1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/types.h>
7 #include <uapi/linux/kernel.h>
10 * This looks more complex than it should be. But we need to
11 * get the type for the ~ right in round_down (it needs to be
12 * as wide as the result!), and we want to evaluate the macro
13 * arguments just once each.
15 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
18 * round_up - round up to next specified power of 2
19 * @x: the value to round
20 * @y: multiple to round up to (must be a power of 2)
22 * Rounds @x up to next multiple of @y (which must be a power of 2).
23 * To perform arbitrary rounding up, use roundup() below.
25 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
28 * round_down - round down to next specified power of 2
29 * @x: the value to round
30 * @y: multiple to round down to (must be a power of 2)
32 * Rounds @x down to next multiple of @y (which must be a power of 2).
33 * To perform arbitrary rounding down, use rounddown() below.
35 #define round_down(x, y) ((x) & ~__round_mask(x, y))
37 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
39 #define DIV_ROUND_DOWN_ULL(ll, d) \
40 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
42 #define DIV_ROUND_UP_ULL(ll, d) \
43 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
45 #if BITS_PER_LONG == 32
46 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
48 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
52 * roundup - round up to the next specified multiple
54 * @y: multiple to round up to
56 * Rounds @x up to next multiple of @y. If @y will always be a power
57 * of 2, consider using the faster round_up().
59 #define roundup(x, y) ( \
62 (((x) + (__y - 1)) / __y) * __y; \
66 * rounddown - round down to next specified multiple
67 * @x: the value to round
68 * @y: multiple to round down to
70 * Rounds @x down to next multiple of @y. If @y will always be a power
71 * of 2, consider using the faster round_down().
73 #define rounddown(x, y) ( \
75 typeof(x) __x = (x); \
81 * Divide positive or negative dividend by positive or negative divisor
82 * and round to closest integer. Result is undefined for negative
83 * divisors if the dividend variable type is unsigned and for negative
84 * dividends if the divisor variable type is unsigned.
86 #define DIV_ROUND_CLOSEST(x, divisor)( \
89 typeof(divisor) __d = divisor; \
90 (((typeof(x))-1) > 0 || \
91 ((typeof(divisor))-1) > 0 || \
92 (((__x) > 0) == ((__d) > 0))) ? \
93 (((__x) + ((__d) / 2)) / (__d)) : \
94 (((__x) - ((__d) / 2)) / (__d)); \
98 * Same as above but for u64 dividends. divisor must be a 32-bit
101 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
103 typeof(divisor) __d = divisor; \
104 unsigned long long _tmp = (x) + (__d) / 2; \
110 #define __STRUCT_FRACT(type) \
111 struct type##_fract { \
112 __##type numerator; \
113 __##type denominator; \
119 #undef __STRUCT_FRACT
121 /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
122 #define mult_frac(x, n, d) \
124 typeof(x) x_ = (x); \
125 typeof(n) n_ = (n); \
126 typeof(d) d_ = (d); \
128 typeof(x_) q = x_ / d_; \
129 typeof(x_) r = x_ % d_; \
130 q * n_ + r * n_ / d_; \
133 #define sector_div(a, b) do_div(a, b)
136 * abs - return absolute value of an argument
137 * @x: the value. If it is unsigned type, it is converted to signed type first.
138 * char is treated as if it was signed (regardless of whether it really is)
139 * but the macro's return type is preserved as char.
141 * Return: an absolute value of x.
143 #define abs(x) __abs_choose_expr(x, long long, \
144 __abs_choose_expr(x, long, \
145 __abs_choose_expr(x, int, \
146 __abs_choose_expr(x, short, \
147 __abs_choose_expr(x, char, \
148 __builtin_choose_expr( \
149 __builtin_types_compatible_p(typeof(x), char), \
150 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
153 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
154 __builtin_types_compatible_p(typeof(x), signed type) || \
155 __builtin_types_compatible_p(typeof(x), unsigned type), \
156 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
159 * abs_diff - return absolute value of the difference between the arguments
160 * @a: the first argument
161 * @b: the second argument
163 * @a and @b have to be of the same type. With this restriction we compare
164 * signed to signed and unsigned to unsigned. The result is the subtraction
165 * the smaller of the two from the bigger, hence result is always a positive
168 * Return: an absolute value of the difference between the @a and @b.
170 #define abs_diff(a, b) ({ \
171 typeof(a) __a = (a); \
172 typeof(b) __b = (b); \
173 (void)(&__a == &__b); \
174 __a > __b ? (__a - __b) : (__b - __a); \
178 * reciprocal_scale - "scale" a value into range [0, ep_ro)
180 * @ep_ro: right open interval endpoint
182 * Perform a "reciprocal multiplication" in order to "scale" a value into
183 * range [0, @ep_ro), where the upper interval endpoint is right-open.
184 * This is useful, e.g. for accessing a index of an array containing
185 * @ep_ro elements, for example. Think of it as sort of modulus, only that
186 * the result isn't that of modulo. ;) Note that if initial input is a
187 * small value, then result will return 0.
189 * Return: a result based on @val in interval [0, @ep_ro).
191 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
193 return (u32)(((u64) val * ep_ro) >> 32);
196 u64 int_pow(u64 base, unsigned int exp);
197 unsigned long int_sqrt(unsigned long);
199 #if BITS_PER_LONG < 64
200 u32 int_sqrt64(u64 x);
202 static inline u32 int_sqrt64(u64 x)
204 return (u32)int_sqrt(x);
208 #endif /* _LINUX_MATH_H */