Merge branch 'remotes/lorenzo/pci/hyper-v'
[platform/kernel/linux-rpi.git] / include / linux / kcsan-checks.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * KCSAN access checks and modifiers. These can be used to explicitly check
4  * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
5  *
6  * Copyright (C) 2019, Google LLC.
7  */
8
9 #ifndef _LINUX_KCSAN_CHECKS_H
10 #define _LINUX_KCSAN_CHECKS_H
11
12 /* Note: Only include what is already included by compiler.h. */
13 #include <linux/compiler_attributes.h>
14 #include <linux/types.h>
15
16 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
17 #define KCSAN_ACCESS_WRITE      (1 << 0) /* Access is a write. */
18 #define KCSAN_ACCESS_COMPOUND   (1 << 1) /* Compounded read-write instrumentation. */
19 #define KCSAN_ACCESS_ATOMIC     (1 << 2) /* Access is atomic. */
20 /* The following are special, and never due to compiler instrumentation. */
21 #define KCSAN_ACCESS_ASSERT     (1 << 3) /* Access is an assertion. */
22 #define KCSAN_ACCESS_SCOPED     (1 << 4) /* Access is a scoped access. */
23
24 /*
25  * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
26  * even in compilation units that selectively disable KCSAN, but must use KCSAN
27  * to validate access to an address. Never use these in header files!
28  */
29 #ifdef CONFIG_KCSAN
30 /**
31  * __kcsan_check_access - check generic access for races
32  *
33  * @ptr: address of access
34  * @size: size of access
35  * @type: access type modifier
36  */
37 void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
38
39 /**
40  * kcsan_disable_current - disable KCSAN for the current context
41  *
42  * Supports nesting.
43  */
44 void kcsan_disable_current(void);
45
46 /**
47  * kcsan_enable_current - re-enable KCSAN for the current context
48  *
49  * Supports nesting.
50  */
51 void kcsan_enable_current(void);
52 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
53
54 /**
55  * kcsan_nestable_atomic_begin - begin nestable atomic region
56  *
57  * Accesses within the atomic region may appear to race with other accesses but
58  * should be considered atomic.
59  */
60 void kcsan_nestable_atomic_begin(void);
61
62 /**
63  * kcsan_nestable_atomic_end - end nestable atomic region
64  */
65 void kcsan_nestable_atomic_end(void);
66
67 /**
68  * kcsan_flat_atomic_begin - begin flat atomic region
69  *
70  * Accesses within the atomic region may appear to race with other accesses but
71  * should be considered atomic.
72  */
73 void kcsan_flat_atomic_begin(void);
74
75 /**
76  * kcsan_flat_atomic_end - end flat atomic region
77  */
78 void kcsan_flat_atomic_end(void);
79
80 /**
81  * kcsan_atomic_next - consider following accesses as atomic
82  *
83  * Force treating the next n memory accesses for the current context as atomic
84  * operations.
85  *
86  * @n: number of following memory accesses to treat as atomic.
87  */
88 void kcsan_atomic_next(int n);
89
90 /**
91  * kcsan_set_access_mask - set access mask
92  *
93  * Set the access mask for all accesses for the current context if non-zero.
94  * Only value changes to bits set in the mask will be reported.
95  *
96  * @mask: bitmask
97  */
98 void kcsan_set_access_mask(unsigned long mask);
99
100 /* Scoped access information. */
101 struct kcsan_scoped_access {
102         struct list_head list;
103         const volatile void *ptr;
104         size_t size;
105         int type;
106 };
107 /*
108  * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
109  * out of scope; relies on attribute "cleanup", which is supported by all
110  * compilers that support KCSAN.
111  */
112 #define __kcsan_cleanup_scoped                                                 \
113         __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
114
115 /**
116  * kcsan_begin_scoped_access - begin scoped access
117  *
118  * Begin scoped access and initialize @sa, which will cause KCSAN to
119  * continuously check the memory range in the current thread until
120  * kcsan_end_scoped_access() is called for @sa.
121  *
122  * Scoped accesses are implemented by appending @sa to an internal list for the
123  * current execution context, and then checked on every call into the KCSAN
124  * runtime.
125  *
126  * @ptr: address of access
127  * @size: size of access
128  * @type: access type modifier
129  * @sa: struct kcsan_scoped_access to use for the scope of the access
130  */
131 struct kcsan_scoped_access *
132 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
133                           struct kcsan_scoped_access *sa);
134
135 /**
136  * kcsan_end_scoped_access - end scoped access
137  *
138  * End a scoped access, which will stop KCSAN checking the memory range.
139  * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
140  *
141  * @sa: a previously initialized struct kcsan_scoped_access
142  */
143 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
144
145
146 #else /* CONFIG_KCSAN */
147
148 static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
149                                         int type) { }
150
151 static inline void kcsan_disable_current(void)          { }
152 static inline void kcsan_enable_current(void)           { }
153 static inline void kcsan_enable_current_nowarn(void)    { }
154 static inline void kcsan_nestable_atomic_begin(void)    { }
155 static inline void kcsan_nestable_atomic_end(void)      { }
156 static inline void kcsan_flat_atomic_begin(void)        { }
157 static inline void kcsan_flat_atomic_end(void)          { }
158 static inline void kcsan_atomic_next(int n)             { }
159 static inline void kcsan_set_access_mask(unsigned long mask) { }
160
161 struct kcsan_scoped_access { };
162 #define __kcsan_cleanup_scoped __maybe_unused
163 static inline struct kcsan_scoped_access *
164 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
165                           struct kcsan_scoped_access *sa) { return sa; }
166 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
167
168 #endif /* CONFIG_KCSAN */
169
170 #ifdef __SANITIZE_THREAD__
171 /*
172  * Only calls into the runtime when the particular compilation unit has KCSAN
173  * instrumentation enabled. May be used in header files.
174  */
175 #define kcsan_check_access __kcsan_check_access
176
177 /*
178  * Only use these to disable KCSAN for accesses in the current compilation unit;
179  * calls into libraries may still perform KCSAN checks.
180  */
181 #define __kcsan_disable_current kcsan_disable_current
182 #define __kcsan_enable_current kcsan_enable_current_nowarn
183 #else
184 static inline void kcsan_check_access(const volatile void *ptr, size_t size,
185                                       int type) { }
186 static inline void __kcsan_enable_current(void)  { }
187 static inline void __kcsan_disable_current(void) { }
188 #endif
189
190 /**
191  * __kcsan_check_read - check regular read access for races
192  *
193  * @ptr: address of access
194  * @size: size of access
195  */
196 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
197
198 /**
199  * __kcsan_check_write - check regular write access for races
200  *
201  * @ptr: address of access
202  * @size: size of access
203  */
204 #define __kcsan_check_write(ptr, size)                                         \
205         __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
206
207 /**
208  * __kcsan_check_read_write - check regular read-write access for races
209  *
210  * @ptr: address of access
211  * @size: size of access
212  */
213 #define __kcsan_check_read_write(ptr, size)                                    \
214         __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
215
216 /**
217  * kcsan_check_read - check regular read access for races
218  *
219  * @ptr: address of access
220  * @size: size of access
221  */
222 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
223
224 /**
225  * kcsan_check_write - check regular write access for races
226  *
227  * @ptr: address of access
228  * @size: size of access
229  */
230 #define kcsan_check_write(ptr, size)                                           \
231         kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
232
233 /**
234  * kcsan_check_read_write - check regular read-write access for races
235  *
236  * @ptr: address of access
237  * @size: size of access
238  */
239 #define kcsan_check_read_write(ptr, size)                                      \
240         kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
241
242 /*
243  * Check for atomic accesses: if atomic accesses are not ignored, this simply
244  * aliases to kcsan_check_access(), otherwise becomes a no-op.
245  */
246 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
247 #define kcsan_check_atomic_read(...)            do { } while (0)
248 #define kcsan_check_atomic_write(...)           do { } while (0)
249 #define kcsan_check_atomic_read_write(...)      do { } while (0)
250 #else
251 #define kcsan_check_atomic_read(ptr, size)                                     \
252         kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
253 #define kcsan_check_atomic_write(ptr, size)                                    \
254         kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
255 #define kcsan_check_atomic_read_write(ptr, size)                               \
256         kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
257 #endif
258
259 /**
260  * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
261  *
262  * Assert that there are no concurrent writes to @var; other readers are
263  * allowed. This assertion can be used to specify properties of concurrent code,
264  * where violation cannot be detected as a normal data race.
265  *
266  * For example, if we only have a single writer, but multiple concurrent
267  * readers, to avoid data races, all these accesses must be marked; even
268  * concurrent marked writes racing with the single writer are bugs.
269  * Unfortunately, due to being marked, they are no longer data races. For cases
270  * like these, we can use the macro as follows:
271  *
272  * .. code-block:: c
273  *
274  *      void writer(void) {
275  *              spin_lock(&update_foo_lock);
276  *              ASSERT_EXCLUSIVE_WRITER(shared_foo);
277  *              WRITE_ONCE(shared_foo, ...);
278  *              spin_unlock(&update_foo_lock);
279  *      }
280  *      void reader(void) {
281  *              // update_foo_lock does not need to be held!
282  *              ... = READ_ONCE(shared_foo);
283  *      }
284  *
285  * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
286  * checking if a clear scope where no concurrent writes are expected exists.
287  *
288  * @var: variable to assert on
289  */
290 #define ASSERT_EXCLUSIVE_WRITER(var)                                           \
291         __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
292
293 /*
294  * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
295  * expected to be unique for the scope in which instances of kcsan_scoped_access
296  * are declared.
297  */
298 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
299 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
300         struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
301                 __kcsan_cleanup_scoped;                                        \
302         struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
303                 __maybe_unused = kcsan_begin_scoped_access(                    \
304                         &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
305                         &__kcsan_scoped_name(id, _))
306
307 /**
308  * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
309  *
310  * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
311  *
312  * Assert that there are no concurrent writes to @var for the duration of the
313  * scope in which it is introduced. This provides a better way to fully cover
314  * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
315  * increases the likelihood for KCSAN to detect racing accesses.
316  *
317  * For example, it allows finding race-condition bugs that only occur due to
318  * state changes within the scope itself:
319  *
320  * .. code-block:: c
321  *
322  *      void writer(void) {
323  *              spin_lock(&update_foo_lock);
324  *              {
325  *                      ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
326  *                      WRITE_ONCE(shared_foo, 42);
327  *                      ...
328  *                      // shared_foo should still be 42 here!
329  *              }
330  *              spin_unlock(&update_foo_lock);
331  *      }
332  *      void buggy(void) {
333  *              if (READ_ONCE(shared_foo) == 42)
334  *                      WRITE_ONCE(shared_foo, 1); // bug!
335  *      }
336  *
337  * @var: variable to assert on
338  */
339 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
340         __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
341
342 /**
343  * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
344  *
345  * Assert that there are no concurrent accesses to @var (no readers nor
346  * writers). This assertion can be used to specify properties of concurrent
347  * code, where violation cannot be detected as a normal data race.
348  *
349  * For example, where exclusive access is expected after determining no other
350  * users of an object are left, but the object is not actually freed. We can
351  * check that this property actually holds as follows:
352  *
353  * .. code-block:: c
354  *
355  *      if (refcount_dec_and_test(&obj->refcnt)) {
356  *              ASSERT_EXCLUSIVE_ACCESS(*obj);
357  *              do_some_cleanup(obj);
358  *              release_for_reuse(obj);
359  *      }
360  *
361  * Note:
362  *
363  * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
364  *    checking if a clear scope where no concurrent accesses are expected exists.
365  *
366  * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
367  *    fit to detect use-after-free bugs.
368  *
369  * @var: variable to assert on
370  */
371 #define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
372         __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
373
374 /**
375  * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
376  *
377  * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
378  *
379  * Assert that there are no concurrent accesses to @var (no readers nor writers)
380  * for the entire duration of the scope in which it is introduced. This provides
381  * a better way to fully cover the enclosing scope, compared to multiple
382  * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
383  * racing accesses.
384  *
385  * @var: variable to assert on
386  */
387 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
388         __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
389
390 /**
391  * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
392  *
393  * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
394  *
395  * Assert that there are no concurrent writes to a subset of bits in @var;
396  * concurrent readers are permitted. This assertion captures more detailed
397  * bit-level properties, compared to the other (word granularity) assertions.
398  * Only the bits set in @mask are checked for concurrent modifications, while
399  * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
400  * are ignored.
401  *
402  * Use this for variables, where some bits must not be modified concurrently,
403  * yet other bits are expected to be modified concurrently.
404  *
405  * For example, variables where, after initialization, some bits are read-only,
406  * but other bits may still be modified concurrently. A reader may wish to
407  * assert that this is true as follows:
408  *
409  * .. code-block:: c
410  *
411  *      ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
412  *      foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
413  *
414  * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
415  * to access the masked bits only, and KCSAN optimistically assumes it is
416  * therefore safe, even in the presence of data races, and marking it with
417  * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
418  * it may still be advisable to do so, since we cannot reason about all compiler
419  * optimizations when it comes to bit manipulations (on the reader and writer
420  * side). If you are sure nothing can go wrong, we can write the above simply
421  * as:
422  *
423  * .. code-block:: c
424  *
425  *      ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
426  *      foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
427  *
428  * Another example, where this may be used, is when certain bits of @var may
429  * only be modified when holding the appropriate lock, but other bits may still
430  * be modified concurrently. Writers, where other bits may change concurrently,
431  * could use the assertion as follows:
432  *
433  * .. code-block:: c
434  *
435  *      spin_lock(&foo_lock);
436  *      ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
437  *      old_flags = flags;
438  *      new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
439  *      if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
440  *      spin_unlock(&foo_lock);
441  *
442  * @var: variable to assert on
443  * @mask: only check for modifications to bits set in @mask
444  */
445 #define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
446         do {                                                                   \
447                 kcsan_set_access_mask(mask);                                   \
448                 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
449                 kcsan_set_access_mask(0);                                      \
450                 kcsan_atomic_next(1);                                          \
451         } while (0)
452
453 #endif /* _LINUX_KCSAN_CHECKS_H */