4 #include <linux/errno.h>
8 #include <linux/mmdebug.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
29 struct anon_vma_chain;
32 struct writeback_control;
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
38 static inline void set_max_mapnr(unsigned long limit)
43 static inline void set_max_mapnr(unsigned long limit) { }
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
51 extern int sysctl_legacy_va_layout;
53 #define sysctl_legacy_va_layout 0
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
109 extern int sysctl_max_map_count;
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
140 extern struct kmem_cache *vm_area_cachep;
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
146 extern unsigned int kobjsize(const void *objp);
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
153 #define VM_NONE 0x00000000
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
192 # define VM_SOFTDIRTY 0
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
238 # define VM_GROWSUP VM_NONE
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
251 #define VM_STACK VM_GROWSDOWN
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
272 extern pgprot_t protection_map[16];
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
292 * pgoff should be used in favour of virtual_address, if possible.
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
300 struct page *cow_page; /* Handler may choose to COW */
301 struct page *page; /* ->fault handlers should return a
302 * page here, unless VM_FAULT_NOPAGE
303 * is set (which is also implied by
306 void *entry; /* ->fault handler can alternatively
307 * return locked DAX entry. In that
308 * case handler should return
309 * VM_FAULT_DAX_LOCKED and fill in
315 * Page fault context: passes though page fault handler instead of endless list
316 * of function arguments.
319 struct vm_area_struct *vma; /* Target VMA */
320 unsigned long address; /* Faulting virtual address */
321 unsigned int flags; /* FAULT_FLAG_xxx flags */
322 pmd_t *pmd; /* Pointer to pmd entry matching
325 pte_t *pte; /* Pointer to pte entry matching
326 * the 'address'. NULL if the page
327 * table hasn't been allocated.
329 spinlock_t *ptl; /* Page table lock.
330 * Protects pte page table if 'pte'
331 * is not NULL, otherwise pmd.
333 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
334 * vm_ops->map_pages() calls
335 * alloc_set_pte() from atomic context.
336 * do_fault_around() pre-allocates
337 * page table to avoid allocation from
343 * These are the virtual MM functions - opening of an area, closing and
344 * unmapping it (needed to keep files on disk up-to-date etc), pointer
345 * to the functions called when a no-page or a wp-page exception occurs.
347 struct vm_operations_struct {
348 void (*open)(struct vm_area_struct * area);
349 void (*close)(struct vm_area_struct * area);
350 int (*mremap)(struct vm_area_struct * area);
351 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
352 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
353 pmd_t *, unsigned int flags);
354 void (*map_pages)(struct fault_env *fe,
355 pgoff_t start_pgoff, pgoff_t end_pgoff);
357 /* notification that a previously read-only page is about to become
358 * writable, if an error is returned it will cause a SIGBUS */
359 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
361 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
362 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
364 /* called by access_process_vm when get_user_pages() fails, typically
365 * for use by special VMAs that can switch between memory and hardware
367 int (*access)(struct vm_area_struct *vma, unsigned long addr,
368 void *buf, int len, int write);
370 /* Called by the /proc/PID/maps code to ask the vma whether it
371 * has a special name. Returning non-NULL will also cause this
372 * vma to be dumped unconditionally. */
373 const char *(*name)(struct vm_area_struct *vma);
377 * set_policy() op must add a reference to any non-NULL @new mempolicy
378 * to hold the policy upon return. Caller should pass NULL @new to
379 * remove a policy and fall back to surrounding context--i.e. do not
380 * install a MPOL_DEFAULT policy, nor the task or system default
383 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
386 * get_policy() op must add reference [mpol_get()] to any policy at
387 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
388 * in mm/mempolicy.c will do this automatically.
389 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
390 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
391 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
392 * must return NULL--i.e., do not "fallback" to task or system default
395 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
399 * Called by vm_normal_page() for special PTEs to find the
400 * page for @addr. This is useful if the default behavior
401 * (using pte_page()) would not find the correct page.
403 struct page *(*find_special_page)(struct vm_area_struct *vma,
410 #define page_private(page) ((page)->private)
411 #define set_page_private(page, v) ((page)->private = (v))
413 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
414 static inline int pmd_devmap(pmd_t pmd)
421 * FIXME: take this include out, include page-flags.h in
422 * files which need it (119 of them)
424 #include <linux/page-flags.h>
425 #include <linux/huge_mm.h>
428 * Methods to modify the page usage count.
430 * What counts for a page usage:
431 * - cache mapping (page->mapping)
432 * - private data (page->private)
433 * - page mapped in a task's page tables, each mapping
434 * is counted separately
436 * Also, many kernel routines increase the page count before a critical
437 * routine so they can be sure the page doesn't go away from under them.
441 * Drop a ref, return true if the refcount fell to zero (the page has no users)
443 static inline int put_page_testzero(struct page *page)
445 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
446 return page_ref_dec_and_test(page);
450 * Try to grab a ref unless the page has a refcount of zero, return false if
452 * This can be called when MMU is off so it must not access
453 * any of the virtual mappings.
455 static inline int get_page_unless_zero(struct page *page)
457 return page_ref_add_unless(page, 1, 0);
460 extern int page_is_ram(unsigned long pfn);
468 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
471 /* Support for virtually mapped pages */
472 struct page *vmalloc_to_page(const void *addr);
473 unsigned long vmalloc_to_pfn(const void *addr);
476 * Determine if an address is within the vmalloc range
478 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
479 * is no special casing required.
481 static inline bool is_vmalloc_addr(const void *x)
484 unsigned long addr = (unsigned long)x;
486 return addr >= VMALLOC_START && addr < VMALLOC_END;
492 extern int is_vmalloc_or_module_addr(const void *x);
494 static inline int is_vmalloc_or_module_addr(const void *x)
500 extern void kvfree(const void *addr);
502 static inline atomic_t *compound_mapcount_ptr(struct page *page)
504 return &page[1].compound_mapcount;
507 static inline int compound_mapcount(struct page *page)
509 VM_BUG_ON_PAGE(!PageCompound(page), page);
510 page = compound_head(page);
511 return atomic_read(compound_mapcount_ptr(page)) + 1;
515 * The atomic page->_mapcount, starts from -1: so that transitions
516 * both from it and to it can be tracked, using atomic_inc_and_test
517 * and atomic_add_negative(-1).
519 static inline void page_mapcount_reset(struct page *page)
521 atomic_set(&(page)->_mapcount, -1);
524 int __page_mapcount(struct page *page);
526 static inline int page_mapcount(struct page *page)
528 VM_BUG_ON_PAGE(PageSlab(page), page);
530 if (unlikely(PageCompound(page)))
531 return __page_mapcount(page);
532 return atomic_read(&page->_mapcount) + 1;
535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
536 int total_mapcount(struct page *page);
537 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
539 static inline int total_mapcount(struct page *page)
541 return page_mapcount(page);
543 static inline int page_trans_huge_mapcount(struct page *page,
546 int mapcount = page_mapcount(page);
548 *total_mapcount = mapcount;
553 static inline struct page *virt_to_head_page(const void *x)
555 struct page *page = virt_to_page(x);
557 return compound_head(page);
560 void __put_page(struct page *page);
562 void put_pages_list(struct list_head *pages);
564 void split_page(struct page *page, unsigned int order);
567 * Compound pages have a destructor function. Provide a
568 * prototype for that function and accessor functions.
569 * These are _only_ valid on the head of a compound page.
571 typedef void compound_page_dtor(struct page *);
573 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
574 enum compound_dtor_id {
577 #ifdef CONFIG_HUGETLB_PAGE
580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
585 extern compound_page_dtor * const compound_page_dtors[];
587 static inline void set_compound_page_dtor(struct page *page,
588 enum compound_dtor_id compound_dtor)
590 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
591 page[1].compound_dtor = compound_dtor;
594 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
596 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
597 return compound_page_dtors[page[1].compound_dtor];
600 static inline unsigned int compound_order(struct page *page)
604 return page[1].compound_order;
607 static inline void set_compound_order(struct page *page, unsigned int order)
609 page[1].compound_order = order;
612 void free_compound_page(struct page *page);
616 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
617 * servicing faults for write access. In the normal case, do always want
618 * pte_mkwrite. But get_user_pages can cause write faults for mappings
619 * that do not have writing enabled, when used by access_process_vm.
621 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
623 if (likely(vma->vm_flags & VM_WRITE))
624 pte = pte_mkwrite(pte);
628 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
633 * Multiple processes may "see" the same page. E.g. for untouched
634 * mappings of /dev/null, all processes see the same page full of
635 * zeroes, and text pages of executables and shared libraries have
636 * only one copy in memory, at most, normally.
638 * For the non-reserved pages, page_count(page) denotes a reference count.
639 * page_count() == 0 means the page is free. page->lru is then used for
640 * freelist management in the buddy allocator.
641 * page_count() > 0 means the page has been allocated.
643 * Pages are allocated by the slab allocator in order to provide memory
644 * to kmalloc and kmem_cache_alloc. In this case, the management of the
645 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
646 * unless a particular usage is carefully commented. (the responsibility of
647 * freeing the kmalloc memory is the caller's, of course).
649 * A page may be used by anyone else who does a __get_free_page().
650 * In this case, page_count still tracks the references, and should only
651 * be used through the normal accessor functions. The top bits of page->flags
652 * and page->virtual store page management information, but all other fields
653 * are unused and could be used privately, carefully. The management of this
654 * page is the responsibility of the one who allocated it, and those who have
655 * subsequently been given references to it.
657 * The other pages (we may call them "pagecache pages") are completely
658 * managed by the Linux memory manager: I/O, buffers, swapping etc.
659 * The following discussion applies only to them.
661 * A pagecache page contains an opaque `private' member, which belongs to the
662 * page's address_space. Usually, this is the address of a circular list of
663 * the page's disk buffers. PG_private must be set to tell the VM to call
664 * into the filesystem to release these pages.
666 * A page may belong to an inode's memory mapping. In this case, page->mapping
667 * is the pointer to the inode, and page->index is the file offset of the page,
668 * in units of PAGE_SIZE.
670 * If pagecache pages are not associated with an inode, they are said to be
671 * anonymous pages. These may become associated with the swapcache, and in that
672 * case PG_swapcache is set, and page->private is an offset into the swapcache.
674 * In either case (swapcache or inode backed), the pagecache itself holds one
675 * reference to the page. Setting PG_private should also increment the
676 * refcount. The each user mapping also has a reference to the page.
678 * The pagecache pages are stored in a per-mapping radix tree, which is
679 * rooted at mapping->page_tree, and indexed by offset.
680 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
681 * lists, we instead now tag pages as dirty/writeback in the radix tree.
683 * All pagecache pages may be subject to I/O:
684 * - inode pages may need to be read from disk,
685 * - inode pages which have been modified and are MAP_SHARED may need
686 * to be written back to the inode on disk,
687 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
688 * modified may need to be swapped out to swap space and (later) to be read
693 * The zone field is never updated after free_area_init_core()
694 * sets it, so none of the operations on it need to be atomic.
697 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
698 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
699 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
700 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
701 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
704 * Define the bit shifts to access each section. For non-existent
705 * sections we define the shift as 0; that plus a 0 mask ensures
706 * the compiler will optimise away reference to them.
708 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
709 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
710 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
711 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
713 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
714 #ifdef NODE_NOT_IN_PAGE_FLAGS
715 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
716 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
717 SECTIONS_PGOFF : ZONES_PGOFF)
719 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
720 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
721 NODES_PGOFF : ZONES_PGOFF)
724 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
726 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
727 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
730 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
731 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
732 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
733 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
734 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
736 static inline enum zone_type page_zonenum(const struct page *page)
738 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
741 #ifdef CONFIG_ZONE_DEVICE
742 void get_zone_device_page(struct page *page);
743 void put_zone_device_page(struct page *page);
744 static inline bool is_zone_device_page(const struct page *page)
746 return page_zonenum(page) == ZONE_DEVICE;
749 static inline void get_zone_device_page(struct page *page)
752 static inline void put_zone_device_page(struct page *page)
755 static inline bool is_zone_device_page(const struct page *page)
761 static inline void get_page(struct page *page)
763 page = compound_head(page);
765 * Getting a normal page or the head of a compound page
766 * requires to already have an elevated page->_refcount.
768 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
771 if (unlikely(is_zone_device_page(page)))
772 get_zone_device_page(page);
775 static inline void put_page(struct page *page)
777 page = compound_head(page);
779 if (put_page_testzero(page))
782 if (unlikely(is_zone_device_page(page)))
783 put_zone_device_page(page);
786 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
787 #define SECTION_IN_PAGE_FLAGS
791 * The identification function is mainly used by the buddy allocator for
792 * determining if two pages could be buddies. We are not really identifying
793 * the zone since we could be using the section number id if we do not have
794 * node id available in page flags.
795 * We only guarantee that it will return the same value for two combinable
798 static inline int page_zone_id(struct page *page)
800 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
803 static inline int zone_to_nid(struct zone *zone)
812 #ifdef NODE_NOT_IN_PAGE_FLAGS
813 extern int page_to_nid(const struct page *page);
815 static inline int page_to_nid(const struct page *page)
817 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
821 #ifdef CONFIG_NUMA_BALANCING
822 static inline int cpu_pid_to_cpupid(int cpu, int pid)
824 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
827 static inline int cpupid_to_pid(int cpupid)
829 return cpupid & LAST__PID_MASK;
832 static inline int cpupid_to_cpu(int cpupid)
834 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
837 static inline int cpupid_to_nid(int cpupid)
839 return cpu_to_node(cpupid_to_cpu(cpupid));
842 static inline bool cpupid_pid_unset(int cpupid)
844 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
847 static inline bool cpupid_cpu_unset(int cpupid)
849 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
852 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
854 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
857 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
858 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
859 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
861 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
864 static inline int page_cpupid_last(struct page *page)
866 return page->_last_cpupid;
868 static inline void page_cpupid_reset_last(struct page *page)
870 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
873 static inline int page_cpupid_last(struct page *page)
875 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
878 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
880 static inline void page_cpupid_reset_last(struct page *page)
882 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
884 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
885 #else /* !CONFIG_NUMA_BALANCING */
886 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
888 return page_to_nid(page); /* XXX */
891 static inline int page_cpupid_last(struct page *page)
893 return page_to_nid(page); /* XXX */
896 static inline int cpupid_to_nid(int cpupid)
901 static inline int cpupid_to_pid(int cpupid)
906 static inline int cpupid_to_cpu(int cpupid)
911 static inline int cpu_pid_to_cpupid(int nid, int pid)
916 static inline bool cpupid_pid_unset(int cpupid)
921 static inline void page_cpupid_reset_last(struct page *page)
925 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
929 #endif /* CONFIG_NUMA_BALANCING */
931 static inline struct zone *page_zone(const struct page *page)
933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
936 static inline pg_data_t *page_pgdat(const struct page *page)
938 return NODE_DATA(page_to_nid(page));
941 #ifdef SECTION_IN_PAGE_FLAGS
942 static inline void set_page_section(struct page *page, unsigned long section)
944 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
945 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
948 static inline unsigned long page_to_section(const struct page *page)
950 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
954 static inline void set_page_zone(struct page *page, enum zone_type zone)
956 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
957 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
960 static inline void set_page_node(struct page *page, unsigned long node)
962 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
963 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
966 static inline void set_page_links(struct page *page, enum zone_type zone,
967 unsigned long node, unsigned long pfn)
969 set_page_zone(page, zone);
970 set_page_node(page, node);
971 #ifdef SECTION_IN_PAGE_FLAGS
972 set_page_section(page, pfn_to_section_nr(pfn));
977 static inline struct mem_cgroup *page_memcg(struct page *page)
979 return page->mem_cgroup;
981 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
983 WARN_ON_ONCE(!rcu_read_lock_held());
984 return READ_ONCE(page->mem_cgroup);
987 static inline struct mem_cgroup *page_memcg(struct page *page)
991 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
993 WARN_ON_ONCE(!rcu_read_lock_held());
999 * Some inline functions in vmstat.h depend on page_zone()
1001 #include <linux/vmstat.h>
1003 static __always_inline void *lowmem_page_address(const struct page *page)
1005 return page_to_virt(page);
1008 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1009 #define HASHED_PAGE_VIRTUAL
1012 #if defined(WANT_PAGE_VIRTUAL)
1013 static inline void *page_address(const struct page *page)
1015 return page->virtual;
1017 static inline void set_page_address(struct page *page, void *address)
1019 page->virtual = address;
1021 #define page_address_init() do { } while(0)
1024 #if defined(HASHED_PAGE_VIRTUAL)
1025 void *page_address(const struct page *page);
1026 void set_page_address(struct page *page, void *virtual);
1027 void page_address_init(void);
1030 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1031 #define page_address(page) lowmem_page_address(page)
1032 #define set_page_address(page, address) do { } while(0)
1033 #define page_address_init() do { } while(0)
1036 extern void *page_rmapping(struct page *page);
1037 extern struct anon_vma *page_anon_vma(struct page *page);
1038 extern struct address_space *page_mapping(struct page *page);
1040 extern struct address_space *__page_file_mapping(struct page *);
1043 struct address_space *page_file_mapping(struct page *page)
1045 if (unlikely(PageSwapCache(page)))
1046 return __page_file_mapping(page);
1048 return page->mapping;
1052 * Return the pagecache index of the passed page. Regular pagecache pages
1053 * use ->index whereas swapcache pages use ->private
1055 static inline pgoff_t page_index(struct page *page)
1057 if (unlikely(PageSwapCache(page)))
1058 return page_private(page);
1062 extern pgoff_t __page_file_index(struct page *page);
1065 * Return the file index of the page. Regular pagecache pages use ->index
1066 * whereas swapcache pages use swp_offset(->private)
1068 static inline pgoff_t page_file_index(struct page *page)
1070 if (unlikely(PageSwapCache(page)))
1071 return __page_file_index(page);
1076 bool page_mapped(struct page *page);
1077 struct address_space *page_mapping(struct page *page);
1080 * Return true only if the page has been allocated with
1081 * ALLOC_NO_WATERMARKS and the low watermark was not
1082 * met implying that the system is under some pressure.
1084 static inline bool page_is_pfmemalloc(struct page *page)
1087 * Page index cannot be this large so this must be
1088 * a pfmemalloc page.
1090 return page->index == -1UL;
1094 * Only to be called by the page allocator on a freshly allocated
1097 static inline void set_page_pfmemalloc(struct page *page)
1102 static inline void clear_page_pfmemalloc(struct page *page)
1108 * Different kinds of faults, as returned by handle_mm_fault().
1109 * Used to decide whether a process gets delivered SIGBUS or
1110 * just gets major/minor fault counters bumped up.
1113 #define VM_FAULT_OOM 0x0001
1114 #define VM_FAULT_SIGBUS 0x0002
1115 #define VM_FAULT_MAJOR 0x0004
1116 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1117 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1118 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1119 #define VM_FAULT_SIGSEGV 0x0040
1121 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1122 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1123 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1124 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1125 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1127 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1129 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1130 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1133 /* Encode hstate index for a hwpoisoned large page */
1134 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1135 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1138 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1140 extern void pagefault_out_of_memory(void);
1142 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1145 * Flags passed to show_mem() and show_free_areas() to suppress output in
1148 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1150 extern void show_free_areas(unsigned int flags);
1151 extern bool skip_free_areas_node(unsigned int flags, int nid);
1153 int shmem_zero_setup(struct vm_area_struct *);
1155 bool shmem_mapping(struct address_space *mapping);
1157 static inline bool shmem_mapping(struct address_space *mapping)
1163 extern bool can_do_mlock(void);
1164 extern int user_shm_lock(size_t, struct user_struct *);
1165 extern void user_shm_unlock(size_t, struct user_struct *);
1168 * Parameter block passed down to zap_pte_range in exceptional cases.
1170 struct zap_details {
1171 struct address_space *check_mapping; /* Check page->mapping if set */
1172 pgoff_t first_index; /* Lowest page->index to unmap */
1173 pgoff_t last_index; /* Highest page->index to unmap */
1174 bool ignore_dirty; /* Ignore dirty pages */
1175 bool check_swap_entries; /* Check also swap entries */
1178 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1180 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1183 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1184 unsigned long size);
1185 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1186 unsigned long size, struct zap_details *);
1187 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1188 unsigned long start, unsigned long end);
1191 * mm_walk - callbacks for walk_page_range
1192 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1193 * this handler is required to be able to handle
1194 * pmd_trans_huge() pmds. They may simply choose to
1195 * split_huge_page() instead of handling it explicitly.
1196 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1197 * @pte_hole: if set, called for each hole at all levels
1198 * @hugetlb_entry: if set, called for each hugetlb entry
1199 * @test_walk: caller specific callback function to determine whether
1200 * we walk over the current vma or not. Returning 0
1201 * value means "do page table walk over the current vma,"
1202 * and a negative one means "abort current page table walk
1203 * right now." 1 means "skip the current vma."
1204 * @mm: mm_struct representing the target process of page table walk
1205 * @vma: vma currently walked (NULL if walking outside vmas)
1206 * @private: private data for callbacks' usage
1208 * (see the comment on walk_page_range() for more details)
1211 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1212 unsigned long next, struct mm_walk *walk);
1213 int (*pte_entry)(pte_t *pte, unsigned long addr,
1214 unsigned long next, struct mm_walk *walk);
1215 int (*pte_hole)(unsigned long addr, unsigned long next,
1216 struct mm_walk *walk);
1217 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1218 unsigned long addr, unsigned long next,
1219 struct mm_walk *walk);
1220 int (*test_walk)(unsigned long addr, unsigned long next,
1221 struct mm_walk *walk);
1222 struct mm_struct *mm;
1223 struct vm_area_struct *vma;
1227 int walk_page_range(unsigned long addr, unsigned long end,
1228 struct mm_walk *walk);
1229 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1230 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1231 unsigned long end, unsigned long floor, unsigned long ceiling);
1232 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1233 struct vm_area_struct *vma);
1234 void unmap_mapping_range(struct address_space *mapping,
1235 loff_t const holebegin, loff_t const holelen, int even_cows);
1236 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1237 unsigned long *pfn);
1238 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1239 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1240 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1241 void *buf, int len, int write);
1243 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1244 loff_t const holebegin, loff_t const holelen)
1246 unmap_mapping_range(mapping, holebegin, holelen, 0);
1249 extern void truncate_pagecache(struct inode *inode, loff_t new);
1250 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1251 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1252 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1253 int truncate_inode_page(struct address_space *mapping, struct page *page);
1254 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1255 int invalidate_inode_page(struct page *page);
1258 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1259 unsigned int flags);
1260 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1261 unsigned long address, unsigned int fault_flags,
1264 static inline int handle_mm_fault(struct vm_area_struct *vma,
1265 unsigned long address, unsigned int flags)
1267 /* should never happen if there's no MMU */
1269 return VM_FAULT_SIGBUS;
1271 static inline int fixup_user_fault(struct task_struct *tsk,
1272 struct mm_struct *mm, unsigned long address,
1273 unsigned int fault_flags, bool *unlocked)
1275 /* should never happen if there's no MMU */
1281 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1282 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1283 void *buf, int len, int write);
1285 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1286 unsigned long start, unsigned long nr_pages,
1287 unsigned int foll_flags, struct page **pages,
1288 struct vm_area_struct **vmas, int *nonblocking);
1289 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1290 unsigned long start, unsigned long nr_pages,
1291 int write, int force, struct page **pages,
1292 struct vm_area_struct **vmas);
1293 long get_user_pages(unsigned long start, unsigned long nr_pages,
1294 int write, int force, struct page **pages,
1295 struct vm_area_struct **vmas);
1296 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1297 int write, int force, struct page **pages, int *locked);
1298 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1299 unsigned long start, unsigned long nr_pages,
1300 int write, int force, struct page **pages,
1301 unsigned int gup_flags);
1302 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1303 int write, int force, struct page **pages);
1304 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1305 struct page **pages);
1307 /* Container for pinned pfns / pages */
1308 struct frame_vector {
1309 unsigned int nr_allocated; /* Number of frames we have space for */
1310 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1311 bool got_ref; /* Did we pin pages by getting page ref? */
1312 bool is_pfns; /* Does array contain pages or pfns? */
1313 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1314 * pfns_vector_pages() or pfns_vector_pfns()
1318 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1319 void frame_vector_destroy(struct frame_vector *vec);
1320 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1321 bool write, bool force, struct frame_vector *vec);
1322 void put_vaddr_frames(struct frame_vector *vec);
1323 int frame_vector_to_pages(struct frame_vector *vec);
1324 void frame_vector_to_pfns(struct frame_vector *vec);
1326 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1328 return vec->nr_frames;
1331 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1334 int err = frame_vector_to_pages(vec);
1337 return ERR_PTR(err);
1339 return (struct page **)(vec->ptrs);
1342 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1345 frame_vector_to_pfns(vec);
1346 return (unsigned long *)(vec->ptrs);
1350 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1351 struct page **pages);
1352 int get_kernel_page(unsigned long start, int write, struct page **pages);
1353 struct page *get_dump_page(unsigned long addr);
1355 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1356 extern void do_invalidatepage(struct page *page, unsigned int offset,
1357 unsigned int length);
1359 int __set_page_dirty_nobuffers(struct page *page);
1360 int __set_page_dirty_no_writeback(struct page *page);
1361 int redirty_page_for_writepage(struct writeback_control *wbc,
1363 void account_page_dirtied(struct page *page, struct address_space *mapping);
1364 void account_page_cleaned(struct page *page, struct address_space *mapping,
1365 struct bdi_writeback *wb);
1366 int set_page_dirty(struct page *page);
1367 int set_page_dirty_lock(struct page *page);
1368 void cancel_dirty_page(struct page *page);
1369 int clear_page_dirty_for_io(struct page *page);
1371 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1373 /* Is the vma a continuation of the stack vma above it? */
1374 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1376 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1379 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1381 return !vma->vm_ops;
1384 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1387 return (vma->vm_flags & VM_GROWSDOWN) &&
1388 (vma->vm_start == addr) &&
1389 !vma_growsdown(vma->vm_prev, addr);
1392 /* Is the vma a continuation of the stack vma below it? */
1393 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1395 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1398 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1401 return (vma->vm_flags & VM_GROWSUP) &&
1402 (vma->vm_end == addr) &&
1403 !vma_growsup(vma->vm_next, addr);
1406 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1408 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1409 unsigned long old_addr, struct vm_area_struct *new_vma,
1410 unsigned long new_addr, unsigned long len,
1411 bool need_rmap_locks);
1412 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1413 unsigned long end, pgprot_t newprot,
1414 int dirty_accountable, int prot_numa);
1415 extern int mprotect_fixup(struct vm_area_struct *vma,
1416 struct vm_area_struct **pprev, unsigned long start,
1417 unsigned long end, unsigned long newflags);
1420 * doesn't attempt to fault and will return short.
1422 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1423 struct page **pages);
1425 * per-process(per-mm_struct) statistics.
1427 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1429 long val = atomic_long_read(&mm->rss_stat.count[member]);
1431 #ifdef SPLIT_RSS_COUNTING
1433 * counter is updated in asynchronous manner and may go to minus.
1434 * But it's never be expected number for users.
1439 return (unsigned long)val;
1442 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1444 atomic_long_add(value, &mm->rss_stat.count[member]);
1447 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1449 atomic_long_inc(&mm->rss_stat.count[member]);
1452 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1454 atomic_long_dec(&mm->rss_stat.count[member]);
1457 /* Optimized variant when page is already known not to be PageAnon */
1458 static inline int mm_counter_file(struct page *page)
1460 if (PageSwapBacked(page))
1461 return MM_SHMEMPAGES;
1462 return MM_FILEPAGES;
1465 static inline int mm_counter(struct page *page)
1468 return MM_ANONPAGES;
1469 return mm_counter_file(page);
1472 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1474 return get_mm_counter(mm, MM_FILEPAGES) +
1475 get_mm_counter(mm, MM_ANONPAGES) +
1476 get_mm_counter(mm, MM_SHMEMPAGES);
1479 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1481 return max(mm->hiwater_rss, get_mm_rss(mm));
1484 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1486 return max(mm->hiwater_vm, mm->total_vm);
1489 static inline void update_hiwater_rss(struct mm_struct *mm)
1491 unsigned long _rss = get_mm_rss(mm);
1493 if ((mm)->hiwater_rss < _rss)
1494 (mm)->hiwater_rss = _rss;
1497 static inline void update_hiwater_vm(struct mm_struct *mm)
1499 if (mm->hiwater_vm < mm->total_vm)
1500 mm->hiwater_vm = mm->total_vm;
1503 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1505 mm->hiwater_rss = get_mm_rss(mm);
1508 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1509 struct mm_struct *mm)
1511 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1513 if (*maxrss < hiwater_rss)
1514 *maxrss = hiwater_rss;
1517 #if defined(SPLIT_RSS_COUNTING)
1518 void sync_mm_rss(struct mm_struct *mm);
1520 static inline void sync_mm_rss(struct mm_struct *mm)
1525 #ifndef __HAVE_ARCH_PTE_DEVMAP
1526 static inline int pte_devmap(pte_t pte)
1532 int vma_wants_writenotify(struct vm_area_struct *vma);
1534 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1536 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1540 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1544 #ifdef __PAGETABLE_PUD_FOLDED
1545 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1546 unsigned long address)
1551 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1554 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1555 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1556 unsigned long address)
1561 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1563 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1568 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1569 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1572 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1574 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1576 atomic_long_set(&mm->nr_pmds, 0);
1579 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1581 return atomic_long_read(&mm->nr_pmds);
1584 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1586 atomic_long_inc(&mm->nr_pmds);
1589 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1591 atomic_long_dec(&mm->nr_pmds);
1595 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1596 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1599 * The following ifdef needed to get the 4level-fixup.h header to work.
1600 * Remove it when 4level-fixup.h has been removed.
1602 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1603 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1605 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1606 NULL: pud_offset(pgd, address);
1609 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1611 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1612 NULL: pmd_offset(pud, address);
1614 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1616 #if USE_SPLIT_PTE_PTLOCKS
1617 #if ALLOC_SPLIT_PTLOCKS
1618 void __init ptlock_cache_init(void);
1619 extern bool ptlock_alloc(struct page *page);
1620 extern void ptlock_free(struct page *page);
1622 static inline spinlock_t *ptlock_ptr(struct page *page)
1626 #else /* ALLOC_SPLIT_PTLOCKS */
1627 static inline void ptlock_cache_init(void)
1631 static inline bool ptlock_alloc(struct page *page)
1636 static inline void ptlock_free(struct page *page)
1640 static inline spinlock_t *ptlock_ptr(struct page *page)
1644 #endif /* ALLOC_SPLIT_PTLOCKS */
1646 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1648 return ptlock_ptr(pmd_page(*pmd));
1651 static inline bool ptlock_init(struct page *page)
1654 * prep_new_page() initialize page->private (and therefore page->ptl)
1655 * with 0. Make sure nobody took it in use in between.
1657 * It can happen if arch try to use slab for page table allocation:
1658 * slab code uses page->slab_cache, which share storage with page->ptl.
1660 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1661 if (!ptlock_alloc(page))
1663 spin_lock_init(ptlock_ptr(page));
1667 /* Reset page->mapping so free_pages_check won't complain. */
1668 static inline void pte_lock_deinit(struct page *page)
1670 page->mapping = NULL;
1674 #else /* !USE_SPLIT_PTE_PTLOCKS */
1676 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1678 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1680 return &mm->page_table_lock;
1682 static inline void ptlock_cache_init(void) {}
1683 static inline bool ptlock_init(struct page *page) { return true; }
1684 static inline void pte_lock_deinit(struct page *page) {}
1685 #endif /* USE_SPLIT_PTE_PTLOCKS */
1687 static inline void pgtable_init(void)
1689 ptlock_cache_init();
1690 pgtable_cache_init();
1693 static inline bool pgtable_page_ctor(struct page *page)
1695 if (!ptlock_init(page))
1697 inc_zone_page_state(page, NR_PAGETABLE);
1701 static inline void pgtable_page_dtor(struct page *page)
1703 pte_lock_deinit(page);
1704 dec_zone_page_state(page, NR_PAGETABLE);
1707 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1709 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1710 pte_t *__pte = pte_offset_map(pmd, address); \
1716 #define pte_unmap_unlock(pte, ptl) do { \
1721 #define pte_alloc(mm, pmd, address) \
1722 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1724 #define pte_alloc_map(mm, pmd, address) \
1725 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1727 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1728 (pte_alloc(mm, pmd, address) ? \
1729 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1731 #define pte_alloc_kernel(pmd, address) \
1732 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1733 NULL: pte_offset_kernel(pmd, address))
1735 #if USE_SPLIT_PMD_PTLOCKS
1737 static struct page *pmd_to_page(pmd_t *pmd)
1739 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1740 return virt_to_page((void *)((unsigned long) pmd & mask));
1743 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1745 return ptlock_ptr(pmd_to_page(pmd));
1748 static inline bool pgtable_pmd_page_ctor(struct page *page)
1750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1751 page->pmd_huge_pte = NULL;
1753 return ptlock_init(page);
1756 static inline void pgtable_pmd_page_dtor(struct page *page)
1758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1759 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1764 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1768 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1770 return &mm->page_table_lock;
1773 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1774 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1776 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1780 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1782 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1787 extern void free_area_init(unsigned long * zones_size);
1788 extern void free_area_init_node(int nid, unsigned long * zones_size,
1789 unsigned long zone_start_pfn, unsigned long *zholes_size);
1790 extern void free_initmem(void);
1793 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1794 * into the buddy system. The freed pages will be poisoned with pattern
1795 * "poison" if it's within range [0, UCHAR_MAX].
1796 * Return pages freed into the buddy system.
1798 extern unsigned long free_reserved_area(void *start, void *end,
1799 int poison, char *s);
1801 #ifdef CONFIG_HIGHMEM
1803 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1804 * and totalram_pages.
1806 extern void free_highmem_page(struct page *page);
1809 extern void adjust_managed_page_count(struct page *page, long count);
1810 extern void mem_init_print_info(const char *str);
1812 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1814 /* Free the reserved page into the buddy system, so it gets managed. */
1815 static inline void __free_reserved_page(struct page *page)
1817 ClearPageReserved(page);
1818 init_page_count(page);
1822 static inline void free_reserved_page(struct page *page)
1824 __free_reserved_page(page);
1825 adjust_managed_page_count(page, 1);
1828 static inline void mark_page_reserved(struct page *page)
1830 SetPageReserved(page);
1831 adjust_managed_page_count(page, -1);
1835 * Default method to free all the __init memory into the buddy system.
1836 * The freed pages will be poisoned with pattern "poison" if it's within
1837 * range [0, UCHAR_MAX].
1838 * Return pages freed into the buddy system.
1840 static inline unsigned long free_initmem_default(int poison)
1842 extern char __init_begin[], __init_end[];
1844 return free_reserved_area(&__init_begin, &__init_end,
1845 poison, "unused kernel");
1848 static inline unsigned long get_num_physpages(void)
1851 unsigned long phys_pages = 0;
1853 for_each_online_node(nid)
1854 phys_pages += node_present_pages(nid);
1859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1861 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1862 * zones, allocate the backing mem_map and account for memory holes in a more
1863 * architecture independent manner. This is a substitute for creating the
1864 * zone_sizes[] and zholes_size[] arrays and passing them to
1865 * free_area_init_node()
1867 * An architecture is expected to register range of page frames backed by
1868 * physical memory with memblock_add[_node]() before calling
1869 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1870 * usage, an architecture is expected to do something like
1872 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1874 * for_each_valid_physical_page_range()
1875 * memblock_add_node(base, size, nid)
1876 * free_area_init_nodes(max_zone_pfns);
1878 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1879 * registered physical page range. Similarly
1880 * sparse_memory_present_with_active_regions() calls memory_present() for
1881 * each range when SPARSEMEM is enabled.
1883 * See mm/page_alloc.c for more information on each function exposed by
1884 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1886 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1887 unsigned long node_map_pfn_alignment(void);
1888 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1889 unsigned long end_pfn);
1890 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1891 unsigned long end_pfn);
1892 extern void get_pfn_range_for_nid(unsigned int nid,
1893 unsigned long *start_pfn, unsigned long *end_pfn);
1894 extern unsigned long find_min_pfn_with_active_regions(void);
1895 extern void free_bootmem_with_active_regions(int nid,
1896 unsigned long max_low_pfn);
1897 extern void sparse_memory_present_with_active_regions(int nid);
1899 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1901 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1902 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1903 static inline int __early_pfn_to_nid(unsigned long pfn,
1904 struct mminit_pfnnid_cache *state)
1909 /* please see mm/page_alloc.c */
1910 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1911 /* there is a per-arch backend function. */
1912 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1913 struct mminit_pfnnid_cache *state);
1916 extern void set_dma_reserve(unsigned long new_dma_reserve);
1917 extern void memmap_init_zone(unsigned long, int, unsigned long,
1918 unsigned long, enum memmap_context);
1919 extern void setup_per_zone_wmarks(void);
1920 extern int __meminit init_per_zone_wmark_min(void);
1921 extern void mem_init(void);
1922 extern void __init mmap_init(void);
1923 extern void show_mem(unsigned int flags);
1924 extern long si_mem_available(void);
1925 extern void si_meminfo(struct sysinfo * val);
1926 extern void si_meminfo_node(struct sysinfo *val, int nid);
1927 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1928 extern unsigned long arch_reserved_kernel_pages(void);
1931 extern __printf(3, 4)
1932 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1933 const char *fmt, ...);
1935 extern void setup_per_cpu_pageset(void);
1937 extern void zone_pcp_update(struct zone *zone);
1938 extern void zone_pcp_reset(struct zone *zone);
1941 extern int min_free_kbytes;
1942 extern int watermark_scale_factor;
1945 extern atomic_long_t mmap_pages_allocated;
1946 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1948 /* interval_tree.c */
1949 void vma_interval_tree_insert(struct vm_area_struct *node,
1950 struct rb_root *root);
1951 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1952 struct vm_area_struct *prev,
1953 struct rb_root *root);
1954 void vma_interval_tree_remove(struct vm_area_struct *node,
1955 struct rb_root *root);
1956 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1957 unsigned long start, unsigned long last);
1958 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1959 unsigned long start, unsigned long last);
1961 #define vma_interval_tree_foreach(vma, root, start, last) \
1962 for (vma = vma_interval_tree_iter_first(root, start, last); \
1963 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1965 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1966 struct rb_root *root);
1967 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1968 struct rb_root *root);
1969 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1970 struct rb_root *root, unsigned long start, unsigned long last);
1971 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1972 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1973 #ifdef CONFIG_DEBUG_VM_RB
1974 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1977 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1978 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1979 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1982 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1983 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1984 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1985 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1986 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1987 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1988 struct mempolicy *, struct vm_userfaultfd_ctx);
1989 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1990 extern int split_vma(struct mm_struct *,
1991 struct vm_area_struct *, unsigned long addr, int new_below);
1992 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1993 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1994 struct rb_node **, struct rb_node *);
1995 extern void unlink_file_vma(struct vm_area_struct *);
1996 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1997 unsigned long addr, unsigned long len, pgoff_t pgoff,
1998 bool *need_rmap_locks);
1999 extern void exit_mmap(struct mm_struct *);
2001 static inline int check_data_rlimit(unsigned long rlim,
2003 unsigned long start,
2004 unsigned long end_data,
2005 unsigned long start_data)
2007 if (rlim < RLIM_INFINITY) {
2008 if (((new - start) + (end_data - start_data)) > rlim)
2015 extern int mm_take_all_locks(struct mm_struct *mm);
2016 extern void mm_drop_all_locks(struct mm_struct *mm);
2018 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2019 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2020 extern struct file *get_task_exe_file(struct task_struct *task);
2022 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2023 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2025 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2026 const struct vm_special_mapping *sm);
2027 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2028 unsigned long addr, unsigned long len,
2029 unsigned long flags,
2030 const struct vm_special_mapping *spec);
2031 /* This is an obsolete alternative to _install_special_mapping. */
2032 extern int install_special_mapping(struct mm_struct *mm,
2033 unsigned long addr, unsigned long len,
2034 unsigned long flags, struct page **pages);
2036 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2038 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2039 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2040 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2041 unsigned long len, unsigned long prot, unsigned long flags,
2042 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2043 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2045 static inline unsigned long
2046 do_mmap_pgoff(struct file *file, unsigned long addr,
2047 unsigned long len, unsigned long prot, unsigned long flags,
2048 unsigned long pgoff, unsigned long *populate)
2050 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2054 extern int __mm_populate(unsigned long addr, unsigned long len,
2056 static inline void mm_populate(unsigned long addr, unsigned long len)
2059 (void) __mm_populate(addr, len, 1);
2062 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2065 /* These take the mm semaphore themselves */
2066 extern int __must_check vm_brk(unsigned long, unsigned long);
2067 extern int vm_munmap(unsigned long, size_t);
2068 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2069 unsigned long, unsigned long,
2070 unsigned long, unsigned long);
2072 struct vm_unmapped_area_info {
2073 #define VM_UNMAPPED_AREA_TOPDOWN 1
2074 unsigned long flags;
2075 unsigned long length;
2076 unsigned long low_limit;
2077 unsigned long high_limit;
2078 unsigned long align_mask;
2079 unsigned long align_offset;
2082 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2083 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2086 * Search for an unmapped address range.
2088 * We are looking for a range that:
2089 * - does not intersect with any VMA;
2090 * - is contained within the [low_limit, high_limit) interval;
2091 * - is at least the desired size.
2092 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2094 static inline unsigned long
2095 vm_unmapped_area(struct vm_unmapped_area_info *info)
2097 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2098 return unmapped_area_topdown(info);
2100 return unmapped_area(info);
2104 extern void truncate_inode_pages(struct address_space *, loff_t);
2105 extern void truncate_inode_pages_range(struct address_space *,
2106 loff_t lstart, loff_t lend);
2107 extern void truncate_inode_pages_final(struct address_space *);
2109 /* generic vm_area_ops exported for stackable file systems */
2110 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2111 extern void filemap_map_pages(struct fault_env *fe,
2112 pgoff_t start_pgoff, pgoff_t end_pgoff);
2113 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2115 /* mm/page-writeback.c */
2116 int write_one_page(struct page *page, int wait);
2117 void task_dirty_inc(struct task_struct *tsk);
2120 #define VM_MAX_READAHEAD 128 /* kbytes */
2121 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2123 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2124 pgoff_t offset, unsigned long nr_to_read);
2126 void page_cache_sync_readahead(struct address_space *mapping,
2127 struct file_ra_state *ra,
2130 unsigned long size);
2132 void page_cache_async_readahead(struct address_space *mapping,
2133 struct file_ra_state *ra,
2137 unsigned long size);
2139 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2140 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2142 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2143 extern int expand_downwards(struct vm_area_struct *vma,
2144 unsigned long address);
2146 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2148 #define expand_upwards(vma, address) (0)
2151 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2152 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2153 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2154 struct vm_area_struct **pprev);
2156 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2157 NULL if none. Assume start_addr < end_addr. */
2158 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2160 struct vm_area_struct * vma = find_vma(mm,start_addr);
2162 if (vma && end_addr <= vma->vm_start)
2167 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2169 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2172 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2173 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2174 unsigned long vm_start, unsigned long vm_end)
2176 struct vm_area_struct *vma = find_vma(mm, vm_start);
2178 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2185 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2186 void vma_set_page_prot(struct vm_area_struct *vma);
2188 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2192 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2194 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2198 #ifdef CONFIG_NUMA_BALANCING
2199 unsigned long change_prot_numa(struct vm_area_struct *vma,
2200 unsigned long start, unsigned long end);
2203 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2204 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2205 unsigned long pfn, unsigned long size, pgprot_t);
2206 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2207 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2210 unsigned long pfn, pgprot_t pgprot);
2211 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2213 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2216 struct page *follow_page_mask(struct vm_area_struct *vma,
2217 unsigned long address, unsigned int foll_flags,
2218 unsigned int *page_mask);
2220 static inline struct page *follow_page(struct vm_area_struct *vma,
2221 unsigned long address, unsigned int foll_flags)
2223 unsigned int unused_page_mask;
2224 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2227 #define FOLL_WRITE 0x01 /* check pte is writable */
2228 #define FOLL_TOUCH 0x02 /* mark page accessed */
2229 #define FOLL_GET 0x04 /* do get_page on page */
2230 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2231 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2232 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2233 * and return without waiting upon it */
2234 #define FOLL_POPULATE 0x40 /* fault in page */
2235 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2236 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2237 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2238 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2239 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2240 #define FOLL_MLOCK 0x1000 /* lock present pages */
2241 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2243 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2245 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2246 unsigned long size, pte_fn_t fn, void *data);
2249 #ifdef CONFIG_PAGE_POISONING
2250 extern bool page_poisoning_enabled(void);
2251 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2252 extern bool page_is_poisoned(struct page *page);
2254 static inline bool page_poisoning_enabled(void) { return false; }
2255 static inline void kernel_poison_pages(struct page *page, int numpages,
2257 static inline bool page_is_poisoned(struct page *page) { return false; }
2260 #ifdef CONFIG_DEBUG_PAGEALLOC
2261 extern bool _debug_pagealloc_enabled;
2262 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2264 static inline bool debug_pagealloc_enabled(void)
2266 return _debug_pagealloc_enabled;
2270 kernel_map_pages(struct page *page, int numpages, int enable)
2272 if (!debug_pagealloc_enabled())
2275 __kernel_map_pages(page, numpages, enable);
2277 #ifdef CONFIG_HIBERNATION
2278 extern bool kernel_page_present(struct page *page);
2279 #endif /* CONFIG_HIBERNATION */
2280 #else /* CONFIG_DEBUG_PAGEALLOC */
2282 kernel_map_pages(struct page *page, int numpages, int enable) {}
2283 #ifdef CONFIG_HIBERNATION
2284 static inline bool kernel_page_present(struct page *page) { return true; }
2285 #endif /* CONFIG_HIBERNATION */
2286 static inline bool debug_pagealloc_enabled(void)
2290 #endif /* CONFIG_DEBUG_PAGEALLOC */
2292 #ifdef __HAVE_ARCH_GATE_AREA
2293 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2294 extern int in_gate_area_no_mm(unsigned long addr);
2295 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2297 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2301 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2302 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2306 #endif /* __HAVE_ARCH_GATE_AREA */
2308 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2310 #ifdef CONFIG_SYSCTL
2311 extern int sysctl_drop_caches;
2312 int drop_caches_sysctl_handler(struct ctl_table *, int,
2313 void __user *, size_t *, loff_t *);
2316 void drop_slab(void);
2317 void drop_slab_node(int nid);
2320 #define randomize_va_space 0
2322 extern int randomize_va_space;
2325 const char * arch_vma_name(struct vm_area_struct *vma);
2326 void print_vma_addr(char *prefix, unsigned long rip);
2328 void sparse_mem_maps_populate_node(struct page **map_map,
2329 unsigned long pnum_begin,
2330 unsigned long pnum_end,
2331 unsigned long map_count,
2334 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2335 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2336 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2337 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2338 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2339 void *vmemmap_alloc_block(unsigned long size, int node);
2341 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2342 struct vmem_altmap *altmap);
2343 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2345 return __vmemmap_alloc_block_buf(size, node, NULL);
2348 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2349 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2351 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2352 void vmemmap_populate_print_last(void);
2353 #ifdef CONFIG_MEMORY_HOTPLUG
2354 void vmemmap_free(unsigned long start, unsigned long end);
2356 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2357 unsigned long size);
2360 MF_COUNT_INCREASED = 1 << 0,
2361 MF_ACTION_REQUIRED = 1 << 1,
2362 MF_MUST_KILL = 1 << 2,
2363 MF_SOFT_OFFLINE = 1 << 3,
2365 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2366 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2367 extern int unpoison_memory(unsigned long pfn);
2368 extern int get_hwpoison_page(struct page *page);
2369 #define put_hwpoison_page(page) put_page(page)
2370 extern int sysctl_memory_failure_early_kill;
2371 extern int sysctl_memory_failure_recovery;
2372 extern void shake_page(struct page *p, int access);
2373 extern atomic_long_t num_poisoned_pages;
2374 extern int soft_offline_page(struct page *page, int flags);
2378 * Error handlers for various types of pages.
2381 MF_IGNORED, /* Error: cannot be handled */
2382 MF_FAILED, /* Error: handling failed */
2383 MF_DELAYED, /* Will be handled later */
2384 MF_RECOVERED, /* Successfully recovered */
2387 enum mf_action_page_type {
2389 MF_MSG_KERNEL_HIGH_ORDER,
2391 MF_MSG_DIFFERENT_COMPOUND,
2392 MF_MSG_POISONED_HUGE,
2395 MF_MSG_UNMAP_FAILED,
2396 MF_MSG_DIRTY_SWAPCACHE,
2397 MF_MSG_CLEAN_SWAPCACHE,
2398 MF_MSG_DIRTY_MLOCKED_LRU,
2399 MF_MSG_CLEAN_MLOCKED_LRU,
2400 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2401 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2404 MF_MSG_TRUNCATED_LRU,
2410 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2411 extern void clear_huge_page(struct page *page,
2413 unsigned int pages_per_huge_page);
2414 extern void copy_user_huge_page(struct page *dst, struct page *src,
2415 unsigned long addr, struct vm_area_struct *vma,
2416 unsigned int pages_per_huge_page);
2417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2419 extern struct page_ext_operations debug_guardpage_ops;
2420 extern struct page_ext_operations page_poisoning_ops;
2422 #ifdef CONFIG_DEBUG_PAGEALLOC
2423 extern unsigned int _debug_guardpage_minorder;
2424 extern bool _debug_guardpage_enabled;
2426 static inline unsigned int debug_guardpage_minorder(void)
2428 return _debug_guardpage_minorder;
2431 static inline bool debug_guardpage_enabled(void)
2433 return _debug_guardpage_enabled;
2436 static inline bool page_is_guard(struct page *page)
2438 struct page_ext *page_ext;
2440 if (!debug_guardpage_enabled())
2443 page_ext = lookup_page_ext(page);
2444 if (unlikely(!page_ext))
2447 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2450 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2451 static inline bool debug_guardpage_enabled(void) { return false; }
2452 static inline bool page_is_guard(struct page *page) { return false; }
2453 #endif /* CONFIG_DEBUG_PAGEALLOC */
2455 #if MAX_NUMNODES > 1
2456 void __init setup_nr_node_ids(void);
2458 static inline void setup_nr_node_ids(void) {}
2461 #endif /* __KERNEL__ */
2462 #endif /* _LINUX_MM_H */