ipc: delete seq_max field in struct ipc_ids
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /*
34  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
35  * These two lists should keep in accord with each other.
36  */
37 enum mem_cgroup_stat_index {
38         /*
39          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
40          */
41         MEM_CGROUP_STAT_CACHE,          /* # of pages charged as cache */
42         MEM_CGROUP_STAT_RSS,            /* # of pages charged as anon rss */
43         MEM_CGROUP_STAT_RSS_HUGE,       /* # of pages charged as anon huge */
44         MEM_CGROUP_STAT_FILE_MAPPED,    /* # of pages charged as file rss */
45         MEM_CGROUP_STAT_WRITEBACK,      /* # of pages under writeback */
46         MEM_CGROUP_STAT_SWAP,           /* # of pages, swapped out */
47         MEM_CGROUP_STAT_NSTATS,
48 };
49
50 struct mem_cgroup_reclaim_cookie {
51         struct zone *zone;
52         int priority;
53         unsigned int generation;
54 };
55
56 #ifdef CONFIG_MEMCG
57 /*
58  * All "charge" functions with gfp_mask should use GFP_KERNEL or
59  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
60  * alloc memory but reclaims memory from all available zones. So, "where I want
61  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
62  * available but adding a rule is better. charge functions' gfp_mask should
63  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
64  * codes.
65  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
66  */
67
68 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
69                                 gfp_t gfp_mask);
70 /* for swap handling */
71 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72                 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
73 extern void mem_cgroup_commit_charge_swapin(struct page *page,
74                                         struct mem_cgroup *memcg);
75 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
76
77 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
78                                         gfp_t gfp_mask);
79
80 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
81 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
82
83 /* For coalescing uncharge for reducing memcg' overhead*/
84 extern void mem_cgroup_uncharge_start(void);
85 extern void mem_cgroup_uncharge_end(void);
86
87 extern void mem_cgroup_uncharge_page(struct page *page);
88 extern void mem_cgroup_uncharge_cache_page(struct page *page);
89
90 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
91                                   struct mem_cgroup *memcg);
92 bool task_in_mem_cgroup(struct task_struct *task,
93                         const struct mem_cgroup *memcg);
94
95 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
96 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
97 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
98
99 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
100 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
101
102 static inline
103 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
104 {
105         struct mem_cgroup *task_memcg;
106         bool match;
107
108         rcu_read_lock();
109         task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
110         match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
111         rcu_read_unlock();
112         return match;
113 }
114
115 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
116
117 extern void
118 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
119                              struct mem_cgroup **memcgp);
120 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
121         struct page *oldpage, struct page *newpage, bool migration_ok);
122
123 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
124                                    struct mem_cgroup *,
125                                    struct mem_cgroup_reclaim_cookie *);
126 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
127
128 /*
129  * For memory reclaim.
130  */
131 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
132 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
133 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
134 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
135 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
136                                         struct task_struct *p);
137 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
138                                         struct page *newpage);
139
140 static inline void mem_cgroup_oom_enable(void)
141 {
142         WARN_ON(current->memcg_oom.may_oom);
143         current->memcg_oom.may_oom = 1;
144 }
145
146 static inline void mem_cgroup_oom_disable(void)
147 {
148         WARN_ON(!current->memcg_oom.may_oom);
149         current->memcg_oom.may_oom = 0;
150 }
151
152 static inline bool task_in_memcg_oom(struct task_struct *p)
153 {
154         return p->memcg_oom.memcg;
155 }
156
157 bool mem_cgroup_oom_synchronize(bool wait);
158
159 #ifdef CONFIG_MEMCG_SWAP
160 extern int do_swap_account;
161 #endif
162
163 static inline bool mem_cgroup_disabled(void)
164 {
165         if (mem_cgroup_subsys.disabled)
166                 return true;
167         return false;
168 }
169
170 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
171                                          unsigned long *flags);
172
173 extern atomic_t memcg_moving;
174
175 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
176                                         bool *locked, unsigned long *flags)
177 {
178         if (mem_cgroup_disabled())
179                 return;
180         rcu_read_lock();
181         *locked = false;
182         if (atomic_read(&memcg_moving))
183                 __mem_cgroup_begin_update_page_stat(page, locked, flags);
184 }
185
186 void __mem_cgroup_end_update_page_stat(struct page *page,
187                                 unsigned long *flags);
188 static inline void mem_cgroup_end_update_page_stat(struct page *page,
189                                         bool *locked, unsigned long *flags)
190 {
191         if (mem_cgroup_disabled())
192                 return;
193         if (*locked)
194                 __mem_cgroup_end_update_page_stat(page, flags);
195         rcu_read_unlock();
196 }
197
198 void mem_cgroup_update_page_stat(struct page *page,
199                                  enum mem_cgroup_stat_index idx,
200                                  int val);
201
202 static inline void mem_cgroup_inc_page_stat(struct page *page,
203                                             enum mem_cgroup_stat_index idx)
204 {
205         mem_cgroup_update_page_stat(page, idx, 1);
206 }
207
208 static inline void mem_cgroup_dec_page_stat(struct page *page,
209                                             enum mem_cgroup_stat_index idx)
210 {
211         mem_cgroup_update_page_stat(page, idx, -1);
212 }
213
214 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
215                                                 gfp_t gfp_mask,
216                                                 unsigned long *total_scanned);
217
218 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
219 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
220                                              enum vm_event_item idx)
221 {
222         if (mem_cgroup_disabled())
223                 return;
224         __mem_cgroup_count_vm_event(mm, idx);
225 }
226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
227 void mem_cgroup_split_huge_fixup(struct page *head);
228 #endif
229
230 #ifdef CONFIG_DEBUG_VM
231 bool mem_cgroup_bad_page_check(struct page *page);
232 void mem_cgroup_print_bad_page(struct page *page);
233 #endif
234 #else /* CONFIG_MEMCG */
235 struct mem_cgroup;
236
237 static inline int mem_cgroup_newpage_charge(struct page *page,
238                                         struct mm_struct *mm, gfp_t gfp_mask)
239 {
240         return 0;
241 }
242
243 static inline int mem_cgroup_cache_charge(struct page *page,
244                                         struct mm_struct *mm, gfp_t gfp_mask)
245 {
246         return 0;
247 }
248
249 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
250                 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
251 {
252         return 0;
253 }
254
255 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
256                                           struct mem_cgroup *memcg)
257 {
258 }
259
260 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
261 {
262 }
263
264 static inline void mem_cgroup_uncharge_start(void)
265 {
266 }
267
268 static inline void mem_cgroup_uncharge_end(void)
269 {
270 }
271
272 static inline void mem_cgroup_uncharge_page(struct page *page)
273 {
274 }
275
276 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
277 {
278 }
279
280 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
281                                                     struct mem_cgroup *memcg)
282 {
283         return &zone->lruvec;
284 }
285
286 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
287                                                     struct zone *zone)
288 {
289         return &zone->lruvec;
290 }
291
292 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
293 {
294         return NULL;
295 }
296
297 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298 {
299         return NULL;
300 }
301
302 static inline bool mm_match_cgroup(struct mm_struct *mm,
303                 struct mem_cgroup *memcg)
304 {
305         return true;
306 }
307
308 static inline bool task_in_mem_cgroup(struct task_struct *task,
309                                       const struct mem_cgroup *memcg)
310 {
311         return true;
312 }
313
314 static inline struct cgroup_subsys_state
315                 *mem_cgroup_css(struct mem_cgroup *memcg)
316 {
317         return NULL;
318 }
319
320 static inline void
321 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
322                              struct mem_cgroup **memcgp)
323 {
324 }
325
326 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
327                 struct page *oldpage, struct page *newpage, bool migration_ok)
328 {
329 }
330
331 static inline struct mem_cgroup *
332 mem_cgroup_iter(struct mem_cgroup *root,
333                 struct mem_cgroup *prev,
334                 struct mem_cgroup_reclaim_cookie *reclaim)
335 {
336         return NULL;
337 }
338
339 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
340                                          struct mem_cgroup *prev)
341 {
342 }
343
344 static inline bool mem_cgroup_disabled(void)
345 {
346         return true;
347 }
348
349 static inline int
350 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
351 {
352         return 1;
353 }
354
355 static inline unsigned long
356 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
357 {
358         return 0;
359 }
360
361 static inline void
362 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
363                               int increment)
364 {
365 }
366
367 static inline void
368 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
369 {
370 }
371
372 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
373                                         bool *locked, unsigned long *flags)
374 {
375 }
376
377 static inline void mem_cgroup_end_update_page_stat(struct page *page,
378                                         bool *locked, unsigned long *flags)
379 {
380 }
381
382 static inline void mem_cgroup_oom_enable(void)
383 {
384 }
385
386 static inline void mem_cgroup_oom_disable(void)
387 {
388 }
389
390 static inline bool task_in_memcg_oom(struct task_struct *p)
391 {
392         return false;
393 }
394
395 static inline bool mem_cgroup_oom_synchronize(bool wait)
396 {
397         return false;
398 }
399
400 static inline void mem_cgroup_inc_page_stat(struct page *page,
401                                             enum mem_cgroup_stat_index idx)
402 {
403 }
404
405 static inline void mem_cgroup_dec_page_stat(struct page *page,
406                                             enum mem_cgroup_stat_index idx)
407 {
408 }
409
410 static inline
411 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
412                                             gfp_t gfp_mask,
413                                             unsigned long *total_scanned)
414 {
415         return 0;
416 }
417
418 static inline void mem_cgroup_split_huge_fixup(struct page *head)
419 {
420 }
421
422 static inline
423 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
424 {
425 }
426 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
427                                 struct page *newpage)
428 {
429 }
430 #endif /* CONFIG_MEMCG */
431
432 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
433 static inline bool
434 mem_cgroup_bad_page_check(struct page *page)
435 {
436         return false;
437 }
438
439 static inline void
440 mem_cgroup_print_bad_page(struct page *page)
441 {
442 }
443 #endif
444
445 enum {
446         UNDER_LIMIT,
447         SOFT_LIMIT,
448         OVER_LIMIT,
449 };
450
451 struct sock;
452 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
453 void sock_update_memcg(struct sock *sk);
454 void sock_release_memcg(struct sock *sk);
455 #else
456 static inline void sock_update_memcg(struct sock *sk)
457 {
458 }
459 static inline void sock_release_memcg(struct sock *sk)
460 {
461 }
462 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
463
464 #ifdef CONFIG_MEMCG_KMEM
465 extern struct static_key memcg_kmem_enabled_key;
466
467 extern int memcg_limited_groups_array_size;
468
469 /*
470  * Helper macro to loop through all memcg-specific caches. Callers must still
471  * check if the cache is valid (it is either valid or NULL).
472  * the slab_mutex must be held when looping through those caches
473  */
474 #define for_each_memcg_cache_index(_idx)        \
475         for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
476
477 static inline bool memcg_kmem_enabled(void)
478 {
479         return static_key_false(&memcg_kmem_enabled_key);
480 }
481
482 /*
483  * In general, we'll do everything in our power to not incur in any overhead
484  * for non-memcg users for the kmem functions. Not even a function call, if we
485  * can avoid it.
486  *
487  * Therefore, we'll inline all those functions so that in the best case, we'll
488  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
489  * we'll still do most of the flag checking inline. We check a lot of
490  * conditions, but because they are pretty simple, they are expected to be
491  * fast.
492  */
493 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
494                                         int order);
495 void __memcg_kmem_commit_charge(struct page *page,
496                                        struct mem_cgroup *memcg, int order);
497 void __memcg_kmem_uncharge_pages(struct page *page, int order);
498
499 int memcg_cache_id(struct mem_cgroup *memcg);
500 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
501                              struct kmem_cache *root_cache);
502 void memcg_free_cache_params(struct kmem_cache *s);
503 void memcg_register_cache(struct kmem_cache *s);
504 void memcg_unregister_cache(struct kmem_cache *s);
505
506 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
507 void memcg_update_array_size(int num_groups);
508
509 struct kmem_cache *
510 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
511
512 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
513 void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
514
515 /**
516  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
517  * @gfp: the gfp allocation flags.
518  * @memcg: a pointer to the memcg this was charged against.
519  * @order: allocation order.
520  *
521  * returns true if the memcg where the current task belongs can hold this
522  * allocation.
523  *
524  * We return true automatically if this allocation is not to be accounted to
525  * any memcg.
526  */
527 static inline bool
528 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
529 {
530         if (!memcg_kmem_enabled())
531                 return true;
532
533         /*
534          * __GFP_NOFAIL allocations will move on even if charging is not
535          * possible. Therefore we don't even try, and have this allocation
536          * unaccounted. We could in theory charge it with
537          * res_counter_charge_nofail, but we hope those allocations are rare,
538          * and won't be worth the trouble.
539          */
540         if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
541                 return true;
542         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
543                 return true;
544
545         /* If the test is dying, just let it go. */
546         if (unlikely(fatal_signal_pending(current)))
547                 return true;
548
549         return __memcg_kmem_newpage_charge(gfp, memcg, order);
550 }
551
552 /**
553  * memcg_kmem_uncharge_pages: uncharge pages from memcg
554  * @page: pointer to struct page being freed
555  * @order: allocation order.
556  *
557  * there is no need to specify memcg here, since it is embedded in page_cgroup
558  */
559 static inline void
560 memcg_kmem_uncharge_pages(struct page *page, int order)
561 {
562         if (memcg_kmem_enabled())
563                 __memcg_kmem_uncharge_pages(page, order);
564 }
565
566 /**
567  * memcg_kmem_commit_charge: embeds correct memcg in a page
568  * @page: pointer to struct page recently allocated
569  * @memcg: the memcg structure we charged against
570  * @order: allocation order.
571  *
572  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
573  * failure of the allocation. if @page is NULL, this function will revert the
574  * charges. Otherwise, it will commit the memcg given by @memcg to the
575  * corresponding page_cgroup.
576  */
577 static inline void
578 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
579 {
580         if (memcg_kmem_enabled() && memcg)
581                 __memcg_kmem_commit_charge(page, memcg, order);
582 }
583
584 /**
585  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
586  * @cachep: the original global kmem cache
587  * @gfp: allocation flags.
588  *
589  * This function assumes that the task allocating, which determines the memcg
590  * in the page allocator, belongs to the same cgroup throughout the whole
591  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
592  * while belonging to a cgroup, and later on changes. This is considered
593  * acceptable, and should only happen upon task migration.
594  *
595  * Before the cache is created by the memcg core, there is also a possible
596  * imbalance: the task belongs to a memcg, but the cache being allocated from
597  * is the global cache, since the child cache is not yet guaranteed to be
598  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
599  * passed and the page allocator will not attempt any cgroup accounting.
600  */
601 static __always_inline struct kmem_cache *
602 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
603 {
604         if (!memcg_kmem_enabled())
605                 return cachep;
606         if (gfp & __GFP_NOFAIL)
607                 return cachep;
608         if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
609                 return cachep;
610         if (unlikely(fatal_signal_pending(current)))
611                 return cachep;
612
613         return __memcg_kmem_get_cache(cachep, gfp);
614 }
615 #else
616 #define for_each_memcg_cache_index(_idx)        \
617         for (; NULL; )
618
619 static inline bool memcg_kmem_enabled(void)
620 {
621         return false;
622 }
623
624 static inline bool
625 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
626 {
627         return true;
628 }
629
630 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
631 {
632 }
633
634 static inline void
635 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
636 {
637 }
638
639 static inline int memcg_cache_id(struct mem_cgroup *memcg)
640 {
641         return -1;
642 }
643
644 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
645                 struct kmem_cache *s, struct kmem_cache *root_cache)
646 {
647         return 0;
648 }
649
650 static inline void memcg_free_cache_params(struct kmem_cache *s)
651 {
652 }
653
654 static inline void memcg_register_cache(struct kmem_cache *s)
655 {
656 }
657
658 static inline void memcg_unregister_cache(struct kmem_cache *s)
659 {
660 }
661
662 static inline struct kmem_cache *
663 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
664 {
665         return cachep;
666 }
667
668 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
669 {
670 }
671 #endif /* CONFIG_MEMCG_KMEM */
672 #endif /* _LINUX_MEMCONTROL_H */
673