3 * Copyright (c) 2011, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
28 #include <linux/types.h>
31 * Framework version for util services.
33 #define UTIL_FW_MINOR 0
35 #define UTIL_WS2K8_FW_MAJOR 1
36 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 #define UTIL_FW_MAJOR 3
39 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
43 * Implementation of host controlled snapshot of the guest.
46 #define VSS_OP_REGISTER 128
55 * Following operations are only supported with IC version >= 5.0
57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 VSS_OP_THAW, /* Unfreeze the file systems */
60 VSS_OP_COUNT /* Number of operations, must be last */
65 * Header for all VSS messages.
70 } __attribute__((packed));
74 * Flag values for the hv_vss_check_feature. Linux supports only
77 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
79 struct hv_vss_check_feature {
81 } __attribute__((packed));
83 struct hv_vss_check_dm_info {
85 } __attribute__((packed));
89 struct hv_vss_hdr vss_hdr;
93 struct hv_vss_check_feature vss_cf;
94 struct hv_vss_check_dm_info dm_info;
96 } __attribute__((packed));
99 * An implementation of HyperV key value pair (KVP) functionality for Linux.
102 * Copyright (C) 2010, Novell, Inc.
103 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
108 * Maximum value size - used for both key names and value data, and includes
109 * any applicable NULL terminators.
111 * Note: This limit is somewhat arbitrary, but falls easily within what is
112 * supported for all native guests (back to Win 2000) and what is reasonable
113 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
114 * limited to 255 character key names.
116 * MSDN recommends not storing data values larger than 2048 bytes in the
119 * Note: This value is used in defining the KVP exchange message - this value
120 * cannot be modified without affecting the message size and compatibility.
124 * bytes, including any null terminators
126 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
130 * Maximum key size - the registry limit for the length of an entry name
131 * is 256 characters, including the null terminator
134 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
137 * In Linux, we implement the KVP functionality in two components:
138 * 1) The kernel component which is packaged as part of the hv_utils driver
139 * is responsible for communicating with the host and responsible for
140 * implementing the host/guest protocol. 2) A user level daemon that is
141 * responsible for data gathering.
143 * Host/Guest Protocol: The host iterates over an index and expects the guest
144 * to assign a key name to the index and also return the value corresponding to
145 * the key. The host will have atmost one KVP transaction outstanding at any
146 * given point in time. The host side iteration stops when the guest returns
147 * an error. Microsoft has specified the following mapping of key names to
148 * host specified index:
151 * 0 FullyQualifiedDomainName
152 * 1 IntegrationServicesVersion
153 * 2 NetworkAddressIPv4
154 * 3 NetworkAddressIPv6
160 * 9 ProcessorArchitecture
162 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
164 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
165 * data gathering functionality in a user mode daemon. The user level daemon
166 * is also responsible for binding the key name to the index as well. The
167 * kernel and user-level daemon communicate using a connector channel.
169 * The user mode component first registers with the
170 * the kernel component. Subsequently, the kernel component requests, data
171 * for the specified keys. In response to this message the user mode component
172 * fills in the value corresponding to the specified key. We overload the
173 * sequence field in the cn_msg header to define our KVP message types.
176 * The kernel component simply acts as a conduit for communication between the
177 * Windows host and the user-level daemon. The kernel component passes up the
178 * index received from the Host to the user-level daemon. If the index is
179 * valid (supported), the corresponding key as well as its
180 * value (both are strings) is returned. If the index is invalid
181 * (not supported), a NULL key string is returned.
186 * Registry value types.
194 * As we look at expanding the KVP functionality to include
195 * IP injection functionality, we need to maintain binary
196 * compatibility with older daemons.
198 * The KVP opcodes are defined by the host and it was unfortunate
199 * that I chose to treat the registration operation as part of the
200 * KVP operations defined by the host.
201 * Here is the level of compatibility
202 * (between the user level daemon and the kernel KVP driver) that we
205 * An older daemon will always be supported on a newer driver.
206 * A given user level daemon will require a minimal version of the
208 * If we cannot handle the version differences, we will fail gracefully
209 * (this can happen when we have a user level daemon that is more
210 * advanced than the KVP driver.
212 * We will use values used in this handshake for determining if we have
213 * workable user level daemon and the kernel driver. We begin by taking the
214 * registration opcode out of the KVP opcode namespace. We will however,
215 * maintain compatibility with the existing user-level daemon code.
219 * Daemon code not supporting IP injection (legacy daemon).
222 #define KVP_OP_REGISTER 4
225 * Daemon code supporting IP injection.
226 * The KVP opcode field is used to communicate the
227 * registration information; so define a namespace that
228 * will be distinct from the host defined KVP opcode.
231 #define KVP_OP_REGISTER1 100
233 enum hv_kvp_exchg_op {
240 KVP_OP_COUNT /* Number of operations, must be last. */
243 enum hv_kvp_exchg_pool {
244 KVP_POOL_EXTERNAL = 0,
247 KVP_POOL_AUTO_EXTERNAL,
248 KVP_POOL_AUTO_INTERNAL,
249 KVP_POOL_COUNT /* Number of pools, must be last. */
253 * Some Hyper-V status codes.
256 #define HV_S_OK 0x00000000
257 #define HV_E_FAIL 0x80004005
258 #define HV_S_CONT 0x80070103
259 #define HV_ERROR_NOT_SUPPORTED 0x80070032
260 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
261 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
262 #define HV_INVALIDARG 0x80070057
263 #define HV_GUID_NOTFOUND 0x80041002
265 #define ADDR_FAMILY_NONE 0x00
266 #define ADDR_FAMILY_IPV4 0x01
267 #define ADDR_FAMILY_IPV6 0x02
269 #define MAX_ADAPTER_ID_SIZE 128
270 #define MAX_IP_ADDR_SIZE 1024
271 #define MAX_GATEWAY_SIZE 512
274 struct hv_kvp_ipaddr_value {
275 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
278 __u16 ip_addr[MAX_IP_ADDR_SIZE];
279 __u16 sub_net[MAX_IP_ADDR_SIZE];
280 __u16 gate_way[MAX_GATEWAY_SIZE];
281 __u16 dns_addr[MAX_IP_ADDR_SIZE];
282 } __attribute__((packed));
289 } __attribute__((packed));
291 struct hv_kvp_exchg_msg_value {
295 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
297 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
301 } __attribute__((packed));
303 struct hv_kvp_msg_enumerate {
305 struct hv_kvp_exchg_msg_value data;
306 } __attribute__((packed));
308 struct hv_kvp_msg_get {
309 struct hv_kvp_exchg_msg_value data;
312 struct hv_kvp_msg_set {
313 struct hv_kvp_exchg_msg_value data;
316 struct hv_kvp_msg_delete {
318 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
321 struct hv_kvp_register {
322 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
327 struct hv_kvp_hdr kvp_hdr;
331 struct hv_kvp_msg_get kvp_get;
332 struct hv_kvp_msg_set kvp_set;
333 struct hv_kvp_msg_delete kvp_delete;
334 struct hv_kvp_msg_enumerate kvp_enum_data;
335 struct hv_kvp_ipaddr_value kvp_ip_val;
336 struct hv_kvp_register kvp_register;
338 } __attribute__((packed));
340 struct hv_kvp_ip_msg {
343 struct hv_kvp_ipaddr_value kvp_ip_val;
344 } __attribute__((packed));
347 #include <linux/scatterlist.h>
348 #include <linux/list.h>
349 #include <linux/uuid.h>
350 #include <linux/timer.h>
351 #include <linux/workqueue.h>
352 #include <linux/completion.h>
353 #include <linux/device.h>
354 #include <linux/mod_devicetable.h>
357 #define MAX_PAGE_BUFFER_COUNT 19
358 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
360 #pragma pack(push, 1)
362 /* Single-page buffer */
363 struct hv_page_buffer {
369 /* Multiple-page buffer */
370 struct hv_multipage_buffer {
371 /* Length and Offset determines the # of pfns in the array */
374 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
377 /* 0x18 includes the proprietary packet header */
378 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
379 (sizeof(struct hv_page_buffer) * \
380 MAX_PAGE_BUFFER_COUNT))
381 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
382 sizeof(struct hv_multipage_buffer))
387 struct hv_ring_buffer {
388 /* Offset in bytes from the start of ring data below */
391 /* Offset in bytes from the start of ring data below */
397 * Win8 uses some of the reserved bits to implement
398 * interrupt driven flow management. On the send side
399 * we can request that the receiver interrupt the sender
400 * when the ring transitions from being full to being able
401 * to handle a message of size "pending_send_sz".
403 * Add necessary state for this enhancement.
411 u32 feat_pending_send_sz:1;
416 /* Pad it to PAGE_SIZE so that data starts on page boundary */
420 * Ring data starts here + RingDataStartOffset
421 * !!! DO NOT place any fields below this !!!
426 struct hv_ring_buffer_info {
427 struct hv_ring_buffer *ring_buffer;
428 u32 ring_size; /* Include the shared header */
429 spinlock_t ring_lock;
431 u32 ring_datasize; /* < ring_size */
432 u32 ring_data_startoffset;
437 * hv_get_ringbuffer_availbytes()
439 * Get number of bytes available to read and to write to
440 * for the specified ring buffer
443 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
444 u32 *read, u32 *write)
446 u32 read_loc, write_loc, dsize;
448 smp_read_barrier_depends();
450 /* Capture the read/write indices before they changed */
451 read_loc = rbi->ring_buffer->read_index;
452 write_loc = rbi->ring_buffer->write_index;
453 dsize = rbi->ring_datasize;
455 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
456 read_loc - write_loc;
457 *read = dsize - *write;
461 * VMBUS version is 32 bit entity broken up into
462 * two 16 bit quantities: major_number. minor_number.
464 * 0 . 13 (Windows Server 2008)
469 #define VERSION_WS2008 ((0 << 16) | (13))
470 #define VERSION_WIN7 ((1 << 16) | (1))
471 #define VERSION_WIN8 ((2 << 16) | (4))
473 #define VERSION_INVAL -1
475 #define VERSION_CURRENT VERSION_WIN8
477 /* Make maximum size of pipe payload of 16K */
478 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
480 /* Define PipeMode values. */
481 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
482 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
484 /* The size of the user defined data buffer for non-pipe offers. */
485 #define MAX_USER_DEFINED_BYTES 120
487 /* The size of the user defined data buffer for pipe offers. */
488 #define MAX_PIPE_USER_DEFINED_BYTES 116
491 * At the center of the Channel Management library is the Channel Offer. This
492 * struct contains the fundamental information about an offer.
494 struct vmbus_channel_offer {
499 * These two fields are not currently used.
505 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
508 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
510 unsigned char user_def[MAX_USER_DEFINED_BYTES];
515 * The following sructure is an integrated pipe protocol, which
516 * is implemented on top of standard user-defined data. Pipe
517 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
522 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
526 * The sub_channel_index is defined in win8.
528 u16 sub_channel_index;
533 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
534 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
535 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
536 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
537 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
538 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
539 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
541 struct vmpacket_descriptor {
549 struct vmpacket_header {
550 u32 prev_pkt_start_offset;
551 struct vmpacket_descriptor descriptor;
554 struct vmtransfer_page_range {
559 struct vmtransfer_page_packet_header {
560 struct vmpacket_descriptor d;
565 struct vmtransfer_page_range ranges[1];
568 struct vmgpadl_packet_header {
569 struct vmpacket_descriptor d;
574 struct vmadd_remove_transfer_page_set {
575 struct vmpacket_descriptor d;
582 * This structure defines a range in guest physical space that can be made to
583 * look virtually contiguous.
592 * This is the format for an Establish Gpadl packet, which contains a handle by
593 * which this GPADL will be known and a set of GPA ranges associated with it.
594 * This can be converted to a MDL by the guest OS. If there are multiple GPA
595 * ranges, then the resulting MDL will be "chained," representing multiple VA
598 struct vmestablish_gpadl {
599 struct vmpacket_descriptor d;
602 struct gpa_range range[1];
606 * This is the format for a Teardown Gpadl packet, which indicates that the
607 * GPADL handle in the Establish Gpadl packet will never be referenced again.
609 struct vmteardown_gpadl {
610 struct vmpacket_descriptor d;
612 u32 reserved; /* for alignment to a 8-byte boundary */
616 * This is the format for a GPA-Direct packet, which contains a set of GPA
617 * ranges, in addition to commands and/or data.
619 struct vmdata_gpa_direct {
620 struct vmpacket_descriptor d;
623 struct gpa_range range[1];
626 /* This is the format for a Additional Data Packet. */
627 struct vmadditional_data {
628 struct vmpacket_descriptor d;
632 unsigned char data[1];
635 union vmpacket_largest_possible_header {
636 struct vmpacket_descriptor simple_hdr;
637 struct vmtransfer_page_packet_header xfer_page_hdr;
638 struct vmgpadl_packet_header gpadl_hdr;
639 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
640 struct vmestablish_gpadl establish_gpadl_hdr;
641 struct vmteardown_gpadl teardown_gpadl_hdr;
642 struct vmdata_gpa_direct data_gpa_direct_hdr;
645 #define VMPACKET_DATA_START_ADDRESS(__packet) \
646 (void *)(((unsigned char *)__packet) + \
647 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
649 #define VMPACKET_DATA_LENGTH(__packet) \
650 ((((struct vmpacket_descriptor)__packet)->len8 - \
651 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
653 #define VMPACKET_TRANSFER_MODE(__packet) \
654 (((struct IMPACT)__packet)->type)
656 enum vmbus_packet_type {
657 VM_PKT_INVALID = 0x0,
659 VM_PKT_ADD_XFER_PAGESET = 0x2,
660 VM_PKT_RM_XFER_PAGESET = 0x3,
661 VM_PKT_ESTABLISH_GPADL = 0x4,
662 VM_PKT_TEARDOWN_GPADL = 0x5,
663 VM_PKT_DATA_INBAND = 0x6,
664 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
665 VM_PKT_DATA_USING_GPADL = 0x8,
666 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
667 VM_PKT_CANCEL_REQUEST = 0xa,
669 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
670 VM_PKT_ADDITIONAL_DATA = 0xd
673 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
676 /* Version 1 messages */
677 enum vmbus_channel_message_type {
678 CHANNELMSG_INVALID = 0,
679 CHANNELMSG_OFFERCHANNEL = 1,
680 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
681 CHANNELMSG_REQUESTOFFERS = 3,
682 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
683 CHANNELMSG_OPENCHANNEL = 5,
684 CHANNELMSG_OPENCHANNEL_RESULT = 6,
685 CHANNELMSG_CLOSECHANNEL = 7,
686 CHANNELMSG_GPADL_HEADER = 8,
687 CHANNELMSG_GPADL_BODY = 9,
688 CHANNELMSG_GPADL_CREATED = 10,
689 CHANNELMSG_GPADL_TEARDOWN = 11,
690 CHANNELMSG_GPADL_TORNDOWN = 12,
691 CHANNELMSG_RELID_RELEASED = 13,
692 CHANNELMSG_INITIATE_CONTACT = 14,
693 CHANNELMSG_VERSION_RESPONSE = 15,
694 CHANNELMSG_UNLOAD = 16,
695 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
696 CHANNELMSG_VIEWRANGE_ADD = 17,
697 CHANNELMSG_VIEWRANGE_REMOVE = 18,
702 struct vmbus_channel_message_header {
703 enum vmbus_channel_message_type msgtype;
707 /* Query VMBus Version parameters */
708 struct vmbus_channel_query_vmbus_version {
709 struct vmbus_channel_message_header header;
713 /* VMBus Version Supported parameters */
714 struct vmbus_channel_version_supported {
715 struct vmbus_channel_message_header header;
716 u8 version_supported;
719 /* Offer Channel parameters */
720 struct vmbus_channel_offer_channel {
721 struct vmbus_channel_message_header header;
722 struct vmbus_channel_offer offer;
726 * win7 and beyond splits this field into a bit field.
728 u8 monitor_allocated:1;
731 * These are new fields added in win7 and later.
732 * Do not access these fields without checking the
733 * negotiated protocol.
735 * If "is_dedicated_interrupt" is set, we must not set the
736 * associated bit in the channel bitmap while sending the
737 * interrupt to the host.
739 * connection_id is to be used in signaling the host.
741 u16 is_dedicated_interrupt:1;
746 /* Rescind Offer parameters */
747 struct vmbus_channel_rescind_offer {
748 struct vmbus_channel_message_header header;
753 * Request Offer -- no parameters, SynIC message contains the partition ID
754 * Set Snoop -- no parameters, SynIC message contains the partition ID
755 * Clear Snoop -- no parameters, SynIC message contains the partition ID
756 * All Offers Delivered -- no parameters, SynIC message contains the partition
758 * Flush Client -- no parameters, SynIC message contains the partition ID
761 /* Open Channel parameters */
762 struct vmbus_channel_open_channel {
763 struct vmbus_channel_message_header header;
765 /* Identifies the specific VMBus channel that is being opened. */
768 /* ID making a particular open request at a channel offer unique. */
771 /* GPADL for the channel's ring buffer. */
772 u32 ringbuffer_gpadlhandle;
775 * Starting with win8, this field will be used to specify
776 * the target virtual processor on which to deliver the interrupt for
777 * the host to guest communication.
778 * Prior to win8, incoming channel interrupts would only
779 * be delivered on cpu 0. Setting this value to 0 would
780 * preserve the earlier behavior.
785 * The upstream ring buffer begins at offset zero in the memory
786 * described by RingBufferGpadlHandle. The downstream ring buffer
787 * follows it at this offset (in pages).
789 u32 downstream_ringbuffer_pageoffset;
791 /* User-specific data to be passed along to the server endpoint. */
792 unsigned char userdata[MAX_USER_DEFINED_BYTES];
795 /* Open Channel Result parameters */
796 struct vmbus_channel_open_result {
797 struct vmbus_channel_message_header header;
803 /* Close channel parameters; */
804 struct vmbus_channel_close_channel {
805 struct vmbus_channel_message_header header;
809 /* Channel Message GPADL */
810 #define GPADL_TYPE_RING_BUFFER 1
811 #define GPADL_TYPE_SERVER_SAVE_AREA 2
812 #define GPADL_TYPE_TRANSACTION 8
815 * The number of PFNs in a GPADL message is defined by the number of
816 * pages that would be spanned by ByteCount and ByteOffset. If the
817 * implied number of PFNs won't fit in this packet, there will be a
818 * follow-up packet that contains more.
820 struct vmbus_channel_gpadl_header {
821 struct vmbus_channel_message_header header;
826 struct gpa_range range[0];
829 /* This is the followup packet that contains more PFNs. */
830 struct vmbus_channel_gpadl_body {
831 struct vmbus_channel_message_header header;
837 struct vmbus_channel_gpadl_created {
838 struct vmbus_channel_message_header header;
844 struct vmbus_channel_gpadl_teardown {
845 struct vmbus_channel_message_header header;
850 struct vmbus_channel_gpadl_torndown {
851 struct vmbus_channel_message_header header;
855 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
856 struct vmbus_channel_view_range_add {
857 struct vmbus_channel_message_header header;
858 PHYSICAL_ADDRESS viewrange_base;
859 u64 viewrange_length;
863 struct vmbus_channel_view_range_remove {
864 struct vmbus_channel_message_header header;
865 PHYSICAL_ADDRESS viewrange_base;
870 struct vmbus_channel_relid_released {
871 struct vmbus_channel_message_header header;
875 struct vmbus_channel_initiate_contact {
876 struct vmbus_channel_message_header header;
877 u32 vmbus_version_requested;
884 struct vmbus_channel_version_response {
885 struct vmbus_channel_message_header header;
886 u8 version_supported;
889 enum vmbus_channel_state {
891 CHANNEL_OPENING_STATE,
893 CHANNEL_OPENED_STATE,
897 * Represents each channel msg on the vmbus connection This is a
898 * variable-size data structure depending on the msg type itself
900 struct vmbus_channel_msginfo {
901 /* Bookkeeping stuff */
902 struct list_head msglistentry;
904 /* So far, this is only used to handle gpadl body message */
905 struct list_head submsglist;
907 /* Synchronize the request/response if needed */
908 struct completion waitevent;
910 struct vmbus_channel_version_supported version_supported;
911 struct vmbus_channel_open_result open_result;
912 struct vmbus_channel_gpadl_torndown gpadl_torndown;
913 struct vmbus_channel_gpadl_created gpadl_created;
914 struct vmbus_channel_version_response version_response;
919 * The channel message that goes out on the "wire".
920 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
922 unsigned char msg[0];
925 struct vmbus_close_msg {
926 struct vmbus_channel_msginfo info;
927 struct vmbus_channel_close_channel msg;
930 /* Define connection identifier type. */
931 union hv_connection_id {
939 /* Definition of the hv_signal_event hypercall input structure. */
940 struct hv_input_signal_event {
941 union hv_connection_id connectionid;
946 struct hv_input_signal_event_buffer {
948 struct hv_input_signal_event event;
951 struct vmbus_channel {
952 struct list_head listentry;
954 struct hv_device *device_obj;
956 struct work_struct work;
958 enum vmbus_channel_state state;
960 struct vmbus_channel_offer_channel offermsg;
962 * These are based on the OfferMsg.MonitorId.
963 * Save it here for easy access.
968 u32 ringbuffer_gpadlhandle;
970 /* Allocated memory for ring buffer */
971 void *ringbuffer_pages;
972 u32 ringbuffer_pagecount;
973 struct hv_ring_buffer_info outbound; /* send to parent */
974 struct hv_ring_buffer_info inbound; /* receive from parent */
975 spinlock_t inbound_lock;
976 struct workqueue_struct *controlwq;
978 struct vmbus_close_msg close_msg;
980 /* Channel callback are invoked in this workqueue context */
981 /* HANDLE dataWorkQueue; */
983 void (*onchannel_callback)(void *context);
984 void *channel_callback_context;
987 * A channel can be marked for efficient (batched)
989 * If batched_reading is set to "true", we read until the
990 * channel is empty and hold off interrupts from the host
991 * during the entire read process.
992 * If batched_reading is set to "false", the client is not
993 * going to perform batched reading.
995 * By default we will enable batched reading; specific
996 * drivers that don't want this behavior can turn it off.
999 bool batched_reading;
1001 bool is_dedicated_interrupt;
1002 struct hv_input_signal_event_buffer sig_buf;
1003 struct hv_input_signal_event *sig_event;
1006 * Starting with win8, this field will be used to specify
1007 * the target virtual processor on which to deliver the interrupt for
1008 * the host to guest communication.
1009 * Prior to win8, incoming channel interrupts would only
1010 * be delivered on cpu 0. Setting this value to 0 would
1011 * preserve the earlier behavior.
1015 * Support for sub-channels. For high performance devices,
1016 * it will be useful to have multiple sub-channels to support
1017 * a scalable communication infrastructure with the host.
1018 * The support for sub-channels is implemented as an extention
1019 * to the current infrastructure.
1020 * The initial offer is considered the primary channel and this
1021 * offer message will indicate if the host supports sub-channels.
1022 * The guest is free to ask for sub-channels to be offerred and can
1023 * open these sub-channels as a normal "primary" channel. However,
1024 * all sub-channels will have the same type and instance guids as the
1025 * primary channel. Requests sent on a given channel will result in a
1026 * response on the same channel.
1030 * Sub-channel creation callback. This callback will be called in
1031 * process context when a sub-channel offer is received from the host.
1032 * The guest can open the sub-channel in the context of this callback.
1034 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1038 * All Sub-channels of a primary channel are linked here.
1040 struct list_head sc_list;
1042 * The primary channel this sub-channel belongs to.
1043 * This will be NULL for the primary channel.
1045 struct vmbus_channel *primary_channel;
1048 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1050 c->batched_reading = state;
1053 void vmbus_onmessage(void *context);
1055 int vmbus_request_offers(void);
1058 * APIs for managing sub-channels.
1061 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1062 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1065 * Retrieve the (sub) channel on which to send an outgoing request.
1066 * When a primary channel has multiple sub-channels, we choose a
1067 * channel whose VCPU binding is closest to the VCPU on which
1068 * this call is being made.
1070 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1073 * Check if sub-channels have already been offerred. This API will be useful
1074 * when the driver is unloaded after establishing sub-channels. In this case,
1075 * when the driver is re-loaded, the driver would have to check if the
1076 * subchannels have already been established before attempting to request
1077 * the creation of sub-channels.
1078 * This function returns TRUE to indicate that subchannels have already been
1080 * This function should be invoked after setting the callback function for
1081 * sub-channel creation.
1083 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1085 /* The format must be the same as struct vmdata_gpa_direct */
1086 struct vmbus_channel_packet_page_buffer {
1094 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1097 /* The format must be the same as struct vmdata_gpa_direct */
1098 struct vmbus_channel_packet_multipage_buffer {
1105 u32 rangecount; /* Always 1 in this case */
1106 struct hv_multipage_buffer range;
1110 extern int vmbus_open(struct vmbus_channel *channel,
1111 u32 send_ringbuffersize,
1112 u32 recv_ringbuffersize,
1115 void(*onchannel_callback)(void *context),
1118 extern void vmbus_close(struct vmbus_channel *channel);
1120 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1124 enum vmbus_packet_type type,
1127 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1128 struct hv_page_buffer pagebuffers[],
1134 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1135 struct hv_multipage_buffer *mpb,
1140 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1145 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1148 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1151 u32 *buffer_actual_len,
1154 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1157 u32 *buffer_actual_len,
1161 extern void vmbus_ontimer(unsigned long data);
1163 /* Base driver object */
1167 /* the device type supported by this driver */
1169 const struct hv_vmbus_device_id *id_table;
1171 struct device_driver driver;
1173 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1174 int (*remove)(struct hv_device *);
1175 void (*shutdown)(struct hv_device *);
1179 /* Base device object */
1181 /* the device type id of this device */
1184 /* the device instance id of this device */
1185 uuid_le dev_instance;
1187 struct device device;
1189 struct vmbus_channel *channel;
1193 static inline struct hv_device *device_to_hv_device(struct device *d)
1195 return container_of(d, struct hv_device, device);
1198 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1200 return container_of(d, struct hv_driver, driver);
1203 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1205 dev_set_drvdata(&dev->device, data);
1208 static inline void *hv_get_drvdata(struct hv_device *dev)
1210 return dev_get_drvdata(&dev->device);
1213 /* Vmbus interface */
1214 #define vmbus_driver_register(driver) \
1215 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1216 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1217 struct module *owner,
1218 const char *mod_name);
1219 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1222 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1224 * This macro is used to create a struct hv_vmbus_device_id that matches a
1227 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1228 g8, g9, ga, gb, gc, gd, ge, gf) \
1229 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1230 g8, g9, ga, gb, gc, gd, ge, gf },
1233 * GUID definitions of various offer types - services offered to the guest.
1238 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1240 #define HV_NIC_GUID \
1242 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1243 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1248 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1250 #define HV_IDE_GUID \
1252 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1253 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1258 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1260 #define HV_SCSI_GUID \
1262 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1263 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1268 * {0e0b6031-5213-4934-818b-38d90ced39db}
1270 #define HV_SHUTDOWN_GUID \
1272 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1273 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1278 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1280 #define HV_TS_GUID \
1282 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1283 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1288 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1290 #define HV_HEART_BEAT_GUID \
1292 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1293 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1298 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1300 #define HV_KVP_GUID \
1302 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1303 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \
1307 * Dynamic memory GUID
1308 * {525074dc-8985-46e2-8057-a307dc18a502}
1310 #define HV_DM_GUID \
1312 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1313 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1318 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1320 #define HV_MOUSE_GUID \
1322 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1323 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1327 * VSS (Backup/Restore) GUID
1329 #define HV_VSS_GUID \
1331 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1332 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \
1335 * Synthetic Video GUID
1336 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1338 #define HV_SYNTHVID_GUID \
1340 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1341 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1346 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1348 #define HV_SYNTHFC_GUID \
1350 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1351 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1355 * Common header for Hyper-V ICs
1358 #define ICMSGTYPE_NEGOTIATE 0
1359 #define ICMSGTYPE_HEARTBEAT 1
1360 #define ICMSGTYPE_KVPEXCHANGE 2
1361 #define ICMSGTYPE_SHUTDOWN 3
1362 #define ICMSGTYPE_TIMESYNC 4
1363 #define ICMSGTYPE_VSS 5
1365 #define ICMSGHDRFLAG_TRANSACTION 1
1366 #define ICMSGHDRFLAG_REQUEST 2
1367 #define ICMSGHDRFLAG_RESPONSE 4
1371 * While we want to handle util services as regular devices,
1372 * there is only one instance of each of these services; so
1373 * we statically allocate the service specific state.
1376 struct hv_util_service {
1378 void (*util_cb)(void *);
1379 int (*util_init)(struct hv_util_service *);
1380 void (*util_deinit)(void);
1383 struct vmbuspipe_hdr {
1394 struct ic_version icverframe;
1396 struct ic_version icvermsg;
1399 u8 ictransaction_id;
1404 struct icmsg_negotiate {
1408 struct ic_version icversion_data[1]; /* any size array */
1411 struct shutdown_msg_data {
1413 u32 timeout_seconds;
1415 u8 display_message[2048];
1418 struct heartbeat_msg_data {
1423 /* Time Sync IC defs */
1424 #define ICTIMESYNCFLAG_PROBE 0
1425 #define ICTIMESYNCFLAG_SYNC 1
1426 #define ICTIMESYNCFLAG_SAMPLE 2
1429 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1431 #define WLTIMEDELTA 116444736000000000LL
1434 struct ictimesync_data {
1441 struct hyperv_service_callback {
1445 struct vmbus_channel *channel;
1446 void (*callback) (void *context);
1449 #define MAX_SRV_VER 0x7ffffff
1450 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1451 struct icmsg_negotiate *, u8 *, int,
1454 int hv_kvp_init(struct hv_util_service *);
1455 void hv_kvp_deinit(void);
1456 void hv_kvp_onchannelcallback(void *);
1458 int hv_vss_init(struct hv_util_service *);
1459 void hv_vss_deinit(void);
1460 void hv_vss_onchannelcallback(void *);
1463 * Negotiated version with the Host.
1466 extern __u32 vmbus_proto_version;
1468 #endif /* __KERNEL__ */
1469 #endif /* _HYPERV_H */