1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
13 struct blk_flush_queue;
15 #define BLKDEV_MIN_RQ 4
16 #define BLKDEV_DEFAULT_RQ 128
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
27 typedef __u32 __bitwise req_flags_t;
29 /* drive already may have started this one */
30 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
31 /* request for flush sequence */
32 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
33 /* merge of different types, fail separately */
34 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
35 /* track inflight for MQ */
36 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
37 /* don't call prep for this one */
38 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
39 /* use hctx->sched_tags */
40 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << 8))
41 /* use an I/O scheduler for this request */
42 #define RQF_USE_SCHED ((__force req_flags_t)(1 << 9))
43 /* vaguely specified driver internal error. Ignored by the block layer */
44 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
45 /* don't warn about errors */
46 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM ((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS ((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
57 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
60 /* ->timeout has been called, don't expire again */
61 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
62 #define RQF_RESV ((__force req_flags_t)(1 << 23))
64 /* flags that prevent us from merging requests: */
65 #define RQF_NOMERGE_FLAGS \
66 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
75 * Try to put the fields that are referenced together in the same cacheline.
77 * If you modify this structure, make sure to update blk_rq_init() and
78 * especially blk_mq_rq_ctx_init() to take care of the added fields.
81 struct request_queue *q;
82 struct blk_mq_ctx *mq_ctx;
83 struct blk_mq_hw_ctx *mq_hctx;
85 blk_opf_t cmd_flags; /* op and common flags */
93 /* the following two fields are internal, NEVER access directly */
94 unsigned int __data_len; /* total data len */
95 sector_t __sector; /* sector cursor */
101 struct list_head queuelist;
102 struct request *rq_next;
105 struct block_device *part;
106 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
107 /* Time that the first bio started allocating this request. */
110 /* Time that this request was allocated for this IO. */
112 /* Time that I/O was submitted to the device. */
113 u64 io_start_time_ns;
115 #ifdef CONFIG_BLK_WBT
116 unsigned short wbt_flags;
119 * rq sectors used for blk stats. It has the same value
120 * with blk_rq_sectors(rq), except that it never be zeroed
123 unsigned short stats_sectors;
126 * Number of scatter-gather DMA addr+len pairs after
127 * physical address coalescing is performed.
129 unsigned short nr_phys_segments;
131 #ifdef CONFIG_BLK_DEV_INTEGRITY
132 unsigned short nr_integrity_segments;
135 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
136 struct bio_crypt_ctx *crypt_ctx;
137 struct blk_crypto_keyslot *crypt_keyslot;
140 unsigned short ioprio;
142 enum mq_rq_state state;
145 unsigned long deadline;
148 * The hash is used inside the scheduler, and killed once the
149 * request reaches the dispatch list. The ipi_list is only used
150 * to queue the request for softirq completion, which is long
151 * after the request has been unhashed (and even removed from
152 * the dispatch list).
155 struct hlist_node hash; /* merge hash */
156 struct llist_node ipi_list;
160 * The rb_node is only used inside the io scheduler, requests
161 * are pruned when moved to the dispatch queue. special_vec must
162 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
163 * insert into an IO scheduler.
166 struct rb_node rb_node; /* sort/lookup */
167 struct bio_vec special_vec;
171 * Three pointers are available for the IO schedulers, if they need
172 * more they have to dynamically allocate it.
181 rq_end_io_fn *saved_end_io;
187 * completion callback.
189 rq_end_io_fn *end_io;
193 static inline enum req_op req_op(const struct request *req)
195 return req->cmd_flags & REQ_OP_MASK;
198 static inline bool blk_rq_is_passthrough(struct request *rq)
200 return blk_op_is_passthrough(rq->cmd_flags);
203 static inline unsigned short req_get_ioprio(struct request *req)
208 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
210 #define rq_dma_dir(rq) \
211 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
213 #define rq_list_add(listptr, rq) do { \
214 (rq)->rq_next = *(listptr); \
218 #define rq_list_add_tail(lastpptr, rq) do { \
219 (rq)->rq_next = NULL; \
221 *(lastpptr) = &rq->rq_next; \
224 #define rq_list_pop(listptr) \
226 struct request *__req = NULL; \
227 if ((listptr) && *(listptr)) { \
228 __req = *(listptr); \
229 *(listptr) = __req->rq_next; \
234 #define rq_list_peek(listptr) \
236 struct request *__req = NULL; \
237 if ((listptr) && *(listptr)) \
238 __req = *(listptr); \
242 #define rq_list_for_each(listptr, pos) \
243 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
245 #define rq_list_for_each_safe(listptr, pos, nxt) \
246 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
247 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
249 #define rq_list_next(rq) (rq)->rq_next
250 #define rq_list_empty(list) ((list) == (struct request *) NULL)
253 * rq_list_move() - move a struct request from one list to another
254 * @src: The source list @rq is currently in
255 * @dst: The destination list that @rq will be appended to
256 * @rq: The request to move
257 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
259 static inline void rq_list_move(struct request **src, struct request **dst,
260 struct request *rq, struct request *prev)
263 prev->rq_next = rq->rq_next;
266 rq_list_add(dst, rq);
270 * enum blk_eh_timer_return - How the timeout handler should proceed
271 * @BLK_EH_DONE: The block driver completed the command or will complete it at
273 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
274 * request to complete.
276 enum blk_eh_timer_return {
281 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
282 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
285 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
288 struct blk_mq_hw_ctx {
290 /** @lock: Protects the dispatch list. */
293 * @dispatch: Used for requests that are ready to be
294 * dispatched to the hardware but for some reason (e.g. lack of
295 * resources) could not be sent to the hardware. As soon as the
296 * driver can send new requests, requests at this list will
297 * be sent first for a fairer dispatch.
299 struct list_head dispatch;
301 * @state: BLK_MQ_S_* flags. Defines the state of the hw
302 * queue (active, scheduled to restart, stopped).
305 } ____cacheline_aligned_in_smp;
308 * @run_work: Used for scheduling a hardware queue run at a later time.
310 struct delayed_work run_work;
311 /** @cpumask: Map of available CPUs where this hctx can run. */
312 cpumask_var_t cpumask;
314 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
315 * selection from @cpumask.
319 * @next_cpu_batch: Counter of how many works left in the batch before
320 * changing to the next CPU.
324 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
328 * @sched_data: Pointer owned by the IO scheduler attached to a request
329 * queue. It's up to the IO scheduler how to use this pointer.
333 * @queue: Pointer to the request queue that owns this hardware context.
335 struct request_queue *queue;
336 /** @fq: Queue of requests that need to perform a flush operation. */
337 struct blk_flush_queue *fq;
340 * @driver_data: Pointer to data owned by the block driver that created
346 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
347 * pending request in that software queue.
349 struct sbitmap ctx_map;
352 * @dispatch_from: Software queue to be used when no scheduler was
355 struct blk_mq_ctx *dispatch_from;
357 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
358 * decide if the hw_queue is busy using Exponential Weighted Moving
361 unsigned int dispatch_busy;
363 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
365 /** @nr_ctx: Number of software queues. */
366 unsigned short nr_ctx;
367 /** @ctxs: Array of software queues. */
368 struct blk_mq_ctx **ctxs;
370 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
371 spinlock_t dispatch_wait_lock;
373 * @dispatch_wait: Waitqueue to put requests when there is no tag
374 * available at the moment, to wait for another try in the future.
376 wait_queue_entry_t dispatch_wait;
379 * @wait_index: Index of next available dispatch_wait queue to insert
385 * @tags: Tags owned by the block driver. A tag at this set is only
386 * assigned when a request is dispatched from a hardware queue.
388 struct blk_mq_tags *tags;
390 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
391 * scheduler associated with a request queue, a tag is assigned when
392 * that request is allocated. Else, this member is not used.
394 struct blk_mq_tags *sched_tags;
396 /** @run: Number of dispatched requests. */
399 /** @numa_node: NUMA node the storage adapter has been connected to. */
400 unsigned int numa_node;
401 /** @queue_num: Index of this hardware queue. */
402 unsigned int queue_num;
405 * @nr_active: Number of active requests. Only used when a tag set is
406 * shared across request queues.
410 /** @cpuhp_online: List to store request if CPU is going to die */
411 struct hlist_node cpuhp_online;
412 /** @cpuhp_dead: List to store request if some CPU die. */
413 struct hlist_node cpuhp_dead;
414 /** @kobj: Kernel object for sysfs. */
417 #ifdef CONFIG_BLK_DEBUG_FS
419 * @debugfs_dir: debugfs directory for this hardware queue. Named
420 * as cpu<cpu_number>.
422 struct dentry *debugfs_dir;
423 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
424 struct dentry *sched_debugfs_dir;
428 * @hctx_list: if this hctx is not in use, this is an entry in
429 * q->unused_hctx_list.
431 struct list_head hctx_list;
435 * struct blk_mq_queue_map - Map software queues to hardware queues
436 * @mq_map: CPU ID to hardware queue index map. This is an array
437 * with nr_cpu_ids elements. Each element has a value in the range
438 * [@queue_offset, @queue_offset + @nr_queues).
439 * @nr_queues: Number of hardware queues to map CPU IDs onto.
440 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
441 * driver to map each hardware queue type (enum hctx_type) onto a distinct
442 * set of hardware queues.
444 struct blk_mq_queue_map {
445 unsigned int *mq_map;
446 unsigned int nr_queues;
447 unsigned int queue_offset;
451 * enum hctx_type - Type of hardware queue
452 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
453 * @HCTX_TYPE_READ: Just for READ I/O.
454 * @HCTX_TYPE_POLL: Polled I/O of any kind.
455 * @HCTX_MAX_TYPES: Number of types of hctx.
466 * struct blk_mq_tag_set - tag set that can be shared between request queues
467 * @ops: Pointers to functions that implement block driver behavior.
468 * @map: One or more ctx -> hctx mappings. One map exists for each
469 * hardware queue type (enum hctx_type) that the driver wishes
470 * to support. There are no restrictions on maps being of the
471 * same size, and it's perfectly legal to share maps between
473 * @nr_maps: Number of elements in the @map array. A number in the range
474 * [1, HCTX_MAX_TYPES].
475 * @nr_hw_queues: Number of hardware queues supported by the block driver that
476 * owns this data structure.
477 * @queue_depth: Number of tags per hardware queue, reserved tags included.
478 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
480 * @cmd_size: Number of additional bytes to allocate per request. The block
481 * driver owns these additional bytes.
482 * @numa_node: NUMA node the storage adapter has been connected to.
483 * @timeout: Request processing timeout in jiffies.
484 * @flags: Zero or more BLK_MQ_F_* flags.
485 * @driver_data: Pointer to data owned by the block driver that created this
487 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
490 * Shared set of tags. Has @nr_hw_queues elements. If set,
491 * shared by all @tags.
492 * @tag_list_lock: Serializes tag_list accesses.
493 * @tag_list: List of the request queues that use this tag set. See also
494 * request_queue.tag_set_list.
495 * @srcu: Use as lock when type of the request queue is blocking
496 * (BLK_MQ_F_BLOCKING).
498 struct blk_mq_tag_set {
499 const struct blk_mq_ops *ops;
500 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
501 unsigned int nr_maps;
502 unsigned int nr_hw_queues;
503 unsigned int queue_depth;
504 unsigned int reserved_tags;
505 unsigned int cmd_size;
507 unsigned int timeout;
511 struct blk_mq_tags **tags;
513 struct blk_mq_tags *shared_tags;
515 struct mutex tag_list_lock;
516 struct list_head tag_list;
517 struct srcu_struct *srcu;
521 * struct blk_mq_queue_data - Data about a request inserted in a queue
523 * @rq: Request pointer.
524 * @last: If it is the last request in the queue.
526 struct blk_mq_queue_data {
531 typedef bool (busy_tag_iter_fn)(struct request *, void *);
534 * struct blk_mq_ops - Callback functions that implements block driver
539 * @queue_rq: Queue a new request from block IO.
541 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
542 const struct blk_mq_queue_data *);
545 * @commit_rqs: If a driver uses bd->last to judge when to submit
546 * requests to hardware, it must define this function. In case of errors
547 * that make us stop issuing further requests, this hook serves the
548 * purpose of kicking the hardware (which the last request otherwise
551 void (*commit_rqs)(struct blk_mq_hw_ctx *);
554 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
555 * that each request belongs to the same queue. If the driver doesn't
556 * empty the @rqlist completely, then the rest will be queued
557 * individually by the block layer upon return.
559 void (*queue_rqs)(struct request **rqlist);
562 * @get_budget: Reserve budget before queue request, once .queue_rq is
563 * run, it is driver's responsibility to release the
564 * reserved budget. Also we have to handle failure case
565 * of .get_budget for avoiding I/O deadlock.
567 int (*get_budget)(struct request_queue *);
570 * @put_budget: Release the reserved budget.
572 void (*put_budget)(struct request_queue *, int);
575 * @set_rq_budget_token: store rq's budget token
577 void (*set_rq_budget_token)(struct request *, int);
579 * @get_rq_budget_token: retrieve rq's budget token
581 int (*get_rq_budget_token)(struct request *);
584 * @timeout: Called on request timeout.
586 enum blk_eh_timer_return (*timeout)(struct request *);
589 * @poll: Called to poll for completion of a specific tag.
591 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
594 * @complete: Mark the request as complete.
596 void (*complete)(struct request *);
599 * @init_hctx: Called when the block layer side of a hardware queue has
600 * been set up, allowing the driver to allocate/init matching
603 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
605 * @exit_hctx: Ditto for exit/teardown.
607 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
610 * @init_request: Called for every command allocated by the block layer
611 * to allow the driver to set up driver specific data.
613 * Tag greater than or equal to queue_depth is for setting up
616 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
617 unsigned int, unsigned int);
619 * @exit_request: Ditto for exit/teardown.
621 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
625 * @cleanup_rq: Called before freeing one request which isn't completed
626 * yet, and usually for freeing the driver private data.
628 void (*cleanup_rq)(struct request *);
631 * @busy: If set, returns whether or not this queue currently is busy.
633 bool (*busy)(struct request_queue *);
636 * @map_queues: This allows drivers specify their own queue mapping by
637 * overriding the setup-time function that builds the mq_map.
639 void (*map_queues)(struct blk_mq_tag_set *set);
641 #ifdef CONFIG_BLK_DEBUG_FS
643 * @show_rq: Used by the debugfs implementation to show driver-specific
644 * information about a request.
646 void (*show_rq)(struct seq_file *m, struct request *rq);
651 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
652 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
654 * Set when this device requires underlying blk-mq device for
657 BLK_MQ_F_STACKING = 1 << 2,
658 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
659 BLK_MQ_F_BLOCKING = 1 << 5,
660 /* Do not allow an I/O scheduler to be configured. */
661 BLK_MQ_F_NO_SCHED = 1 << 6,
663 * Select 'none' during queue registration in case of a single hwq
664 * or shared hwqs instead of 'mq-deadline'.
666 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
667 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
668 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
670 BLK_MQ_S_STOPPED = 0,
671 BLK_MQ_S_TAG_ACTIVE = 1,
672 BLK_MQ_S_SCHED_RESTART = 2,
674 /* hw queue is inactive after all its CPUs become offline */
675 BLK_MQ_S_INACTIVE = 3,
677 BLK_MQ_MAX_DEPTH = 10240,
679 BLK_MQ_CPU_WORK_BATCH = 8,
681 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
682 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
683 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
684 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
685 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
686 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
688 #define BLK_MQ_NO_HCTX_IDX (-1U)
690 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
691 struct lock_class_key *lkclass);
692 #define blk_mq_alloc_disk(set, queuedata) \
694 static struct lock_class_key __key; \
696 __blk_mq_alloc_disk(set, queuedata, &__key); \
698 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
699 struct lock_class_key *lkclass);
700 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
701 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
702 struct request_queue *q);
703 void blk_mq_destroy_queue(struct request_queue *);
705 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
706 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
707 const struct blk_mq_ops *ops, unsigned int queue_depth,
708 unsigned int set_flags);
709 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
711 void blk_mq_free_request(struct request *rq);
712 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
713 unsigned int poll_flags);
715 bool blk_mq_queue_inflight(struct request_queue *q);
718 /* return when out of requests */
719 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
720 /* allocate from reserved pool */
721 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
723 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
726 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
727 blk_mq_req_flags_t flags);
728 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
729 blk_opf_t opf, blk_mq_req_flags_t flags,
730 unsigned int hctx_idx);
733 * Tag address space map.
736 unsigned int nr_tags;
737 unsigned int nr_reserved_tags;
738 unsigned int active_queues;
740 struct sbitmap_queue bitmap_tags;
741 struct sbitmap_queue breserved_tags;
743 struct request **rqs;
744 struct request **static_rqs;
745 struct list_head page_list;
748 * used to clear request reference in rqs[] before freeing one
754 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
757 if (tag < tags->nr_tags) {
758 prefetch(tags->rqs[tag]);
759 return tags->rqs[tag];
766 BLK_MQ_UNIQUE_TAG_BITS = 16,
767 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
770 u32 blk_mq_unique_tag(struct request *rq);
772 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
774 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
777 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
779 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
783 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
784 * @rq: target request.
786 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
788 return READ_ONCE(rq->state);
791 static inline int blk_mq_request_started(struct request *rq)
793 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
796 static inline int blk_mq_request_completed(struct request *rq)
798 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
803 * Set the state to complete when completing a request from inside ->queue_rq.
804 * This is used by drivers that want to ensure special complete actions that
805 * need access to the request are called on failure, e.g. by nvme for
808 static inline void blk_mq_set_request_complete(struct request *rq)
810 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
814 * Complete the request directly instead of deferring it to softirq or
815 * completing it another CPU. Useful in preemptible instead of an interrupt.
817 static inline void blk_mq_complete_request_direct(struct request *rq,
818 void (*complete)(struct request *rq))
820 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
824 void blk_mq_start_request(struct request *rq);
825 void blk_mq_end_request(struct request *rq, blk_status_t error);
826 void __blk_mq_end_request(struct request *rq, blk_status_t error);
827 void blk_mq_end_request_batch(struct io_comp_batch *ib);
830 * Only need start/end time stamping if we have iostat or
831 * blk stats enabled, or using an IO scheduler.
833 static inline bool blk_mq_need_time_stamp(struct request *rq)
835 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
838 static inline bool blk_mq_is_reserved_rq(struct request *rq)
840 return rq->rq_flags & RQF_RESV;
844 * Batched completions only work when there is no I/O error and no special
847 static inline bool blk_mq_add_to_batch(struct request *req,
848 struct io_comp_batch *iob, int ioerror,
849 void (*complete)(struct io_comp_batch *))
852 * blk_mq_end_request_batch() can't end request allocated from
855 if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
856 (req->end_io && !blk_rq_is_passthrough(req)))
860 iob->complete = complete;
861 else if (iob->complete != complete)
863 iob->need_ts |= blk_mq_need_time_stamp(req);
864 rq_list_add(&iob->req_list, req);
868 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
869 void blk_mq_kick_requeue_list(struct request_queue *q);
870 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
871 void blk_mq_complete_request(struct request *rq);
872 bool blk_mq_complete_request_remote(struct request *rq);
873 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
874 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
875 void blk_mq_stop_hw_queues(struct request_queue *q);
876 void blk_mq_start_hw_queues(struct request_queue *q);
877 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
878 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
879 void blk_mq_quiesce_queue(struct request_queue *q);
880 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
881 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
882 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
883 void blk_mq_unquiesce_queue(struct request_queue *q);
884 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
885 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
886 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
887 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
888 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
889 busy_tag_iter_fn *fn, void *priv);
890 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
891 void blk_mq_freeze_queue(struct request_queue *q);
892 void blk_mq_unfreeze_queue(struct request_queue *q);
893 void blk_freeze_queue_start(struct request_queue *q);
894 void blk_mq_freeze_queue_wait(struct request_queue *q);
895 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
896 unsigned long timeout);
898 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
899 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
901 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
903 unsigned int blk_mq_rq_cpu(struct request *rq);
905 bool __blk_should_fake_timeout(struct request_queue *q);
906 static inline bool blk_should_fake_timeout(struct request_queue *q)
908 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
909 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
910 return __blk_should_fake_timeout(q);
915 * blk_mq_rq_from_pdu - cast a PDU to a request
916 * @pdu: the PDU (Protocol Data Unit) to be casted
920 * Driver command data is immediately after the request. So subtract request
921 * size to get back to the original request.
923 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
925 return pdu - sizeof(struct request);
929 * blk_mq_rq_to_pdu - cast a request to a PDU
930 * @rq: the request to be casted
932 * Return: pointer to the PDU
934 * Driver command data is immediately after the request. So add request to get
937 static inline void *blk_mq_rq_to_pdu(struct request *rq)
942 #define queue_for_each_hw_ctx(q, hctx, i) \
943 xa_for_each(&(q)->hctx_table, (i), (hctx))
945 #define hctx_for_each_ctx(hctx, ctx, i) \
946 for ((i) = 0; (i) < (hctx)->nr_ctx && \
947 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
949 static inline void blk_mq_cleanup_rq(struct request *rq)
951 if (rq->q->mq_ops->cleanup_rq)
952 rq->q->mq_ops->cleanup_rq(rq);
955 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
956 unsigned int nr_segs)
958 rq->nr_phys_segments = nr_segs;
959 rq->__data_len = bio->bi_iter.bi_size;
960 rq->bio = rq->biotail = bio;
961 rq->ioprio = bio_prio(bio);
964 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
965 struct lock_class_key *key);
967 static inline bool rq_is_sync(struct request *rq)
969 return op_is_sync(rq->cmd_flags);
972 void blk_rq_init(struct request_queue *q, struct request *rq);
973 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
974 struct bio_set *bs, gfp_t gfp_mask,
975 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
976 void blk_rq_unprep_clone(struct request *rq);
977 blk_status_t blk_insert_cloned_request(struct request *rq);
981 unsigned long offset;
982 unsigned short page_order;
983 unsigned short nr_entries;
988 int blk_rq_map_user(struct request_queue *, struct request *,
989 struct rq_map_data *, void __user *, unsigned long, gfp_t);
990 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
991 void __user *, unsigned long, gfp_t, bool, int, bool, int);
992 int blk_rq_map_user_iov(struct request_queue *, struct request *,
993 struct rq_map_data *, const struct iov_iter *, gfp_t);
994 int blk_rq_unmap_user(struct bio *);
995 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
996 unsigned int, gfp_t);
997 int blk_rq_append_bio(struct request *rq, struct bio *bio);
998 void blk_execute_rq_nowait(struct request *rq, bool at_head);
999 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1000 bool blk_rq_is_poll(struct request *rq);
1002 struct req_iterator {
1003 struct bvec_iter iter;
1007 #define __rq_for_each_bio(_bio, rq) \
1009 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1011 #define rq_for_each_segment(bvl, _rq, _iter) \
1012 __rq_for_each_bio(_iter.bio, _rq) \
1013 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1015 #define rq_for_each_bvec(bvl, _rq, _iter) \
1016 __rq_for_each_bio(_iter.bio, _rq) \
1017 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1019 #define rq_iter_last(bvec, _iter) \
1020 (_iter.bio->bi_next == NULL && \
1021 bio_iter_last(bvec, _iter.iter))
1024 * blk_rq_pos() : the current sector
1025 * blk_rq_bytes() : bytes left in the entire request
1026 * blk_rq_cur_bytes() : bytes left in the current segment
1027 * blk_rq_sectors() : sectors left in the entire request
1028 * blk_rq_cur_sectors() : sectors left in the current segment
1029 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1031 static inline sector_t blk_rq_pos(const struct request *rq)
1033 return rq->__sector;
1036 static inline unsigned int blk_rq_bytes(const struct request *rq)
1038 return rq->__data_len;
1041 static inline int blk_rq_cur_bytes(const struct request *rq)
1045 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1046 return rq->bio->bi_iter.bi_size;
1047 return bio_iovec(rq->bio).bv_len;
1050 static inline unsigned int blk_rq_sectors(const struct request *rq)
1052 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1055 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1057 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1060 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1062 return rq->stats_sectors;
1066 * Some commands like WRITE SAME have a payload or data transfer size which
1067 * is different from the size of the request. Any driver that supports such
1068 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1069 * calculate the data transfer size.
1071 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1073 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1074 return rq->special_vec.bv_len;
1075 return blk_rq_bytes(rq);
1079 * Return the first full biovec in the request. The caller needs to check that
1080 * there are any bvecs before calling this helper.
1082 static inline struct bio_vec req_bvec(struct request *rq)
1084 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1085 return rq->special_vec;
1086 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1089 static inline unsigned int blk_rq_count_bios(struct request *rq)
1091 unsigned int nr_bios = 0;
1094 __rq_for_each_bio(bio, rq)
1100 void blk_steal_bios(struct bio_list *list, struct request *rq);
1103 * Request completion related functions.
1105 * blk_update_request() completes given number of bytes and updates
1106 * the request without completing it.
1108 bool blk_update_request(struct request *rq, blk_status_t error,
1109 unsigned int nr_bytes);
1110 void blk_abort_request(struct request *);
1113 * Number of physical segments as sent to the device.
1115 * Normally this is the number of discontiguous data segments sent by the
1116 * submitter. But for data-less command like discard we might have no
1117 * actual data segments submitted, but the driver might have to add it's
1118 * own special payload. In that case we still return 1 here so that this
1119 * special payload will be mapped.
1121 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1123 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 return rq->nr_phys_segments;
1129 * Number of discard segments (or ranges) the driver needs to fill in.
1130 * Each discard bio merged into a request is counted as one segment.
1132 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1134 return max_t(unsigned short, rq->nr_phys_segments, 1);
1137 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1138 struct scatterlist *sglist, struct scatterlist **last_sg);
1139 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1140 struct scatterlist *sglist)
1142 struct scatterlist *last_sg = NULL;
1144 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1146 void blk_dump_rq_flags(struct request *, char *);
1148 #ifdef CONFIG_BLK_DEV_ZONED
1149 static inline unsigned int blk_rq_zone_no(struct request *rq)
1151 return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1154 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1156 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1160 * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1161 * @rq: Request to examine.
1163 * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1165 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1167 return op_needs_zoned_write_locking(req_op(rq)) &&
1168 blk_rq_zone_is_seq(rq);
1171 bool blk_req_needs_zone_write_lock(struct request *rq);
1172 bool blk_req_zone_write_trylock(struct request *rq);
1173 void __blk_req_zone_write_lock(struct request *rq);
1174 void __blk_req_zone_write_unlock(struct request *rq);
1176 static inline void blk_req_zone_write_lock(struct request *rq)
1178 if (blk_req_needs_zone_write_lock(rq))
1179 __blk_req_zone_write_lock(rq);
1182 static inline void blk_req_zone_write_unlock(struct request *rq)
1184 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1185 __blk_req_zone_write_unlock(rq);
1188 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1190 return rq->q->disk->seq_zones_wlock &&
1191 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1194 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1196 if (!blk_req_needs_zone_write_lock(rq))
1198 return !blk_req_zone_is_write_locked(rq);
1200 #else /* CONFIG_BLK_DEV_ZONED */
1201 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1206 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1211 static inline void blk_req_zone_write_lock(struct request *rq)
1215 static inline void blk_req_zone_write_unlock(struct request *rq)
1218 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1223 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1227 #endif /* CONFIG_BLK_DEV_ZONED */
1229 #endif /* BLK_MQ_H */