1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
37 struct anon_vma_chain;
40 struct writeback_control;
44 extern int sysctl_page_lock_unfairness;
46 void init_mm_internals(void);
48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
51 static inline void set_max_mapnr(unsigned long limit)
56 static inline void set_max_mapnr(unsigned long limit) { }
59 extern atomic_long_t _totalram_pages;
60 static inline unsigned long totalram_pages(void)
62 return (unsigned long)atomic_long_read(&_totalram_pages);
65 static inline void totalram_pages_inc(void)
67 atomic_long_inc(&_totalram_pages);
70 static inline void totalram_pages_dec(void)
72 atomic_long_dec(&_totalram_pages);
75 static inline void totalram_pages_add(long count)
77 atomic_long_add(count, &_totalram_pages);
80 extern void * high_memory;
81 extern int page_cluster;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
100 #include <asm/page.h>
101 #include <asm/processor.h>
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
115 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
119 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
123 #define lm_alias(x) __va(__pa_symbol(x))
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X) (0)
138 * On some architectures it is expensive to call memset() for small sizes.
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
150 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151 static inline void __mm_zero_struct_page(struct page *page)
153 unsigned long *_pp = (void *)page;
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
160 switch (sizeof(struct page)) {
181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
200 #define MAPCOUNT_ELF_CORE_MARGIN (5)
201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 extern int sysctl_max_map_count;
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
246 extern unsigned int kobjsize(const void *objp);
250 * vm_flags in vm_area_struct, see mm_types.h.
251 * When changing, update also include/trace/events/mmflags.h
253 #define VM_NONE 0x00000000
255 #define VM_READ 0x00000001 /* currently active flags */
256 #define VM_WRITE 0x00000002
257 #define VM_EXEC 0x00000004
258 #define VM_SHARED 0x00000008
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262 #define VM_MAYWRITE 0x00000020
263 #define VM_MAYEXEC 0x00000040
264 #define VM_MAYSHARE 0x00000080
266 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
267 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293 # define VM_SOFTDIRTY 0
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
318 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
321 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
323 # define VM_PKEY_BIT4 0
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
327 #if defined(CONFIG_X86)
328 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
345 #if defined(CONFIG_ARM64_MTE)
346 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
349 # define VM_MTE VM_NONE
350 # define VM_MTE_ALLOWED VM_NONE
354 # define VM_GROWSUP VM_NONE
357 /* Bits set in the VMA until the stack is in its final location */
358 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
360 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
362 /* Common data flag combinations */
363 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
370 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
374 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
378 #ifdef CONFIG_STACK_GROWSUP
379 #define VM_STACK VM_GROWSUP
381 #define VM_STACK VM_GROWSDOWN
384 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
386 /* VMA basic access permission flags */
387 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
391 * Special vmas that are non-mergable, non-mlock()able.
393 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
395 /* This mask prevents VMA from being scanned with khugepaged */
396 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
398 /* This mask defines which mm->def_flags a process can inherit its parent */
399 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
401 /* This mask is used to clear all the VMA flags used by mlock */
402 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
404 /* Arch-specific flags to clear when updating VM flags on protection change */
405 #ifndef VM_ARCH_CLEAR
406 # define VM_ARCH_CLEAR VM_NONE
408 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
414 extern pgprot_t protection_map[16];
417 * Fault flag definitions.
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
449 #define FAULT_FLAG_WRITE 0x01
450 #define FAULT_FLAG_MKWRITE 0x02
451 #define FAULT_FLAG_ALLOW_RETRY 0x04
452 #define FAULT_FLAG_RETRY_NOWAIT 0x08
453 #define FAULT_FLAG_KILLABLE 0x10
454 #define FAULT_FLAG_TRIED 0x20
455 #define FAULT_FLAG_USER 0x40
456 #define FAULT_FLAG_REMOTE 0x80
457 #define FAULT_FLAG_INSTRUCTION 0x100
458 #define FAULT_FLAG_INTERRUPTIBLE 0x200
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
464 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
471 * This is mostly used for places where we want to try to avoid taking
472 * the mmap_lock for too long a time when waiting for another condition
473 * to change, in which case we can try to be polite to release the
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
480 static inline bool fault_flag_allow_retry_first(unsigned int flags)
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
486 #define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
499 * vm_fault is filled by the pagefault handler and passed to the vma's
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
506 * pgoff should be used in favour of virtual_address, if possible.
509 struct vm_area_struct *vma; /* Target VMA */
510 unsigned int flags; /* FAULT_FLAG_xxx flags */
511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
512 pgoff_t pgoff; /* Logical page offset based on vma */
513 unsigned long address; /* Faulting virtual address */
514 pmd_t *pmd; /* Pointer to pmd entry matching
516 pud_t *pud; /* Pointer to pud entry matching
519 pte_t orig_pte; /* Value of PTE at the time of fault */
521 struct page *cow_page; /* Page handler may use for COW fault */
522 struct page *page; /* ->fault handlers should return a
523 * page here, unless VM_FAULT_NOPAGE
524 * is set (which is also implied by
527 /* These three entries are valid only while holding ptl lock */
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
545 /* page entry size for vm->huge_fault() */
546 enum page_entry_size {
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
555 * to the functions called when a no-page or a wp-page exception occurs.
557 struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
560 /* Called any time before splitting to check if it's allowed */
561 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
562 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
564 * Called by mprotect() to make driver-specific permission
565 * checks before mprotect() is finalised. The VMA must not
566 * be modified. Returns 0 if eprotect() can proceed.
568 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
569 unsigned long end, unsigned long newflags);
570 vm_fault_t (*fault)(struct vm_fault *vmf);
571 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
572 enum page_entry_size pe_size);
573 void (*map_pages)(struct vm_fault *vmf,
574 pgoff_t start_pgoff, pgoff_t end_pgoff);
575 unsigned long (*pagesize)(struct vm_area_struct * area);
577 /* notification that a previously read-only page is about to become
578 * writable, if an error is returned it will cause a SIGBUS */
579 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
581 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
582 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
584 /* called by access_process_vm when get_user_pages() fails, typically
585 * for use by special VMAs that can switch between memory and hardware
587 int (*access)(struct vm_area_struct *vma, unsigned long addr,
588 void *buf, int len, int write);
590 /* Called by the /proc/PID/maps code to ask the vma whether it
591 * has a special name. Returning non-NULL will also cause this
592 * vma to be dumped unconditionally. */
593 const char *(*name)(struct vm_area_struct *vma);
597 * set_policy() op must add a reference to any non-NULL @new mempolicy
598 * to hold the policy upon return. Caller should pass NULL @new to
599 * remove a policy and fall back to surrounding context--i.e. do not
600 * install a MPOL_DEFAULT policy, nor the task or system default
603 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
606 * get_policy() op must add reference [mpol_get()] to any policy at
607 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
608 * in mm/mempolicy.c will do this automatically.
609 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
610 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
611 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
612 * must return NULL--i.e., do not "fallback" to task or system default
615 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
619 * Called by vm_normal_page() for special PTEs to find the
620 * page for @addr. This is useful if the default behavior
621 * (using pte_page()) would not find the correct page.
623 struct page *(*find_special_page)(struct vm_area_struct *vma,
627 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
629 static const struct vm_operations_struct dummy_vm_ops = {};
631 memset(vma, 0, sizeof(*vma));
633 vma->vm_ops = &dummy_vm_ops;
634 INIT_LIST_HEAD(&vma->anon_vma_chain);
637 static inline void vma_set_anonymous(struct vm_area_struct *vma)
642 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
647 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
649 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
654 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
655 VM_STACK_INCOMPLETE_SETUP)
661 static inline bool vma_is_foreign(struct vm_area_struct *vma)
666 if (current->mm != vma->vm_mm)
672 static inline bool vma_is_accessible(struct vm_area_struct *vma)
674 return vma->vm_flags & VM_ACCESS_FLAGS;
679 * The vma_is_shmem is not inline because it is used only by slow
680 * paths in userfault.
682 bool vma_is_shmem(struct vm_area_struct *vma);
684 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
687 int vma_is_stack_for_current(struct vm_area_struct *vma);
689 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
690 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
695 #include <linux/huge_mm.h>
698 * Methods to modify the page usage count.
700 * What counts for a page usage:
701 * - cache mapping (page->mapping)
702 * - private data (page->private)
703 * - page mapped in a task's page tables, each mapping
704 * is counted separately
706 * Also, many kernel routines increase the page count before a critical
707 * routine so they can be sure the page doesn't go away from under them.
711 * Drop a ref, return true if the refcount fell to zero (the page has no users)
713 static inline int put_page_testzero(struct page *page)
715 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
716 return page_ref_dec_and_test(page);
720 * Try to grab a ref unless the page has a refcount of zero, return false if
722 * This can be called when MMU is off so it must not access
723 * any of the virtual mappings.
725 static inline int get_page_unless_zero(struct page *page)
727 return page_ref_add_unless(page, 1, 0);
730 extern int page_is_ram(unsigned long pfn);
738 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
741 /* Support for virtually mapped pages */
742 struct page *vmalloc_to_page(const void *addr);
743 unsigned long vmalloc_to_pfn(const void *addr);
746 * Determine if an address is within the vmalloc range
748 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
749 * is no special casing required.
752 #ifndef is_ioremap_addr
753 #define is_ioremap_addr(x) is_vmalloc_addr(x)
757 extern bool is_vmalloc_addr(const void *x);
758 extern int is_vmalloc_or_module_addr(const void *x);
760 static inline bool is_vmalloc_addr(const void *x)
764 static inline int is_vmalloc_or_module_addr(const void *x)
770 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
771 static inline void *kvmalloc(size_t size, gfp_t flags)
773 return kvmalloc_node(size, flags, NUMA_NO_NODE);
775 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
777 return kvmalloc_node(size, flags | __GFP_ZERO, node);
779 static inline void *kvzalloc(size_t size, gfp_t flags)
781 return kvmalloc(size, flags | __GFP_ZERO);
784 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
788 if (unlikely(check_mul_overflow(n, size, &bytes)))
791 return kvmalloc(bytes, flags);
794 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
796 return kvmalloc_array(n, size, flags | __GFP_ZERO);
799 extern void kvfree(const void *addr);
800 extern void kvfree_sensitive(const void *addr, size_t len);
802 static inline int head_compound_mapcount(struct page *head)
804 return atomic_read(compound_mapcount_ptr(head)) + 1;
808 * Mapcount of compound page as a whole, does not include mapped sub-pages.
810 * Must be called only for compound pages or any their tail sub-pages.
812 static inline int compound_mapcount(struct page *page)
814 VM_BUG_ON_PAGE(!PageCompound(page), page);
815 page = compound_head(page);
816 return head_compound_mapcount(page);
820 * The atomic page->_mapcount, starts from -1: so that transitions
821 * both from it and to it can be tracked, using atomic_inc_and_test
822 * and atomic_add_negative(-1).
824 static inline void page_mapcount_reset(struct page *page)
826 atomic_set(&(page)->_mapcount, -1);
829 int __page_mapcount(struct page *page);
832 * Mapcount of 0-order page; when compound sub-page, includes
833 * compound_mapcount().
835 * Result is undefined for pages which cannot be mapped into userspace.
836 * For example SLAB or special types of pages. See function page_has_type().
837 * They use this place in struct page differently.
839 static inline int page_mapcount(struct page *page)
841 if (unlikely(PageCompound(page)))
842 return __page_mapcount(page);
843 return atomic_read(&page->_mapcount) + 1;
846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
847 int total_mapcount(struct page *page);
848 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
850 static inline int total_mapcount(struct page *page)
852 return page_mapcount(page);
854 static inline int page_trans_huge_mapcount(struct page *page,
857 int mapcount = page_mapcount(page);
859 *total_mapcount = mapcount;
864 static inline struct page *virt_to_head_page(const void *x)
866 struct page *page = virt_to_page(x);
868 return compound_head(page);
871 void __put_page(struct page *page);
873 void put_pages_list(struct list_head *pages);
875 void split_page(struct page *page, unsigned int order);
878 * Compound pages have a destructor function. Provide a
879 * prototype for that function and accessor functions.
880 * These are _only_ valid on the head of a compound page.
882 typedef void compound_page_dtor(struct page *);
884 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
885 enum compound_dtor_id {
888 #ifdef CONFIG_HUGETLB_PAGE
891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
898 static inline void set_compound_page_dtor(struct page *page,
899 enum compound_dtor_id compound_dtor)
901 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
902 page[1].compound_dtor = compound_dtor;
905 static inline void destroy_compound_page(struct page *page)
907 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
908 compound_page_dtors[page[1].compound_dtor](page);
911 static inline unsigned int compound_order(struct page *page)
915 return page[1].compound_order;
918 static inline bool hpage_pincount_available(struct page *page)
921 * Can the page->hpage_pinned_refcount field be used? That field is in
922 * the 3rd page of the compound page, so the smallest (2-page) compound
923 * pages cannot support it.
925 page = compound_head(page);
926 return PageCompound(page) && compound_order(page) > 1;
929 static inline int head_compound_pincount(struct page *head)
931 return atomic_read(compound_pincount_ptr(head));
934 static inline int compound_pincount(struct page *page)
936 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
937 page = compound_head(page);
938 return head_compound_pincount(page);
941 static inline void set_compound_order(struct page *page, unsigned int order)
943 page[1].compound_order = order;
944 page[1].compound_nr = 1U << order;
947 /* Returns the number of pages in this potentially compound page. */
948 static inline unsigned long compound_nr(struct page *page)
952 return page[1].compound_nr;
955 /* Returns the number of bytes in this potentially compound page. */
956 static inline unsigned long page_size(struct page *page)
958 return PAGE_SIZE << compound_order(page);
961 /* Returns the number of bits needed for the number of bytes in a page */
962 static inline unsigned int page_shift(struct page *page)
964 return PAGE_SHIFT + compound_order(page);
967 void free_compound_page(struct page *page);
971 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
972 * servicing faults for write access. In the normal case, do always want
973 * pte_mkwrite. But get_user_pages can cause write faults for mappings
974 * that do not have writing enabled, when used by access_process_vm.
976 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978 if (likely(vma->vm_flags & VM_WRITE))
979 pte = pte_mkwrite(pte);
983 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
984 vm_fault_t finish_fault(struct vm_fault *vmf);
985 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
989 * Multiple processes may "see" the same page. E.g. for untouched
990 * mappings of /dev/null, all processes see the same page full of
991 * zeroes, and text pages of executables and shared libraries have
992 * only one copy in memory, at most, normally.
994 * For the non-reserved pages, page_count(page) denotes a reference count.
995 * page_count() == 0 means the page is free. page->lru is then used for
996 * freelist management in the buddy allocator.
997 * page_count() > 0 means the page has been allocated.
999 * Pages are allocated by the slab allocator in order to provide memory
1000 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1001 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1002 * unless a particular usage is carefully commented. (the responsibility of
1003 * freeing the kmalloc memory is the caller's, of course).
1005 * A page may be used by anyone else who does a __get_free_page().
1006 * In this case, page_count still tracks the references, and should only
1007 * be used through the normal accessor functions. The top bits of page->flags
1008 * and page->virtual store page management information, but all other fields
1009 * are unused and could be used privately, carefully. The management of this
1010 * page is the responsibility of the one who allocated it, and those who have
1011 * subsequently been given references to it.
1013 * The other pages (we may call them "pagecache pages") are completely
1014 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1015 * The following discussion applies only to them.
1017 * A pagecache page contains an opaque `private' member, which belongs to the
1018 * page's address_space. Usually, this is the address of a circular list of
1019 * the page's disk buffers. PG_private must be set to tell the VM to call
1020 * into the filesystem to release these pages.
1022 * A page may belong to an inode's memory mapping. In this case, page->mapping
1023 * is the pointer to the inode, and page->index is the file offset of the page,
1024 * in units of PAGE_SIZE.
1026 * If pagecache pages are not associated with an inode, they are said to be
1027 * anonymous pages. These may become associated with the swapcache, and in that
1028 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1030 * In either case (swapcache or inode backed), the pagecache itself holds one
1031 * reference to the page. Setting PG_private should also increment the
1032 * refcount. The each user mapping also has a reference to the page.
1034 * The pagecache pages are stored in a per-mapping radix tree, which is
1035 * rooted at mapping->i_pages, and indexed by offset.
1036 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1037 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1039 * All pagecache pages may be subject to I/O:
1040 * - inode pages may need to be read from disk,
1041 * - inode pages which have been modified and are MAP_SHARED may need
1042 * to be written back to the inode on disk,
1043 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1044 * modified may need to be swapped out to swap space and (later) to be read
1049 * The zone field is never updated after free_area_init_core()
1050 * sets it, so none of the operations on it need to be atomic.
1053 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1054 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1055 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1056 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1057 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1058 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1061 * Define the bit shifts to access each section. For non-existent
1062 * sections we define the shift as 0; that plus a 0 mask ensures
1063 * the compiler will optimise away reference to them.
1065 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1066 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1067 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1068 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1069 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1071 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1072 #ifdef NODE_NOT_IN_PAGE_FLAGS
1073 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1074 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1075 SECTIONS_PGOFF : ZONES_PGOFF)
1077 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1078 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1079 NODES_PGOFF : ZONES_PGOFF)
1082 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1084 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1085 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1086 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1087 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1088 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1089 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1091 static inline enum zone_type page_zonenum(const struct page *page)
1093 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1094 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1097 #ifdef CONFIG_ZONE_DEVICE
1098 static inline bool is_zone_device_page(const struct page *page)
1100 return page_zonenum(page) == ZONE_DEVICE;
1102 extern void memmap_init_zone_device(struct zone *, unsigned long,
1103 unsigned long, struct dev_pagemap *);
1105 static inline bool is_zone_device_page(const struct page *page)
1111 #ifdef CONFIG_DEV_PAGEMAP_OPS
1112 void free_devmap_managed_page(struct page *page);
1113 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1115 static inline bool page_is_devmap_managed(struct page *page)
1117 if (!static_branch_unlikely(&devmap_managed_key))
1119 if (!is_zone_device_page(page))
1121 switch (page->pgmap->type) {
1122 case MEMORY_DEVICE_PRIVATE:
1123 case MEMORY_DEVICE_FS_DAX:
1131 void put_devmap_managed_page(struct page *page);
1133 #else /* CONFIG_DEV_PAGEMAP_OPS */
1134 static inline bool page_is_devmap_managed(struct page *page)
1139 static inline void put_devmap_managed_page(struct page *page)
1142 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1144 static inline bool is_device_private_page(const struct page *page)
1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1148 is_zone_device_page(page) &&
1149 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1152 static inline bool is_pci_p2pdma_page(const struct page *page)
1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1156 is_zone_device_page(page) &&
1157 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1160 /* 127: arbitrary random number, small enough to assemble well */
1161 #define page_ref_zero_or_close_to_overflow(page) \
1162 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1164 static inline void get_page(struct page *page)
1166 page = compound_head(page);
1168 * Getting a normal page or the head of a compound page
1169 * requires to already have an elevated page->_refcount.
1171 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1175 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1177 static inline __must_check bool try_get_page(struct page *page)
1179 page = compound_head(page);
1180 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1186 static inline void put_page(struct page *page)
1188 page = compound_head(page);
1191 * For devmap managed pages we need to catch refcount transition from
1192 * 2 to 1, when refcount reach one it means the page is free and we
1193 * need to inform the device driver through callback. See
1194 * include/linux/memremap.h and HMM for details.
1196 if (page_is_devmap_managed(page)) {
1197 put_devmap_managed_page(page);
1201 if (put_page_testzero(page))
1206 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1207 * the page's refcount so that two separate items are tracked: the original page
1208 * reference count, and also a new count of how many pin_user_pages() calls were
1209 * made against the page. ("gup-pinned" is another term for the latter).
1211 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1212 * distinct from normal pages. As such, the unpin_user_page() call (and its
1213 * variants) must be used in order to release gup-pinned pages.
1217 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1218 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1219 * simpler, due to the fact that adding an even power of two to the page
1220 * refcount has the effect of using only the upper N bits, for the code that
1221 * counts up using the bias value. This means that the lower bits are left for
1222 * the exclusive use of the original code that increments and decrements by one
1223 * (or at least, by much smaller values than the bias value).
1225 * Of course, once the lower bits overflow into the upper bits (and this is
1226 * OK, because subtraction recovers the original values), then visual inspection
1227 * no longer suffices to directly view the separate counts. However, for normal
1228 * applications that don't have huge page reference counts, this won't be an
1231 * Locking: the lockless algorithm described in page_cache_get_speculative()
1232 * and page_cache_gup_pin_speculative() provides safe operation for
1233 * get_user_pages and page_mkclean and other calls that race to set up page
1236 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1238 void unpin_user_page(struct page *page);
1239 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1241 void unpin_user_pages(struct page **pages, unsigned long npages);
1244 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1246 * This function checks if a page has been pinned via a call to
1247 * pin_user_pages*().
1249 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1250 * because it means "definitely not pinned for DMA", but true means "probably
1251 * pinned for DMA, but possibly a false positive due to having at least
1252 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1254 * False positives are OK, because: a) it's unlikely for a page to get that many
1255 * refcounts, and b) all the callers of this routine are expected to be able to
1256 * deal gracefully with a false positive.
1258 * For huge pages, the result will be exactly correct. That's because we have
1259 * more tracking data available: the 3rd struct page in the compound page is
1260 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1263 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1265 * @page: pointer to page to be queried.
1266 * @Return: True, if it is likely that the page has been "dma-pinned".
1267 * False, if the page is definitely not dma-pinned.
1269 static inline bool page_maybe_dma_pinned(struct page *page)
1271 if (hpage_pincount_available(page))
1272 return compound_pincount(page) > 0;
1275 * page_ref_count() is signed. If that refcount overflows, then
1276 * page_ref_count() returns a negative value, and callers will avoid
1277 * further incrementing the refcount.
1279 * Here, for that overflow case, use the signed bit to count a little
1280 * bit higher via unsigned math, and thus still get an accurate result.
1282 return ((unsigned int)page_ref_count(compound_head(page))) >=
1283 GUP_PIN_COUNTING_BIAS;
1286 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1287 #define SECTION_IN_PAGE_FLAGS
1291 * The identification function is mainly used by the buddy allocator for
1292 * determining if two pages could be buddies. We are not really identifying
1293 * the zone since we could be using the section number id if we do not have
1294 * node id available in page flags.
1295 * We only guarantee that it will return the same value for two combinable
1298 static inline int page_zone_id(struct page *page)
1300 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1303 #ifdef NODE_NOT_IN_PAGE_FLAGS
1304 extern int page_to_nid(const struct page *page);
1306 static inline int page_to_nid(const struct page *page)
1308 struct page *p = (struct page *)page;
1310 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1314 #ifdef CONFIG_NUMA_BALANCING
1315 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1317 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1320 static inline int cpupid_to_pid(int cpupid)
1322 return cpupid & LAST__PID_MASK;
1325 static inline int cpupid_to_cpu(int cpupid)
1327 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1330 static inline int cpupid_to_nid(int cpupid)
1332 return cpu_to_node(cpupid_to_cpu(cpupid));
1335 static inline bool cpupid_pid_unset(int cpupid)
1337 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1340 static inline bool cpupid_cpu_unset(int cpupid)
1342 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1345 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1347 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1350 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1351 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1352 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1354 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1357 static inline int page_cpupid_last(struct page *page)
1359 return page->_last_cpupid;
1361 static inline void page_cpupid_reset_last(struct page *page)
1363 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1366 static inline int page_cpupid_last(struct page *page)
1368 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1371 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1373 static inline void page_cpupid_reset_last(struct page *page)
1375 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1377 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1378 #else /* !CONFIG_NUMA_BALANCING */
1379 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1381 return page_to_nid(page); /* XXX */
1384 static inline int page_cpupid_last(struct page *page)
1386 return page_to_nid(page); /* XXX */
1389 static inline int cpupid_to_nid(int cpupid)
1394 static inline int cpupid_to_pid(int cpupid)
1399 static inline int cpupid_to_cpu(int cpupid)
1404 static inline int cpu_pid_to_cpupid(int nid, int pid)
1409 static inline bool cpupid_pid_unset(int cpupid)
1414 static inline void page_cpupid_reset_last(struct page *page)
1418 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1422 #endif /* CONFIG_NUMA_BALANCING */
1424 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1425 static inline u8 page_kasan_tag(const struct page *page)
1427 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1430 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1432 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1433 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1436 static inline void page_kasan_tag_reset(struct page *page)
1438 page_kasan_tag_set(page, 0xff);
1441 static inline u8 page_kasan_tag(const struct page *page)
1446 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1447 static inline void page_kasan_tag_reset(struct page *page) { }
1450 static inline struct zone *page_zone(const struct page *page)
1452 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1455 static inline pg_data_t *page_pgdat(const struct page *page)
1457 return NODE_DATA(page_to_nid(page));
1460 #ifdef SECTION_IN_PAGE_FLAGS
1461 static inline void set_page_section(struct page *page, unsigned long section)
1463 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1464 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1467 static inline unsigned long page_to_section(const struct page *page)
1469 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1473 static inline void set_page_zone(struct page *page, enum zone_type zone)
1475 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1476 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1479 static inline void set_page_node(struct page *page, unsigned long node)
1481 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1482 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1485 static inline void set_page_links(struct page *page, enum zone_type zone,
1486 unsigned long node, unsigned long pfn)
1488 set_page_zone(page, zone);
1489 set_page_node(page, node);
1490 #ifdef SECTION_IN_PAGE_FLAGS
1491 set_page_section(page, pfn_to_section_nr(pfn));
1496 * Some inline functions in vmstat.h depend on page_zone()
1498 #include <linux/vmstat.h>
1500 static __always_inline void *lowmem_page_address(const struct page *page)
1502 return page_to_virt(page);
1505 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1506 #define HASHED_PAGE_VIRTUAL
1509 #if defined(WANT_PAGE_VIRTUAL)
1510 static inline void *page_address(const struct page *page)
1512 return page->virtual;
1514 static inline void set_page_address(struct page *page, void *address)
1516 page->virtual = address;
1518 #define page_address_init() do { } while(0)
1521 #if defined(HASHED_PAGE_VIRTUAL)
1522 void *page_address(const struct page *page);
1523 void set_page_address(struct page *page, void *virtual);
1524 void page_address_init(void);
1527 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1528 #define page_address(page) lowmem_page_address(page)
1529 #define set_page_address(page, address) do { } while(0)
1530 #define page_address_init() do { } while(0)
1533 extern void *page_rmapping(struct page *page);
1534 extern struct anon_vma *page_anon_vma(struct page *page);
1535 extern struct address_space *page_mapping(struct page *page);
1537 extern struct address_space *__page_file_mapping(struct page *);
1540 struct address_space *page_file_mapping(struct page *page)
1542 if (unlikely(PageSwapCache(page)))
1543 return __page_file_mapping(page);
1545 return page->mapping;
1548 extern pgoff_t __page_file_index(struct page *page);
1551 * Return the pagecache index of the passed page. Regular pagecache pages
1552 * use ->index whereas swapcache pages use swp_offset(->private)
1554 static inline pgoff_t page_index(struct page *page)
1556 if (unlikely(PageSwapCache(page)))
1557 return __page_file_index(page);
1561 bool page_mapped(struct page *page);
1562 struct address_space *page_mapping(struct page *page);
1563 struct address_space *page_mapping_file(struct page *page);
1566 * Return true only if the page has been allocated with
1567 * ALLOC_NO_WATERMARKS and the low watermark was not
1568 * met implying that the system is under some pressure.
1570 static inline bool page_is_pfmemalloc(struct page *page)
1573 * Page index cannot be this large so this must be
1574 * a pfmemalloc page.
1576 return page->index == -1UL;
1580 * Only to be called by the page allocator on a freshly allocated
1583 static inline void set_page_pfmemalloc(struct page *page)
1588 static inline void clear_page_pfmemalloc(struct page *page)
1594 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1596 extern void pagefault_out_of_memory(void);
1598 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1599 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1602 * Flags passed to show_mem() and show_free_areas() to suppress output in
1605 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1607 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1610 extern bool can_do_mlock(void);
1612 static inline bool can_do_mlock(void) { return false; }
1614 extern int user_shm_lock(size_t, struct user_struct *);
1615 extern void user_shm_unlock(size_t, struct user_struct *);
1618 * Parameter block passed down to zap_pte_range in exceptional cases.
1620 struct zap_details {
1621 struct address_space *check_mapping; /* Check page->mapping if set */
1622 pgoff_t first_index; /* Lowest page->index to unmap */
1623 pgoff_t last_index; /* Highest page->index to unmap */
1626 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1628 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1631 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1632 unsigned long size);
1633 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1634 unsigned long size);
1635 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1636 unsigned long start, unsigned long end);
1638 struct mmu_notifier_range;
1640 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1641 unsigned long end, unsigned long floor, unsigned long ceiling);
1643 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1644 int follow_pte(struct mm_struct *mm, unsigned long address,
1645 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1647 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1648 unsigned long *pfn);
1649 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1650 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1651 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1652 void *buf, int len, int write);
1654 extern void truncate_pagecache(struct inode *inode, loff_t new);
1655 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1656 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1657 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1658 int truncate_inode_page(struct address_space *mapping, struct page *page);
1659 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1660 int invalidate_inode_page(struct page *page);
1663 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1664 unsigned long address, unsigned int flags,
1665 struct pt_regs *regs);
1666 extern int fixup_user_fault(struct mm_struct *mm,
1667 unsigned long address, unsigned int fault_flags,
1669 void unmap_mapping_pages(struct address_space *mapping,
1670 pgoff_t start, pgoff_t nr, bool even_cows);
1671 void unmap_mapping_range(struct address_space *mapping,
1672 loff_t const holebegin, loff_t const holelen, int even_cows);
1674 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1675 unsigned long address, unsigned int flags,
1676 struct pt_regs *regs)
1678 /* should never happen if there's no MMU */
1680 return VM_FAULT_SIGBUS;
1682 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1683 unsigned int fault_flags, bool *unlocked)
1685 /* should never happen if there's no MMU */
1689 static inline void unmap_mapping_pages(struct address_space *mapping,
1690 pgoff_t start, pgoff_t nr, bool even_cows) { }
1691 static inline void unmap_mapping_range(struct address_space *mapping,
1692 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1695 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1696 loff_t const holebegin, loff_t const holelen)
1698 unmap_mapping_range(mapping, holebegin, holelen, 0);
1701 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1702 void *buf, int len, unsigned int gup_flags);
1703 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1704 void *buf, int len, unsigned int gup_flags);
1705 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1706 void *buf, int len, unsigned int gup_flags);
1708 long get_user_pages_remote(struct mm_struct *mm,
1709 unsigned long start, unsigned long nr_pages,
1710 unsigned int gup_flags, struct page **pages,
1711 struct vm_area_struct **vmas, int *locked);
1712 long pin_user_pages_remote(struct mm_struct *mm,
1713 unsigned long start, unsigned long nr_pages,
1714 unsigned int gup_flags, struct page **pages,
1715 struct vm_area_struct **vmas, int *locked);
1716 long get_user_pages(unsigned long start, unsigned long nr_pages,
1717 unsigned int gup_flags, struct page **pages,
1718 struct vm_area_struct **vmas);
1719 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1720 unsigned int gup_flags, struct page **pages,
1721 struct vm_area_struct **vmas);
1722 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1723 unsigned int gup_flags, struct page **pages, int *locked);
1724 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1725 unsigned int gup_flags, struct page **pages, int *locked);
1726 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1727 struct page **pages, unsigned int gup_flags);
1728 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1729 struct page **pages, unsigned int gup_flags);
1731 int get_user_pages_fast(unsigned long start, int nr_pages,
1732 unsigned int gup_flags, struct page **pages);
1733 int pin_user_pages_fast(unsigned long start, int nr_pages,
1734 unsigned int gup_flags, struct page **pages);
1736 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1737 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1738 struct task_struct *task, bool bypass_rlim);
1740 /* Container for pinned pfns / pages */
1741 struct frame_vector {
1742 unsigned int nr_allocated; /* Number of frames we have space for */
1743 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1744 bool got_ref; /* Did we pin pages by getting page ref? */
1745 bool is_pfns; /* Does array contain pages or pfns? */
1746 void *ptrs[]; /* Array of pinned pfns / pages. Use
1747 * pfns_vector_pages() or pfns_vector_pfns()
1751 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1752 void frame_vector_destroy(struct frame_vector *vec);
1753 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1754 unsigned int gup_flags, struct frame_vector *vec);
1755 void put_vaddr_frames(struct frame_vector *vec);
1756 int frame_vector_to_pages(struct frame_vector *vec);
1757 void frame_vector_to_pfns(struct frame_vector *vec);
1759 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1761 return vec->nr_frames;
1764 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1767 int err = frame_vector_to_pages(vec);
1770 return ERR_PTR(err);
1772 return (struct page **)(vec->ptrs);
1775 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1778 frame_vector_to_pfns(vec);
1779 return (unsigned long *)(vec->ptrs);
1783 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1784 struct page **pages);
1785 int get_kernel_page(unsigned long start, int write, struct page **pages);
1786 struct page *get_dump_page(unsigned long addr);
1788 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1789 extern void do_invalidatepage(struct page *page, unsigned int offset,
1790 unsigned int length);
1792 void __set_page_dirty(struct page *, struct address_space *, int warn);
1793 int __set_page_dirty_nobuffers(struct page *page);
1794 int __set_page_dirty_no_writeback(struct page *page);
1795 int redirty_page_for_writepage(struct writeback_control *wbc,
1797 void account_page_dirtied(struct page *page, struct address_space *mapping);
1798 void account_page_cleaned(struct page *page, struct address_space *mapping,
1799 struct bdi_writeback *wb);
1800 int set_page_dirty(struct page *page);
1801 int set_page_dirty_lock(struct page *page);
1802 void __cancel_dirty_page(struct page *page);
1803 static inline void cancel_dirty_page(struct page *page)
1805 /* Avoid atomic ops, locking, etc. when not actually needed. */
1806 if (PageDirty(page))
1807 __cancel_dirty_page(page);
1809 int clear_page_dirty_for_io(struct page *page);
1811 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1813 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1814 unsigned long old_addr, struct vm_area_struct *new_vma,
1815 unsigned long new_addr, unsigned long len,
1816 bool need_rmap_locks);
1819 * Flags used by change_protection(). For now we make it a bitmap so
1820 * that we can pass in multiple flags just like parameters. However
1821 * for now all the callers are only use one of the flags at the same
1824 /* Whether we should allow dirty bit accounting */
1825 #define MM_CP_DIRTY_ACCT (1UL << 0)
1826 /* Whether this protection change is for NUMA hints */
1827 #define MM_CP_PROT_NUMA (1UL << 1)
1828 /* Whether this change is for write protecting */
1829 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1830 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1831 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1832 MM_CP_UFFD_WP_RESOLVE)
1834 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1835 unsigned long end, pgprot_t newprot,
1836 unsigned long cp_flags);
1837 extern int mprotect_fixup(struct vm_area_struct *vma,
1838 struct vm_area_struct **pprev, unsigned long start,
1839 unsigned long end, unsigned long newflags);
1842 * doesn't attempt to fault and will return short.
1844 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1845 unsigned int gup_flags, struct page **pages);
1846 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1847 unsigned int gup_flags, struct page **pages);
1849 static inline bool get_user_page_fast_only(unsigned long addr,
1850 unsigned int gup_flags, struct page **pagep)
1852 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1855 * per-process(per-mm_struct) statistics.
1857 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1859 long val = atomic_long_read(&mm->rss_stat.count[member]);
1861 #ifdef SPLIT_RSS_COUNTING
1863 * counter is updated in asynchronous manner and may go to minus.
1864 * But it's never be expected number for users.
1869 return (unsigned long)val;
1872 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1874 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1876 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1878 mm_trace_rss_stat(mm, member, count);
1881 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1883 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1885 mm_trace_rss_stat(mm, member, count);
1888 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1890 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1892 mm_trace_rss_stat(mm, member, count);
1895 /* Optimized variant when page is already known not to be PageAnon */
1896 static inline int mm_counter_file(struct page *page)
1898 if (PageSwapBacked(page))
1899 return MM_SHMEMPAGES;
1900 return MM_FILEPAGES;
1903 static inline int mm_counter(struct page *page)
1906 return MM_ANONPAGES;
1907 return mm_counter_file(page);
1910 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1912 return get_mm_counter(mm, MM_FILEPAGES) +
1913 get_mm_counter(mm, MM_ANONPAGES) +
1914 get_mm_counter(mm, MM_SHMEMPAGES);
1917 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1919 return max(mm->hiwater_rss, get_mm_rss(mm));
1922 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1924 return max(mm->hiwater_vm, mm->total_vm);
1927 static inline void update_hiwater_rss(struct mm_struct *mm)
1929 unsigned long _rss = get_mm_rss(mm);
1931 if ((mm)->hiwater_rss < _rss)
1932 (mm)->hiwater_rss = _rss;
1935 static inline void update_hiwater_vm(struct mm_struct *mm)
1937 if (mm->hiwater_vm < mm->total_vm)
1938 mm->hiwater_vm = mm->total_vm;
1941 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1943 mm->hiwater_rss = get_mm_rss(mm);
1946 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1947 struct mm_struct *mm)
1949 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1951 if (*maxrss < hiwater_rss)
1952 *maxrss = hiwater_rss;
1955 #if defined(SPLIT_RSS_COUNTING)
1956 void sync_mm_rss(struct mm_struct *mm);
1958 static inline void sync_mm_rss(struct mm_struct *mm)
1963 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1964 static inline int pte_special(pte_t pte)
1969 static inline pte_t pte_mkspecial(pte_t pte)
1975 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1976 static inline int pte_devmap(pte_t pte)
1982 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1984 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1990 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1994 #ifdef __PAGETABLE_P4D_FOLDED
1995 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1996 unsigned long address)
2001 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2004 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2005 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2006 unsigned long address)
2010 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2011 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2014 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2016 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2018 if (mm_pud_folded(mm))
2020 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2023 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2025 if (mm_pud_folded(mm))
2027 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2031 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2032 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2033 unsigned long address)
2038 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2039 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2042 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2044 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2046 if (mm_pmd_folded(mm))
2048 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2051 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2053 if (mm_pmd_folded(mm))
2055 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2060 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2062 atomic_long_set(&mm->pgtables_bytes, 0);
2065 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2067 return atomic_long_read(&mm->pgtables_bytes);
2070 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2072 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2075 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2077 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2081 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2082 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2087 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2088 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2091 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2092 int __pte_alloc_kernel(pmd_t *pmd);
2094 #if defined(CONFIG_MMU)
2096 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2097 unsigned long address)
2099 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2100 NULL : p4d_offset(pgd, address);
2103 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2104 unsigned long address)
2106 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2107 NULL : pud_offset(p4d, address);
2110 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2112 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2113 NULL: pmd_offset(pud, address);
2115 #endif /* CONFIG_MMU */
2117 #if USE_SPLIT_PTE_PTLOCKS
2118 #if ALLOC_SPLIT_PTLOCKS
2119 void __init ptlock_cache_init(void);
2120 extern bool ptlock_alloc(struct page *page);
2121 extern void ptlock_free(struct page *page);
2123 static inline spinlock_t *ptlock_ptr(struct page *page)
2127 #else /* ALLOC_SPLIT_PTLOCKS */
2128 static inline void ptlock_cache_init(void)
2132 static inline bool ptlock_alloc(struct page *page)
2137 static inline void ptlock_free(struct page *page)
2141 static inline spinlock_t *ptlock_ptr(struct page *page)
2145 #endif /* ALLOC_SPLIT_PTLOCKS */
2147 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2149 return ptlock_ptr(pmd_page(*pmd));
2152 static inline bool ptlock_init(struct page *page)
2155 * prep_new_page() initialize page->private (and therefore page->ptl)
2156 * with 0. Make sure nobody took it in use in between.
2158 * It can happen if arch try to use slab for page table allocation:
2159 * slab code uses page->slab_cache, which share storage with page->ptl.
2161 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2162 if (!ptlock_alloc(page))
2164 spin_lock_init(ptlock_ptr(page));
2168 #else /* !USE_SPLIT_PTE_PTLOCKS */
2170 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2172 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2174 return &mm->page_table_lock;
2176 static inline void ptlock_cache_init(void) {}
2177 static inline bool ptlock_init(struct page *page) { return true; }
2178 static inline void ptlock_free(struct page *page) {}
2179 #endif /* USE_SPLIT_PTE_PTLOCKS */
2181 static inline void pgtable_init(void)
2183 ptlock_cache_init();
2184 pgtable_cache_init();
2187 static inline bool pgtable_pte_page_ctor(struct page *page)
2189 if (!ptlock_init(page))
2191 __SetPageTable(page);
2192 inc_lruvec_page_state(page, NR_PAGETABLE);
2196 static inline void pgtable_pte_page_dtor(struct page *page)
2199 __ClearPageTable(page);
2200 dec_lruvec_page_state(page, NR_PAGETABLE);
2203 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2205 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2206 pte_t *__pte = pte_offset_map(pmd, address); \
2212 #define pte_unmap_unlock(pte, ptl) do { \
2217 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2219 #define pte_alloc_map(mm, pmd, address) \
2220 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2222 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2223 (pte_alloc(mm, pmd) ? \
2224 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2226 #define pte_alloc_kernel(pmd, address) \
2227 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2228 NULL: pte_offset_kernel(pmd, address))
2230 #if USE_SPLIT_PMD_PTLOCKS
2232 static struct page *pmd_to_page(pmd_t *pmd)
2234 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2235 return virt_to_page((void *)((unsigned long) pmd & mask));
2238 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2240 return ptlock_ptr(pmd_to_page(pmd));
2243 static inline bool pmd_ptlock_init(struct page *page)
2245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2246 page->pmd_huge_pte = NULL;
2248 return ptlock_init(page);
2251 static inline void pmd_ptlock_free(struct page *page)
2253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2254 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2259 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2263 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2265 return &mm->page_table_lock;
2268 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2269 static inline void pmd_ptlock_free(struct page *page) {}
2271 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2275 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2277 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2282 static inline bool pgtable_pmd_page_ctor(struct page *page)
2284 if (!pmd_ptlock_init(page))
2286 __SetPageTable(page);
2287 inc_lruvec_page_state(page, NR_PAGETABLE);
2291 static inline void pgtable_pmd_page_dtor(struct page *page)
2293 pmd_ptlock_free(page);
2294 __ClearPageTable(page);
2295 dec_lruvec_page_state(page, NR_PAGETABLE);
2299 * No scalability reason to split PUD locks yet, but follow the same pattern
2300 * as the PMD locks to make it easier if we decide to. The VM should not be
2301 * considered ready to switch to split PUD locks yet; there may be places
2302 * which need to be converted from page_table_lock.
2304 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2306 return &mm->page_table_lock;
2309 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2311 spinlock_t *ptl = pud_lockptr(mm, pud);
2317 extern void __init pagecache_init(void);
2318 extern void __init free_area_init_memoryless_node(int nid);
2319 extern void free_initmem(void);
2322 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2323 * into the buddy system. The freed pages will be poisoned with pattern
2324 * "poison" if it's within range [0, UCHAR_MAX].
2325 * Return pages freed into the buddy system.
2327 extern unsigned long free_reserved_area(void *start, void *end,
2328 int poison, const char *s);
2330 #ifdef CONFIG_HIGHMEM
2332 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2333 * and totalram_pages.
2335 extern void free_highmem_page(struct page *page);
2338 extern void adjust_managed_page_count(struct page *page, long count);
2339 extern void mem_init_print_info(const char *str);
2341 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2343 /* Free the reserved page into the buddy system, so it gets managed. */
2344 static inline void __free_reserved_page(struct page *page)
2346 ClearPageReserved(page);
2347 init_page_count(page);
2351 static inline void free_reserved_page(struct page *page)
2353 __free_reserved_page(page);
2354 adjust_managed_page_count(page, 1);
2357 static inline void mark_page_reserved(struct page *page)
2359 SetPageReserved(page);
2360 adjust_managed_page_count(page, -1);
2364 * Default method to free all the __init memory into the buddy system.
2365 * The freed pages will be poisoned with pattern "poison" if it's within
2366 * range [0, UCHAR_MAX].
2367 * Return pages freed into the buddy system.
2369 static inline unsigned long free_initmem_default(int poison)
2371 extern char __init_begin[], __init_end[];
2373 return free_reserved_area(&__init_begin, &__init_end,
2374 poison, "unused kernel");
2377 static inline unsigned long get_num_physpages(void)
2380 unsigned long phys_pages = 0;
2382 for_each_online_node(nid)
2383 phys_pages += node_present_pages(nid);
2389 * Using memblock node mappings, an architecture may initialise its
2390 * zones, allocate the backing mem_map and account for memory holes in an
2391 * architecture independent manner.
2393 * An architecture is expected to register range of page frames backed by
2394 * physical memory with memblock_add[_node]() before calling
2395 * free_area_init() passing in the PFN each zone ends at. At a basic
2396 * usage, an architecture is expected to do something like
2398 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2400 * for_each_valid_physical_page_range()
2401 * memblock_add_node(base, size, nid)
2402 * free_area_init(max_zone_pfns);
2404 void free_area_init(unsigned long *max_zone_pfn);
2405 unsigned long node_map_pfn_alignment(void);
2406 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2407 unsigned long end_pfn);
2408 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2409 unsigned long end_pfn);
2410 extern void get_pfn_range_for_nid(unsigned int nid,
2411 unsigned long *start_pfn, unsigned long *end_pfn);
2412 extern unsigned long find_min_pfn_with_active_regions(void);
2414 #ifndef CONFIG_NEED_MULTIPLE_NODES
2415 static inline int early_pfn_to_nid(unsigned long pfn)
2420 /* please see mm/page_alloc.c */
2421 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2424 extern void set_dma_reserve(unsigned long new_dma_reserve);
2425 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2426 enum meminit_context, struct vmem_altmap *, int migratetype);
2427 extern void setup_per_zone_wmarks(void);
2428 extern int __meminit init_per_zone_wmark_min(void);
2429 extern void mem_init(void);
2430 extern void __init mmap_init(void);
2431 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2432 extern long si_mem_available(void);
2433 extern void si_meminfo(struct sysinfo * val);
2434 extern void si_meminfo_node(struct sysinfo *val, int nid);
2435 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2436 extern unsigned long arch_reserved_kernel_pages(void);
2439 extern __printf(3, 4)
2440 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2442 extern void setup_per_cpu_pageset(void);
2445 extern int min_free_kbytes;
2446 extern int watermark_boost_factor;
2447 extern int watermark_scale_factor;
2448 extern bool arch_has_descending_max_zone_pfns(void);
2451 extern atomic_long_t mmap_pages_allocated;
2452 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2454 /* interval_tree.c */
2455 void vma_interval_tree_insert(struct vm_area_struct *node,
2456 struct rb_root_cached *root);
2457 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2458 struct vm_area_struct *prev,
2459 struct rb_root_cached *root);
2460 void vma_interval_tree_remove(struct vm_area_struct *node,
2461 struct rb_root_cached *root);
2462 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2463 unsigned long start, unsigned long last);
2464 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2465 unsigned long start, unsigned long last);
2467 #define vma_interval_tree_foreach(vma, root, start, last) \
2468 for (vma = vma_interval_tree_iter_first(root, start, last); \
2469 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2471 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2472 struct rb_root_cached *root);
2473 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2474 struct rb_root_cached *root);
2475 struct anon_vma_chain *
2476 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2477 unsigned long start, unsigned long last);
2478 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2479 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2480 #ifdef CONFIG_DEBUG_VM_RB
2481 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2484 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2485 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2486 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2489 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2490 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2492 struct vm_area_struct *expand);
2493 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2494 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2496 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2498 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2499 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2500 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2501 struct mempolicy *, struct vm_userfaultfd_ctx);
2502 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2503 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2504 unsigned long addr, int new_below);
2505 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2506 unsigned long addr, int new_below);
2507 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2508 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2509 struct rb_node **, struct rb_node *);
2510 extern void unlink_file_vma(struct vm_area_struct *);
2511 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2512 unsigned long addr, unsigned long len, pgoff_t pgoff,
2513 bool *need_rmap_locks);
2514 extern void exit_mmap(struct mm_struct *);
2516 static inline int check_data_rlimit(unsigned long rlim,
2518 unsigned long start,
2519 unsigned long end_data,
2520 unsigned long start_data)
2522 if (rlim < RLIM_INFINITY) {
2523 if (((new - start) + (end_data - start_data)) > rlim)
2530 extern int mm_take_all_locks(struct mm_struct *mm);
2531 extern void mm_drop_all_locks(struct mm_struct *mm);
2533 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2534 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2535 extern struct file *get_task_exe_file(struct task_struct *task);
2537 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2538 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2540 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2541 const struct vm_special_mapping *sm);
2542 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2543 unsigned long addr, unsigned long len,
2544 unsigned long flags,
2545 const struct vm_special_mapping *spec);
2546 /* This is an obsolete alternative to _install_special_mapping. */
2547 extern int install_special_mapping(struct mm_struct *mm,
2548 unsigned long addr, unsigned long len,
2549 unsigned long flags, struct page **pages);
2551 unsigned long randomize_stack_top(unsigned long stack_top);
2553 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2555 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2556 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2557 struct list_head *uf);
2558 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2559 unsigned long len, unsigned long prot, unsigned long flags,
2560 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2561 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2562 struct list_head *uf, bool downgrade);
2563 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2564 struct list_head *uf);
2565 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2568 extern int __mm_populate(unsigned long addr, unsigned long len,
2570 static inline void mm_populate(unsigned long addr, unsigned long len)
2573 (void) __mm_populate(addr, len, 1);
2576 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2579 /* These take the mm semaphore themselves */
2580 extern int __must_check vm_brk(unsigned long, unsigned long);
2581 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2582 extern int vm_munmap(unsigned long, size_t);
2583 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2584 unsigned long, unsigned long,
2585 unsigned long, unsigned long);
2587 struct vm_unmapped_area_info {
2588 #define VM_UNMAPPED_AREA_TOPDOWN 1
2589 unsigned long flags;
2590 unsigned long length;
2591 unsigned long low_limit;
2592 unsigned long high_limit;
2593 unsigned long align_mask;
2594 unsigned long align_offset;
2597 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2600 extern void truncate_inode_pages(struct address_space *, loff_t);
2601 extern void truncate_inode_pages_range(struct address_space *,
2602 loff_t lstart, loff_t lend);
2603 extern void truncate_inode_pages_final(struct address_space *);
2605 /* generic vm_area_ops exported for stackable file systems */
2606 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2607 extern void filemap_map_pages(struct vm_fault *vmf,
2608 pgoff_t start_pgoff, pgoff_t end_pgoff);
2609 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2611 /* mm/page-writeback.c */
2612 int __must_check write_one_page(struct page *page);
2613 void task_dirty_inc(struct task_struct *tsk);
2615 extern unsigned long stack_guard_gap;
2616 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2617 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2619 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2620 extern int expand_downwards(struct vm_area_struct *vma,
2621 unsigned long address);
2623 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2625 #define expand_upwards(vma, address) (0)
2628 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2629 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2630 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2631 struct vm_area_struct **pprev);
2633 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2634 NULL if none. Assume start_addr < end_addr. */
2635 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2637 struct vm_area_struct * vma = find_vma(mm,start_addr);
2639 if (vma && end_addr <= vma->vm_start)
2644 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2646 unsigned long vm_start = vma->vm_start;
2648 if (vma->vm_flags & VM_GROWSDOWN) {
2649 vm_start -= stack_guard_gap;
2650 if (vm_start > vma->vm_start)
2656 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2658 unsigned long vm_end = vma->vm_end;
2660 if (vma->vm_flags & VM_GROWSUP) {
2661 vm_end += stack_guard_gap;
2662 if (vm_end < vma->vm_end)
2663 vm_end = -PAGE_SIZE;
2668 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2670 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2673 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2674 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2675 unsigned long vm_start, unsigned long vm_end)
2677 struct vm_area_struct *vma = find_vma(mm, vm_start);
2679 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2685 static inline bool range_in_vma(struct vm_area_struct *vma,
2686 unsigned long start, unsigned long end)
2688 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2692 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2693 void vma_set_page_prot(struct vm_area_struct *vma);
2695 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2699 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2701 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2705 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2707 #ifdef CONFIG_NUMA_BALANCING
2708 unsigned long change_prot_numa(struct vm_area_struct *vma,
2709 unsigned long start, unsigned long end);
2712 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2713 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2714 unsigned long pfn, unsigned long size, pgprot_t);
2715 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2716 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2717 struct page **pages, unsigned long *num);
2718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2720 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2722 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2724 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2725 unsigned long pfn, pgprot_t pgprot);
2726 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2728 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2729 pfn_t pfn, pgprot_t pgprot);
2730 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2731 unsigned long addr, pfn_t pfn);
2732 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2734 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2735 unsigned long addr, struct page *page)
2737 int err = vm_insert_page(vma, addr, page);
2740 return VM_FAULT_OOM;
2741 if (err < 0 && err != -EBUSY)
2742 return VM_FAULT_SIGBUS;
2744 return VM_FAULT_NOPAGE;
2747 #ifndef io_remap_pfn_range
2748 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2749 unsigned long addr, unsigned long pfn,
2750 unsigned long size, pgprot_t prot)
2752 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2756 static inline vm_fault_t vmf_error(int err)
2759 return VM_FAULT_OOM;
2760 return VM_FAULT_SIGBUS;
2763 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2764 unsigned int foll_flags);
2766 #define FOLL_WRITE 0x01 /* check pte is writable */
2767 #define FOLL_TOUCH 0x02 /* mark page accessed */
2768 #define FOLL_GET 0x04 /* do get_page on page */
2769 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2770 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2771 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2772 * and return without waiting upon it */
2773 #define FOLL_POPULATE 0x40 /* fault in page */
2774 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2775 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2776 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2777 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2778 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2779 #define FOLL_MLOCK 0x1000 /* lock present pages */
2780 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2781 #define FOLL_COW 0x4000 /* internal GUP flag */
2782 #define FOLL_ANON 0x8000 /* don't do file mappings */
2783 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2784 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2785 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2786 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2789 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2790 * other. Here is what they mean, and how to use them:
2792 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2793 * period _often_ under userspace control. This is in contrast to
2794 * iov_iter_get_pages(), whose usages are transient.
2796 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2797 * lifetime enforced by the filesystem and we need guarantees that longterm
2798 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2799 * the filesystem. Ideas for this coordination include revoking the longterm
2800 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2801 * added after the problem with filesystems was found FS DAX VMAs are
2802 * specifically failed. Filesystem pages are still subject to bugs and use of
2803 * FOLL_LONGTERM should be avoided on those pages.
2805 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2806 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2807 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2808 * is due to an incompatibility with the FS DAX check and
2809 * FAULT_FLAG_ALLOW_RETRY.
2811 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2812 * that region. And so, CMA attempts to migrate the page before pinning, when
2813 * FOLL_LONGTERM is specified.
2815 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2816 * but an additional pin counting system) will be invoked. This is intended for
2817 * anything that gets a page reference and then touches page data (for example,
2818 * Direct IO). This lets the filesystem know that some non-file-system entity is
2819 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2820 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2821 * a call to unpin_user_page().
2823 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2824 * and separate refcounting mechanisms, however, and that means that each has
2825 * its own acquire and release mechanisms:
2827 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2829 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2831 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2832 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2833 * calls applied to them, and that's perfectly OK. This is a constraint on the
2834 * callers, not on the pages.)
2836 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2837 * directly by the caller. That's in order to help avoid mismatches when
2838 * releasing pages: get_user_pages*() pages must be released via put_page(),
2839 * while pin_user_pages*() pages must be released via unpin_user_page().
2841 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2844 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2846 if (vm_fault & VM_FAULT_OOM)
2848 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2849 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2850 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2855 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2856 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2857 unsigned long size, pte_fn_t fn, void *data);
2858 extern int apply_to_existing_page_range(struct mm_struct *mm,
2859 unsigned long address, unsigned long size,
2860 pte_fn_t fn, void *data);
2862 extern void init_mem_debugging_and_hardening(void);
2863 #ifdef CONFIG_PAGE_POISONING
2864 extern void __kernel_poison_pages(struct page *page, int numpages);
2865 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2866 extern bool _page_poisoning_enabled_early;
2867 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2868 static inline bool page_poisoning_enabled(void)
2870 return _page_poisoning_enabled_early;
2873 * For use in fast paths after init_mem_debugging() has run, or when a
2874 * false negative result is not harmful when called too early.
2876 static inline bool page_poisoning_enabled_static(void)
2878 return static_branch_unlikely(&_page_poisoning_enabled);
2880 static inline void kernel_poison_pages(struct page *page, int numpages)
2882 if (page_poisoning_enabled_static())
2883 __kernel_poison_pages(page, numpages);
2885 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2887 if (page_poisoning_enabled_static())
2888 __kernel_unpoison_pages(page, numpages);
2891 static inline bool page_poisoning_enabled(void) { return false; }
2892 static inline bool page_poisoning_enabled_static(void) { return false; }
2893 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2894 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2895 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2898 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2899 static inline bool want_init_on_alloc(gfp_t flags)
2901 if (static_branch_unlikely(&init_on_alloc))
2903 return flags & __GFP_ZERO;
2906 DECLARE_STATIC_KEY_FALSE(init_on_free);
2907 static inline bool want_init_on_free(void)
2909 return static_branch_unlikely(&init_on_free);
2912 extern bool _debug_pagealloc_enabled_early;
2913 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2915 static inline bool debug_pagealloc_enabled(void)
2917 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2918 _debug_pagealloc_enabled_early;
2922 * For use in fast paths after init_debug_pagealloc() has run, or when a
2923 * false negative result is not harmful when called too early.
2925 static inline bool debug_pagealloc_enabled_static(void)
2927 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2930 return static_branch_unlikely(&_debug_pagealloc_enabled);
2933 #ifdef CONFIG_DEBUG_PAGEALLOC
2935 * To support DEBUG_PAGEALLOC architecture must ensure that
2936 * __kernel_map_pages() never fails
2938 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2940 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2942 if (debug_pagealloc_enabled_static())
2943 __kernel_map_pages(page, numpages, 1);
2946 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2948 if (debug_pagealloc_enabled_static())
2949 __kernel_map_pages(page, numpages, 0);
2951 #else /* CONFIG_DEBUG_PAGEALLOC */
2952 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2953 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2954 #endif /* CONFIG_DEBUG_PAGEALLOC */
2956 #ifdef __HAVE_ARCH_GATE_AREA
2957 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2958 extern int in_gate_area_no_mm(unsigned long addr);
2959 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2961 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2965 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2966 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2970 #endif /* __HAVE_ARCH_GATE_AREA */
2972 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2974 #ifdef CONFIG_SYSCTL
2975 extern int sysctl_drop_caches;
2976 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2980 void drop_slab(void);
2981 void drop_slab_node(int nid);
2984 #define randomize_va_space 0
2986 extern int randomize_va_space;
2989 const char * arch_vma_name(struct vm_area_struct *vma);
2991 void print_vma_addr(char *prefix, unsigned long rip);
2993 static inline void print_vma_addr(char *prefix, unsigned long rip)
2998 void *sparse_buffer_alloc(unsigned long size);
2999 struct page * __populate_section_memmap(unsigned long pfn,
3000 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3001 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3002 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3003 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3004 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3005 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3006 struct vmem_altmap *altmap);
3007 void *vmemmap_alloc_block(unsigned long size, int node);
3009 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3010 struct vmem_altmap *altmap);
3011 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3012 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3013 int node, struct vmem_altmap *altmap);
3014 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3015 struct vmem_altmap *altmap);
3016 void vmemmap_populate_print_last(void);
3017 #ifdef CONFIG_MEMORY_HOTPLUG
3018 void vmemmap_free(unsigned long start, unsigned long end,
3019 struct vmem_altmap *altmap);
3021 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3022 unsigned long nr_pages);
3025 MF_COUNT_INCREASED = 1 << 0,
3026 MF_ACTION_REQUIRED = 1 << 1,
3027 MF_MUST_KILL = 1 << 2,
3028 MF_SOFT_OFFLINE = 1 << 3,
3030 extern int memory_failure(unsigned long pfn, int flags);
3031 extern void memory_failure_queue(unsigned long pfn, int flags);
3032 extern void memory_failure_queue_kick(int cpu);
3033 extern int unpoison_memory(unsigned long pfn);
3034 extern int sysctl_memory_failure_early_kill;
3035 extern int sysctl_memory_failure_recovery;
3036 extern void shake_page(struct page *p, int access);
3037 extern atomic_long_t num_poisoned_pages __read_mostly;
3038 extern int soft_offline_page(unsigned long pfn, int flags);
3042 * Error handlers for various types of pages.
3045 MF_IGNORED, /* Error: cannot be handled */
3046 MF_FAILED, /* Error: handling failed */
3047 MF_DELAYED, /* Will be handled later */
3048 MF_RECOVERED, /* Successfully recovered */
3051 enum mf_action_page_type {
3053 MF_MSG_KERNEL_HIGH_ORDER,
3055 MF_MSG_DIFFERENT_COMPOUND,
3056 MF_MSG_POISONED_HUGE,
3059 MF_MSG_NON_PMD_HUGE,
3060 MF_MSG_UNMAP_FAILED,
3061 MF_MSG_DIRTY_SWAPCACHE,
3062 MF_MSG_CLEAN_SWAPCACHE,
3063 MF_MSG_DIRTY_MLOCKED_LRU,
3064 MF_MSG_CLEAN_MLOCKED_LRU,
3065 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3066 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3069 MF_MSG_TRUNCATED_LRU,
3077 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3078 extern void clear_huge_page(struct page *page,
3079 unsigned long addr_hint,
3080 unsigned int pages_per_huge_page);
3081 extern void copy_user_huge_page(struct page *dst, struct page *src,
3082 unsigned long addr_hint,
3083 struct vm_area_struct *vma,
3084 unsigned int pages_per_huge_page);
3085 extern long copy_huge_page_from_user(struct page *dst_page,
3086 const void __user *usr_src,
3087 unsigned int pages_per_huge_page,
3088 bool allow_pagefault);
3091 * vma_is_special_huge - Are transhuge page-table entries considered special?
3092 * @vma: Pointer to the struct vm_area_struct to consider
3094 * Whether transhuge page-table entries are considered "special" following
3095 * the definition in vm_normal_page().
3097 * Return: true if transhuge page-table entries should be considered special,
3100 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3102 return vma_is_dax(vma) || (vma->vm_file &&
3103 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3108 #ifdef CONFIG_DEBUG_PAGEALLOC
3109 extern unsigned int _debug_guardpage_minorder;
3110 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3112 static inline unsigned int debug_guardpage_minorder(void)
3114 return _debug_guardpage_minorder;
3117 static inline bool debug_guardpage_enabled(void)
3119 return static_branch_unlikely(&_debug_guardpage_enabled);
3122 static inline bool page_is_guard(struct page *page)
3124 if (!debug_guardpage_enabled())
3127 return PageGuard(page);
3130 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3131 static inline bool debug_guardpage_enabled(void) { return false; }
3132 static inline bool page_is_guard(struct page *page) { return false; }
3133 #endif /* CONFIG_DEBUG_PAGEALLOC */
3135 #if MAX_NUMNODES > 1
3136 void __init setup_nr_node_ids(void);
3138 static inline void setup_nr_node_ids(void) {}
3141 extern int memcmp_pages(struct page *page1, struct page *page2);
3143 static inline int pages_identical(struct page *page1, struct page *page2)
3145 return !memcmp_pages(page1, page2);
3148 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3149 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3150 pgoff_t first_index, pgoff_t nr,
3151 pgoff_t bitmap_pgoff,
3152 unsigned long *bitmap,
3156 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3157 pgoff_t first_index, pgoff_t nr);
3160 extern int sysctl_nr_trim_pages;
3162 #endif /* __KERNEL__ */
3163 #endif /* _LINUX_MM_H */