3 * Copyright (c) 2011, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
28 #include <linux/types.h>
31 * An implementation of HyperV key value pair (KVP) functionality for Linux.
34 * Copyright (C) 2010, Novell, Inc.
35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
40 * Maximum value size - used for both key names and value data, and includes
41 * any applicable NULL terminators.
43 * Note: This limit is somewhat arbitrary, but falls easily within what is
44 * supported for all native guests (back to Win 2000) and what is reasonable
45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
46 * limited to 255 character key names.
48 * MSDN recommends not storing data values larger than 2048 bytes in the
51 * Note: This value is used in defining the KVP exchange message - this value
52 * cannot be modified without affecting the message size and compatibility.
56 * bytes, including any null terminators
58 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
62 * Maximum key size - the registry limit for the length of an entry name
63 * is 256 characters, including the null terminator
66 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
69 * In Linux, we implement the KVP functionality in two components:
70 * 1) The kernel component which is packaged as part of the hv_utils driver
71 * is responsible for communicating with the host and responsible for
72 * implementing the host/guest protocol. 2) A user level daemon that is
73 * responsible for data gathering.
75 * Host/Guest Protocol: The host iterates over an index and expects the guest
76 * to assign a key name to the index and also return the value corresponding to
77 * the key. The host will have atmost one KVP transaction outstanding at any
78 * given point in time. The host side iteration stops when the guest returns
79 * an error. Microsoft has specified the following mapping of key names to
80 * host specified index:
83 * 0 FullyQualifiedDomainName
84 * 1 IntegrationServicesVersion
85 * 2 NetworkAddressIPv4
86 * 3 NetworkAddressIPv6
92 * 9 ProcessorArchitecture
94 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
97 * data gathering functionality in a user mode daemon. The user level daemon
98 * is also responsible for binding the key name to the index as well. The
99 * kernel and user-level daemon communicate using a connector channel.
101 * The user mode component first registers with the
102 * the kernel component. Subsequently, the kernel component requests, data
103 * for the specified keys. In response to this message the user mode component
104 * fills in the value corresponding to the specified key. We overload the
105 * sequence field in the cn_msg header to define our KVP message types.
108 * The kernel component simply acts as a conduit for communication between the
109 * Windows host and the user-level daemon. The kernel component passes up the
110 * index received from the Host to the user-level daemon. If the index is
111 * valid (supported), the corresponding key as well as its
112 * value (both are strings) is returned. If the index is invalid
113 * (not supported), a NULL key string is returned.
118 * Registry value types.
126 * As we look at expanding the KVP functionality to include
127 * IP injection functionality, we need to maintain binary
128 * compatibility with older daemons.
130 * The KVP opcodes are defined by the host and it was unfortunate
131 * that I chose to treat the registration operation as part of the
132 * KVP operations defined by the host.
133 * Here is the level of compatibility
134 * (between the user level daemon and the kernel KVP driver) that we
137 * An older daemon will always be supported on a newer driver.
138 * A given user level daemon will require a minimal version of the
140 * If we cannot handle the version differences, we will fail gracefully
141 * (this can happen when we have a user level daemon that is more
142 * advanced than the KVP driver.
144 * We will use values used in this handshake for determining if we have
145 * workable user level daemon and the kernel driver. We begin by taking the
146 * registration opcode out of the KVP opcode namespace. We will however,
147 * maintain compatibility with the existing user-level daemon code.
151 * Daemon code not supporting IP injection (legacy daemon).
154 #define KVP_OP_REGISTER 4
157 * Daemon code supporting IP injection.
158 * The KVP opcode field is used to communicate the
159 * registration information; so define a namespace that
160 * will be distinct from the host defined KVP opcode.
163 #define KVP_OP_REGISTER1 100
165 enum hv_kvp_exchg_op {
172 KVP_OP_COUNT /* Number of operations, must be last. */
175 enum hv_kvp_exchg_pool {
176 KVP_POOL_EXTERNAL = 0,
179 KVP_POOL_AUTO_EXTERNAL,
180 KVP_POOL_AUTO_INTERNAL,
181 KVP_POOL_COUNT /* Number of pools, must be last. */
185 * Some Hyper-V status codes.
188 #define HV_S_OK 0x00000000
189 #define HV_E_FAIL 0x80004005
190 #define HV_S_CONT 0x80070103
191 #define HV_ERROR_NOT_SUPPORTED 0x80070032
192 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
193 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
194 #define HV_INVALIDARG 0x80070057
195 #define HV_GUID_NOTFOUND 0x80041002
197 #define ADDR_FAMILY_NONE 0x00
198 #define ADDR_FAMILY_IPV4 0x01
199 #define ADDR_FAMILY_IPV6 0x02
201 #define MAX_ADAPTER_ID_SIZE 128
202 #define MAX_IP_ADDR_SIZE 1024
203 #define MAX_GATEWAY_SIZE 512
206 struct hv_kvp_ipaddr_value {
207 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
210 __u16 ip_addr[MAX_IP_ADDR_SIZE];
211 __u16 sub_net[MAX_IP_ADDR_SIZE];
212 __u16 gate_way[MAX_GATEWAY_SIZE];
213 __u16 dns_addr[MAX_IP_ADDR_SIZE];
214 } __attribute__((packed));
221 } __attribute__((packed));
223 struct hv_kvp_exchg_msg_value {
227 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
229 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
233 } __attribute__((packed));
235 struct hv_kvp_msg_enumerate {
237 struct hv_kvp_exchg_msg_value data;
238 } __attribute__((packed));
240 struct hv_kvp_msg_get {
241 struct hv_kvp_exchg_msg_value data;
244 struct hv_kvp_msg_set {
245 struct hv_kvp_exchg_msg_value data;
248 struct hv_kvp_msg_delete {
250 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
253 struct hv_kvp_register {
254 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
259 struct hv_kvp_hdr kvp_hdr;
263 struct hv_kvp_msg_get kvp_get;
264 struct hv_kvp_msg_set kvp_set;
265 struct hv_kvp_msg_delete kvp_delete;
266 struct hv_kvp_msg_enumerate kvp_enum_data;
267 struct hv_kvp_ipaddr_value kvp_ip_val;
268 struct hv_kvp_register kvp_register;
270 } __attribute__((packed));
272 struct hv_kvp_ip_msg {
275 struct hv_kvp_ipaddr_value kvp_ip_val;
276 } __attribute__((packed));
279 #include <linux/scatterlist.h>
280 #include <linux/list.h>
281 #include <linux/uuid.h>
282 #include <linux/timer.h>
283 #include <linux/workqueue.h>
284 #include <linux/completion.h>
285 #include <linux/device.h>
286 #include <linux/mod_devicetable.h>
289 #define MAX_PAGE_BUFFER_COUNT 19
290 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
292 #pragma pack(push, 1)
294 /* Single-page buffer */
295 struct hv_page_buffer {
301 /* Multiple-page buffer */
302 struct hv_multipage_buffer {
303 /* Length and Offset determines the # of pfns in the array */
306 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
309 /* 0x18 includes the proprietary packet header */
310 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
311 (sizeof(struct hv_page_buffer) * \
312 MAX_PAGE_BUFFER_COUNT))
313 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
314 sizeof(struct hv_multipage_buffer))
319 struct hv_ring_buffer {
320 /* Offset in bytes from the start of ring data below */
323 /* Offset in bytes from the start of ring data below */
329 * Win8 uses some of the reserved bits to implement
330 * interrupt driven flow management. On the send side
331 * we can request that the receiver interrupt the sender
332 * when the ring transitions from being full to being able
333 * to handle a message of size "pending_send_sz".
335 * Add necessary state for this enhancement.
343 u32 feat_pending_send_sz:1;
348 /* Pad it to PAGE_SIZE so that data starts on page boundary */
352 * Ring data starts here + RingDataStartOffset
353 * !!! DO NOT place any fields below this !!!
358 struct hv_ring_buffer_info {
359 struct hv_ring_buffer *ring_buffer;
360 u32 ring_size; /* Include the shared header */
361 spinlock_t ring_lock;
363 u32 ring_datasize; /* < ring_size */
364 u32 ring_data_startoffset;
367 struct hv_ring_buffer_debug_info {
368 u32 current_interrupt_mask;
369 u32 current_read_index;
370 u32 current_write_index;
371 u32 bytes_avail_toread;
372 u32 bytes_avail_towrite;
378 * hv_get_ringbuffer_availbytes()
380 * Get number of bytes available to read and to write to
381 * for the specified ring buffer
384 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
385 u32 *read, u32 *write)
387 u32 read_loc, write_loc, dsize;
389 smp_read_barrier_depends();
391 /* Capture the read/write indices before they changed */
392 read_loc = rbi->ring_buffer->read_index;
393 write_loc = rbi->ring_buffer->write_index;
394 dsize = rbi->ring_datasize;
396 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
397 read_loc - write_loc;
398 *read = dsize - *write;
403 * We use the same version numbering for all Hyper-V modules.
405 * Definition of versioning is as follows;
407 * Major Number Changes for these scenarios;
408 * 1. When a new version of Windows Hyper-V
410 * 2. A Major change has occurred in the
412 * (For example the merge for the first time
413 * into the kernel) Every time the Major Number
414 * changes, the Revision number is reset to 0.
415 * Minor Number Changes when new functionality is added
416 * to the Linux IC's that is not a bug fix.
418 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
420 #define HV_DRV_VERSION "3.1"
423 /* Make maximum size of pipe payload of 16K */
424 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
426 /* Define PipeMode values. */
427 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
428 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
430 /* The size of the user defined data buffer for non-pipe offers. */
431 #define MAX_USER_DEFINED_BYTES 120
433 /* The size of the user defined data buffer for pipe offers. */
434 #define MAX_PIPE_USER_DEFINED_BYTES 116
437 * At the center of the Channel Management library is the Channel Offer. This
438 * struct contains the fundamental information about an offer.
440 struct vmbus_channel_offer {
445 * These two fields are not currently used.
451 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
454 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
456 unsigned char user_def[MAX_USER_DEFINED_BYTES];
461 * The following sructure is an integrated pipe protocol, which
462 * is implemented on top of standard user-defined data. Pipe
463 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
468 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
472 * The sub_channel_index is defined in win8.
474 u16 sub_channel_index;
479 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
480 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
481 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
482 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
483 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
484 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
485 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
487 struct vmpacket_descriptor {
495 struct vmpacket_header {
496 u32 prev_pkt_start_offset;
497 struct vmpacket_descriptor descriptor;
500 struct vmtransfer_page_range {
505 struct vmtransfer_page_packet_header {
506 struct vmpacket_descriptor d;
511 struct vmtransfer_page_range ranges[1];
514 struct vmgpadl_packet_header {
515 struct vmpacket_descriptor d;
520 struct vmadd_remove_transfer_page_set {
521 struct vmpacket_descriptor d;
528 * This structure defines a range in guest physical space that can be made to
529 * look virtually contiguous.
538 * This is the format for an Establish Gpadl packet, which contains a handle by
539 * which this GPADL will be known and a set of GPA ranges associated with it.
540 * This can be converted to a MDL by the guest OS. If there are multiple GPA
541 * ranges, then the resulting MDL will be "chained," representing multiple VA
544 struct vmestablish_gpadl {
545 struct vmpacket_descriptor d;
548 struct gpa_range range[1];
552 * This is the format for a Teardown Gpadl packet, which indicates that the
553 * GPADL handle in the Establish Gpadl packet will never be referenced again.
555 struct vmteardown_gpadl {
556 struct vmpacket_descriptor d;
558 u32 reserved; /* for alignment to a 8-byte boundary */
562 * This is the format for a GPA-Direct packet, which contains a set of GPA
563 * ranges, in addition to commands and/or data.
565 struct vmdata_gpa_direct {
566 struct vmpacket_descriptor d;
569 struct gpa_range range[1];
572 /* This is the format for a Additional Data Packet. */
573 struct vmadditional_data {
574 struct vmpacket_descriptor d;
578 unsigned char data[1];
581 union vmpacket_largest_possible_header {
582 struct vmpacket_descriptor simple_hdr;
583 struct vmtransfer_page_packet_header xfer_page_hdr;
584 struct vmgpadl_packet_header gpadl_hdr;
585 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
586 struct vmestablish_gpadl establish_gpadl_hdr;
587 struct vmteardown_gpadl teardown_gpadl_hdr;
588 struct vmdata_gpa_direct data_gpa_direct_hdr;
591 #define VMPACKET_DATA_START_ADDRESS(__packet) \
592 (void *)(((unsigned char *)__packet) + \
593 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
595 #define VMPACKET_DATA_LENGTH(__packet) \
596 ((((struct vmpacket_descriptor)__packet)->len8 - \
597 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
599 #define VMPACKET_TRANSFER_MODE(__packet) \
600 (((struct IMPACT)__packet)->type)
602 enum vmbus_packet_type {
603 VM_PKT_INVALID = 0x0,
605 VM_PKT_ADD_XFER_PAGESET = 0x2,
606 VM_PKT_RM_XFER_PAGESET = 0x3,
607 VM_PKT_ESTABLISH_GPADL = 0x4,
608 VM_PKT_TEARDOWN_GPADL = 0x5,
609 VM_PKT_DATA_INBAND = 0x6,
610 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
611 VM_PKT_DATA_USING_GPADL = 0x8,
612 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
613 VM_PKT_CANCEL_REQUEST = 0xa,
615 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
616 VM_PKT_ADDITIONAL_DATA = 0xd
619 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
622 /* Version 1 messages */
623 enum vmbus_channel_message_type {
624 CHANNELMSG_INVALID = 0,
625 CHANNELMSG_OFFERCHANNEL = 1,
626 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
627 CHANNELMSG_REQUESTOFFERS = 3,
628 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
629 CHANNELMSG_OPENCHANNEL = 5,
630 CHANNELMSG_OPENCHANNEL_RESULT = 6,
631 CHANNELMSG_CLOSECHANNEL = 7,
632 CHANNELMSG_GPADL_HEADER = 8,
633 CHANNELMSG_GPADL_BODY = 9,
634 CHANNELMSG_GPADL_CREATED = 10,
635 CHANNELMSG_GPADL_TEARDOWN = 11,
636 CHANNELMSG_GPADL_TORNDOWN = 12,
637 CHANNELMSG_RELID_RELEASED = 13,
638 CHANNELMSG_INITIATE_CONTACT = 14,
639 CHANNELMSG_VERSION_RESPONSE = 15,
640 CHANNELMSG_UNLOAD = 16,
641 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
642 CHANNELMSG_VIEWRANGE_ADD = 17,
643 CHANNELMSG_VIEWRANGE_REMOVE = 18,
648 struct vmbus_channel_message_header {
649 enum vmbus_channel_message_type msgtype;
653 /* Query VMBus Version parameters */
654 struct vmbus_channel_query_vmbus_version {
655 struct vmbus_channel_message_header header;
659 /* VMBus Version Supported parameters */
660 struct vmbus_channel_version_supported {
661 struct vmbus_channel_message_header header;
662 u8 version_supported;
665 /* Offer Channel parameters */
666 struct vmbus_channel_offer_channel {
667 struct vmbus_channel_message_header header;
668 struct vmbus_channel_offer offer;
672 * win7 and beyond splits this field into a bit field.
674 u8 monitor_allocated:1;
677 * These are new fields added in win7 and later.
678 * Do not access these fields without checking the
679 * negotiated protocol.
681 * If "is_dedicated_interrupt" is set, we must not set the
682 * associated bit in the channel bitmap while sending the
683 * interrupt to the host.
685 * connection_id is to be used in signaling the host.
687 u16 is_dedicated_interrupt:1;
692 /* Rescind Offer parameters */
693 struct vmbus_channel_rescind_offer {
694 struct vmbus_channel_message_header header;
699 * Request Offer -- no parameters, SynIC message contains the partition ID
700 * Set Snoop -- no parameters, SynIC message contains the partition ID
701 * Clear Snoop -- no parameters, SynIC message contains the partition ID
702 * All Offers Delivered -- no parameters, SynIC message contains the partition
704 * Flush Client -- no parameters, SynIC message contains the partition ID
707 /* Open Channel parameters */
708 struct vmbus_channel_open_channel {
709 struct vmbus_channel_message_header header;
711 /* Identifies the specific VMBus channel that is being opened. */
714 /* ID making a particular open request at a channel offer unique. */
717 /* GPADL for the channel's ring buffer. */
718 u32 ringbuffer_gpadlhandle;
720 /* GPADL for the channel's server context save area. */
721 u32 server_contextarea_gpadlhandle;
724 * The upstream ring buffer begins at offset zero in the memory
725 * described by RingBufferGpadlHandle. The downstream ring buffer
726 * follows it at this offset (in pages).
728 u32 downstream_ringbuffer_pageoffset;
730 /* User-specific data to be passed along to the server endpoint. */
731 unsigned char userdata[MAX_USER_DEFINED_BYTES];
734 /* Open Channel Result parameters */
735 struct vmbus_channel_open_result {
736 struct vmbus_channel_message_header header;
742 /* Close channel parameters; */
743 struct vmbus_channel_close_channel {
744 struct vmbus_channel_message_header header;
748 /* Channel Message GPADL */
749 #define GPADL_TYPE_RING_BUFFER 1
750 #define GPADL_TYPE_SERVER_SAVE_AREA 2
751 #define GPADL_TYPE_TRANSACTION 8
754 * The number of PFNs in a GPADL message is defined by the number of
755 * pages that would be spanned by ByteCount and ByteOffset. If the
756 * implied number of PFNs won't fit in this packet, there will be a
757 * follow-up packet that contains more.
759 struct vmbus_channel_gpadl_header {
760 struct vmbus_channel_message_header header;
765 struct gpa_range range[0];
768 /* This is the followup packet that contains more PFNs. */
769 struct vmbus_channel_gpadl_body {
770 struct vmbus_channel_message_header header;
776 struct vmbus_channel_gpadl_created {
777 struct vmbus_channel_message_header header;
783 struct vmbus_channel_gpadl_teardown {
784 struct vmbus_channel_message_header header;
789 struct vmbus_channel_gpadl_torndown {
790 struct vmbus_channel_message_header header;
794 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
795 struct vmbus_channel_view_range_add {
796 struct vmbus_channel_message_header header;
797 PHYSICAL_ADDRESS viewrange_base;
798 u64 viewrange_length;
802 struct vmbus_channel_view_range_remove {
803 struct vmbus_channel_message_header header;
804 PHYSICAL_ADDRESS viewrange_base;
809 struct vmbus_channel_relid_released {
810 struct vmbus_channel_message_header header;
814 struct vmbus_channel_initiate_contact {
815 struct vmbus_channel_message_header header;
816 u32 vmbus_version_requested;
823 struct vmbus_channel_version_response {
824 struct vmbus_channel_message_header header;
825 u8 version_supported;
828 enum vmbus_channel_state {
830 CHANNEL_OPENING_STATE,
834 struct vmbus_channel_debug_info {
836 enum vmbus_channel_state state;
837 uuid_le interfacetype;
838 uuid_le interface_instance;
840 u32 servermonitor_pending;
841 u32 servermonitor_latency;
842 u32 servermonitor_connectionid;
843 u32 clientmonitor_pending;
844 u32 clientmonitor_latency;
845 u32 clientmonitor_connectionid;
847 struct hv_ring_buffer_debug_info inbound;
848 struct hv_ring_buffer_debug_info outbound;
852 * Represents each channel msg on the vmbus connection This is a
853 * variable-size data structure depending on the msg type itself
855 struct vmbus_channel_msginfo {
856 /* Bookkeeping stuff */
857 struct list_head msglistentry;
859 /* So far, this is only used to handle gpadl body message */
860 struct list_head submsglist;
862 /* Synchronize the request/response if needed */
863 struct completion waitevent;
865 struct vmbus_channel_version_supported version_supported;
866 struct vmbus_channel_open_result open_result;
867 struct vmbus_channel_gpadl_torndown gpadl_torndown;
868 struct vmbus_channel_gpadl_created gpadl_created;
869 struct vmbus_channel_version_response version_response;
874 * The channel message that goes out on the "wire".
875 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
877 unsigned char msg[0];
880 struct vmbus_close_msg {
881 struct vmbus_channel_msginfo info;
882 struct vmbus_channel_close_channel msg;
885 struct vmbus_channel {
886 struct list_head listentry;
888 struct hv_device *device_obj;
890 struct work_struct work;
892 enum vmbus_channel_state state;
894 struct vmbus_channel_offer_channel offermsg;
896 * These are based on the OfferMsg.MonitorId.
897 * Save it here for easy access.
902 u32 ringbuffer_gpadlhandle;
904 /* Allocated memory for ring buffer */
905 void *ringbuffer_pages;
906 u32 ringbuffer_pagecount;
907 struct hv_ring_buffer_info outbound; /* send to parent */
908 struct hv_ring_buffer_info inbound; /* receive from parent */
909 spinlock_t inbound_lock;
910 struct workqueue_struct *controlwq;
912 struct vmbus_close_msg close_msg;
914 /* Channel callback are invoked in this workqueue context */
915 /* HANDLE dataWorkQueue; */
917 void (*onchannel_callback)(void *context);
918 void *channel_callback_context;
921 * A channel can be marked for efficient (batched)
923 * If batched_reading is set to "true", we read until the
924 * channel is empty and hold off interrupts from the host
925 * during the entire read process.
926 * If batched_reading is set to "false", the client is not
927 * going to perform batched reading.
929 * By default we will enable batched reading; specific
930 * drivers that don't want this behavior can turn it off.
933 bool batched_reading;
936 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
938 c->batched_reading = state;
941 void vmbus_onmessage(void *context);
943 int vmbus_request_offers(void);
945 /* The format must be the same as struct vmdata_gpa_direct */
946 struct vmbus_channel_packet_page_buffer {
954 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
957 /* The format must be the same as struct vmdata_gpa_direct */
958 struct vmbus_channel_packet_multipage_buffer {
965 u32 rangecount; /* Always 1 in this case */
966 struct hv_multipage_buffer range;
970 extern int vmbus_open(struct vmbus_channel *channel,
971 u32 send_ringbuffersize,
972 u32 recv_ringbuffersize,
975 void(*onchannel_callback)(void *context),
978 extern void vmbus_close(struct vmbus_channel *channel);
980 extern int vmbus_sendpacket(struct vmbus_channel *channel,
984 enum vmbus_packet_type type,
987 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
988 struct hv_page_buffer pagebuffers[],
994 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
995 struct hv_multipage_buffer *mpb,
1000 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1005 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1008 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1011 u32 *buffer_actual_len,
1014 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1017 u32 *buffer_actual_len,
1021 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1022 struct vmbus_channel_debug_info *debug);
1024 extern void vmbus_ontimer(unsigned long data);
1026 struct hv_dev_port_info {
1030 u32 bytes_avail_toread;
1031 u32 bytes_avail_towrite;
1034 /* Base driver object */
1038 /* the device type supported by this driver */
1040 const struct hv_vmbus_device_id *id_table;
1042 struct device_driver driver;
1044 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1045 int (*remove)(struct hv_device *);
1046 void (*shutdown)(struct hv_device *);
1050 /* Base device object */
1052 /* the device type id of this device */
1055 /* the device instance id of this device */
1056 uuid_le dev_instance;
1058 struct device device;
1060 struct vmbus_channel *channel;
1064 static inline struct hv_device *device_to_hv_device(struct device *d)
1066 return container_of(d, struct hv_device, device);
1069 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1071 return container_of(d, struct hv_driver, driver);
1074 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1076 dev_set_drvdata(&dev->device, data);
1079 static inline void *hv_get_drvdata(struct hv_device *dev)
1081 return dev_get_drvdata(&dev->device);
1084 /* Vmbus interface */
1085 #define vmbus_driver_register(driver) \
1086 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1087 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1088 struct module *owner,
1089 const char *mod_name);
1090 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1093 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1095 * This macro is used to create a struct hv_vmbus_device_id that matches a
1098 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1099 g8, g9, ga, gb, gc, gd, ge, gf) \
1100 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1101 g8, g9, ga, gb, gc, gd, ge, gf },
1104 * Common header for Hyper-V ICs
1107 #define ICMSGTYPE_NEGOTIATE 0
1108 #define ICMSGTYPE_HEARTBEAT 1
1109 #define ICMSGTYPE_KVPEXCHANGE 2
1110 #define ICMSGTYPE_SHUTDOWN 3
1111 #define ICMSGTYPE_TIMESYNC 4
1112 #define ICMSGTYPE_VSS 5
1114 #define ICMSGHDRFLAG_TRANSACTION 1
1115 #define ICMSGHDRFLAG_REQUEST 2
1116 #define ICMSGHDRFLAG_RESPONSE 4
1120 * While we want to handle util services as regular devices,
1121 * there is only one instance of each of these services; so
1122 * we statically allocate the service specific state.
1125 struct hv_util_service {
1127 void (*util_cb)(void *);
1128 int (*util_init)(struct hv_util_service *);
1129 void (*util_deinit)(void);
1132 struct vmbuspipe_hdr {
1143 struct ic_version icverframe;
1145 struct ic_version icvermsg;
1148 u8 ictransaction_id;
1153 struct icmsg_negotiate {
1157 struct ic_version icversion_data[1]; /* any size array */
1160 struct shutdown_msg_data {
1162 u32 timeout_seconds;
1164 u8 display_message[2048];
1167 struct heartbeat_msg_data {
1172 /* Time Sync IC defs */
1173 #define ICTIMESYNCFLAG_PROBE 0
1174 #define ICTIMESYNCFLAG_SYNC 1
1175 #define ICTIMESYNCFLAG_SAMPLE 2
1178 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1180 #define WLTIMEDELTA 116444736000000000LL
1183 struct ictimesync_data {
1190 struct hyperv_service_callback {
1194 struct vmbus_channel *channel;
1195 void (*callback) (void *context);
1198 #define MAX_SRV_VER 0x7ffffff
1199 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1200 struct icmsg_negotiate *, u8 *, int,
1203 int hv_kvp_init(struct hv_util_service *);
1204 void hv_kvp_deinit(void);
1205 void hv_kvp_onchannelcallback(void *);
1207 #endif /* __KERNEL__ */
1208 #endif /* _HYPERV_H */