1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * (C) Copyright 2000-2009
4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 * Copy the startup prototype, previously defined in common.h
7 * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
13 #ifndef __ASSEMBLY__ /* put C only stuff in this section */
15 #include <linux/types.h>
17 /* Avoid using CONFIG_EFI_STUB directly as we may boot from other loaders */
18 #ifdef CONFIG_EFI_STUB
19 #define ll_boot_init() false
21 #include <asm/global_data.h>
23 #define ll_boot_init() (!(gd->flags & GD_FLG_SKIP_LL_INIT))
30 /* common/board_f.c */
31 void board_init_f(ulong dummy);
34 * arch_cpu_init() - basic cpu-dependent setup for an architecture
36 * This is called after early malloc is available. It should handle any
37 * CPU- or SoC- specific init needed to continue the init sequence. See
38 * board_f.c for where it is called. If this is not provided, a default
39 * version (which does nothing) will be used.
41 * Return: 0 on success, otherwise error
43 int arch_cpu_init(void);
46 * arch_cpu_init_dm() - init CPU after driver model is available
48 * This is called immediately after driver model is available before
49 * relocation. This is similar to arch_cpu_init() but is able to reference
52 * Return: 0 if OK, -ve on error
54 int arch_cpu_init_dm(void);
57 * mach_cpu_init() - SoC/machine dependent CPU setup
59 * This is called after arch_cpu_init(). It should handle any
60 * SoC or machine specific init needed to continue the init sequence. See
61 * board_f.c for where it is called. If this is not provided, a default
62 * version (which does nothing) will be used.
64 * Return: 0 on success, otherwise error
66 int mach_cpu_init(void);
69 * arch_fsp_init() - perform firmware support package init
71 * Where U-Boot relies on binary blobs to handle part of the system init, this
72 * function can be used to set up the blobs. This is used on some Intel
77 int arch_fsp_init(void);
80 * arch_fsp_init() - perform post-relocation firmware support package init
82 * Where U-Boot relies on binary blobs to handle part of the system init, this
83 * function can be used to set up the blobs. This is used on some Intel
88 int arch_fsp_init_r(void);
93 * dram_init_banksize() - Set up DRAM bank sizes
95 * This can be implemented by boards to set up the DRAM bank information in
96 * gd->bd->bi_dram(). It is called just before relocation, after dram_init()
99 * If this is not provided, a default implementation will try to set up a
100 * single bank. It will do this if CONFIG_NR_DRAM_BANKS and
101 * CONFIG_SYS_SDRAM_BASE are set. The bank will have a start address of
102 * CONFIG_SYS_SDRAM_BASE and the size will be determined by a call to
103 * get_effective_memsize().
105 * Return: 0 if OK, -ve on error
107 int dram_init_banksize(void);
109 long get_ram_size(long *base, long size);
110 phys_size_t get_effective_memsize(void);
115 * arch_reserve_stacks() - Reserve all necessary stacks
117 * This is used in generic board init sequence in common/board_f.c. Each
118 * architecture could provide this function to tailor the required stacks.
120 * On entry gd->start_addr_sp is pointing to the suggested top of the stack.
121 * The callee ensures gd->start_add_sp is 16-byte aligned, so architectures
122 * require only this can leave it untouched.
124 * On exit gd->start_addr_sp and gd->irq_sp should be set to the respective
125 * positions of the stack. The stack pointer(s) will be set to this later.
126 * gd->irq_sp is only required, if the architecture needs it.
128 * Return: 0 if no error
130 int arch_reserve_stacks(void);
133 * arch_reserve_mmu() - Reserve memory for MMU TLB table
135 * Architecture-specific routine for reserving memory for the MMU TLB table.
136 * This is used in generic board init sequence in common/board_f.c.
138 * If an implementation is not provided, it will just be a nop stub.
142 int arch_reserve_mmu(void);
145 * arch_setup_bdinfo() - Architecture dependent boardinfo setup
147 * Architecture-specific routine for populating various boardinfo fields of
148 * gd->bd. It is called during the generic board init sequence.
150 * If an implementation is not provided, it will just be a nop stub.
154 int arch_setup_bdinfo(void);
157 * setup_bdinfo() - Generic boardinfo setup
159 * Routine for populating various generic boardinfo fields of
160 * gd->bd. It is called during the generic board init sequence.
164 int setup_bdinfo(void);
167 * cpu_secondary_init_r() - CPU-specific secondary initialization
169 * After non-volatile devices, environment and cpu code are setup, have
170 * another round to deal with any initialization that might require
171 * full access to the environment or loading of some image (firmware)
172 * from a non-volatile device.
174 * It is called during the generic post-relocation init sequence.
178 int cpu_secondary_init_r(void);
181 * pci_ep_init() - Initialize pci endpoint devices
183 * It is called during the generic post-relocation init sequence.
187 int pci_ep_init(void);
190 * pci_init() - Enumerate pci devices
192 * It is called during the generic post-relocation init sequence to enumerate
193 * pci buses. This is needed, for instance, in the case of DM PCI-based
194 * Ethernet devices, which will not be detected without having the enumeration
202 * init_cache_f_r() - Turn on the cache in preparation for relocation
204 * Return: 0 if OK, -ve on error
206 int init_cache_f_r(void);
208 #if !CONFIG_IS_ENABLED(CPU)
210 * print_cpuinfo() - Display information about the CPU
212 * Return: 0 if OK, -ve on error
214 int print_cpuinfo(void);
216 int timer_init(void);
217 int misc_init_f(void);
219 #if defined(CONFIG_DTB_RESELECT)
220 int embedded_dtb_select(void);
223 /* common/init/board_init.c */
224 extern ulong monitor_flash_len;
227 * ulong board_init_f_alloc_reserve - allocate reserved area
228 * @top: top of the reserve area, growing down.
230 * This function is called by each architecture very early in the start-up
231 * code to allow the C runtime to reserve space on the stack for writable
232 * 'globals' such as GD and the malloc arena.
234 * Return: bottom of reserved area
236 ulong board_init_f_alloc_reserve(ulong top);
239 * board_init_f_init_reserve - initialize the reserved area(s)
240 * @base: top from which reservation was done
242 * This function is called once the C runtime has allocated the reserved
243 * area on the stack. It must initialize the GD at the base of that area.
245 void board_init_f_init_reserve(ulong base);
250 * arch_setup_gd() - Set up the global_data pointer
251 * @gd_ptr: Pointer to global data
253 * This pointer is special in some architectures and cannot easily be assigned
254 * to. For example on x86 it is implemented by adding a specific record to its
255 * Global Descriptor Table! So we we provide a function to carry out this task.
256 * For most architectures this can simply be:
260 void arch_setup_gd(struct global_data *gd_ptr);
262 /* common/board_r.c */
263 void board_init_r(struct global_data *id, ulong dest_addr)
264 __attribute__ ((noreturn));
266 int cpu_init_r(void);
267 int last_stage_init(void);
268 int mac_read_from_eeprom(void);
269 int set_cpu_clk_info(void);
270 int update_flash_size(int flash_size);
271 int arch_early_init_r(void);
272 int misc_init_r(void);
273 #if defined(CONFIG_VID)
274 int init_func_vid(void);
277 /* common/board_info.c */
278 int checkboard(void);
279 int show_board_info(void);
282 * Get the uppermost pointer that is valid to access
284 * Some systems may not map all of their address space. This function allows
285 * boards to indicate what their highest support pointer value is for DRAM
288 * @param total_size Size of U-Boot (unused?)
290 ulong board_get_usable_ram_top(ulong total_size);
292 int board_early_init_f(void);
294 /* manipulate the U-Boot fdt before its relocation */
295 int board_fix_fdt(void *rw_fdt_blob);
296 int board_late_init(void);
297 int board_postclk_init(void); /* after clocks/timebase, before env/serial */
298 int board_early_init_r(void);
301 * arch_initr_trap() - Init traps
303 * Arch specific routine for initializing traps. It is called during the
304 * generic board init sequence, after relocation.
308 int arch_initr_trap(void);
311 * main_loop() - Enter the main loop of U-Boot
313 * This normally runs the command line.
315 void main_loop(void);
317 #if defined(CONFIG_ARM)
318 void relocate_code(ulong addr_moni);
320 void relocate_code(ulong start_addr_sp, struct global_data *new_gd,
322 __attribute__ ((noreturn));
325 /* Print a numeric value (for use in arch_print_bdinfo()) */
326 void bdinfo_print_num_l(const char *name, ulong value);
327 void bdinfo_print_num_ll(const char *name, unsigned long long value);
329 /* Print a clock speed in MHz */
330 void bdinfo_print_mhz(const char *name, unsigned long hz);
332 /* Show arch-specific information for the 'bd' command */
333 void arch_print_bdinfo(void);
335 int do_bdinfo(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]);
337 #endif /* __ASSEMBLY__ */
338 /* Put only stuff here that the assembler can digest */
340 #endif /* __INIT_H_ */