serial: 8250: Toggle IER bits on only after irq has been set up
[platform/kernel/linux-rpi.git] / include / linux / list.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10
11 /*
12  * Circular doubly linked list implementation.
13  *
14  * Some of the internal functions ("__xxx") are useful when
15  * manipulating whole lists rather than single entries, as
16  * sometimes we already know the next/prev entries and we can
17  * generate better code by using them directly rather than
18  * using the generic single-entry routines.
19  */
20
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22
23 #define LIST_HEAD(name) \
24         struct list_head name = LIST_HEAD_INIT(name)
25
26 /**
27  * INIT_LIST_HEAD - Initialize a list_head structure
28  * @list: list_head structure to be initialized.
29  *
30  * Initializes the list_head to point to itself.  If it is a list header,
31  * the result is an empty list.
32  */
33 static inline void INIT_LIST_HEAD(struct list_head *list)
34 {
35         WRITE_ONCE(list->next, list);
36         WRITE_ONCE(list->prev, list);
37 }
38
39 #ifdef CONFIG_DEBUG_LIST
40 extern bool __list_add_valid(struct list_head *new,
41                               struct list_head *prev,
42                               struct list_head *next);
43 extern bool __list_del_entry_valid(struct list_head *entry);
44 #else
45 static inline bool __list_add_valid(struct list_head *new,
46                                 struct list_head *prev,
47                                 struct list_head *next)
48 {
49         return true;
50 }
51 static inline bool __list_del_entry_valid(struct list_head *entry)
52 {
53         return true;
54 }
55 #endif
56
57 /*
58  * Insert a new entry between two known consecutive entries.
59  *
60  * This is only for internal list manipulation where we know
61  * the prev/next entries already!
62  */
63 static inline void __list_add(struct list_head *new,
64                               struct list_head *prev,
65                               struct list_head *next)
66 {
67         if (!__list_add_valid(new, prev, next))
68                 return;
69
70         next->prev = new;
71         new->next = next;
72         new->prev = prev;
73         WRITE_ONCE(prev->next, new);
74 }
75
76 /**
77  * list_add - add a new entry
78  * @new: new entry to be added
79  * @head: list head to add it after
80  *
81  * Insert a new entry after the specified head.
82  * This is good for implementing stacks.
83  */
84 static inline void list_add(struct list_head *new, struct list_head *head)
85 {
86         __list_add(new, head, head->next);
87 }
88
89
90 /**
91  * list_add_tail - add a new entry
92  * @new: new entry to be added
93  * @head: list head to add it before
94  *
95  * Insert a new entry before the specified head.
96  * This is useful for implementing queues.
97  */
98 static inline void list_add_tail(struct list_head *new, struct list_head *head)
99 {
100         __list_add(new, head->prev, head);
101 }
102
103 /*
104  * Delete a list entry by making the prev/next entries
105  * point to each other.
106  *
107  * This is only for internal list manipulation where we know
108  * the prev/next entries already!
109  */
110 static inline void __list_del(struct list_head * prev, struct list_head * next)
111 {
112         next->prev = prev;
113         WRITE_ONCE(prev->next, next);
114 }
115
116 /*
117  * Delete a list entry and clear the 'prev' pointer.
118  *
119  * This is a special-purpose list clearing method used in the networking code
120  * for lists allocated as per-cpu, where we don't want to incur the extra
121  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122  * needs to check the node 'prev' pointer instead of calling list_empty().
123  */
124 static inline void __list_del_clearprev(struct list_head *entry)
125 {
126         __list_del(entry->prev, entry->next);
127         entry->prev = NULL;
128 }
129
130 static inline void __list_del_entry(struct list_head *entry)
131 {
132         if (!__list_del_entry_valid(entry))
133                 return;
134
135         __list_del(entry->prev, entry->next);
136 }
137
138 /**
139  * list_del - deletes entry from list.
140  * @entry: the element to delete from the list.
141  * Note: list_empty() on entry does not return true after this, the entry is
142  * in an undefined state.
143  */
144 static inline void list_del(struct list_head *entry)
145 {
146         __list_del_entry(entry);
147         entry->next = LIST_POISON1;
148         entry->prev = LIST_POISON2;
149 }
150
151 /**
152  * list_replace - replace old entry by new one
153  * @old : the element to be replaced
154  * @new : the new element to insert
155  *
156  * If @old was empty, it will be overwritten.
157  */
158 static inline void list_replace(struct list_head *old,
159                                 struct list_head *new)
160 {
161         new->next = old->next;
162         new->next->prev = new;
163         new->prev = old->prev;
164         new->prev->next = new;
165 }
166
167 /**
168  * list_replace_init - replace old entry by new one and initialize the old one
169  * @old : the element to be replaced
170  * @new : the new element to insert
171  *
172  * If @old was empty, it will be overwritten.
173  */
174 static inline void list_replace_init(struct list_head *old,
175                                      struct list_head *new)
176 {
177         list_replace(old, new);
178         INIT_LIST_HEAD(old);
179 }
180
181 /**
182  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183  * @entry1: the location to place entry2
184  * @entry2: the location to place entry1
185  */
186 static inline void list_swap(struct list_head *entry1,
187                              struct list_head *entry2)
188 {
189         struct list_head *pos = entry2->prev;
190
191         list_del(entry2);
192         list_replace(entry1, entry2);
193         if (pos == entry1)
194                 pos = entry2;
195         list_add(entry1, pos);
196 }
197
198 /**
199  * list_del_init - deletes entry from list and reinitialize it.
200  * @entry: the element to delete from the list.
201  */
202 static inline void list_del_init(struct list_head *entry)
203 {
204         __list_del_entry(entry);
205         INIT_LIST_HEAD(entry);
206 }
207
208 /**
209  * list_move - delete from one list and add as another's head
210  * @list: the entry to move
211  * @head: the head that will precede our entry
212  */
213 static inline void list_move(struct list_head *list, struct list_head *head)
214 {
215         __list_del_entry(list);
216         list_add(list, head);
217 }
218
219 /**
220  * list_move_tail - delete from one list and add as another's tail
221  * @list: the entry to move
222  * @head: the head that will follow our entry
223  */
224 static inline void list_move_tail(struct list_head *list,
225                                   struct list_head *head)
226 {
227         __list_del_entry(list);
228         list_add_tail(list, head);
229 }
230
231 /**
232  * list_bulk_move_tail - move a subsection of a list to its tail
233  * @head: the head that will follow our entry
234  * @first: first entry to move
235  * @last: last entry to move, can be the same as first
236  *
237  * Move all entries between @first and including @last before @head.
238  * All three entries must belong to the same linked list.
239  */
240 static inline void list_bulk_move_tail(struct list_head *head,
241                                        struct list_head *first,
242                                        struct list_head *last)
243 {
244         first->prev->next = last->next;
245         last->next->prev = first->prev;
246
247         head->prev->next = first;
248         first->prev = head->prev;
249
250         last->next = head;
251         head->prev = last;
252 }
253
254 /**
255  * list_is_first -- tests whether @list is the first entry in list @head
256  * @list: the entry to test
257  * @head: the head of the list
258  */
259 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
260 {
261         return list->prev == head;
262 }
263
264 /**
265  * list_is_last - tests whether @list is the last entry in list @head
266  * @list: the entry to test
267  * @head: the head of the list
268  */
269 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
270 {
271         return list->next == head;
272 }
273
274 /**
275  * list_is_head - tests whether @list is the list @head
276  * @list: the entry to test
277  * @head: the head of the list
278  */
279 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
280 {
281         return list == head;
282 }
283
284 /**
285  * list_empty - tests whether a list is empty
286  * @head: the list to test.
287  */
288 static inline int list_empty(const struct list_head *head)
289 {
290         return READ_ONCE(head->next) == head;
291 }
292
293 /**
294  * list_del_init_careful - deletes entry from list and reinitialize it.
295  * @entry: the element to delete from the list.
296  *
297  * This is the same as list_del_init(), except designed to be used
298  * together with list_empty_careful() in a way to guarantee ordering
299  * of other memory operations.
300  *
301  * Any memory operations done before a list_del_init_careful() are
302  * guaranteed to be visible after a list_empty_careful() test.
303  */
304 static inline void list_del_init_careful(struct list_head *entry)
305 {
306         __list_del_entry(entry);
307         WRITE_ONCE(entry->prev, entry);
308         smp_store_release(&entry->next, entry);
309 }
310
311 /**
312  * list_empty_careful - tests whether a list is empty and not being modified
313  * @head: the list to test
314  *
315  * Description:
316  * tests whether a list is empty _and_ checks that no other CPU might be
317  * in the process of modifying either member (next or prev)
318  *
319  * NOTE: using list_empty_careful() without synchronization
320  * can only be safe if the only activity that can happen
321  * to the list entry is list_del_init(). Eg. it cannot be used
322  * if another CPU could re-list_add() it.
323  */
324 static inline int list_empty_careful(const struct list_head *head)
325 {
326         struct list_head *next = smp_load_acquire(&head->next);
327         return list_is_head(next, head) && (next == READ_ONCE(head->prev));
328 }
329
330 /**
331  * list_rotate_left - rotate the list to the left
332  * @head: the head of the list
333  */
334 static inline void list_rotate_left(struct list_head *head)
335 {
336         struct list_head *first;
337
338         if (!list_empty(head)) {
339                 first = head->next;
340                 list_move_tail(first, head);
341         }
342 }
343
344 /**
345  * list_rotate_to_front() - Rotate list to specific item.
346  * @list: The desired new front of the list.
347  * @head: The head of the list.
348  *
349  * Rotates list so that @list becomes the new front of the list.
350  */
351 static inline void list_rotate_to_front(struct list_head *list,
352                                         struct list_head *head)
353 {
354         /*
355          * Deletes the list head from the list denoted by @head and
356          * places it as the tail of @list, this effectively rotates the
357          * list so that @list is at the front.
358          */
359         list_move_tail(head, list);
360 }
361
362 /**
363  * list_is_singular - tests whether a list has just one entry.
364  * @head: the list to test.
365  */
366 static inline int list_is_singular(const struct list_head *head)
367 {
368         return !list_empty(head) && (head->next == head->prev);
369 }
370
371 static inline void __list_cut_position(struct list_head *list,
372                 struct list_head *head, struct list_head *entry)
373 {
374         struct list_head *new_first = entry->next;
375         list->next = head->next;
376         list->next->prev = list;
377         list->prev = entry;
378         entry->next = list;
379         head->next = new_first;
380         new_first->prev = head;
381 }
382
383 /**
384  * list_cut_position - cut a list into two
385  * @list: a new list to add all removed entries
386  * @head: a list with entries
387  * @entry: an entry within head, could be the head itself
388  *      and if so we won't cut the list
389  *
390  * This helper moves the initial part of @head, up to and
391  * including @entry, from @head to @list. You should
392  * pass on @entry an element you know is on @head. @list
393  * should be an empty list or a list you do not care about
394  * losing its data.
395  *
396  */
397 static inline void list_cut_position(struct list_head *list,
398                 struct list_head *head, struct list_head *entry)
399 {
400         if (list_empty(head))
401                 return;
402         if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
403                 return;
404         if (list_is_head(entry, head))
405                 INIT_LIST_HEAD(list);
406         else
407                 __list_cut_position(list, head, entry);
408 }
409
410 /**
411  * list_cut_before - cut a list into two, before given entry
412  * @list: a new list to add all removed entries
413  * @head: a list with entries
414  * @entry: an entry within head, could be the head itself
415  *
416  * This helper moves the initial part of @head, up to but
417  * excluding @entry, from @head to @list.  You should pass
418  * in @entry an element you know is on @head.  @list should
419  * be an empty list or a list you do not care about losing
420  * its data.
421  * If @entry == @head, all entries on @head are moved to
422  * @list.
423  */
424 static inline void list_cut_before(struct list_head *list,
425                                    struct list_head *head,
426                                    struct list_head *entry)
427 {
428         if (head->next == entry) {
429                 INIT_LIST_HEAD(list);
430                 return;
431         }
432         list->next = head->next;
433         list->next->prev = list;
434         list->prev = entry->prev;
435         list->prev->next = list;
436         head->next = entry;
437         entry->prev = head;
438 }
439
440 static inline void __list_splice(const struct list_head *list,
441                                  struct list_head *prev,
442                                  struct list_head *next)
443 {
444         struct list_head *first = list->next;
445         struct list_head *last = list->prev;
446
447         first->prev = prev;
448         prev->next = first;
449
450         last->next = next;
451         next->prev = last;
452 }
453
454 /**
455  * list_splice - join two lists, this is designed for stacks
456  * @list: the new list to add.
457  * @head: the place to add it in the first list.
458  */
459 static inline void list_splice(const struct list_head *list,
460                                 struct list_head *head)
461 {
462         if (!list_empty(list))
463                 __list_splice(list, head, head->next);
464 }
465
466 /**
467  * list_splice_tail - join two lists, each list being a queue
468  * @list: the new list to add.
469  * @head: the place to add it in the first list.
470  */
471 static inline void list_splice_tail(struct list_head *list,
472                                 struct list_head *head)
473 {
474         if (!list_empty(list))
475                 __list_splice(list, head->prev, head);
476 }
477
478 /**
479  * list_splice_init - join two lists and reinitialise the emptied list.
480  * @list: the new list to add.
481  * @head: the place to add it in the first list.
482  *
483  * The list at @list is reinitialised
484  */
485 static inline void list_splice_init(struct list_head *list,
486                                     struct list_head *head)
487 {
488         if (!list_empty(list)) {
489                 __list_splice(list, head, head->next);
490                 INIT_LIST_HEAD(list);
491         }
492 }
493
494 /**
495  * list_splice_tail_init - join two lists and reinitialise the emptied list
496  * @list: the new list to add.
497  * @head: the place to add it in the first list.
498  *
499  * Each of the lists is a queue.
500  * The list at @list is reinitialised
501  */
502 static inline void list_splice_tail_init(struct list_head *list,
503                                          struct list_head *head)
504 {
505         if (!list_empty(list)) {
506                 __list_splice(list, head->prev, head);
507                 INIT_LIST_HEAD(list);
508         }
509 }
510
511 /**
512  * list_entry - get the struct for this entry
513  * @ptr:        the &struct list_head pointer.
514  * @type:       the type of the struct this is embedded in.
515  * @member:     the name of the list_head within the struct.
516  */
517 #define list_entry(ptr, type, member) \
518         container_of(ptr, type, member)
519
520 /**
521  * list_first_entry - get the first element from a list
522  * @ptr:        the list head to take the element from.
523  * @type:       the type of the struct this is embedded in.
524  * @member:     the name of the list_head within the struct.
525  *
526  * Note, that list is expected to be not empty.
527  */
528 #define list_first_entry(ptr, type, member) \
529         list_entry((ptr)->next, type, member)
530
531 /**
532  * list_last_entry - get the last element from a list
533  * @ptr:        the list head to take the element from.
534  * @type:       the type of the struct this is embedded in.
535  * @member:     the name of the list_head within the struct.
536  *
537  * Note, that list is expected to be not empty.
538  */
539 #define list_last_entry(ptr, type, member) \
540         list_entry((ptr)->prev, type, member)
541
542 /**
543  * list_first_entry_or_null - get the first element from a list
544  * @ptr:        the list head to take the element from.
545  * @type:       the type of the struct this is embedded in.
546  * @member:     the name of the list_head within the struct.
547  *
548  * Note that if the list is empty, it returns NULL.
549  */
550 #define list_first_entry_or_null(ptr, type, member) ({ \
551         struct list_head *head__ = (ptr); \
552         struct list_head *pos__ = READ_ONCE(head__->next); \
553         pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
554 })
555
556 /**
557  * list_next_entry - get the next element in list
558  * @pos:        the type * to cursor
559  * @member:     the name of the list_head within the struct.
560  */
561 #define list_next_entry(pos, member) \
562         list_entry((pos)->member.next, typeof(*(pos)), member)
563
564 /**
565  * list_prev_entry - get the prev element in list
566  * @pos:        the type * to cursor
567  * @member:     the name of the list_head within the struct.
568  */
569 #define list_prev_entry(pos, member) \
570         list_entry((pos)->member.prev, typeof(*(pos)), member)
571
572 /**
573  * list_for_each        -       iterate over a list
574  * @pos:        the &struct list_head to use as a loop cursor.
575  * @head:       the head for your list.
576  */
577 #define list_for_each(pos, head) \
578         for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
579
580 /**
581  * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
582  * @pos:        the &struct list_head to use as a loop cursor.
583  * @head:       the head for your list.
584  */
585 #define list_for_each_rcu(pos, head)              \
586         for (pos = rcu_dereference((head)->next); \
587              !list_is_head(pos, (head)); \
588              pos = rcu_dereference(pos->next))
589
590 /**
591  * list_for_each_continue - continue iteration over a list
592  * @pos:        the &struct list_head to use as a loop cursor.
593  * @head:       the head for your list.
594  *
595  * Continue to iterate over a list, continuing after the current position.
596  */
597 #define list_for_each_continue(pos, head) \
598         for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
599
600 /**
601  * list_for_each_prev   -       iterate over a list backwards
602  * @pos:        the &struct list_head to use as a loop cursor.
603  * @head:       the head for your list.
604  */
605 #define list_for_each_prev(pos, head) \
606         for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
607
608 /**
609  * list_for_each_safe - iterate over a list safe against removal of list entry
610  * @pos:        the &struct list_head to use as a loop cursor.
611  * @n:          another &struct list_head to use as temporary storage
612  * @head:       the head for your list.
613  */
614 #define list_for_each_safe(pos, n, head) \
615         for (pos = (head)->next, n = pos->next; \
616              !list_is_head(pos, (head)); \
617              pos = n, n = pos->next)
618
619 /**
620  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
621  * @pos:        the &struct list_head to use as a loop cursor.
622  * @n:          another &struct list_head to use as temporary storage
623  * @head:       the head for your list.
624  */
625 #define list_for_each_prev_safe(pos, n, head) \
626         for (pos = (head)->prev, n = pos->prev; \
627              !list_is_head(pos, (head)); \
628              pos = n, n = pos->prev)
629
630 /**
631  * list_entry_is_head - test if the entry points to the head of the list
632  * @pos:        the type * to cursor
633  * @head:       the head for your list.
634  * @member:     the name of the list_head within the struct.
635  */
636 #define list_entry_is_head(pos, head, member)                           \
637         (&pos->member == (head))
638
639 /**
640  * list_for_each_entry  -       iterate over list of given type
641  * @pos:        the type * to use as a loop cursor.
642  * @head:       the head for your list.
643  * @member:     the name of the list_head within the struct.
644  */
645 #define list_for_each_entry(pos, head, member)                          \
646         for (pos = list_first_entry(head, typeof(*pos), member);        \
647              !list_entry_is_head(pos, head, member);                    \
648              pos = list_next_entry(pos, member))
649
650 /**
651  * list_for_each_entry_reverse - iterate backwards over list of given type.
652  * @pos:        the type * to use as a loop cursor.
653  * @head:       the head for your list.
654  * @member:     the name of the list_head within the struct.
655  */
656 #define list_for_each_entry_reverse(pos, head, member)                  \
657         for (pos = list_last_entry(head, typeof(*pos), member);         \
658              !list_entry_is_head(pos, head, member);                    \
659              pos = list_prev_entry(pos, member))
660
661 /**
662  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
663  * @pos:        the type * to use as a start point
664  * @head:       the head of the list
665  * @member:     the name of the list_head within the struct.
666  *
667  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
668  */
669 #define list_prepare_entry(pos, head, member) \
670         ((pos) ? : list_entry(head, typeof(*pos), member))
671
672 /**
673  * list_for_each_entry_continue - continue iteration over list of given type
674  * @pos:        the type * to use as a loop cursor.
675  * @head:       the head for your list.
676  * @member:     the name of the list_head within the struct.
677  *
678  * Continue to iterate over list of given type, continuing after
679  * the current position.
680  */
681 #define list_for_each_entry_continue(pos, head, member)                 \
682         for (pos = list_next_entry(pos, member);                        \
683              !list_entry_is_head(pos, head, member);                    \
684              pos = list_next_entry(pos, member))
685
686 /**
687  * list_for_each_entry_continue_reverse - iterate backwards from the given point
688  * @pos:        the type * to use as a loop cursor.
689  * @head:       the head for your list.
690  * @member:     the name of the list_head within the struct.
691  *
692  * Start to iterate over list of given type backwards, continuing after
693  * the current position.
694  */
695 #define list_for_each_entry_continue_reverse(pos, head, member)         \
696         for (pos = list_prev_entry(pos, member);                        \
697              !list_entry_is_head(pos, head, member);                    \
698              pos = list_prev_entry(pos, member))
699
700 /**
701  * list_for_each_entry_from - iterate over list of given type from the current point
702  * @pos:        the type * to use as a loop cursor.
703  * @head:       the head for your list.
704  * @member:     the name of the list_head within the struct.
705  *
706  * Iterate over list of given type, continuing from current position.
707  */
708 #define list_for_each_entry_from(pos, head, member)                     \
709         for (; !list_entry_is_head(pos, head, member);                  \
710              pos = list_next_entry(pos, member))
711
712 /**
713  * list_for_each_entry_from_reverse - iterate backwards over list of given type
714  *                                    from the current point
715  * @pos:        the type * to use as a loop cursor.
716  * @head:       the head for your list.
717  * @member:     the name of the list_head within the struct.
718  *
719  * Iterate backwards over list of given type, continuing from current position.
720  */
721 #define list_for_each_entry_from_reverse(pos, head, member)             \
722         for (; !list_entry_is_head(pos, head, member);                  \
723              pos = list_prev_entry(pos, member))
724
725 /**
726  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
727  * @pos:        the type * to use as a loop cursor.
728  * @n:          another type * to use as temporary storage
729  * @head:       the head for your list.
730  * @member:     the name of the list_head within the struct.
731  */
732 #define list_for_each_entry_safe(pos, n, head, member)                  \
733         for (pos = list_first_entry(head, typeof(*pos), member),        \
734                 n = list_next_entry(pos, member);                       \
735              !list_entry_is_head(pos, head, member);                    \
736              pos = n, n = list_next_entry(n, member))
737
738 /**
739  * list_for_each_entry_safe_continue - continue list iteration safe against removal
740  * @pos:        the type * to use as a loop cursor.
741  * @n:          another type * to use as temporary storage
742  * @head:       the head for your list.
743  * @member:     the name of the list_head within the struct.
744  *
745  * Iterate over list of given type, continuing after current point,
746  * safe against removal of list entry.
747  */
748 #define list_for_each_entry_safe_continue(pos, n, head, member)                 \
749         for (pos = list_next_entry(pos, member),                                \
750                 n = list_next_entry(pos, member);                               \
751              !list_entry_is_head(pos, head, member);                            \
752              pos = n, n = list_next_entry(n, member))
753
754 /**
755  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
756  * @pos:        the type * to use as a loop cursor.
757  * @n:          another type * to use as temporary storage
758  * @head:       the head for your list.
759  * @member:     the name of the list_head within the struct.
760  *
761  * Iterate over list of given type from current point, safe against
762  * removal of list entry.
763  */
764 #define list_for_each_entry_safe_from(pos, n, head, member)                     \
765         for (n = list_next_entry(pos, member);                                  \
766              !list_entry_is_head(pos, head, member);                            \
767              pos = n, n = list_next_entry(n, member))
768
769 /**
770  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
771  * @pos:        the type * to use as a loop cursor.
772  * @n:          another type * to use as temporary storage
773  * @head:       the head for your list.
774  * @member:     the name of the list_head within the struct.
775  *
776  * Iterate backwards over list of given type, safe against removal
777  * of list entry.
778  */
779 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
780         for (pos = list_last_entry(head, typeof(*pos), member),         \
781                 n = list_prev_entry(pos, member);                       \
782              !list_entry_is_head(pos, head, member);                    \
783              pos = n, n = list_prev_entry(n, member))
784
785 /**
786  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
787  * @pos:        the loop cursor used in the list_for_each_entry_safe loop
788  * @n:          temporary storage used in list_for_each_entry_safe
789  * @member:     the name of the list_head within the struct.
790  *
791  * list_safe_reset_next is not safe to use in general if the list may be
792  * modified concurrently (eg. the lock is dropped in the loop body). An
793  * exception to this is if the cursor element (pos) is pinned in the list,
794  * and list_safe_reset_next is called after re-taking the lock and before
795  * completing the current iteration of the loop body.
796  */
797 #define list_safe_reset_next(pos, n, member)                            \
798         n = list_next_entry(pos, member)
799
800 /*
801  * Double linked lists with a single pointer list head.
802  * Mostly useful for hash tables where the two pointer list head is
803  * too wasteful.
804  * You lose the ability to access the tail in O(1).
805  */
806
807 #define HLIST_HEAD_INIT { .first = NULL }
808 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
809 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
810 static inline void INIT_HLIST_NODE(struct hlist_node *h)
811 {
812         h->next = NULL;
813         h->pprev = NULL;
814 }
815
816 /**
817  * hlist_unhashed - Has node been removed from list and reinitialized?
818  * @h: Node to be checked
819  *
820  * Not that not all removal functions will leave a node in unhashed
821  * state.  For example, hlist_nulls_del_init_rcu() does leave the
822  * node in unhashed state, but hlist_nulls_del() does not.
823  */
824 static inline int hlist_unhashed(const struct hlist_node *h)
825 {
826         return !h->pprev;
827 }
828
829 /**
830  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
831  * @h: Node to be checked
832  *
833  * This variant of hlist_unhashed() must be used in lockless contexts
834  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
835  * various WRITE_ONCE() in hlist helpers that are defined below.
836  */
837 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
838 {
839         return !READ_ONCE(h->pprev);
840 }
841
842 /**
843  * hlist_empty - Is the specified hlist_head structure an empty hlist?
844  * @h: Structure to check.
845  */
846 static inline int hlist_empty(const struct hlist_head *h)
847 {
848         return !READ_ONCE(h->first);
849 }
850
851 static inline void __hlist_del(struct hlist_node *n)
852 {
853         struct hlist_node *next = n->next;
854         struct hlist_node **pprev = n->pprev;
855
856         WRITE_ONCE(*pprev, next);
857         if (next)
858                 WRITE_ONCE(next->pprev, pprev);
859 }
860
861 /**
862  * hlist_del - Delete the specified hlist_node from its list
863  * @n: Node to delete.
864  *
865  * Note that this function leaves the node in hashed state.  Use
866  * hlist_del_init() or similar instead to unhash @n.
867  */
868 static inline void hlist_del(struct hlist_node *n)
869 {
870         __hlist_del(n);
871         n->next = LIST_POISON1;
872         n->pprev = LIST_POISON2;
873 }
874
875 /**
876  * hlist_del_init - Delete the specified hlist_node from its list and initialize
877  * @n: Node to delete.
878  *
879  * Note that this function leaves the node in unhashed state.
880  */
881 static inline void hlist_del_init(struct hlist_node *n)
882 {
883         if (!hlist_unhashed(n)) {
884                 __hlist_del(n);
885                 INIT_HLIST_NODE(n);
886         }
887 }
888
889 /**
890  * hlist_add_head - add a new entry at the beginning of the hlist
891  * @n: new entry to be added
892  * @h: hlist head to add it after
893  *
894  * Insert a new entry after the specified head.
895  * This is good for implementing stacks.
896  */
897 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
898 {
899         struct hlist_node *first = h->first;
900         WRITE_ONCE(n->next, first);
901         if (first)
902                 WRITE_ONCE(first->pprev, &n->next);
903         WRITE_ONCE(h->first, n);
904         WRITE_ONCE(n->pprev, &h->first);
905 }
906
907 /**
908  * hlist_add_before - add a new entry before the one specified
909  * @n: new entry to be added
910  * @next: hlist node to add it before, which must be non-NULL
911  */
912 static inline void hlist_add_before(struct hlist_node *n,
913                                     struct hlist_node *next)
914 {
915         WRITE_ONCE(n->pprev, next->pprev);
916         WRITE_ONCE(n->next, next);
917         WRITE_ONCE(next->pprev, &n->next);
918         WRITE_ONCE(*(n->pprev), n);
919 }
920
921 /**
922  * hlist_add_behind - add a new entry after the one specified
923  * @n: new entry to be added
924  * @prev: hlist node to add it after, which must be non-NULL
925  */
926 static inline void hlist_add_behind(struct hlist_node *n,
927                                     struct hlist_node *prev)
928 {
929         WRITE_ONCE(n->next, prev->next);
930         WRITE_ONCE(prev->next, n);
931         WRITE_ONCE(n->pprev, &prev->next);
932
933         if (n->next)
934                 WRITE_ONCE(n->next->pprev, &n->next);
935 }
936
937 /**
938  * hlist_add_fake - create a fake hlist consisting of a single headless node
939  * @n: Node to make a fake list out of
940  *
941  * This makes @n appear to be its own predecessor on a headless hlist.
942  * The point of this is to allow things like hlist_del() to work correctly
943  * in cases where there is no list.
944  */
945 static inline void hlist_add_fake(struct hlist_node *n)
946 {
947         n->pprev = &n->next;
948 }
949
950 /**
951  * hlist_fake: Is this node a fake hlist?
952  * @h: Node to check for being a self-referential fake hlist.
953  */
954 static inline bool hlist_fake(struct hlist_node *h)
955 {
956         return h->pprev == &h->next;
957 }
958
959 /**
960  * hlist_is_singular_node - is node the only element of the specified hlist?
961  * @n: Node to check for singularity.
962  * @h: Header for potentially singular list.
963  *
964  * Check whether the node is the only node of the head without
965  * accessing head, thus avoiding unnecessary cache misses.
966  */
967 static inline bool
968 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
969 {
970         return !n->next && n->pprev == &h->first;
971 }
972
973 /**
974  * hlist_move_list - Move an hlist
975  * @old: hlist_head for old list.
976  * @new: hlist_head for new list.
977  *
978  * Move a list from one list head to another. Fixup the pprev
979  * reference of the first entry if it exists.
980  */
981 static inline void hlist_move_list(struct hlist_head *old,
982                                    struct hlist_head *new)
983 {
984         new->first = old->first;
985         if (new->first)
986                 new->first->pprev = &new->first;
987         old->first = NULL;
988 }
989
990 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
991
992 #define hlist_for_each(pos, head) \
993         for (pos = (head)->first; pos ; pos = pos->next)
994
995 #define hlist_for_each_safe(pos, n, head) \
996         for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
997              pos = n)
998
999 #define hlist_entry_safe(ptr, type, member) \
1000         ({ typeof(ptr) ____ptr = (ptr); \
1001            ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1002         })
1003
1004 /**
1005  * hlist_for_each_entry - iterate over list of given type
1006  * @pos:        the type * to use as a loop cursor.
1007  * @head:       the head for your list.
1008  * @member:     the name of the hlist_node within the struct.
1009  */
1010 #define hlist_for_each_entry(pos, head, member)                         \
1011         for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1012              pos;                                                       \
1013              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1014
1015 /**
1016  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1017  * @pos:        the type * to use as a loop cursor.
1018  * @member:     the name of the hlist_node within the struct.
1019  */
1020 #define hlist_for_each_entry_continue(pos, member)                      \
1021         for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1022              pos;                                                       \
1023              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1024
1025 /**
1026  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1027  * @pos:        the type * to use as a loop cursor.
1028  * @member:     the name of the hlist_node within the struct.
1029  */
1030 #define hlist_for_each_entry_from(pos, member)                          \
1031         for (; pos;                                                     \
1032              pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1033
1034 /**
1035  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1036  * @pos:        the type * to use as a loop cursor.
1037  * @n:          a &struct hlist_node to use as temporary storage
1038  * @head:       the head for your list.
1039  * @member:     the name of the hlist_node within the struct.
1040  */
1041 #define hlist_for_each_entry_safe(pos, n, head, member)                 \
1042         for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1043              pos && ({ n = pos->member.next; 1; });                     \
1044              pos = hlist_entry_safe(n, typeof(*pos), member))
1045
1046 #endif