1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
12 struct blk_flush_queue;
14 #define BLKDEV_MIN_RQ 4
15 #define BLKDEV_DEFAULT_RQ 128
17 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
21 typedef __u32 __bitwise req_flags_t;
23 /* drive already may have started this one */
24 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
25 /* may not be passed by ioscheduler */
26 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
27 /* request for flush sequence */
28 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
29 /* merge of different types, fail separately */
30 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
31 /* track inflight for MQ */
32 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
33 /* don't call prep for this one */
34 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
35 /* vaguely specified driver internal error. Ignored by the block layer */
36 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
37 /* don't warn about errors */
38 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
39 /* elevator private data attached */
40 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
41 /* account into disk and partition IO statistics */
42 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
43 /* runtime pm request */
44 #define RQF_PM ((__force req_flags_t)(1 << 15))
45 /* on IO scheduler merge hash */
46 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
47 /* track IO completion time */
48 #define RQF_STATS ((__force req_flags_t)(1 << 17))
49 /* Look at ->special_vec for the actual data payload instead of the
51 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
52 /* The per-zone write lock is held for this request */
53 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
54 /* already slept for hybrid poll */
55 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
56 /* ->timeout has been called, don't expire again */
57 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
58 /* queue has elevator attached */
59 #define RQF_ELV ((__force req_flags_t)(1 << 22))
60 #define RQF_RESV ((__force req_flags_t)(1 << 23))
62 /* flags that prevent us from merging requests: */
63 #define RQF_NOMERGE_FLAGS \
64 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
73 * Try to put the fields that are referenced together in the same cacheline.
75 * If you modify this structure, make sure to update blk_rq_init() and
76 * especially blk_mq_rq_ctx_init() to take care of the added fields.
79 struct request_queue *q;
80 struct blk_mq_ctx *mq_ctx;
81 struct blk_mq_hw_ctx *mq_hctx;
83 blk_opf_t cmd_flags; /* op and common flags */
91 /* the following two fields are internal, NEVER access directly */
92 unsigned int __data_len; /* total data len */
93 sector_t __sector; /* sector cursor */
99 struct list_head queuelist;
100 struct request *rq_next;
103 struct block_device *part;
104 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
105 /* Time that the first bio started allocating this request. */
108 /* Time that this request was allocated for this IO. */
110 /* Time that I/O was submitted to the device. */
111 u64 io_start_time_ns;
113 #ifdef CONFIG_BLK_WBT
114 unsigned short wbt_flags;
117 * rq sectors used for blk stats. It has the same value
118 * with blk_rq_sectors(rq), except that it never be zeroed
121 unsigned short stats_sectors;
124 * Number of scatter-gather DMA addr+len pairs after
125 * physical address coalescing is performed.
127 unsigned short nr_phys_segments;
129 #ifdef CONFIG_BLK_DEV_INTEGRITY
130 unsigned short nr_integrity_segments;
133 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
134 struct bio_crypt_ctx *crypt_ctx;
135 struct blk_crypto_keyslot *crypt_keyslot;
138 unsigned short write_hint;
139 unsigned short ioprio;
141 enum mq_rq_state state;
144 unsigned long deadline;
147 * The hash is used inside the scheduler, and killed once the
148 * request reaches the dispatch list. The ipi_list is only used
149 * to queue the request for softirq completion, which is long
150 * after the request has been unhashed (and even removed from
151 * the dispatch list).
154 struct hlist_node hash; /* merge hash */
155 struct llist_node ipi_list;
159 * The rb_node is only used inside the io scheduler, requests
160 * are pruned when moved to the dispatch queue. So let the
161 * completion_data share space with the rb_node.
164 struct rb_node rb_node; /* sort/lookup */
165 struct bio_vec special_vec;
166 void *completion_data;
171 * Three pointers are available for the IO schedulers, if they need
172 * more they have to dynamically allocate it. Flush requests are
173 * never put on the IO scheduler. So let the flush fields share
174 * space with the elevator data.
184 struct list_head list;
185 rq_end_io_fn *saved_end_io;
190 struct __call_single_data csd;
195 * completion callback.
197 rq_end_io_fn *end_io;
201 static inline enum req_op req_op(const struct request *req)
203 return req->cmd_flags & REQ_OP_MASK;
206 static inline bool blk_rq_is_passthrough(struct request *rq)
208 return blk_op_is_passthrough(req_op(rq));
211 static inline unsigned short req_get_ioprio(struct request *req)
216 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
218 #define rq_dma_dir(rq) \
219 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
221 #define rq_list_add(listptr, rq) do { \
222 (rq)->rq_next = *(listptr); \
226 #define rq_list_pop(listptr) \
228 struct request *__req = NULL; \
229 if ((listptr) && *(listptr)) { \
230 __req = *(listptr); \
231 *(listptr) = __req->rq_next; \
236 #define rq_list_peek(listptr) \
238 struct request *__req = NULL; \
239 if ((listptr) && *(listptr)) \
240 __req = *(listptr); \
244 #define rq_list_for_each(listptr, pos) \
245 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
247 #define rq_list_for_each_safe(listptr, pos, nxt) \
248 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
249 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
251 #define rq_list_next(rq) (rq)->rq_next
252 #define rq_list_empty(list) ((list) == (struct request *) NULL)
255 * rq_list_move() - move a struct request from one list to another
256 * @src: The source list @rq is currently in
257 * @dst: The destination list that @rq will be appended to
258 * @rq: The request to move
259 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
261 static inline void rq_list_move(struct request **src, struct request **dst,
262 struct request *rq, struct request *prev)
265 prev->rq_next = rq->rq_next;
268 rq_list_add(dst, rq);
271 enum blk_eh_timer_return {
272 BLK_EH_DONE, /* drivers has completed the command */
273 BLK_EH_RESET_TIMER, /* reset timer and try again */
276 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
277 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
280 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
283 struct blk_mq_hw_ctx {
285 /** @lock: Protects the dispatch list. */
288 * @dispatch: Used for requests that are ready to be
289 * dispatched to the hardware but for some reason (e.g. lack of
290 * resources) could not be sent to the hardware. As soon as the
291 * driver can send new requests, requests at this list will
292 * be sent first for a fairer dispatch.
294 struct list_head dispatch;
296 * @state: BLK_MQ_S_* flags. Defines the state of the hw
297 * queue (active, scheduled to restart, stopped).
300 } ____cacheline_aligned_in_smp;
303 * @run_work: Used for scheduling a hardware queue run at a later time.
305 struct delayed_work run_work;
306 /** @cpumask: Map of available CPUs where this hctx can run. */
307 cpumask_var_t cpumask;
309 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
310 * selection from @cpumask.
314 * @next_cpu_batch: Counter of how many works left in the batch before
315 * changing to the next CPU.
319 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
323 * @sched_data: Pointer owned by the IO scheduler attached to a request
324 * queue. It's up to the IO scheduler how to use this pointer.
328 * @queue: Pointer to the request queue that owns this hardware context.
330 struct request_queue *queue;
331 /** @fq: Queue of requests that need to perform a flush operation. */
332 struct blk_flush_queue *fq;
335 * @driver_data: Pointer to data owned by the block driver that created
341 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
342 * pending request in that software queue.
344 struct sbitmap ctx_map;
347 * @dispatch_from: Software queue to be used when no scheduler was
350 struct blk_mq_ctx *dispatch_from;
352 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
353 * decide if the hw_queue is busy using Exponential Weighted Moving
356 unsigned int dispatch_busy;
358 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
360 /** @nr_ctx: Number of software queues. */
361 unsigned short nr_ctx;
362 /** @ctxs: Array of software queues. */
363 struct blk_mq_ctx **ctxs;
365 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
366 spinlock_t dispatch_wait_lock;
368 * @dispatch_wait: Waitqueue to put requests when there is no tag
369 * available at the moment, to wait for another try in the future.
371 wait_queue_entry_t dispatch_wait;
374 * @wait_index: Index of next available dispatch_wait queue to insert
380 * @tags: Tags owned by the block driver. A tag at this set is only
381 * assigned when a request is dispatched from a hardware queue.
383 struct blk_mq_tags *tags;
385 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
386 * scheduler associated with a request queue, a tag is assigned when
387 * that request is allocated. Else, this member is not used.
389 struct blk_mq_tags *sched_tags;
391 /** @queued: Number of queued requests. */
392 unsigned long queued;
393 /** @run: Number of dispatched requests. */
396 /** @numa_node: NUMA node the storage adapter has been connected to. */
397 unsigned int numa_node;
398 /** @queue_num: Index of this hardware queue. */
399 unsigned int queue_num;
402 * @nr_active: Number of active requests. Only used when a tag set is
403 * shared across request queues.
407 /** @cpuhp_online: List to store request if CPU is going to die */
408 struct hlist_node cpuhp_online;
409 /** @cpuhp_dead: List to store request if some CPU die. */
410 struct hlist_node cpuhp_dead;
411 /** @kobj: Kernel object for sysfs. */
414 #ifdef CONFIG_BLK_DEBUG_FS
416 * @debugfs_dir: debugfs directory for this hardware queue. Named
417 * as cpu<cpu_number>.
419 struct dentry *debugfs_dir;
420 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
421 struct dentry *sched_debugfs_dir;
425 * @hctx_list: if this hctx is not in use, this is an entry in
426 * q->unused_hctx_list.
428 struct list_head hctx_list;
432 * struct blk_mq_queue_map - Map software queues to hardware queues
433 * @mq_map: CPU ID to hardware queue index map. This is an array
434 * with nr_cpu_ids elements. Each element has a value in the range
435 * [@queue_offset, @queue_offset + @nr_queues).
436 * @nr_queues: Number of hardware queues to map CPU IDs onto.
437 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
438 * driver to map each hardware queue type (enum hctx_type) onto a distinct
439 * set of hardware queues.
441 struct blk_mq_queue_map {
442 unsigned int *mq_map;
443 unsigned int nr_queues;
444 unsigned int queue_offset;
448 * enum hctx_type - Type of hardware queue
449 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
450 * @HCTX_TYPE_READ: Just for READ I/O.
451 * @HCTX_TYPE_POLL: Polled I/O of any kind.
452 * @HCTX_MAX_TYPES: Number of types of hctx.
463 * struct blk_mq_tag_set - tag set that can be shared between request queues
464 * @map: One or more ctx -> hctx mappings. One map exists for each
465 * hardware queue type (enum hctx_type) that the driver wishes
466 * to support. There are no restrictions on maps being of the
467 * same size, and it's perfectly legal to share maps between
469 * @nr_maps: Number of elements in the @map array. A number in the range
470 * [1, HCTX_MAX_TYPES].
471 * @ops: Pointers to functions that implement block driver behavior.
472 * @nr_hw_queues: Number of hardware queues supported by the block driver that
473 * owns this data structure.
474 * @queue_depth: Number of tags per hardware queue, reserved tags included.
475 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
477 * @cmd_size: Number of additional bytes to allocate per request. The block
478 * driver owns these additional bytes.
479 * @numa_node: NUMA node the storage adapter has been connected to.
480 * @timeout: Request processing timeout in jiffies.
481 * @flags: Zero or more BLK_MQ_F_* flags.
482 * @driver_data: Pointer to data owned by the block driver that created this
484 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
487 * Shared set of tags. Has @nr_hw_queues elements. If set,
488 * shared by all @tags.
489 * @tag_list_lock: Serializes tag_list accesses.
490 * @tag_list: List of the request queues that use this tag set. See also
491 * request_queue.tag_set_list.
493 struct blk_mq_tag_set {
494 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
495 unsigned int nr_maps;
496 const struct blk_mq_ops *ops;
497 unsigned int nr_hw_queues;
498 unsigned int queue_depth;
499 unsigned int reserved_tags;
500 unsigned int cmd_size;
502 unsigned int timeout;
506 struct blk_mq_tags **tags;
508 struct blk_mq_tags *shared_tags;
510 struct mutex tag_list_lock;
511 struct list_head tag_list;
515 * struct blk_mq_queue_data - Data about a request inserted in a queue
517 * @rq: Request pointer.
518 * @last: If it is the last request in the queue.
520 struct blk_mq_queue_data {
525 typedef bool (busy_tag_iter_fn)(struct request *, void *);
528 * struct blk_mq_ops - Callback functions that implements block driver
533 * @queue_rq: Queue a new request from block IO.
535 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
536 const struct blk_mq_queue_data *);
539 * @commit_rqs: If a driver uses bd->last to judge when to submit
540 * requests to hardware, it must define this function. In case of errors
541 * that make us stop issuing further requests, this hook serves the
542 * purpose of kicking the hardware (which the last request otherwise
545 void (*commit_rqs)(struct blk_mq_hw_ctx *);
548 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
549 * that each request belongs to the same queue. If the driver doesn't
550 * empty the @rqlist completely, then the rest will be queued
551 * individually by the block layer upon return.
553 void (*queue_rqs)(struct request **rqlist);
556 * @get_budget: Reserve budget before queue request, once .queue_rq is
557 * run, it is driver's responsibility to release the
558 * reserved budget. Also we have to handle failure case
559 * of .get_budget for avoiding I/O deadlock.
561 int (*get_budget)(struct request_queue *);
564 * @put_budget: Release the reserved budget.
566 void (*put_budget)(struct request_queue *, int);
569 * @set_rq_budget_token: store rq's budget token
571 void (*set_rq_budget_token)(struct request *, int);
573 * @get_rq_budget_token: retrieve rq's budget token
575 int (*get_rq_budget_token)(struct request *);
578 * @timeout: Called on request timeout.
580 enum blk_eh_timer_return (*timeout)(struct request *);
583 * @poll: Called to poll for completion of a specific tag.
585 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
588 * @complete: Mark the request as complete.
590 void (*complete)(struct request *);
593 * @init_hctx: Called when the block layer side of a hardware queue has
594 * been set up, allowing the driver to allocate/init matching
597 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
599 * @exit_hctx: Ditto for exit/teardown.
601 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
604 * @init_request: Called for every command allocated by the block layer
605 * to allow the driver to set up driver specific data.
607 * Tag greater than or equal to queue_depth is for setting up
610 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
611 unsigned int, unsigned int);
613 * @exit_request: Ditto for exit/teardown.
615 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
619 * @cleanup_rq: Called before freeing one request which isn't completed
620 * yet, and usually for freeing the driver private data.
622 void (*cleanup_rq)(struct request *);
625 * @busy: If set, returns whether or not this queue currently is busy.
627 bool (*busy)(struct request_queue *);
630 * @map_queues: This allows drivers specify their own queue mapping by
631 * overriding the setup-time function that builds the mq_map.
633 int (*map_queues)(struct blk_mq_tag_set *set);
635 #ifdef CONFIG_BLK_DEBUG_FS
637 * @show_rq: Used by the debugfs implementation to show driver-specific
638 * information about a request.
640 void (*show_rq)(struct seq_file *m, struct request *rq);
645 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
646 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
648 * Set when this device requires underlying blk-mq device for
651 BLK_MQ_F_STACKING = 1 << 2,
652 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
653 BLK_MQ_F_BLOCKING = 1 << 5,
654 /* Do not allow an I/O scheduler to be configured. */
655 BLK_MQ_F_NO_SCHED = 1 << 6,
657 * Select 'none' during queue registration in case of a single hwq
658 * or shared hwqs instead of 'mq-deadline'.
660 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
661 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
662 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
664 BLK_MQ_S_STOPPED = 0,
665 BLK_MQ_S_TAG_ACTIVE = 1,
666 BLK_MQ_S_SCHED_RESTART = 2,
668 /* hw queue is inactive after all its CPUs become offline */
669 BLK_MQ_S_INACTIVE = 3,
671 BLK_MQ_MAX_DEPTH = 10240,
673 BLK_MQ_CPU_WORK_BATCH = 8,
675 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
676 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
677 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
678 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
679 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
680 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
682 #define BLK_MQ_NO_HCTX_IDX (-1U)
684 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
685 struct lock_class_key *lkclass);
686 #define blk_mq_alloc_disk(set, queuedata) \
688 static struct lock_class_key __key; \
690 __blk_mq_alloc_disk(set, queuedata, &__key); \
692 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
693 struct lock_class_key *lkclass);
694 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
695 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
696 struct request_queue *q);
697 void blk_mq_destroy_queue(struct request_queue *);
699 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
700 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
701 const struct blk_mq_ops *ops, unsigned int queue_depth,
702 unsigned int set_flags);
703 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
705 void blk_mq_free_request(struct request *rq);
707 bool blk_mq_queue_inflight(struct request_queue *q);
710 /* return when out of requests */
711 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
712 /* allocate from reserved pool */
713 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
715 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
718 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
719 blk_mq_req_flags_t flags);
720 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
721 blk_opf_t opf, blk_mq_req_flags_t flags,
722 unsigned int hctx_idx);
725 * Tag address space map.
728 unsigned int nr_tags;
729 unsigned int nr_reserved_tags;
731 atomic_t active_queues;
733 struct sbitmap_queue bitmap_tags;
734 struct sbitmap_queue breserved_tags;
736 struct request **rqs;
737 struct request **static_rqs;
738 struct list_head page_list;
741 * used to clear request reference in rqs[] before freeing one
747 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
750 if (tag < tags->nr_tags) {
751 prefetch(tags->rqs[tag]);
752 return tags->rqs[tag];
759 BLK_MQ_UNIQUE_TAG_BITS = 16,
760 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
763 u32 blk_mq_unique_tag(struct request *rq);
765 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
767 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
770 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
772 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
776 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
777 * @rq: target request.
779 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
781 return READ_ONCE(rq->state);
784 static inline int blk_mq_request_started(struct request *rq)
786 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
789 static inline int blk_mq_request_completed(struct request *rq)
791 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
796 * Set the state to complete when completing a request from inside ->queue_rq.
797 * This is used by drivers that want to ensure special complete actions that
798 * need access to the request are called on failure, e.g. by nvme for
801 static inline void blk_mq_set_request_complete(struct request *rq)
803 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
807 * Complete the request directly instead of deferring it to softirq or
808 * completing it another CPU. Useful in preemptible instead of an interrupt.
810 static inline void blk_mq_complete_request_direct(struct request *rq,
811 void (*complete)(struct request *rq))
813 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
817 void blk_mq_start_request(struct request *rq);
818 void blk_mq_end_request(struct request *rq, blk_status_t error);
819 void __blk_mq_end_request(struct request *rq, blk_status_t error);
820 void blk_mq_end_request_batch(struct io_comp_batch *ib);
823 * Only need start/end time stamping if we have iostat or
824 * blk stats enabled, or using an IO scheduler.
826 static inline bool blk_mq_need_time_stamp(struct request *rq)
828 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
831 static inline bool blk_mq_is_reserved_rq(struct request *rq)
833 return rq->rq_flags & RQF_RESV;
837 * Batched completions only work when there is no I/O error and no special
840 static inline bool blk_mq_add_to_batch(struct request *req,
841 struct io_comp_batch *iob, int ioerror,
842 void (*complete)(struct io_comp_batch *))
844 if (!iob || (req->rq_flags & RQF_ELV) || req->end_io || ioerror)
847 iob->complete = complete;
848 else if (iob->complete != complete)
850 iob->need_ts |= blk_mq_need_time_stamp(req);
851 rq_list_add(&iob->req_list, req);
855 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
856 void blk_mq_kick_requeue_list(struct request_queue *q);
857 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
858 void blk_mq_complete_request(struct request *rq);
859 bool blk_mq_complete_request_remote(struct request *rq);
860 bool blk_mq_queue_stopped(struct request_queue *q);
861 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
862 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
863 void blk_mq_stop_hw_queues(struct request_queue *q);
864 void blk_mq_start_hw_queues(struct request_queue *q);
865 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
866 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
867 void blk_mq_quiesce_queue(struct request_queue *q);
868 void blk_mq_wait_quiesce_done(struct request_queue *q);
869 void blk_mq_unquiesce_queue(struct request_queue *q);
870 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
871 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
872 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
873 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
874 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
875 busy_tag_iter_fn *fn, void *priv);
876 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
877 void blk_mq_freeze_queue(struct request_queue *q);
878 void blk_mq_unfreeze_queue(struct request_queue *q);
879 void blk_freeze_queue_start(struct request_queue *q);
880 void blk_mq_freeze_queue_wait(struct request_queue *q);
881 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
882 unsigned long timeout);
884 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
885 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
887 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
889 unsigned int blk_mq_rq_cpu(struct request *rq);
891 bool __blk_should_fake_timeout(struct request_queue *q);
892 static inline bool blk_should_fake_timeout(struct request_queue *q)
894 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
895 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
896 return __blk_should_fake_timeout(q);
901 * blk_mq_rq_from_pdu - cast a PDU to a request
902 * @pdu: the PDU (Protocol Data Unit) to be casted
906 * Driver command data is immediately after the request. So subtract request
907 * size to get back to the original request.
909 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
911 return pdu - sizeof(struct request);
915 * blk_mq_rq_to_pdu - cast a request to a PDU
916 * @rq: the request to be casted
918 * Return: pointer to the PDU
920 * Driver command data is immediately after the request. So add request to get
923 static inline void *blk_mq_rq_to_pdu(struct request *rq)
928 #define queue_for_each_hw_ctx(q, hctx, i) \
929 xa_for_each(&(q)->hctx_table, (i), (hctx))
931 #define hctx_for_each_ctx(hctx, ctx, i) \
932 for ((i) = 0; (i) < (hctx)->nr_ctx && \
933 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
935 static inline void blk_mq_cleanup_rq(struct request *rq)
937 if (rq->q->mq_ops->cleanup_rq)
938 rq->q->mq_ops->cleanup_rq(rq);
941 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
942 unsigned int nr_segs)
944 rq->nr_phys_segments = nr_segs;
945 rq->__data_len = bio->bi_iter.bi_size;
946 rq->bio = rq->biotail = bio;
947 rq->ioprio = bio_prio(bio);
950 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
951 struct lock_class_key *key);
953 static inline bool rq_is_sync(struct request *rq)
955 return op_is_sync(rq->cmd_flags);
958 void blk_rq_init(struct request_queue *q, struct request *rq);
959 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
960 struct bio_set *bs, gfp_t gfp_mask,
961 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
962 void blk_rq_unprep_clone(struct request *rq);
963 blk_status_t blk_insert_cloned_request(struct request *rq);
969 unsigned long offset;
974 int blk_rq_map_user(struct request_queue *, struct request *,
975 struct rq_map_data *, void __user *, unsigned long, gfp_t);
976 int blk_rq_map_user_iov(struct request_queue *, struct request *,
977 struct rq_map_data *, const struct iov_iter *, gfp_t);
978 int blk_rq_unmap_user(struct bio *);
979 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
980 unsigned int, gfp_t);
981 int blk_rq_append_bio(struct request *rq, struct bio *bio);
982 void blk_execute_rq_nowait(struct request *rq, bool at_head);
983 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
985 struct req_iterator {
986 struct bvec_iter iter;
990 #define __rq_for_each_bio(_bio, rq) \
992 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
994 #define rq_for_each_segment(bvl, _rq, _iter) \
995 __rq_for_each_bio(_iter.bio, _rq) \
996 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
998 #define rq_for_each_bvec(bvl, _rq, _iter) \
999 __rq_for_each_bio(_iter.bio, _rq) \
1000 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1002 #define rq_iter_last(bvec, _iter) \
1003 (_iter.bio->bi_next == NULL && \
1004 bio_iter_last(bvec, _iter.iter))
1007 * blk_rq_pos() : the current sector
1008 * blk_rq_bytes() : bytes left in the entire request
1009 * blk_rq_cur_bytes() : bytes left in the current segment
1010 * blk_rq_sectors() : sectors left in the entire request
1011 * blk_rq_cur_sectors() : sectors left in the current segment
1012 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1014 static inline sector_t blk_rq_pos(const struct request *rq)
1016 return rq->__sector;
1019 static inline unsigned int blk_rq_bytes(const struct request *rq)
1021 return rq->__data_len;
1024 static inline int blk_rq_cur_bytes(const struct request *rq)
1028 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1029 return rq->bio->bi_iter.bi_size;
1030 return bio_iovec(rq->bio).bv_len;
1033 static inline unsigned int blk_rq_sectors(const struct request *rq)
1035 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1038 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1040 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1043 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1045 return rq->stats_sectors;
1049 * Some commands like WRITE SAME have a payload or data transfer size which
1050 * is different from the size of the request. Any driver that supports such
1051 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1052 * calculate the data transfer size.
1054 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1056 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1057 return rq->special_vec.bv_len;
1058 return blk_rq_bytes(rq);
1062 * Return the first full biovec in the request. The caller needs to check that
1063 * there are any bvecs before calling this helper.
1065 static inline struct bio_vec req_bvec(struct request *rq)
1067 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1068 return rq->special_vec;
1069 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1072 static inline unsigned int blk_rq_count_bios(struct request *rq)
1074 unsigned int nr_bios = 0;
1077 __rq_for_each_bio(bio, rq)
1083 void blk_steal_bios(struct bio_list *list, struct request *rq);
1086 * Request completion related functions.
1088 * blk_update_request() completes given number of bytes and updates
1089 * the request without completing it.
1091 bool blk_update_request(struct request *rq, blk_status_t error,
1092 unsigned int nr_bytes);
1093 void blk_abort_request(struct request *);
1096 * Number of physical segments as sent to the device.
1098 * Normally this is the number of discontiguous data segments sent by the
1099 * submitter. But for data-less command like discard we might have no
1100 * actual data segments submitted, but the driver might have to add it's
1101 * own special payload. In that case we still return 1 here so that this
1102 * special payload will be mapped.
1104 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1106 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1108 return rq->nr_phys_segments;
1112 * Number of discard segments (or ranges) the driver needs to fill in.
1113 * Each discard bio merged into a request is counted as one segment.
1115 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1117 return max_t(unsigned short, rq->nr_phys_segments, 1);
1120 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1121 struct scatterlist *sglist, struct scatterlist **last_sg);
1122 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1123 struct scatterlist *sglist)
1125 struct scatterlist *last_sg = NULL;
1127 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1129 void blk_dump_rq_flags(struct request *, char *);
1131 #ifdef CONFIG_BLK_DEV_ZONED
1132 static inline unsigned int blk_rq_zone_no(struct request *rq)
1134 return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1137 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1139 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1142 bool blk_req_needs_zone_write_lock(struct request *rq);
1143 bool blk_req_zone_write_trylock(struct request *rq);
1144 void __blk_req_zone_write_lock(struct request *rq);
1145 void __blk_req_zone_write_unlock(struct request *rq);
1147 static inline void blk_req_zone_write_lock(struct request *rq)
1149 if (blk_req_needs_zone_write_lock(rq))
1150 __blk_req_zone_write_lock(rq);
1153 static inline void blk_req_zone_write_unlock(struct request *rq)
1155 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1156 __blk_req_zone_write_unlock(rq);
1159 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1161 return rq->q->disk->seq_zones_wlock &&
1162 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1165 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1167 if (!blk_req_needs_zone_write_lock(rq))
1169 return !blk_req_zone_is_write_locked(rq);
1171 #else /* CONFIG_BLK_DEV_ZONED */
1172 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1177 static inline void blk_req_zone_write_lock(struct request *rq)
1181 static inline void blk_req_zone_write_unlock(struct request *rq)
1184 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1189 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1193 #endif /* CONFIG_BLK_DEV_ZONED */
1195 #endif /* BLK_MQ_H */