2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
33 * typedef dma_cookie_t - an opaque DMA cookie
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
44 * enum dma_status - DMA transaction status
45 * @DMA_SUCCESS: transaction completed successfully
46 * @DMA_IN_PROGRESS: transaction not yet processed
47 * @DMA_PAUSED: transaction is paused
48 * @DMA_ERROR: transaction failed
58 * enum dma_transaction_type - DMA transaction types/indexes
60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
61 * automatically set as dma devices are registered.
63 enum dma_transaction_type {
77 /* last transaction type for creation of the capabilities mask */
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
88 enum dma_transfer_direction {
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
136 * @src_start: Bus address of source for the first chunk.
137 * @dst_start: Bus address of destination for the first chunk.
138 * @dir: Specifies the type of Source and Destination.
139 * @src_inc: If the source address increments after reading from it.
140 * @dst_inc: If the destination address increments after writing to it.
141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
142 * Otherwise, source is read contiguously (icg ignored).
143 * Ignored if src_inc is false.
144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
145 * Otherwise, destination is filled contiguously (icg ignored).
146 * Ignored if dst_inc is false.
147 * @numf: Number of frames in this template.
148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
151 struct dma_interleaved_template {
152 dma_addr_t src_start;
153 dma_addr_t dst_start;
154 enum dma_transfer_direction dir;
161 struct data_chunk sgl[0];
165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
166 * control completion, and communicate status.
167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
170 * acknowledges receipt, i.e. has has a chance to establish any dependency
172 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
173 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
174 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
175 * (if not set, do the source dma-unmapping as page)
176 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
177 * (if not set, do the destination dma-unmapping as page)
178 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
179 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
180 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
181 * sources that were the result of a previous operation, in the case of a PQ
182 * operation it continues the calculation with new sources
183 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
184 * on the result of this operation
186 enum dma_ctrl_flags {
187 DMA_PREP_INTERRUPT = (1 << 0),
188 DMA_CTRL_ACK = (1 << 1),
189 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
190 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
191 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
192 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
193 DMA_PREP_PQ_DISABLE_P = (1 << 6),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
195 DMA_PREP_CONTINUE = (1 << 8),
196 DMA_PREP_FENCE = (1 << 9),
200 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
201 * on a running channel.
202 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
203 * @DMA_PAUSE: pause ongoing transfers
204 * @DMA_RESUME: resume paused transfer
205 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
206 * that need to runtime reconfigure the slave channels (as opposed to passing
207 * configuration data in statically from the platform). An additional
208 * argument of struct dma_slave_config must be passed in with this
210 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
211 * into external start mode.
218 FSLDMA_EXTERNAL_START,
222 * enum sum_check_bits - bit position of pq_check_flags
224 enum sum_check_bits {
230 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
231 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
232 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
234 enum sum_check_flags {
235 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
236 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
241 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
242 * See linux/cpumask.h
244 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
247 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
248 * @memcpy_count: transaction counter
249 * @bytes_transferred: byte counter
252 struct dma_chan_percpu {
254 unsigned long memcpy_count;
255 unsigned long bytes_transferred;
259 * struct dma_chan - devices supply DMA channels, clients use them
260 * @device: ptr to the dma device who supplies this channel, always !%NULL
261 * @cookie: last cookie value returned to client
262 * @completed_cookie: last completed cookie for this channel
263 * @chan_id: channel ID for sysfs
264 * @dev: class device for sysfs
265 * @device_node: used to add this to the device chan list
266 * @local: per-cpu pointer to a struct dma_chan_percpu
267 * @client-count: how many clients are using this channel
268 * @table_count: number of appearances in the mem-to-mem allocation table
269 * @private: private data for certain client-channel associations
272 struct dma_device *device;
274 dma_cookie_t completed_cookie;
278 struct dma_chan_dev *dev;
280 struct list_head device_node;
281 struct dma_chan_percpu __percpu *local;
288 * struct dma_chan_dev - relate sysfs device node to backing channel device
289 * @chan - driver channel device
290 * @device - sysfs device
291 * @dev_id - parent dma_device dev_id
292 * @idr_ref - reference count to gate release of dma_device dev_id
294 struct dma_chan_dev {
295 struct dma_chan *chan;
296 struct device device;
302 * enum dma_slave_buswidth - defines bus with of the DMA slave
303 * device, source or target buses
305 enum dma_slave_buswidth {
306 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
307 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
308 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
317 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
318 * need to differentiate source and target addresses.
319 * @src_addr: this is the physical address where DMA slave data
320 * should be read (RX), if the source is memory this argument is
322 * @dst_addr: this is the physical address where DMA slave data
323 * should be written (TX), if the source is memory this argument
325 * @src_addr_width: this is the width in bytes of the source (RX)
326 * register where DMA data shall be read. If the source
327 * is memory this may be ignored depending on architecture.
328 * Legal values: 1, 2, 4, 8.
329 * @dst_addr_width: same as src_addr_width but for destination
330 * target (TX) mutatis mutandis.
331 * @src_maxburst: the maximum number of words (note: words, as in
332 * units of the src_addr_width member, not bytes) that can be sent
333 * in one burst to the device. Typically something like half the
334 * FIFO depth on I/O peripherals so you don't overflow it. This
335 * may or may not be applicable on memory sources.
336 * @dst_maxburst: same as src_maxburst but for destination target
338 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
339 * with 'true' if peripheral should be flow controller. Direction will be
340 * selected at Runtime.
341 * @slave_id: Slave requester id. Only valid for slave channels. The dma
342 * slave peripheral will have unique id as dma requester which need to be
343 * pass as slave config.
345 * This struct is passed in as configuration data to a DMA engine
346 * in order to set up a certain channel for DMA transport at runtime.
347 * The DMA device/engine has to provide support for an additional
348 * command in the channel config interface, DMA_SLAVE_CONFIG
349 * and this struct will then be passed in as an argument to the
350 * DMA engine device_control() function.
352 * The rationale for adding configuration information to this struct
353 * is as follows: if it is likely that most DMA slave controllers in
354 * the world will support the configuration option, then make it
355 * generic. If not: if it is fixed so that it be sent in static from
356 * the platform data, then prefer to do that. Else, if it is neither
357 * fixed at runtime, nor generic enough (such as bus mastership on
358 * some CPU family and whatnot) then create a custom slave config
359 * struct and pass that, then make this config a member of that
360 * struct, if applicable.
362 struct dma_slave_config {
363 enum dma_transfer_direction direction;
366 enum dma_slave_buswidth src_addr_width;
367 enum dma_slave_buswidth dst_addr_width;
371 unsigned int slave_id;
374 static inline const char *dma_chan_name(struct dma_chan *chan)
376 return dev_name(&chan->dev->device);
379 void dma_chan_cleanup(struct kref *kref);
382 * typedef dma_filter_fn - callback filter for dma_request_channel
383 * @chan: channel to be reviewed
384 * @filter_param: opaque parameter passed through dma_request_channel
386 * When this optional parameter is specified in a call to dma_request_channel a
387 * suitable channel is passed to this routine for further dispositioning before
388 * being returned. Where 'suitable' indicates a non-busy channel that
389 * satisfies the given capability mask. It returns 'true' to indicate that the
390 * channel is suitable.
392 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
394 typedef void (*dma_async_tx_callback)(void *dma_async_param);
396 * struct dma_async_tx_descriptor - async transaction descriptor
397 * ---dma generic offload fields---
398 * @cookie: tracking cookie for this transaction, set to -EBUSY if
399 * this tx is sitting on a dependency list
400 * @flags: flags to augment operation preparation, control completion, and
402 * @phys: physical address of the descriptor
403 * @chan: target channel for this operation
404 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
405 * @callback: routine to call after this operation is complete
406 * @callback_param: general parameter to pass to the callback routine
407 * ---async_tx api specific fields---
408 * @next: at completion submit this descriptor
409 * @parent: pointer to the next level up in the dependency chain
410 * @lock: protect the parent and next pointers
412 struct dma_async_tx_descriptor {
414 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
416 struct dma_chan *chan;
417 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
418 dma_async_tx_callback callback;
419 void *callback_param;
420 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
421 struct dma_async_tx_descriptor *next;
422 struct dma_async_tx_descriptor *parent;
427 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
428 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
431 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
434 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
438 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
441 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
444 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
448 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
454 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
456 spin_lock_bh(&txd->lock);
458 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
460 spin_unlock_bh(&txd->lock);
462 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
467 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
471 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
475 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
479 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
486 * struct dma_tx_state - filled in to report the status of
488 * @last: last completed DMA cookie
489 * @used: last issued DMA cookie (i.e. the one in progress)
490 * @residue: the remaining number of bytes left to transmit
491 * on the selected transfer for states DMA_IN_PROGRESS and
492 * DMA_PAUSED if this is implemented in the driver, else 0
494 struct dma_tx_state {
501 * struct dma_device - info on the entity supplying DMA services
502 * @chancnt: how many DMA channels are supported
503 * @privatecnt: how many DMA channels are requested by dma_request_channel
504 * @channels: the list of struct dma_chan
505 * @global_node: list_head for global dma_device_list
506 * @cap_mask: one or more dma_capability flags
507 * @max_xor: maximum number of xor sources, 0 if no capability
508 * @max_pq: maximum number of PQ sources and PQ-continue capability
509 * @copy_align: alignment shift for memcpy operations
510 * @xor_align: alignment shift for xor operations
511 * @pq_align: alignment shift for pq operations
512 * @fill_align: alignment shift for memset operations
513 * @dev_id: unique device ID
514 * @dev: struct device reference for dma mapping api
515 * @device_alloc_chan_resources: allocate resources and return the
516 * number of allocated descriptors
517 * @device_free_chan_resources: release DMA channel's resources
518 * @device_prep_dma_memcpy: prepares a memcpy operation
519 * @device_prep_dma_xor: prepares a xor operation
520 * @device_prep_dma_xor_val: prepares a xor validation operation
521 * @device_prep_dma_pq: prepares a pq operation
522 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
523 * @device_prep_dma_memset: prepares a memset operation
524 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
525 * @device_prep_slave_sg: prepares a slave dma operation
526 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
527 * The function takes a buffer of size buf_len. The callback function will
528 * be called after period_len bytes have been transferred.
529 * @device_prep_interleaved_dma: Transfer expression in a generic way.
530 * @device_control: manipulate all pending operations on a channel, returns
532 * @device_tx_status: poll for transaction completion, the optional
533 * txstate parameter can be supplied with a pointer to get a
534 * struct with auxiliary transfer status information, otherwise the call
535 * will just return a simple status code
536 * @device_issue_pending: push pending transactions to hardware
540 unsigned int chancnt;
541 unsigned int privatecnt;
542 struct list_head channels;
543 struct list_head global_node;
544 dma_cap_mask_t cap_mask;
545 unsigned short max_xor;
546 unsigned short max_pq;
551 #define DMA_HAS_PQ_CONTINUE (1 << 15)
556 int (*device_alloc_chan_resources)(struct dma_chan *chan);
557 void (*device_free_chan_resources)(struct dma_chan *chan);
559 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
560 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
561 size_t len, unsigned long flags);
562 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
563 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
564 unsigned int src_cnt, size_t len, unsigned long flags);
565 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
566 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
567 size_t len, enum sum_check_flags *result, unsigned long flags);
568 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
569 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
570 unsigned int src_cnt, const unsigned char *scf,
571 size_t len, unsigned long flags);
572 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
573 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
574 unsigned int src_cnt, const unsigned char *scf, size_t len,
575 enum sum_check_flags *pqres, unsigned long flags);
576 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
577 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
578 unsigned long flags);
579 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
580 struct dma_chan *chan, unsigned long flags);
581 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
582 struct dma_chan *chan,
583 struct scatterlist *dst_sg, unsigned int dst_nents,
584 struct scatterlist *src_sg, unsigned int src_nents,
585 unsigned long flags);
587 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
588 struct dma_chan *chan, struct scatterlist *sgl,
589 unsigned int sg_len, enum dma_transfer_direction direction,
590 unsigned long flags, void *context);
591 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
592 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
593 size_t period_len, enum dma_transfer_direction direction,
594 unsigned long flags, void *context);
595 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
596 struct dma_chan *chan, struct dma_interleaved_template *xt,
597 unsigned long flags);
598 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
601 enum dma_status (*device_tx_status)(struct dma_chan *chan,
603 struct dma_tx_state *txstate);
604 void (*device_issue_pending)(struct dma_chan *chan);
607 static inline int dmaengine_device_control(struct dma_chan *chan,
608 enum dma_ctrl_cmd cmd,
611 return chan->device->device_control(chan, cmd, arg);
614 static inline int dmaengine_slave_config(struct dma_chan *chan,
615 struct dma_slave_config *config)
617 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
618 (unsigned long)config);
621 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
622 struct dma_chan *chan, dma_addr_t buf, size_t len,
623 enum dma_transfer_direction dir, unsigned long flags)
625 struct scatterlist sg;
626 sg_init_table(&sg, 1);
627 sg_dma_address(&sg) = buf;
628 sg_dma_len(&sg) = len;
630 return chan->device->device_prep_slave_sg(chan, &sg, 1,
634 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
635 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
636 enum dma_transfer_direction dir, unsigned long flags)
638 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
642 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
644 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
645 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
646 enum dma_transfer_direction dir, unsigned long flags,
647 struct rio_dma_ext *rio_ext)
649 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
650 dir, flags, rio_ext);
654 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
655 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
656 size_t period_len, enum dma_transfer_direction dir,
659 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
660 period_len, dir, flags, NULL);
663 static inline int dmaengine_terminate_all(struct dma_chan *chan)
665 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
668 static inline int dmaengine_pause(struct dma_chan *chan)
670 return dmaengine_device_control(chan, DMA_PAUSE, 0);
673 static inline int dmaengine_resume(struct dma_chan *chan)
675 return dmaengine_device_control(chan, DMA_RESUME, 0);
678 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
679 dma_cookie_t cookie, struct dma_tx_state *state)
681 return chan->device->device_tx_status(chan, cookie, state);
684 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
686 return desc->tx_submit(desc);
689 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
695 mask = (1 << align) - 1;
696 if (mask & (off1 | off2 | len))
701 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
702 size_t off2, size_t len)
704 return dmaengine_check_align(dev->copy_align, off1, off2, len);
707 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
708 size_t off2, size_t len)
710 return dmaengine_check_align(dev->xor_align, off1, off2, len);
713 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
714 size_t off2, size_t len)
716 return dmaengine_check_align(dev->pq_align, off1, off2, len);
719 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
720 size_t off2, size_t len)
722 return dmaengine_check_align(dev->fill_align, off1, off2, len);
726 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
730 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
733 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
735 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
738 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
740 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
742 return (flags & mask) == mask;
745 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
747 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
750 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
752 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
755 /* dma_maxpq - reduce maxpq in the face of continued operations
756 * @dma - dma device with PQ capability
757 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
759 * When an engine does not support native continuation we need 3 extra
760 * source slots to reuse P and Q with the following coefficients:
761 * 1/ {00} * P : remove P from Q', but use it as a source for P'
762 * 2/ {01} * Q : use Q to continue Q' calculation
763 * 3/ {00} * Q : subtract Q from P' to cancel (2)
765 * In the case where P is disabled we only need 1 extra source:
766 * 1/ {01} * Q : use Q to continue Q' calculation
768 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
770 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
771 return dma_dev_to_maxpq(dma);
772 else if (dmaf_p_disabled_continue(flags))
773 return dma_dev_to_maxpq(dma) - 1;
774 else if (dmaf_continue(flags))
775 return dma_dev_to_maxpq(dma) - 3;
779 /* --- public DMA engine API --- */
781 #ifdef CONFIG_DMA_ENGINE
782 void dmaengine_get(void);
783 void dmaengine_put(void);
785 static inline void dmaengine_get(void)
788 static inline void dmaengine_put(void)
793 #ifdef CONFIG_NET_DMA
794 #define net_dmaengine_get() dmaengine_get()
795 #define net_dmaengine_put() dmaengine_put()
797 static inline void net_dmaengine_get(void)
800 static inline void net_dmaengine_put(void)
805 #ifdef CONFIG_ASYNC_TX_DMA
806 #define async_dmaengine_get() dmaengine_get()
807 #define async_dmaengine_put() dmaengine_put()
808 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
809 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
811 #define async_dma_find_channel(type) dma_find_channel(type)
812 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
814 static inline void async_dmaengine_get(void)
817 static inline void async_dmaengine_put(void)
820 static inline struct dma_chan *
821 async_dma_find_channel(enum dma_transaction_type type)
825 #endif /* CONFIG_ASYNC_TX_DMA */
827 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
828 void *dest, void *src, size_t len);
829 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
830 struct page *page, unsigned int offset, void *kdata, size_t len);
831 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
832 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
833 unsigned int src_off, size_t len);
834 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
835 struct dma_chan *chan);
837 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
839 tx->flags |= DMA_CTRL_ACK;
842 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
844 tx->flags &= ~DMA_CTRL_ACK;
847 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
849 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
852 #define first_dma_cap(mask) __first_dma_cap(&(mask))
853 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
855 return min_t(int, DMA_TX_TYPE_END,
856 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
859 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
860 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
862 return min_t(int, DMA_TX_TYPE_END,
863 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
866 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
868 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
870 set_bit(tx_type, dstp->bits);
873 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
875 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
877 clear_bit(tx_type, dstp->bits);
880 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
881 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
883 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
886 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
888 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
890 return test_bit(tx_type, srcp->bits);
893 #define for_each_dma_cap_mask(cap, mask) \
894 for ((cap) = first_dma_cap(mask); \
895 (cap) < DMA_TX_TYPE_END; \
896 (cap) = next_dma_cap((cap), (mask)))
899 * dma_async_issue_pending - flush pending transactions to HW
900 * @chan: target DMA channel
902 * This allows drivers to push copies to HW in batches,
903 * reducing MMIO writes where possible.
905 static inline void dma_async_issue_pending(struct dma_chan *chan)
907 chan->device->device_issue_pending(chan);
910 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
913 * dma_async_is_tx_complete - poll for transaction completion
915 * @cookie: transaction identifier to check status of
916 * @last: returns last completed cookie, can be NULL
917 * @used: returns last issued cookie, can be NULL
919 * If @last and @used are passed in, upon return they reflect the driver
920 * internal state and can be used with dma_async_is_complete() to check
921 * the status of multiple cookies without re-checking hardware state.
923 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
924 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
926 struct dma_tx_state state;
927 enum dma_status status;
929 status = chan->device->device_tx_status(chan, cookie, &state);
937 #define dma_async_memcpy_complete(chan, cookie, last, used)\
938 dma_async_is_tx_complete(chan, cookie, last, used)
941 * dma_async_is_complete - test a cookie against chan state
942 * @cookie: transaction identifier to test status of
943 * @last_complete: last know completed transaction
944 * @last_used: last cookie value handed out
946 * dma_async_is_complete() is used in dma_async_memcpy_complete()
947 * the test logic is separated for lightweight testing of multiple cookies
949 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
950 dma_cookie_t last_complete, dma_cookie_t last_used)
952 if (last_complete <= last_used) {
953 if ((cookie <= last_complete) || (cookie > last_used))
956 if ((cookie <= last_complete) && (cookie > last_used))
959 return DMA_IN_PROGRESS;
963 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
968 st->residue = residue;
972 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
973 #ifdef CONFIG_DMA_ENGINE
974 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
975 void dma_issue_pending_all(void);
976 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
977 void dma_release_channel(struct dma_chan *chan);
979 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
983 static inline void dma_issue_pending_all(void)
986 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
987 dma_filter_fn fn, void *fn_param)
991 static inline void dma_release_channel(struct dma_chan *chan)
996 /* --- DMA device --- */
998 int dma_async_device_register(struct dma_device *device);
999 void dma_async_device_unregister(struct dma_device *device);
1000 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1001 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1002 struct dma_chan *net_dma_find_channel(void);
1003 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1005 /* --- Helper iov-locking functions --- */
1007 struct dma_page_list {
1008 char __user *base_address;
1010 struct page **pages;
1013 struct dma_pinned_list {
1015 struct dma_page_list page_list[0];
1018 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1019 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1021 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1022 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1023 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1024 struct dma_pinned_list *pinned_list, struct page *page,
1025 unsigned int offset, size_t len);
1027 #endif /* DMAENGINE_H */