocation from
577 /* page entry size for vm->huge_fault() */
578 enum page_entry_size {
585 * These are the virtual MM functions - opening of an area, closing and
586 * unmapping it (needed to keep files on disk up-to-date etc), pointer
587 * to the functions called when a no-page or a wp-page exception occurs.
589 struct vm_operations_struct {
590 void (*open)(struct vm_area_struct * area);
591 void (*close)(struct vm_area_struct * area);
592 /* Called any time before splitting to check if it's allowed */
593 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
594 int (*mremap)(struct vm_area_struct *area);
596 * Called by mprotect() to make driver-specific permission
597 * checks before mprotect() is finalised. The VMA must not
598 * be modified. Returns 0 if eprotect() can proceed.
600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
601 unsigned long end, unsigned long newflags);
602 vm_fault_t (*fault)(struct vm_fault *vmf);
603 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
604 enum page_entry_size pe_size);
605 vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 pgoff_t start_pgoff, pgoff_t end_pgoff);
607 unsigned long (*pagesize)(struct vm_area_struct * area);
609 /* notification that a previously read-only page is about to become
610 * writable, if an error is returned it will cause a SIGBUS */
611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
616 /* called by access_process_vm when get_user_pages() fails, typically
617 * for use by special VMAs. See also generic_access_phys() for a generic
618 * implementation useful for any iomem mapping.
620 int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 void *buf, int len, int write);
623 /* Called by the /proc/PID/maps code to ask the vma whether it
624 * has a special name. Returning non-NULL will also cause this
625 * vma to be dumped unconditionally. */
626 const char *(*name)(struct vm_area_struct *vma);
630 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 * to hold the policy upon return. Caller should pass NULL @new to
632 * remove a policy and fall back to surrounding context--i.e. do not
633 * install a MPOL_DEFAULT policy, nor the task or system default
636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
639 * get_policy() op must add reference [mpol_get()] to any policy at
640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
641 * in mm/mempolicy.c will do this automatically.
642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 * must return NULL--i.e., do not "fallback" to task or system default
648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
652 * Called by vm_normal_page() for special PTEs to find the
653 * page for @addr. This is useful if the default behavior
654 * (using pte_page()) would not find the correct page.
656 struct page *(*find_special_page)(struct vm_area_struct *vma,
660 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
662 static const struct vm_operations_struct dummy_vm_ops = {};
664 memset(vma, 0, sizeof(*vma));
666 vma->vm_ops = &dummy_vm_ops;
667 INIT_LIST_HEAD(&vma->anon_vma_chain);
670 static inline void vma_set_anonymous(struct vm_area_struct *vma)
675 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
680 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
682 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
687 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
688 VM_STACK_INCOMPLETE_SETUP)
694 static inline bool vma_is_foreign(struct vm_area_struct *vma)
699 if (current->mm != vma->vm_mm)
705 static inline bool vma_is_accessible(struct vm_area_struct *vma)
707 return vma->vm_flags & VM_ACCESS_FLAGS;
712 * The vma_is_shmem is not inline because it is used only by slow
713 * paths in userfault.
715 bool vma_is_shmem(struct vm_area_struct *vma);
717 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
720 int vma_is_stack_for_current(struct vm_area_struct *vma);
722 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
723 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
728 #include <linux/huge_mm.h>
731 * Methods to modify the page usage count.
733 * What counts for a page usage:
734 * - cache mapping (page->mapping)
735 * - private data (page->private)
736 * - page mapped in a task's page tables, each mapping
737 * is counted separately
739 * Also, many kernel routines increase the page count before a critical
740 * routine so they can be sure the page doesn't go away from under them.
744 * Drop a ref, return true if the refcount fell to zero (the page has no users)
746 static inline int put_page_testzero(struct page *page)
748 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
749 return page_ref_dec_and_test(page);
753 * Try to grab a ref unless the page has a refcount of zero, return false if
755 * This can be called when MMU is off so it must not access
756 * any of the virtual mappings.
758 static inline int get_page_unless_zero(struct page *page)
760 return page_ref_add_unless(page, 1, 0);
763 extern int page_is_ram(unsigned long pfn);
771 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
774 /* Support for virtually mapped pages */
775 struct page *vmalloc_to_page(const void *addr);
776 unsigned long vmalloc_to_pfn(const void *addr);
779 * Determine if an address is within the vmalloc range
781 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
782 * is no special casing required.
785 #ifndef is_ioremap_addr
786 #define is_ioremap_addr(x) is_vmalloc_addr(x)
790 extern bool is_vmalloc_addr(const void *x);
791 extern int is_vmalloc_or_module_addr(const void *x);
793 static inline bool is_vmalloc_addr(const void *x)
797 static inline int is_vmalloc_or_module_addr(const void *x)
803 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
804 static inline void *kvmalloc(size_t size, gfp_t flags)
806 return kvmalloc_node(size, flags, NUMA_NO_NODE);
808 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
810 return kvmalloc_node(size, flags | __GFP_ZERO, node);
812 static inline void *kvzalloc(size_t size, gfp_t flags)
814 return kvmalloc(size, flags | __GFP_ZERO);
817 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
821 if (unlikely(check_mul_overflow(n, size, &bytes)))
824 return kvmalloc(bytes, flags);
827 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
829 return kvmalloc_array(n, size, flags | __GFP_ZERO);
832 extern void kvfree(const void *addr);
833 extern void kvfree_sensitive(const void *addr, size_t len);
835 static inline int head_compound_mapcount(struct page *head)
837 return atomic_read(compound_mapcount_ptr(head)) + 1;
841 * Mapcount of compound page as a whole, does not include mapped sub-pages.
843 * Must be called only for compound pages or any their tail sub-pages.
845 static inline int compound_mapcount(struct page *page)
847 VM_BUG_ON_PAGE(!PageCompound(page), page);
848 page = compound_head(page);
849 return head_compound_mapcount(page);
853 * The atomic page->_mapcount, starts from -1: so that transitions
854 * both from it and to it can be tracked, using atomic_inc_and_test
855 * and atomic_add_negative(-1).
857 static inline void page_mapcount_reset(struct page *page)
859 atomic_set(&(page)->_mapcount, -1);
862 int __page_mapcount(struct page *page);
865 * Mapcount of 0-order page; when compound sub-page, includes
866 * compound_mapcount().
868 * Result is undefined for pages which cannot be mapped into userspace.
869 * For example SLAB or special types of pages. See function page_has_type().
870 * They use this place in struct page differently.
872 static inline int page_mapcount(struct page *page)
874 if (unlikely(PageCompound(page)))
875 return __page_mapcount(page);
876 return atomic_read(&page->_mapcount) + 1;
879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880 int total_mapcount(struct page *page);
881 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
883 static inline int total_mapcount(struct page *page)
885 return page_mapcount(page);
887 static inline int page_trans_huge_mapcount(struct page *page,
890 int mapcount = page_mapcount(page);
892 *total_mapcount = mapcount;
897 static inline struct page *virt_to_head_page(const void *x)
899 struct page *page = virt_to_page(x);
901 return compound_head(page);
904 void __put_page(struct page *page);
906 void put_pages_list(struct list_head *pages);
908 void split_page(struct page *page, unsigned int order);
911 * Compound pages have a destructor function. Provide a
912 * prototype for that function and accessor functions.
913 * These are _only_ valid on the head of a compound page.
915 typedef void compound_page_dtor(struct page *);
917 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
918 enum compound_dtor_id {
921 #ifdef CONFIG_HUGETLB_PAGE
924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
929 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
931 static inline void set_compound_page_dtor(struct page *page,
932 enum compound_dtor_id compound_dtor)
934 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
935 page[1].compound_dtor = compound_dtor;
938 static inline void destroy_compound_page(struct page *page)
940 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
941 compound_page_dtors[page[1].compound_dtor](page);
944 static inline unsigned int compound_order(struct page *page)
948 return page[1].compound_order;
951 static inline bool hpage_pincount_available(struct page *page)
954 * Can the page->hpage_pinned_refcount field be used? That field is in
955 * the 3rd page of the compound page, so the smallest (2-page) compound
956 * pages cannot support it.
958 page = compound_head(page);
959 return PageCompound(page) && compound_order(page) > 1;
962 static inline int head_compound_pincount(struct page *head)
964 return atomic_read(compound_pincount_ptr(head));
967 static inline int compound_pincount(struct page *page)
969 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
970 page = compound_head(page);
971 return head_compound_pincount(page);
974 static inline void set_compound_order(struct page *page, unsigned int order)
976 page[1].compound_order = order;
977 page[1].compound_nr = 1U << order;
980 /* Returns the number of pages in this potentially compound page. */
981 static inline unsigned long compound_nr(struct page *page)
985 return page[1].compound_nr;
988 /* Returns the number of bytes in this potentially compound page. */
989 static inline unsigned long page_size(struct page *page)
991 return PAGE_SIZE << compound_order(page);
994 /* Returns the number of bits needed for the number of bytes in a page */
995 static inline unsigned int page_shift(struct page *page)
997 return PAGE_SHIFT + compound_order(page);
1000 void free_compound_page(struct page *page);
1004 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1005 * servicing faults for write access. In the normal case, do always want
1006 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1007 * that do not have writing enabled, when used by access_process_vm.
1009 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1011 if (likely(vma->vm_flags & VM_WRITE))
1012 pte = pte_mkwrite(pte);
1016 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1017 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1019 vm_fault_t finish_fault(struct vm_fault *vmf);
1020 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1024 * Multiple processes may "see" the same page. E.g. for untouched
1025 * mappings of /dev/null, all processes see the same page full of
1026 * zeroes, and text pages of executables and shared libraries have
1027 * only one copy in memory, at most, normally.
1029 * For the non-reserved pages, page_count(page) denotes a reference count.
1030 * page_count() == 0 means the page is free. page->lru is then used for
1031 * freelist management in the buddy allocator.
1032 * page_count() > 0 means the page has been allocated.
1034 * Pages are allocated by the slab allocator in order to provide memory
1035 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1036 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1037 * unless a particular usage is carefully commented. (the responsibility of
1038 * freeing the kmalloc memory is the caller's, of course).
1040 * A page may be used by anyone else who does a __get_free_page().
1041 * In this case, page_count still tracks the references, and should only
1042 * be used through the normal accessor functions. The top bits of page->flags
1043 * and page->virtual store page management information, but all other fields
1044 * are unused and could be used privately, carefully. The management of this
1045 * page is the responsibility of the one who allocated it, and those who have
1046 * subsequently been given references to it.
1048 * The other pages (we may call them "pagecache pages") are completely
1049 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1050 * The following discussion applies only to them.
1052 * A pagecache page contains an opaque `private' member, which belongs to the
1053 * page's address_space. Usually, this is the address of a circular list of
1054 * the page's disk buffers. PG_private must be set to tell the VM to call
1055 * into the filesystem to release these pages.
1057 * A page may belong to an inode's memory mapping. In this case, page->mapping
1058 * is the pointer to the inode, and page->index is the file offset of the page,
1059 * in units of PAGE_SIZE.
1061 * If pagecache pages are not associated with an inode, they are said to be
1062 * anonymous pages. These may become associated with the swapcache, and in that
1063 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1065 * In either case (swapcache or inode backed), the pagecache itself holds one
1066 * reference to the page. Setting PG_private should also increment the
1067 * refcount. The each user mapping also has a reference to the page.
1069 * The pagecache pages are stored in a per-mapping radix tree, which is
1070 * rooted at mapping->i_pages, and indexed by offset.
1071 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1072 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1074 * All pagecache pages may be subject to I/O:
1075 * - inode pages may need to be read from disk,
1076 * - inode pages which have been modified and are MAP_SHARED may need
1077 * to be written back to the inode on disk,
1078 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1079 * modified may need to be swapped out to swap space and (later) to be read
1084 * The zone field is never updated after free_area_init_core()
1085 * sets it, so none of the operations on it need to be atomic.
1088 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1089 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1090 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1091 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1092 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1093 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1096 * Define the bit shifts to access each section. For non-existent
1097 * sections we define the shift as 0; that plus a 0 mask ensures
1098 * the compiler will optimise away reference to them.
1100 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1101 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1102 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1103 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1104 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1106 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1107 #ifdef NODE_NOT_IN_PAGE_FLAGS
1108 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1109 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1110 SECTIONS_PGOFF : ZONES_PGOFF)
1112 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1113 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1114 NODES_PGOFF : ZONES_PGOFF)
1117 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1119 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1120 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1121 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1122 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1123 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1124 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1126 static inline enum zone_type page_zonenum(const struct page *page)
1128 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1129 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1132 #ifdef CONFIG_ZONE_DEVICE
1133 static inline bool is_zone_device_page(const struct page *page)
1135 return page_zonenum(page) == ZONE_DEVICE;
1137 extern void memmap_init_zone_device(struct zone *, unsigned long,
1138 unsigned long, struct dev_pagemap *);
1140 static inline bool is_zone_device_page(const struct page *page)
1146 static inline bool is_zone_movable_page(const struct page *page)
1148 return page_zonenum(page) == ZONE_MOVABLE;
1151 #ifdef CONFIG_DEV_PAGEMAP_OPS
1152 void free_devmap_managed_page(struct page *page);
1153 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1155 static inline bool page_is_devmap_managed(struct page *page)
1157 if (!static_branch_unlikely(&devmap_managed_key))
1159 if (!is_zone_device_page(page))
1161 switch (page->pgmap->type) {
1162 case MEMORY_DEVICE_PRIVATE:
1163 case MEMORY_DEVICE_FS_DAX:
1171 void put_devmap_managed_page(struct page *page);
1173 #else /* CONFIG_DEV_PAGEMAP_OPS */
1174 static inline bool page_is_devmap_managed(struct page *page)
1179 static inline void put_devmap_managed_page(struct page *page)
1182 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1184 static inline bool is_device_private_page(const struct page *page)
1186 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1187 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1188 is_zone_device_page(page) &&
1189 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1192 static inline bool is_pci_p2pdma_page(const struct page *page)
1194 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1195 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1196 is_zone_device_page(page) &&
1197 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1200 /* 127: arbitrary random number, small enough to assemble well */
1201 #define page_ref_zero_or_close_to_overflow(page) \
1202 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1204 static inline void get_page(struct page *page)
1206 page = compound_head(page);
1208 * Getting a normal page or the head of a compound page
1209 * requires to already have an elevated page->_refcount.
1211 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1215 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1216 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1217 unsigned int flags);
1220 static inline __must_check bool try_get_page(struct page *page)
1222 page = compound_head(page);
1223 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1229 static inline void put_page(struct page *page)
1231 page = compound_head(page);
1234 * For devmap managed pages we need to catch refcount transition from
1235 * 2 to 1, when refcount reach one it means the page is free and we
1236 * need to inform the device driver through callback. See
1237 * include/linux/memremap.h and HMM for details.
1239 if (page_is_devmap_managed(page)) {
1240 put_devmap_managed_page(page);
1244 if (put_page_testzero(page))
1249 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1250 * the page's refcount so that two separate items are tracked: the original page
1251 * reference count, and also a new count of how many pin_user_pages() calls were
1252 * made against the page. ("gup-pinned" is another term for the latter).
1254 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1255 * distinct from normal pages. As such, the unpin_user_page() call (and its
1256 * variants) must be used in order to release gup-pinned pages.
1260 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1261 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1262 * simpler, due to the fact that adding an even power of two to the page
1263 * refcount has the effect of using only the upper N bits, for the code that
1264 * counts up using the bias value. This means that the lower bits are left for
1265 * the exclusive use of the original code that increments and decrements by one
1266 * (or at least, by much smaller values than the bias value).
1268 * Of course, once the lower bits overflow into the upper bits (and this is
1269 * OK, because subtraction recovers the original values), then visual inspection
1270 * no longer suffices to directly view the separate counts. However, for normal
1271 * applications that don't have huge page reference counts, this won't be an
1274 * Locking: the lockless algorithm described in page_cache_get_speculative()
1275 * and page_cache_gup_pin_speculative() provides safe operation for
1276 * get_user_pages and page_mkclean and other calls that race to set up page
1279 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1281 void unpin_user_page(struct page *page);
1282 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1284 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1286 void unpin_user_pages(struct page **pages, unsigned long npages);
1289 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1292 * This function checks if a page has been pinned via a call to
1293 * a function in the pin_user_pages() family.
1295 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1296 * because it means "definitely not pinned for DMA", but true means "probably
1297 * pinned for DMA, but possibly a false positive due to having at least
1298 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1300 * False positives are OK, because: a) it's unlikely for a page to get that many
1301 * refcounts, and b) all the callers of this routine are expected to be able to
1302 * deal gracefully with a false positive.
1304 * For huge pages, the result will be exactly correct. That's because we have
1305 * more tracking data available: the 3rd struct page in the compound page is
1306 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1309 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1311 * Return: True, if it is likely that the page has been "dma-pinned".
1312 * False, if the page is definitely not dma-pinned.
1314 static inline bool page_maybe_dma_pinned(struct page *page)
1316 if (hpage_pincount_available(page))
1317 return compound_pincount(page) > 0;
1320 * page_ref_count() is signed. If that refcount overflows, then
1321 * page_ref_count() returns a negative value, and callers will avoid
1322 * further incrementing the refcount.
1324 * Here, for that overflow case, use the signed bit to count a little
1325 * bit higher via unsigned math, and thus still get an accurate result.
1327 return ((unsigned int)page_ref_count(compound_head(page))) >=
1328 GUP_PIN_COUNTING_BIAS;
1331 static inline bool is_cow_mapping(vm_flags_t flags)
1333 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1337 * This should most likely only be called during fork() to see whether we
1338 * should break the cow immediately for a page on the src mm.
1340 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1343 if (!is_cow_mapping(vma->vm_flags))
1346 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1349 return page_maybe_dma_pinned(page);
1352 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1353 #define SECTION_IN_PAGE_FLAGS
1357 * The identification function is mainly used by the buddy allocator for
1358 * determining if two pages could be buddies. We are not really identifying
1359 * the zone since we could be using the section number id if we do not have
1360 * node id available in page flags.
1361 * We only guarantee that it will return the same value for two combinable
1364 static inline int page_zone_id(struct page *page)
1366 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1369 #ifdef NODE_NOT_IN_PAGE_FLAGS
1370 extern int page_to_nid(const struct page *page);
1372 static inline int page_to_nid(const struct page *page)
1374 struct page *p = (struct page *)page;
1376 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1380 #ifdef CONFIG_NUMA_BALANCING
1381 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1383 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1386 static inline int cpupid_to_pid(int cpupid)
1388 return cpupid & LAST__PID_MASK;
1391 static inline int cpupid_to_cpu(int cpupid)
1393 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1396 static inline int cpupid_to_nid(int cpupid)
1398 return cpu_to_node(cpupid_to_cpu(cpupid));
1401 static inline bool cpupid_pid_unset(int cpupid)
1403 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1406 static inline bool cpupid_cpu_unset(int cpupid)
1408 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1411 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1413 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1416 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1417 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1418 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1420 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1423 static inline int page_cpupid_last(struct page *page)
1425 return page->_last_cpupid;
1427 static inline void page_cpupid_reset_last(struct page *page)
1429 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1432 static inline int page_cpupid_last(struct page *page)
1434 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1437 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1439 static inline void page_cpupid_reset_last(struct page *page)
1441 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1443 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1444 #else /* !CONFIG_NUMA_BALANCING */
1445 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1447 return page_to_nid(page); /* XXX */
1450 static inline int page_cpupid_last(struct page *page)
1452 return page_to_nid(page); /* XXX */
1455 static inline int cpupid_to_nid(int cpupid)
1460 static inline int cpupid_to_pid(int cpupid)
1465 static inline int cpupid_to_cpu(int cpupid)
1470 static inline int cpu_pid_to_cpupid(int nid, int pid)
1475 static inline bool cpupid_pid_unset(int cpupid)
1480 static inline void page_cpupid_reset_last(struct page *page)
1484 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1488 #endif /* CONFIG_NUMA_BALANCING */
1490 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1493 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1494 * setting tags for all pages to native kernel tag value 0xff, as the default
1495 * value 0x00 maps to 0xff.
1498 static inline u8 page_kasan_tag(const struct page *page)
1502 if (kasan_enabled()) {
1503 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1510 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1512 if (kasan_enabled()) {
1514 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1515 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1519 static inline void page_kasan_tag_reset(struct page *page)
1521 if (kasan_enabled())
1522 page_kasan_tag_set(page, 0xff);
1525 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1527 static inline u8 page_kasan_tag(const struct page *page)
1532 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1533 static inline void page_kasan_tag_reset(struct page *page) { }
1535 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1537 static inline struct zone *page_zone(const struct page *page)
1539 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1542 static inline pg_data_t *page_pgdat(const struct page *page)
1544 return NODE_DATA(page_to_nid(page));
1547 #ifdef SECTION_IN_PAGE_FLAGS
1548 static inline void set_page_section(struct page *page, unsigned long section)
1550 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1551 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1554 static inline unsigned long page_to_section(const struct page *page)
1556 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1560 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1561 #ifdef CONFIG_MIGRATION
1562 static inline bool is_pinnable_page(struct page *page)
1564 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1565 is_zero_pfn(page_to_pfn(page));
1568 static inline bool is_pinnable_page(struct page *page)
1574 static inline void set_page_zone(struct page *page, enum zone_type zone)
1576 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1577 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1580 static inline void set_page_node(struct page *page, unsigned long node)
1582 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1583 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1586 static inline void set_page_links(struct page *page, enum zone_type zone,
1587 unsigned long node, unsigned long pfn)
1589 set_page_zone(page, zone);
1590 set_page_node(page, node);
1591 #ifdef SECTION_IN_PAGE_FLAGS
1592 set_page_section(page, pfn_to_section_nr(pfn));
1597 * Some inline functions in vmstat.h depend on page_zone()
1599 #include <linux/vmstat.h>
1601 static __always_inline void *lowmem_page_address(const struct page *page)
1603 return page_to_virt(page);
1606 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1607 #define HASHED_PAGE_VIRTUAL
1610 #if defined(WANT_PAGE_VIRTUAL)
1611 static inline void *page_address(const struct page *page)
1613 return page->virtual;
1615 static inline void set_page_address(struct page *page, void *address)
1617 page->virtual = address;
1619 #define page_address_init() do { } while(0)
1622 #if defined(HASHED_PAGE_VIRTUAL)
1623 void *page_address(const struct page *page);
1624 void set_page_address(struct page *page, void *virtual);
1625 void page_address_init(void);
1628 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1629 #define page_address(page) lowmem_page_address(page)
1630 #define set_page_address(page, address) do { } while(0)
1631 #define page_address_init() do { } while(0)
1634 extern void *page_rmapping(struct page *page);
1635 extern struct anon_vma *page_anon_vma(struct page *page);
1636 extern struct address_space *page_mapping(struct page *page);
1638 extern struct address_space *__page_file_mapping(struct page *);
1641 struct address_space *page_file_mapping(struct page *page)
1643 if (unlikely(PageSwapCache(page)))
1644 return __page_file_mapping(page);
1646 return page->mapping;
1649 extern pgoff_t __page_file_index(struct page *page);
1652 * Return the pagecache index of the passed page. Regular pagecache pages
1653 * use ->index whereas swapcache pages use swp_offset(->private)
1655 static inline pgoff_t page_index(struct page *page)
1657 if (unlikely(PageSwapCache(page)))
1658 return __page_file_index(page);
1662 bool page_mapped(struct page *page);
1663 struct address_space *page_mapping(struct page *page);
1666 * Return true only if the page has been allocated with
1667 * ALLOC_NO_WATERMARKS and the low watermark was not
1668 * met implying that the system is under some pressure.
1670 static inline bool page_is_pfmemalloc(const struct page *page)
1673 * lru.next has bit 1 set if the page is allocated from the
1674 * pfmemalloc reserves. Callers may simply overwrite it if
1675 * they do not need to preserve that information.
1677 return (uintptr_t)page->lru.next & BIT(1);
1681 * Only to be called by the page allocator on a freshly allocated
1684 static inline void set_page_pfmemalloc(struct page *page)
1686 page->lru.next = (void *)BIT(1);
1689 static inline void clear_page_pfmemalloc(struct page *page)
1691 page->lru.next = NULL;
1695 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1697 extern void pagefault_out_of_memory(void);
1699 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1700 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1703 * Flags passed to show_mem() and show_free_areas() to suppress output in
1706 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1708 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1711 extern bool can_do_mlock(void);
1713 static inline bool can_do_mlock(void) { return false; }
1715 extern int user_shm_lock(size_t, struct ucounts *);
1716 extern void user_shm_unlock(size_t, struct ucounts *);
1719 * Parameter block passed down to zap_pte_range in exceptional cases.
1721 struct zap_details {
1722 struct address_space *check_mapping; /* Check page->mapping if set */
1723 pgoff_t first_index; /* Lowest page->index to unmap */
1724 pgoff_t last_index; /* Highest page->index to unmap */
1725 struct page *single_page; /* Locked page to be unmapped */
1728 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1730 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1733 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1734 unsigned long size);
1735 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1736 unsigned long size);
1737 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1738 unsigned long start, unsigned long end);
1740 struct mmu_notifier_range;
1742 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1743 unsigned long end, unsigned long floor, unsigned long ceiling);
1745 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1746 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1747 struct mmu_notifier_range *range, pte_t **ptepp,
1748 pmd_t **pmdpp, spinlock_t **ptlp);
1749 int follow_pte(struct mm_struct *mm, unsigned long address,
1750 pte_t **ptepp, spinlock_t **ptlp);
1751 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1752 unsigned long *pfn);
1753 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1754 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1755 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1756 void *buf, int len, int write);
1758 extern void truncate_pagecache(struct inode *inode, loff_t new);
1759 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1760 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1761 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1762 int truncate_inode_page(struct address_space *mapping, struct page *page);
1763 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1764 int invalidate_inode_page(struct page *page);
1767 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1768 unsigned long address, unsigned int flags,
1769 struct pt_regs *regs);
1770 extern int fixup_user_fault(struct mm_struct *mm,
1771 unsigned long address, unsigned int fault_flags,
1773 void unmap_mapping_page(struct page *page);
1774 void unmap_mapping_pages(struct address_space *mapping,
1775 pgoff_t start, pgoff_t nr, bool even_cows);
1776 void unmap_mapping_range(struct address_space *mapping,
1777 loff_t const holebegin, loff_t const holelen, int even_cows);
1779 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1780 unsigned long address, unsigned int flags,
1781 struct pt_regs *regs)
1783 /* should never happen if there's no MMU */
1785 return VM_FAULT_SIGBUS;
1787 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1788 unsigned int fault_flags, bool *unlocked)
1790 /* should never happen if there's no MMU */
1794 static inline void unmap_mapping_page(struct page *page) { }
1795 static inline void unmap_mapping_pages(struct address_space *mapping,
1796 pgoff_t start, pgoff_t nr, bool even_cows) { }
1797 static inline void unmap_mapping_range(struct address_space *mapping,
1798 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1801 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1802 loff_t const holebegin, loff_t const holelen)
1804 unmap_mapping_range(mapping, holebegin, holelen, 0);
1807 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1808 void *buf, int len, unsigned int gup_flags);
1809 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1810 void *buf, int len, unsigned int gup_flags);
1811 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1812 void *buf, int len, unsigned int gup_flags);
1814 long get_user_pages_remote(struct mm_struct *mm,
1815 unsigned long start, unsigned long nr_pages,
1816 unsigned int gup_flags, struct page **pages,
1817 struct vm_area_struct **vmas, int *locked);
1818 long pin_user_pages_remote(struct mm_struct *mm,
1819 unsigned long start, unsigned long nr_pages,
1820 unsigned int gup_flags, struct page **pages,
1821 struct vm_area_struct **vmas, int *locked);
1822 long get_user_pages(unsigned long start, unsigned long nr_pages,
1823 unsigned int gup_flags, struct page **pages,
1824 struct vm_area_struct **vmas);
1825 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1826 unsigned int gup_flags, struct page **pages,
1827 struct vm_area_struct **vmas);
1828 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1829 unsigned int gup_flags, struct page **pages, int *locked);
1830 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1831 unsigned int gup_flags, struct page **pages, int *locked);
1832 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1833 struct page **pages, unsigned int gup_flags);
1834 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1835 struct page **pages, unsigned int gup_flags);
1837 int get_user_pages_fast(unsigned long start, int nr_pages,
1838 unsigned int gup_flags, struct page **pages);
1839 int pin_user_pages_fast(unsigned long start, int nr_pages,
1840 unsigned int gup_flags, struct page **pages);
1842 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1843 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1844 struct task_struct *task, bool bypass_rlim);
1847 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1848 struct page **pages);
1849 int get_kernel_page(unsigned long start, int write, struct page **pages);
1850 struct page *get_dump_page(unsigned long addr);
1852 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1853 extern void do_invalidatepage(struct page *page, unsigned int offset,
1854 unsigned int length);
1856 int redirty_page_for_writepage(struct writeback_control *wbc,
1858 void account_page_cleaned(struct page *page, struct address_space *mapping,
1859 struct bdi_writeback *wb);
1860 int set_page_dirty(struct page *page);
1861 int set_page_dirty_lock(struct page *page);
1862 void __cancel_dirty_page(struct page *page);
1863 static inline void cancel_dirty_page(struct page *page)
1865 /* Avoid atomic ops, locking, etc. when not actually needed. */
1866 if (PageDirty(page))
1867 __cancel_dirty_page(page);
1869 int clear_page_dirty_for_io(struct page *page);
1871 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1873 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1874 unsigned long old_addr, struct vm_area_struct *new_vma,
1875 unsigned long new_addr, unsigned long len,
1876 bool need_rmap_locks);
1879 * Flags used by change_protection(). For now we make it a bitmap so
1880 * that we can pass in multiple flags just like parameters. However
1881 * for now all the callers are only use one of the flags at the same
1884 /* Whether we should allow dirty bit accounting */
1885 #define MM_CP_DIRTY_ACCT (1UL << 0)
1886 /* Whether this protection change is for NUMA hints */
1887 #define MM_CP_PROT_NUMA (1UL << 1)
1888 /* Whether this change is for write protecting */
1889 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1890 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1891 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1892 MM_CP_UFFD_WP_RESOLVE)
1894 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1895 unsigned long end, pgprot_t newprot,
1896 unsigned long cp_flags);
1897 extern int mprotect_fixup(struct vm_area_struct *vma,
1898 struct vm_area_struct **pprev, unsigned long start,
1899 unsigned long end, unsigned long newflags);
1902 * doesn't attempt to fault and will return short.
1904 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1905 unsigned int gup_flags, struct page **pages);
1906 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1907 unsigned int gup_flags, struct page **pages);
1909 static inline bool get_user_page_fast_only(unsigned long addr,
1910 unsigned int gup_flags, struct page **pagep)
1912 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1915 * per-process(per-mm_struct) statistics.
1917 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919 long val = atomic_long_read(&mm->rss_stat.count[member]);
1921 #ifdef SPLIT_RSS_COUNTING
1923 * counter is updated in asynchronous manner and may go to minus.
1924 * But it's never be expected number for users.
1929 return (unsigned long)val;
1932 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1934 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938 mm_trace_rss_stat(mm, member, count);
1941 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945 mm_trace_rss_stat(mm, member, count);
1948 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952 mm_trace_rss_stat(mm, member, count);
1955 /* Optimized variant when page is already known not to be PageAnon */
1956 static inline int mm_counter_file(struct page *page)
1958 if (PageSwapBacked(page))
1959 return MM_SHMEMPAGES;
1960 return MM_FILEPAGES;
1963 static inline int mm_counter(struct page *page)
1966 return MM_ANONPAGES;
1967 return mm_counter_file(page);
1970 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 return get_mm_counter(mm, MM_FILEPAGES) +
1973 get_mm_counter(mm, MM_ANONPAGES) +
1974 get_mm_counter(mm, MM_SHMEMPAGES);
1977 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979 return max(mm->hiwater_rss, get_mm_rss(mm));
1982 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984 return max(mm->hiwater_vm, mm->total_vm);
1987 static inline void update_hiwater_rss(struct mm_struct *mm)
1989 unsigned long _rss = get_mm_rss(mm);
1991 if ((mm)->hiwater_rss < _rss)
1992 (mm)->hiwater_rss = _rss;
1995 static inline void update_hiwater_vm(struct mm_struct *mm)
1997 if (mm->hiwater_vm < mm->total_vm)
1998 mm->hiwater_vm = mm->total_vm;
2001 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003 mm->hiwater_rss = get_mm_rss(mm);
2006 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2007 struct mm_struct *mm)
2009 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011 if (*maxrss < hiwater_rss)
2012 *maxrss = hiwater_rss;
2015 #if defined(SPLIT_RSS_COUNTING)
2016 void sync_mm_rss(struct mm_struct *mm);
2018 static inline void sync_mm_rss(struct mm_struct *mm)
2023 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2024 static inline int pte_special(pte_t pte)
2029 static inline pte_t pte_mkspecial(pte_t pte)
2035 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2036 static inline int pte_devmap(pte_t pte)
2042 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2044 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2050 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2054 #ifdef __PAGETABLE_P4D_FOLDED
2055 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2056 unsigned long address)
2061 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2064 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2065 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2066 unsigned long address)
2070 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2071 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2074 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2076 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078 if (mm_pud_folded(mm))
2080 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2083 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085 if (mm_pud_folded(mm))
2087 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2091 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2092 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2093 unsigned long address)
2098 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2099 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2102 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2104 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106 if (mm_pmd_folded(mm))
2108 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2111 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113 if (mm_pmd_folded(mm))
2115 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2120 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2122 atomic_long_set(&mm->pgtables_bytes, 0);
2125 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2127 return atomic_long_read(&mm->pgtables_bytes);
2130 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2135 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2141 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2142 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2147 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2148 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2151 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2152 int __pte_alloc_kernel(pmd_t *pmd);
2154 #if defined(CONFIG_MMU)
2156 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2157 unsigned long address)
2159 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2160 NULL : p4d_offset(pgd, address);
2163 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2164 unsigned long address)
2166 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2167 NULL : pud_offset(p4d, address);
2170 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2173 NULL: pmd_offset(pud, address);
2175 #endif /* CONFIG_MMU */
2177 #if USE_SPLIT_PTE_PTLOCKS
2178 #if ALLOC_SPLIT_PTLOCKS
2179 void __init ptlock_cache_init(void);
2180 extern bool ptlock_alloc(struct page *page);
2181 extern void ptlock_free(struct page *page);
2183 static inline spinlock_t *ptlock_ptr(struct page *page)
2187 #else /* ALLOC_SPLIT_PTLOCKS */
2188 static inline void ptlock_cache_init(void)
2192 static inline bool ptlock_alloc(struct page *page)
2197 static inline void ptlock_free(struct page *page)
2201 static inline spinlock_t *ptlock_ptr(struct page *page)
2205 #endif /* ALLOC_SPLIT_PTLOCKS */
2207 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209 return ptlock_ptr(pmd_page(*pmd));
2212 static inline bool ptlock_init(struct page *page)
2215 * prep_new_page() initialize page->private (and therefore page->ptl)
2216 * with 0. Make sure nobody took it in use in between.
2218 * It can happen if arch try to use slab for page table allocation:
2219 * slab code uses page->slab_cache, which share storage with page->ptl.
2221 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2222 if (!ptlock_alloc(page))
2224 spin_lock_init(ptlock_ptr(page));
2228 #else /* !USE_SPLIT_PTE_PTLOCKS */
2230 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234 return &mm->page_table_lock;
2236 static inline void ptlock_cache_init(void) {}
2237 static inline bool ptlock_init(struct page *page) { return true; }
2238 static inline void ptlock_free(struct page *page) {}
2239 #endif /* USE_SPLIT_PTE_PTLOCKS */
2241 static inline void pgtable_init(void)
2243 ptlock_cache_init();
2244 pgtable_cache_init();
2247 static inline bool pgtable_pte_page_ctor(struct page *page)
2249 if (!ptlock_init(page))
2251 __SetPageTable(page);
2252 inc_lruvec_page_state(page, NR_PAGETABLE);
2256 static inline void pgtable_pte_page_dtor(struct page *page)
2259 __ClearPageTable(page);
2260 dec_lruvec_page_state(page, NR_PAGETABLE);
2263 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2265 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2266 pte_t *__pte = pte_offset_map(pmd, address); \
2272 #define pte_unmap_unlock(pte, ptl) do { \
2277 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2279 #define pte_alloc_map(mm, pmd, address) \
2280 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2282 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2283 (pte_alloc(mm, pmd) ? \
2284 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2286 #define pte_alloc_kernel(pmd, address) \
2287 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2288 NULL: pte_offset_kernel(pmd, address))
2290 #if USE_SPLIT_PMD_PTLOCKS
2292 static struct page *pmd_to_page(pmd_t *pmd)
2294 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2295 return virt_to_page((void *)((unsigned long) pmd & mask));
2298 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300 return ptlock_ptr(pmd_to_page(pmd));
2303 static inline bool pmd_ptlock_init(struct page *page)
2305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2306 page->pmd_huge_pte = NULL;
2308 return ptlock_init(page);
2311 static inline void pmd_ptlock_free(struct page *page)
2313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2314 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2319 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2323 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325 return &mm->page_table_lock;
2328 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2329 static inline void pmd_ptlock_free(struct page *page) {}
2331 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2335 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2342 static inline bool pgtable_pmd_page_ctor(struct page *page)
2344 if (!pmd_ptlock_init(page))
2346 __SetPageTable(page);
2347 inc_lruvec_page_state(page, NR_PAGETABLE);
2351 static inline void pgtable_pmd_page_dtor(struct page *page)
2353 pmd_ptlock_free(page);
2354 __ClearPageTable(page);
2355 dec_lruvec_page_state(page, NR_PAGETABLE);
2359 * No scalability reason to split PUD locks yet, but follow the same pattern
2360 * as the PMD locks to make it easier if we decide to. The VM should not be
2361 * considered ready to switch to split PUD locks yet; there may be places
2362 * which need to be converted from page_table_lock.
2364 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366 return &mm->page_table_lock;
2369 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371 spinlock_t *ptl = pud_lockptr(mm, pud);
2377 extern void __init pagecache_init(void);
2378 extern void __init free_area_init_memoryless_node(int nid);
2379 extern void free_initmem(void);
2382 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2383 * into the buddy system. The freed pages will be poisoned with pattern
2384 * "poison" if it's within range [0, UCHAR_MAX].
2385 * Return pages freed into the buddy system.
2387 extern unsigned long free_reserved_area(void *start, void *end,
2388 int poison, const char *s);
2390 extern void adjust_managed_page_count(struct page *page, long count);
2391 extern void mem_init_print_info(void);
2393 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2395 /* Free the reserved page into the buddy system, so it gets managed. */
2396 static inline void free_reserved_page(struct page *page)
2398 ClearPageReserved(page);
2399 init_page_count(page);
2401 adjust_managed_page_count(page, 1);
2403 #define free_highmem_page(page) free_reserved_page(page)
2405 static inline void mark_page_reserved(struct page *page)
2407 SetPageReserved(page);
2408 adjust_managed_page_count(page, -1);
2412 * Default method to free all the __init memory into the buddy system.
2413 * The freed pages will be poisoned with pattern "poison" if it's within
2414 * range [0, UCHAR_MAX].
2415 * Return pages freed into the buddy system.
2417 static inline unsigned long free_initmem_default(int poison)
2419 extern char __init_begin[], __init_end[];
2421 return free_reserved_area(&__init_begin, &__init_end,
2422 poison, "unused kernel image (initmem)");
2425 static inline unsigned long get_num_physpages(void)
2428 unsigned long phys_pages = 0;
2430 for_each_online_node(nid)
2431 phys_pages += node_present_pages(nid);
2437 * Using memblock node mappings, an architecture may initialise its
2438 * zones, allocate the backing mem_map and account for memory holes in an
2439 * architecture independent manner.
2441 * An architecture is expected to register range of page frames backed by
2442 * physical memory with memblock_add[_node]() before calling
2443 * free_area_init() passing in the PFN each zone ends at. At a basic
2444 * usage, an architecture is expected to do something like
2446 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448 * for_each_valid_physical_page_range()
2449 * memblock_add_node(base, size, nid)
2450 * free_area_init(max_zone_pfns);
2452 void free_area_init(unsigned long *max_zone_pfn);
2453 unsigned long node_map_pfn_alignment(void);
2454 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2455 unsigned long end_pfn);
2456 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2457 unsigned long end_pfn);
2458 extern void get_pfn_range_for_nid(unsigned int nid,
2459 unsigned long *start_pfn, unsigned long *end_pfn);
2460 extern unsigned long find_min_pfn_with_active_regions(void);
2463 static inline int early_pfn_to_nid(unsigned long pfn)
2468 /* please see mm/page_alloc.c */
2469 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2472 extern void set_dma_reserve(unsigned long new_dma_reserve);
2473 extern void memmap_init_range(unsigned long, int, unsigned long,
2474 unsigned long, unsigned long, enum meminit_context,
2475 struct vmem_altmap *, int migratetype);
2476 extern void setup_per_zone_wmarks(void);
2477 extern int __meminit init_per_zone_wmark_min(void);
2478 extern void mem_init(void);
2479 extern void __init mmap_init(void);
2480 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2481 extern long si_mem_available(void);
2482 extern void si_meminfo(struct sysinfo * val);
2483 extern void si_meminfo_node(struct sysinfo *val, int nid);
2484 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2485 extern unsigned long arch_reserved_kernel_pages(void);
2488 extern __printf(3, 4)
2489 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2491 extern void setup_per_cpu_pageset(void);
2494 extern int min_free_kbytes;
2495 extern int watermark_boost_factor;
2496 extern int watermark_scale_factor;
2497 extern bool arch_has_descending_max_zone_pfns(void);
2500 extern atomic_long_t mmap_pages_allocated;
2501 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2503 /* interval_tree.c */
2504 void vma_interval_tree_insert(struct vm_area_struct *node,
2505 struct rb_root_cached *root);
2506 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2507 struct vm_area_struct *prev,
2508 struct rb_root_cached *root);
2509 void vma_interval_tree_remove(struct vm_area_struct *node,
2510 struct rb_root_cached *root);
2511 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2512 unsigned long start, unsigned long last);
2513 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2514 unsigned long start, unsigned long last);
2516 #define vma_interval_tree_foreach(vma, root, start, last) \
2517 for (vma = vma_interval_tree_iter_first(root, start, last); \
2518 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2520 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2521 struct rb_root_cached *root);
2522 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2523 struct rb_root_cached *root);
2524 struct anon_vma_chain *
2525 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2526 unsigned long start, unsigned long last);
2527 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2528 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2529 #ifdef CONFIG_DEBUG_VM_RB
2530 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2533 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2534 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2535 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2538 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2539 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2540 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2541 struct vm_area_struct *expand);
2542 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2543 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2545 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2547 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2548 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2549 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2550 struct mempolicy *, struct vm_userfaultfd_ctx);
2551 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2552 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2553 unsigned long addr, int new_below);
2554 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2555 unsigned long addr, int new_below);
2556 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2557 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2558 struct rb_node **, struct rb_node *);
2559 extern void unlink_file_vma(struct vm_area_struct *);
2560 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2561 unsigned long addr, unsigned long len, pgoff_t pgoff,
2562 bool *need_rmap_locks);
2563 extern void exit_mmap(struct mm_struct *);
2565 static inline int check_data_rlimit(unsigned long rlim,
2567 unsigned long start,
2568 unsigned long end_data,
2569 unsigned long start_data)
2571 if (rlim < RLIM_INFINITY) {
2572 if (((new - start) + (end_data - start_data)) > rlim)
2579 extern int mm_take_all_locks(struct mm_struct *mm);
2580 extern void mm_drop_all_locks(struct mm_struct *mm);
2582 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2583 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2584 extern struct file *get_task_exe_file(struct task_struct *task);
2586 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2587 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2589 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2590 const struct vm_special_mapping *sm);
2591 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2592 unsigned long addr, unsigned long len,
2593 unsigned long flags,
2594 const struct vm_special_mapping *spec);
2595 /* This is an obsolete alternative to _install_special_mapping. */
2596 extern int install_special_mapping(struct mm_struct *mm,
2597 unsigned long addr, unsigned long len,
2598 unsigned long flags, struct page **pages);
2600 unsigned long randomize_stack_top(unsigned long stack_top);
2602 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2604 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2605 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2606 struct list_head *uf);
2607 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2608 unsigned long len, unsigned long prot, unsigned long flags,
2609 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2610 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2611 struct list_head *uf, bool downgrade);
2612 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2613 struct list_head *uf);
2614 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2617 extern int __mm_populate(unsigned long addr, unsigned long len,
2619 static inline void mm_populate(unsigned long addr, unsigned long len)
2622 (void) __mm_populate(addr, len, 1);
2625 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2628 /* These take the mm semaphore themselves */
2629 extern int __must_check vm_brk(unsigned long, unsigned long);
2630 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2631 extern int vm_munmap(unsigned long, size_t);
2632 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2633 unsigned long, unsigned long,
2634 unsigned long, unsigned long);
2636 struct vm_unmapped_area_info {
2637 #define VM_UNMAPPED_AREA_TOPDOWN 1
2638 unsigned long flags;
2639 unsigned long length;
2640 unsigned long low_limit;
2641 unsigned long high_limit;
2642 unsigned long align_mask;
2643 unsigned long align_offset;
2646 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2649 extern void truncate_inode_pages(struct address_space *, loff_t);
2650 extern void truncate_inode_pages_range(struct address_space *,
2651 loff_t lstart, loff_t lend);
2652 extern void truncate_inode_pages_final(struct address_space *);
2654 /* generic vm_area_ops exported for stackable file systems */
2655 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2656 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2657 pgoff_t start_pgoff, pgoff_t end_pgoff);
2658 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2660 /* mm/page-writeback.c */
2661 int __must_check write_one_page(struct page *page);
2662 void task_dirty_inc(struct task_struct *tsk);
2664 extern unsigned long stack_guard_gap;
2665 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2666 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2668 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2669 extern int expand_downwards(struct vm_area_struct *vma,
2670 unsigned long address);
2672 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2674 #define expand_upwards(vma, address) (0)
2677 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2678 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2679 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2680 struct vm_area_struct **pprev);
2683 * find_vma_intersection() - Look up the first VMA which intersects the interval
2684 * @mm: The process address space.
2685 * @start_addr: The inclusive start user address.
2686 * @end_addr: The exclusive end user address.
2688 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2689 * start_addr < end_addr.
2692 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2693 unsigned long start_addr,
2694 unsigned long end_addr)
2696 struct vm_area_struct *vma = find_vma(mm, start_addr);
2698 if (vma && end_addr <= vma->vm_start)
2704 * vma_lookup() - Find a VMA at a specific address
2705 * @mm: The process address space.
2706 * @addr: The user address.
2708 * Return: The vm_area_struct at the given address, %NULL otherwise.
2711 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2713 struct vm_area_struct *vma = find_vma(mm, addr);
2715 if (vma && addr < vma->vm_start)
2721 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2723 unsigned long vm_start = vma->vm_start;
2725 if (vma->vm_flags & VM_GROWSDOWN) {
2726 vm_start -= stack_guard_gap;
2727 if (vm_start > vma->vm_start)
2733 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2735 unsigned long vm_end = vma->vm_end;
2737 if (vma->vm_flags & VM_GROWSUP) {
2738 vm_end += stack_guard_gap;
2739 if (vm_end < vma->vm_end)
2740 vm_end = -PAGE_SIZE;
2745 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2747 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2750 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2751 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2752 unsigned long vm_start, unsigned long vm_end)
2754 struct vm_area_struct *vma = find_vma(mm, vm_start);
2756 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2762 static inline bool range_in_vma(struct vm_area_struct *vma,
2763 unsigned long start, unsigned long end)
2765 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2769 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2770 void vma_set_page_prot(struct vm_area_struct *vma);
2772 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2776 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2778 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2782 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2784 #ifdef CONFIG_NUMA_BALANCING
2785 unsigned long change_prot_numa(struct vm_area_struct *vma,
2786 unsigned long start, unsigned long end);
2789 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2790 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2791 unsigned long pfn, unsigned long size, pgprot_t);
2792 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2793 unsigned long pfn, unsigned long size, pgprot_t prot);
2794 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2795 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2796 struct page **pages, unsigned long *num);
2797 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2799 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2801 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2803 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2804 unsigned long pfn, pgprot_t pgprot);
2805 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2807 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2808 pfn_t pfn, pgprot_t pgprot);
2809 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2810 unsigned long addr, pfn_t pfn);
2811 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2813 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2814 unsigned long addr, struct page *page)
2816 int err = vm_insert_page(vma, addr, page);
2819 return VM_FAULT_OOM;
2820 if (err < 0 && err != -EBUSY)
2821 return VM_FAULT_SIGBUS;
2823 return VM_FAULT_NOPAGE;
2826 #ifndef io_remap_pfn_range
2827 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2828 unsigned long addr, unsigned long pfn,
2829 unsigned long size, pgprot_t prot)
2831 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2835 static inline vm_fault_t vmf_error(int err)
2838 return VM_FAULT_OOM;
2839 return VM_FAULT_SIGBUS;
2842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2843 unsigned int foll_flags);
2845 #define FOLL_WRITE 0x01 /* check pte is writable */
2846 #define FOLL_TOUCH 0x02 /* mark page accessed */
2847 #define FOLL_GET 0x04 /* do get_page on page */
2848 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2849 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2850 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2851 * and return without waiting upon it */
2852 #define FOLL_POPULATE 0x40 /* fault in page */
2853 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2854 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2855 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2856 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2857 #define FOLL_MLOCK 0x1000 /* lock present pages */
2858 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2859 #define FOLL_COW 0x4000 /* internal GUP flag */
2860 #define FOLL_ANON 0x8000 /* don't do file mappings */
2861 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2862 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2863 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2864 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2867 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2868 * other. Here is what they mean, and how to use them:
2870 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2871 * period _often_ under userspace control. This is in contrast to
2872 * iov_iter_get_pages(), whose usages are transient.
2874 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2875 * lifetime enforced by the filesystem and we need guarantees that longterm
2876 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2877 * the filesystem. Ideas for this coordination include revoking the longterm
2878 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2879 * added after the problem with filesystems was found FS DAX VMAs are
2880 * specifically failed. Filesystem pages are still subject to bugs and use of
2881 * FOLL_LONGTERM should be avoided on those pages.
2883 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2884 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2885 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2886 * is due to an incompatibility with the FS DAX check and
2887 * FAULT_FLAG_ALLOW_RETRY.
2889 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2890 * that region. And so, CMA attempts to migrate the page before pinning, when
2891 * FOLL_LONGTERM is specified.
2893 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2894 * but an additional pin counting system) will be invoked. This is intended for
2895 * anything that gets a page reference and then touches page data (for example,
2896 * Direct IO). This lets the filesystem know that some non-file-system entity is
2897 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2898 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2899 * a call to unpin_user_page().
2901 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2902 * and separate refcounting mechanisms, however, and that means that each has
2903 * its own acquire and release mechanisms:
2905 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2907 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2909 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2910 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2911 * calls applied to them, and that's perfectly OK. This is a constraint on the
2912 * callers, not on the pages.)
2914 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2915 * directly by the caller. That's in order to help avoid mismatches when
2916 * releasing pages: get_user_pages*() pages must be released via put_page(),
2917 * while pin_user_pages*() pages must be released via unpin_user_page().
2919 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2922 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2924 if (vm_fault & VM_FAULT_OOM)
2926 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2927 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2928 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2933 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2934 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2935 unsigned long size, pte_fn_t fn, void *data);
2936 extern int apply_to_existing_page_range(struct mm_struct *mm,
2937 unsigned long address, unsigned long size,
2938 pte_fn_t fn, void *data);
2940 extern void init_mem_debugging_and_hardening(void);
2941 #ifdef CONFIG_PAGE_POISONING
2942 extern void __kernel_poison_pages(struct page *page, int numpages);
2943 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2944 extern bool _page_poisoning_enabled_early;
2945 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2946 static inline bool page_poisoning_enabled(void)
2948 return _page_poisoning_enabled_early;
2951 * For use in fast paths after init_mem_debugging() has run, or when a
2952 * false negative result is not harmful when called too early.
2954 static inline bool page_poisoning_enabled_static(void)
2956 return static_branch_unlikely(&_page_poisoning_enabled);
2958 static inline void kernel_poison_pages(struct page *page, int numpages)
2960 if (page_poisoning_enabled_static())
2961 __kernel_poison_pages(page, numpages);
2963 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2965 if (page_poisoning_enabled_static())
2966 __kernel_unpoison_pages(page, numpages);
2969 static inline bool page_poisoning_enabled(void) { return false; }
2970 static inline bool page_poisoning_enabled_static(void) { return false; }
2971 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2972 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2973 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2976 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2977 static inline bool want_init_on_alloc(gfp_t flags)
2979 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2982 return flags & __GFP_ZERO;
2985 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2986 static inline bool want_init_on_free(void)
2988 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2992 extern bool _debug_pagealloc_enabled_early;
2993 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2995 static inline bool debug_pagealloc_enabled(void)
2997 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2998 _debug_pagealloc_enabled_early;
3002 * For use in fast paths after init_debug_pagealloc() has run, or when a
3003 * false negative result is not harmful when called too early.
3005 static inline bool debug_pagealloc_enabled_static(void)
3007 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3010 return static_branch_unlikely(&_debug_pagealloc_enabled);
3013 #ifdef CONFIG_DEBUG_PAGEALLOC
3015 * To support DEBUG_PAGEALLOC architecture must ensure that
3016 * __kernel_map_pages() never fails
3018 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3020 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3022 if (debug_pagealloc_enabled_static())
3023 __kernel_map_pages(page, numpages, 1);
3026 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3028 if (debug_pagealloc_enabled_static())
3029 __kernel_map_pages(page, numpages, 0);
3031 #else /* CONFIG_DEBUG_PAGEALLOC */
3032 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3033 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3034 #endif /* CONFIG_DEBUG_PAGEALLOC */
3036 #ifdef __HAVE_ARCH_GATE_AREA
3037 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3038 extern int in_gate_area_no_mm(unsigned long addr);
3039 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3041 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3045 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3046 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3050 #endif /* __HAVE_ARCH_GATE_AREA */
3052 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3054 #ifdef CONFIG_SYSCTL
3055 extern int sysctl_drop_caches;
3056 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3060 void drop_slab(void);
3061 void drop_slab_node(int nid);
3064 #define randomize_va_space 0
3066 extern int randomize_va_space;
3069 const char * arch_vma_name(struct vm_area_struct *vma);
3071 void print_vma_addr(char *prefix, unsigned long rip);
3073 static inline void print_vma_addr(char *prefix, unsigned long rip)
3078 int vmemmap_remap_free(unsigned long start, unsigned long end,
3079 unsigned long reuse);
3080 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3081 unsigned long reuse, gfp_t gfp_mask);
3083 void *sparse_buffer_alloc(unsigned long size);
3084 struct page * __populate_section_memmap(unsigned long pfn,
3085 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3086 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3087 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3088 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3089 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3090 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3091 struct vmem_altmap *altmap);
3092 void *vmemmap_alloc_block(unsigned long size, int node);
3094 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3095 struct vmem_altmap *altmap);
3096 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3097 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3098 int node, struct vmem_altmap *altmap);
3099 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3100 struct vmem_altmap *altmap);
3101 void vmemmap_populate_print_last(void);
3102 #ifdef CONFIG_MEMORY_HOTPLUG
3103 void vmemmap_free(unsigned long start, unsigned long end,
3104 struct vmem_altmap *altmap);
3106 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3107 unsigned long nr_pages);
3110 MF_COUNT_INCREASED = 1 << 0,
3111 MF_ACTION_REQUIRED = 1 << 1,
3112 MF_MUST_KILL = 1 << 2,
3113 MF_SOFT_OFFLINE = 1 << 3,
3115 extern int memory_failure(unsigned long pfn, int flags);
3116 extern void memory_failure_queue(unsigned long pfn, int flags);
3117 extern void memory_failure_queue_kick(int cpu);
3118 extern int unpoison_memory(unsigned long pfn);
3119 extern int sysctl_memory_failure_early_kill;
3120 extern int sysctl_memory_failure_recovery;
3121 extern void shake_page(struct page *p, int access);
3122 extern atomic_long_t num_poisoned_pages __read_mostly;
3123 extern int soft_offline_page(unsigned long pfn, int flags);
3127 * Error handlers for various types of pages.
3130 MF_IGNORED, /* Error: cannot be handled */
3131 MF_FAILED, /* Error: handling failed */
3132 MF_DELAYED, /* Will be handled later */
3133 MF_RECOVERED, /* Successfully recovered */
3136 enum mf_action_page_type {
3138 MF_MSG_KERNEL_HIGH_ORDER,
3140 MF_MSG_DIFFERENT_COMPOUND,
3141 MF_MSG_POISONED_HUGE,
3144 MF_MSG_NON_PMD_HUGE,
3145 MF_MSG_UNMAP_FAILED,
3146 MF_MSG_DIRTY_SWAPCACHE,
3147 MF_MSG_CLEAN_SWAPCACHE,
3148 MF_MSG_DIRTY_MLOCKED_LRU,
3149 MF_MSG_CLEAN_MLOCKED_LRU,
3150 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3151 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3154 MF_MSG_TRUNCATED_LRU,
3162 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3163 extern void clear_huge_page(struct page *page,
3164 unsigned long addr_hint,
3165 unsigned int pages_per_huge_page);
3166 extern void copy_user_huge_page(struct page *dst, struct page *src,
3167 unsigned long addr_hint,
3168 struct vm_area_struct *vma,
3169 unsigned int pages_per_huge_page);
3170 extern long copy_huge_page_from_user(struct page *dst_page,
3171 const void __user *usr_src,
3172 unsigned int pages_per_huge_page,
3173 bool allow_pagefault);
3176 * vma_is_special_huge - Are transhuge page-table entries considered special?
3177 * @vma: Pointer to the struct vm_area_struct to consider
3179 * Whether transhuge page-table entries are considered "special" following
3180 * the definition in vm_normal_page().
3182 * Return: true if transhuge page-table entries should be considered special,
3185 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3187 return vma_is_dax(vma) || (vma->vm_file &&
3188 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3191 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3193 #ifdef CONFIG_DEBUG_PAGEALLOC
3194 extern unsigned int _debug_guardpage_minorder;
3195 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3197 static inline unsigned int debug_guardpage_minorder(void)
3199 return _debug_guardpage_minorder;
3202 static inline bool debug_guardpage_enabled(void)
3204 return static_branch_unlikely(&_debug_guardpage_enabled);
3207 static inline bool page_is_guard(struct page *page)
3209 if (!debug_guardpage_enabled())
3212 return PageGuard(page);
3215 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3216 static inline bool debug_guardpage_enabled(void) { return false; }
3217 static inline bool page_is_guard(struct page *page) { return false; }
3218 #endif /* CONFIG_DEBUG_PAGEALLOC */
3220 #if MAX_NUMNODES > 1
3221 void __init setup_nr_node_ids(void);
3223 static inline void setup_nr_node_ids(void) {}
3226 extern int memcmp_pages(struct page *page1, struct page *page2);
3228 static inline int pages_identical(struct page *page1, struct page *page2)
3230 return !memcmp_pages(page1, page2);
3233 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3234 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3235 pgoff_t first_index, pgoff_t nr,
3236 pgoff_t bitmap_pgoff,
3237 unsigned long *bitmap,
3241 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3242 pgoff_t first_index, pgoff_t nr);
3245 extern int sysctl_nr_trim_pages;
3247 #ifdef CONFIG_PRINTK
3248 void mem_dump_obj(void *object);
3250 static inline void mem_dump_obj(void *object) {}
3254 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3255 * @seals: the seals to check
3256 * @vma: the vma to operate on
3258 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3259 * the vma flags. Return 0 if check pass, or <0 for errors.
3261 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3263 if (seals & F_SEAL_FUTURE_WRITE) {
3265 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3266 * "future write" seal active.
3268 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3272 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3273 * MAP_SHARED and read-only, take care to not allow mprotect to
3274 * revert protections on such mappings. Do this only for shared
3275 * mappings. For private mappings, don't need to mask
3276 * VM_MAYWRITE as we still want them to be COW-writable.
3278 if (vma->vm_flags & VM_SHARED)
3279 vma->vm_flags &= ~(VM_MAYWRITE);
3285 #endif /* __KERNEL__ */
3286 #endif /* _LINUX_MM_H */