Merge tag 'kgdb-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt...
[platform/kernel/linux-starfive.git] / include / linux / cpuset.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/jump_label.h>
20
21 #ifdef CONFIG_CPUSETS
22
23 /*
24  * Static branch rewrites can happen in an arbitrary order for a given
25  * key. In code paths where we need to loop with read_mems_allowed_begin() and
26  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
27  * to ensure that begin() always gets rewritten before retry() in the
28  * disabled -> enabled transition. If not, then if local irqs are disabled
29  * around the loop, we can deadlock since retry() would always be
30  * comparing the latest value of the mems_allowed seqcount against 0 as
31  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
32  * transition should happen in reverse order for the same reasons (want to stop
33  * looking at real value of mems_allowed.sequence in retry() first).
34  */
35 extern struct static_key_false cpusets_pre_enable_key;
36 extern struct static_key_false cpusets_enabled_key;
37 static inline bool cpusets_enabled(void)
38 {
39         return static_branch_unlikely(&cpusets_enabled_key);
40 }
41
42 static inline void cpuset_inc(void)
43 {
44         static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
45         static_branch_inc_cpuslocked(&cpusets_enabled_key);
46 }
47
48 static inline void cpuset_dec(void)
49 {
50         static_branch_dec_cpuslocked(&cpusets_enabled_key);
51         static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
52 }
53
54 extern int cpuset_init(void);
55 extern void cpuset_init_smp(void);
56 extern void cpuset_force_rebuild(void);
57 extern void cpuset_update_active_cpus(void);
58 extern void cpuset_wait_for_hotplug(void);
59 extern void cpuset_read_lock(void);
60 extern void cpuset_read_unlock(void);
61 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
62 extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
63 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
64 #define cpuset_current_mems_allowed (current->mems_allowed)
65 void cpuset_init_current_mems_allowed(void);
66 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
67
68 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
69
70 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
71 {
72         if (cpusets_enabled())
73                 return __cpuset_node_allowed(node, gfp_mask);
74         return true;
75 }
76
77 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
78 {
79         return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
80 }
81
82 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
83 {
84         if (cpusets_enabled())
85                 return __cpuset_zone_allowed(z, gfp_mask);
86         return true;
87 }
88
89 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
90                                           const struct task_struct *tsk2);
91
92 #define cpuset_memory_pressure_bump()                           \
93         do {                                                    \
94                 if (cpuset_memory_pressure_enabled)             \
95                         __cpuset_memory_pressure_bump();        \
96         } while (0)
97 extern int cpuset_memory_pressure_enabled;
98 extern void __cpuset_memory_pressure_bump(void);
99
100 extern void cpuset_task_status_allowed(struct seq_file *m,
101                                         struct task_struct *task);
102 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
103                             struct pid *pid, struct task_struct *tsk);
104
105 extern int cpuset_mem_spread_node(void);
106 extern int cpuset_slab_spread_node(void);
107
108 static inline int cpuset_do_page_mem_spread(void)
109 {
110         return task_spread_page(current);
111 }
112
113 static inline int cpuset_do_slab_mem_spread(void)
114 {
115         return task_spread_slab(current);
116 }
117
118 extern bool current_cpuset_is_being_rebound(void);
119
120 extern void rebuild_sched_domains(void);
121
122 extern void cpuset_print_current_mems_allowed(void);
123
124 /*
125  * read_mems_allowed_begin is required when making decisions involving
126  * mems_allowed such as during page allocation. mems_allowed can be updated in
127  * parallel and depending on the new value an operation can fail potentially
128  * causing process failure. A retry loop with read_mems_allowed_begin and
129  * read_mems_allowed_retry prevents these artificial failures.
130  */
131 static inline unsigned int read_mems_allowed_begin(void)
132 {
133         if (!static_branch_unlikely(&cpusets_pre_enable_key))
134                 return 0;
135
136         return read_seqcount_begin(&current->mems_allowed_seq);
137 }
138
139 /*
140  * If this returns true, the operation that took place after
141  * read_mems_allowed_begin may have failed artificially due to a concurrent
142  * update of mems_allowed. It is up to the caller to retry the operation if
143  * appropriate.
144  */
145 static inline bool read_mems_allowed_retry(unsigned int seq)
146 {
147         if (!static_branch_unlikely(&cpusets_enabled_key))
148                 return false;
149
150         return read_seqcount_retry(&current->mems_allowed_seq, seq);
151 }
152
153 static inline void set_mems_allowed(nodemask_t nodemask)
154 {
155         unsigned long flags;
156
157         task_lock(current);
158         local_irq_save(flags);
159         write_seqcount_begin(&current->mems_allowed_seq);
160         current->mems_allowed = nodemask;
161         write_seqcount_end(&current->mems_allowed_seq);
162         local_irq_restore(flags);
163         task_unlock(current);
164 }
165
166 #else /* !CONFIG_CPUSETS */
167
168 static inline bool cpusets_enabled(void) { return false; }
169
170 static inline int cpuset_init(void) { return 0; }
171 static inline void cpuset_init_smp(void) {}
172
173 static inline void cpuset_force_rebuild(void) { }
174
175 static inline void cpuset_update_active_cpus(void)
176 {
177         partition_sched_domains(1, NULL, NULL);
178 }
179
180 static inline void cpuset_wait_for_hotplug(void) { }
181
182 static inline void cpuset_read_lock(void) { }
183 static inline void cpuset_read_unlock(void) { }
184
185 static inline void cpuset_cpus_allowed(struct task_struct *p,
186                                        struct cpumask *mask)
187 {
188         cpumask_copy(mask, task_cpu_possible_mask(p));
189 }
190
191 static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
192 {
193         return false;
194 }
195
196 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
197 {
198         return node_possible_map;
199 }
200
201 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
202 static inline void cpuset_init_current_mems_allowed(void) {}
203
204 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
205 {
206         return 1;
207 }
208
209 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
210 {
211         return true;
212 }
213
214 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
215 {
216         return true;
217 }
218
219 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
220 {
221         return true;
222 }
223
224 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
225                                                  const struct task_struct *tsk2)
226 {
227         return 1;
228 }
229
230 static inline void cpuset_memory_pressure_bump(void) {}
231
232 static inline void cpuset_task_status_allowed(struct seq_file *m,
233                                                 struct task_struct *task)
234 {
235 }
236
237 static inline int cpuset_mem_spread_node(void)
238 {
239         return 0;
240 }
241
242 static inline int cpuset_slab_spread_node(void)
243 {
244         return 0;
245 }
246
247 static inline int cpuset_do_page_mem_spread(void)
248 {
249         return 0;
250 }
251
252 static inline int cpuset_do_slab_mem_spread(void)
253 {
254         return 0;
255 }
256
257 static inline bool current_cpuset_is_being_rebound(void)
258 {
259         return false;
260 }
261
262 static inline void rebuild_sched_domains(void)
263 {
264         partition_sched_domains(1, NULL, NULL);
265 }
266
267 static inline void cpuset_print_current_mems_allowed(void)
268 {
269 }
270
271 static inline void set_mems_allowed(nodemask_t nodemask)
272 {
273 }
274
275 static inline unsigned int read_mems_allowed_begin(void)
276 {
277         return 0;
278 }
279
280 static inline bool read_mems_allowed_retry(unsigned int seq)
281 {
282         return false;
283 }
284
285 #endif /* !CONFIG_CPUSETS */
286
287 #endif /* _LINUX_CPUSET_H */