1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MATH64_H
3 #define _LINUX_MATH64_H
5 #include <linux/types.h>
6 #include <linux/math.h>
7 #include <vdso/math64.h>
10 #if BITS_PER_LONG == 64
12 #define div64_long(x, y) div64_s64((x), (y))
13 #define div64_ul(x, y) div64_u64((x), (y))
16 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
17 * @dividend: unsigned 64bit dividend
18 * @divisor: unsigned 32bit divisor
19 * @remainder: pointer to unsigned 32bit remainder
21 * Return: sets ``*remainder``, then returns dividend / divisor
23 * This is commonly provided by 32bit archs to provide an optimized 64bit
26 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
28 *remainder = dividend % divisor;
29 return dividend / divisor;
33 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
34 * @dividend: signed 64bit dividend
35 * @divisor: signed 32bit divisor
36 * @remainder: pointer to signed 32bit remainder
38 * Return: sets ``*remainder``, then returns dividend / divisor
40 static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
42 *remainder = dividend % divisor;
43 return dividend / divisor;
47 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
48 * @dividend: unsigned 64bit dividend
49 * @divisor: unsigned 64bit divisor
50 * @remainder: pointer to unsigned 64bit remainder
52 * Return: sets ``*remainder``, then returns dividend / divisor
54 static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
56 *remainder = dividend % divisor;
57 return dividend / divisor;
61 * div64_u64 - unsigned 64bit divide with 64bit divisor
62 * @dividend: unsigned 64bit dividend
63 * @divisor: unsigned 64bit divisor
65 * Return: dividend / divisor
67 static inline u64 div64_u64(u64 dividend, u64 divisor)
69 return dividend / divisor;
73 * div64_s64 - signed 64bit divide with 64bit divisor
74 * @dividend: signed 64bit dividend
75 * @divisor: signed 64bit divisor
77 * Return: dividend / divisor
79 static inline s64 div64_s64(s64 dividend, s64 divisor)
81 return dividend / divisor;
84 #elif BITS_PER_LONG == 32
86 #define div64_long(x, y) div_s64((x), (y))
87 #define div64_ul(x, y) div_u64((x), (y))
90 static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
92 *remainder = do_div(dividend, divisor);
98 extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
101 #ifndef div64_u64_rem
102 extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
106 extern u64 div64_u64(u64 dividend, u64 divisor);
110 extern s64 div64_s64(s64 dividend, s64 divisor);
113 #endif /* BITS_PER_LONG */
116 * div_u64 - unsigned 64bit divide with 32bit divisor
117 * @dividend: unsigned 64bit dividend
118 * @divisor: unsigned 32bit divisor
120 * This is the most common 64bit divide and should be used if possible,
121 * as many 32bit archs can optimize this variant better than a full 64bit
124 * Return: dividend / divisor
127 static inline u64 div_u64(u64 dividend, u32 divisor)
130 return div_u64_rem(dividend, divisor, &remainder);
135 * div_s64 - signed 64bit divide with 32bit divisor
136 * @dividend: signed 64bit dividend
137 * @divisor: signed 32bit divisor
139 * Return: dividend / divisor
142 static inline s64 div_s64(s64 dividend, s32 divisor)
145 return div_s64_rem(dividend, divisor, &remainder);
149 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
153 * Many a GCC version messes this up and generates a 64x64 mult :-(
155 static inline u64 mul_u32_u32(u32 a, u32 b)
161 #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
163 #ifndef mul_u64_u32_shr
164 static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
166 return (u64)(((unsigned __int128)a * mul) >> shift);
168 #endif /* mul_u64_u32_shr */
170 #ifndef mul_u64_u64_shr
171 static __always_inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
173 return (u64)(((unsigned __int128)a * mul) >> shift);
175 #endif /* mul_u64_u64_shr */
179 #ifndef mul_u64_u32_shr
180 static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
188 ret = mul_u32_u32(al, mul) >> shift;
190 ret += mul_u32_u32(ah, mul) << (32 - shift);
194 #endif /* mul_u64_u32_shr */
196 #ifndef mul_u64_u64_shr
197 static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
208 } rl, rm, rn, rh, a0, b0;
214 rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
215 rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
216 rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
217 rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
220 * Each of these lines computes a 64-bit intermediate result into "c",
221 * starting at bits 32-95. The low 32-bits go into the result of the
222 * multiplication, the high 32-bits are carried into the next step.
224 rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
225 rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
226 rh.l.high = (c >> 32) + rh.l.high;
229 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
230 * shift it right and throw away the high part of the result.
235 return (rl.ll >> shift) | (rh.ll << (64 - shift));
236 return rh.ll >> (shift & 63);
238 #endif /* mul_u64_u64_shr */
242 #ifndef mul_s64_u64_shr
243 static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
248 * Extract the sign before the multiplication and put it back
249 * afterwards if needed.
251 ret = mul_u64_u64_shr(abs(a), b, shift);
258 #endif /* mul_s64_u64_shr */
260 #ifndef mul_u64_u32_div
261 static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
275 rl.ll = mul_u32_u32(u.l.low, mul);
276 rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
278 /* Bits 32-63 of the result will be in rh.l.low. */
279 rl.l.high = do_div(rh.ll, divisor);
281 /* Bits 0-31 of the result will be in rl.l.low. */
282 do_div(rl.ll, divisor);
284 rl.l.high = rh.l.low;
287 #endif /* mul_u64_u32_div */
289 u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
292 * DIV64_U64_ROUND_UP - unsigned 64bit divide with 64bit divisor rounded up
293 * @ll: unsigned 64bit dividend
294 * @d: unsigned 64bit divisor
296 * Divide unsigned 64bit dividend by unsigned 64bit divisor
299 * Return: dividend / divisor rounded up
301 #define DIV64_U64_ROUND_UP(ll, d) \
302 ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
305 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
306 * @dividend: unsigned 64bit dividend
307 * @divisor: unsigned 64bit divisor
309 * Divide unsigned 64bit dividend by unsigned 64bit divisor
310 * and round to closest integer.
312 * Return: dividend / divisor rounded to nearest integer
314 #define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \
315 ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
318 * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
319 * @dividend: unsigned 64bit dividend
320 * @divisor: unsigned 32bit divisor
322 * Divide unsigned 64bit dividend by unsigned 32bit divisor
323 * and round to closest integer.
325 * Return: dividend / divisor rounded to nearest integer
327 #define DIV_U64_ROUND_CLOSEST(dividend, divisor) \
328 ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
331 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
332 * @dividend: signed 64bit dividend
333 * @divisor: signed 32bit divisor
335 * Divide signed 64bit dividend by signed 32bit divisor
336 * and round to closest integer.
338 * Return: dividend / divisor rounded to nearest integer
340 #define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \
342 s64 __x = (dividend); \
343 s32 __d = (divisor); \
344 ((__x > 0) == (__d > 0)) ? \
345 div_s64((__x + (__d / 2)), __d) : \
346 div_s64((__x - (__d / 2)), __d); \
349 #endif /* _LINUX_MATH64_H */