tegra114: fdt: add compatible string for tegra114 SPI ctrl
[kernel/u-boot.git] / include / fdtdec.h
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * See file CREDITS for list of people who contributed to this
4  * project.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21
22 #ifndef __fdtdec_h
23 #define __fdtdec_h
24
25 /*
26  * This file contains convenience functions for decoding useful and
27  * enlightening information from FDTs. It is intended to be used by device
28  * drivers and board-specific code within U-Boot. It aims to reduce the
29  * amount of FDT munging required within U-Boot itself, so that driver code
30  * changes to support FDT are minimized.
31  */
32
33 #include <libfdt.h>
34
35 /*
36  * A typedef for a physical address. Note that fdt data is always big
37  * endian even on a litle endian machine.
38  */
39 #ifdef CONFIG_PHYS_64BIT
40 typedef u64 fdt_addr_t;
41 #define FDT_ADDR_T_NONE (-1ULL)
42 #define fdt_addr_to_cpu(reg) be64_to_cpu(reg)
43 #define fdt_size_to_cpu(reg) be64_to_cpu(reg)
44 #else
45 typedef u32 fdt_addr_t;
46 #define FDT_ADDR_T_NONE (-1U)
47 #define fdt_addr_to_cpu(reg) be32_to_cpu(reg)
48 #define fdt_size_to_cpu(reg) be32_to_cpu(reg)
49 #endif
50
51 /* Information obtained about memory from the FDT */
52 struct fdt_memory {
53         fdt_addr_t start;
54         fdt_addr_t end;
55 };
56
57 /**
58  * Compat types that we know about and for which we might have drivers.
59  * Each is named COMPAT_<dir>_<filename> where <dir> is the directory
60  * within drivers.
61  */
62 enum fdt_compat_id {
63         COMPAT_UNKNOWN,
64         COMPAT_NVIDIA_TEGRA20_USB,      /* Tegra20 USB port */
65         COMPAT_NVIDIA_TEGRA114_I2C,     /* Tegra114 I2C w/single clock source */
66         COMPAT_NVIDIA_TEGRA20_I2C,      /* Tegra20 i2c */
67         COMPAT_NVIDIA_TEGRA20_DVC,      /* Tegra20 dvc (really just i2c) */
68         COMPAT_NVIDIA_TEGRA20_EMC,      /* Tegra20 memory controller */
69         COMPAT_NVIDIA_TEGRA20_EMC_TABLE, /* Tegra20 memory timing table */
70         COMPAT_NVIDIA_TEGRA20_KBC,      /* Tegra20 Keyboard */
71         COMPAT_NVIDIA_TEGRA20_NAND,     /* Tegra2 NAND controller */
72         COMPAT_NVIDIA_TEGRA20_PWM,      /* Tegra 2 PWM controller */
73         COMPAT_NVIDIA_TEGRA20_DC,       /* Tegra 2 Display controller */
74         COMPAT_NVIDIA_TEGRA30_SDMMC,    /* Tegra30 SDMMC controller */
75         COMPAT_NVIDIA_TEGRA20_SDMMC,    /* Tegra20 SDMMC controller */
76         COMPAT_NVIDIA_TEGRA20_SFLASH,   /* Tegra 2 SPI flash controller */
77         COMPAT_NVIDIA_TEGRA20_SLINK,    /* Tegra 2 SPI SLINK controller */
78         COMPAT_NVIDIA_TEGRA114_SPI,     /* Tegra 114 SPI controller */
79         COMPAT_SMSC_LAN9215,            /* SMSC 10/100 Ethernet LAN9215 */
80         COMPAT_SAMSUNG_EXYNOS5_SROMC,   /* Exynos5 SROMC */
81         COMPAT_SAMSUNG_S3C2440_I2C,     /* Exynos I2C Controller */
82         COMPAT_SAMSUNG_EXYNOS5_SOUND,   /* Exynos Sound */
83         COMPAT_WOLFSON_WM8994_CODEC,    /* Wolfson WM8994 Sound Codec */
84         COMPAT_SAMSUNG_EXYNOS_SPI,      /* Exynos SPI */
85         COMPAT_SAMSUNG_EXYNOS_EHCI,     /* Exynos EHCI controller */
86         COMPAT_SAMSUNG_EXYNOS_USB_PHY,  /* Exynos phy controller for usb2.0 */
87         COMPAT_MAXIM_MAX77686_PMIC,     /* MAX77686 PMIC */
88
89         COMPAT_COUNT,
90 };
91
92 /* GPIOs are numbered from 0 */
93 enum {
94         FDT_GPIO_NONE = -1U,    /* an invalid GPIO used to end our list */
95
96         FDT_GPIO_ACTIVE_LOW = 1 << 0,   /* input is active low (else high) */
97 };
98
99 /* This is the state of a GPIO pin as defined by the fdt */
100 struct fdt_gpio_state {
101         const char *name;       /* name of the fdt property defining this */
102         uint gpio;              /* GPIO number, or FDT_GPIO_NONE if none */
103         u8 flags;               /* FDT_GPIO_... flags */
104 };
105
106 /* This tells us whether a fdt_gpio_state record is valid or not */
107 #define fdt_gpio_isvalid(x) ((x)->gpio != FDT_GPIO_NONE)
108
109 /**
110  * Read the GPIO taking into account the polarity of the pin.
111  *
112  * @param gpio          pointer to the decoded gpio
113  * @return value of the gpio if successful, < 0 if unsuccessful
114  */
115 int fdtdec_get_gpio(struct fdt_gpio_state *gpio);
116
117 /**
118  * Write the GPIO taking into account the polarity of the pin.
119  *
120  * @param gpio          pointer to the decoded gpio
121  * @return 0 if successful
122  */
123 int fdtdec_set_gpio(struct fdt_gpio_state *gpio, int val);
124
125 /**
126  * Find the next numbered alias for a peripheral. This is used to enumerate
127  * all the peripherals of a certain type.
128  *
129  * Do the first call with *upto = 0. Assuming /aliases/<name>0 exists then
130  * this function will return a pointer to the node the alias points to, and
131  * then update *upto to 1. Next time you call this function, the next node
132  * will be returned.
133  *
134  * All nodes returned will match the compatible ID, as it is assumed that
135  * all peripherals use the same driver.
136  *
137  * @param blob          FDT blob to use
138  * @param name          Root name of alias to search for
139  * @param id            Compatible ID to look for
140  * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
141  */
142 int fdtdec_next_alias(const void *blob, const char *name,
143                 enum fdt_compat_id id, int *upto);
144
145 /**
146  * Find the compatible ID for a given node.
147  *
148  * Generally each node has at least one compatible string attached to it.
149  * This function looks through our list of known compatible strings and
150  * returns the corresponding ID which matches the compatible string.
151  *
152  * @param blob          FDT blob to use
153  * @param node          Node containing compatible string to find
154  * @return compatible ID, or COMPAT_UNKNOWN if we cannot find a match
155  */
156 enum fdt_compat_id fdtdec_lookup(const void *blob, int node);
157
158 /**
159  * Find the next compatible node for a peripheral.
160  *
161  * Do the first call with node = 0. This function will return a pointer to
162  * the next compatible node. Next time you call this function, pass the
163  * value returned, and the next node will be provided.
164  *
165  * @param blob          FDT blob to use
166  * @param node          Start node for search
167  * @param id            Compatible ID to look for (enum fdt_compat_id)
168  * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
169  */
170 int fdtdec_next_compatible(const void *blob, int node,
171                 enum fdt_compat_id id);
172
173 /**
174  * Find the next compatible subnode for a peripheral.
175  *
176  * Do the first call with node set to the parent and depth = 0. This
177  * function will return the offset of the next compatible node. Next time
178  * you call this function, pass the node value returned last time, with
179  * depth unchanged, and the next node will be provided.
180  *
181  * @param blob          FDT blob to use
182  * @param node          Start node for search
183  * @param id            Compatible ID to look for (enum fdt_compat_id)
184  * @param depthp        Current depth (set to 0 before first call)
185  * @return offset of next compatible node, or -FDT_ERR_NOTFOUND if no more
186  */
187 int fdtdec_next_compatible_subnode(const void *blob, int node,
188                 enum fdt_compat_id id, int *depthp);
189
190 /**
191  * Look up an address property in a node and return it as an address.
192  * The property must hold either one address with no trailing data or
193  * one address with a length. This is only tested on 32-bit machines.
194  *
195  * @param blob  FDT blob
196  * @param node  node to examine
197  * @param prop_name     name of property to find
198  * @return address, if found, or FDT_ADDR_T_NONE if not
199  */
200 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
201                 const char *prop_name);
202
203 /**
204  * Look up a 32-bit integer property in a node and return it. The property
205  * must have at least 4 bytes of data. The value of the first cell is
206  * returned.
207  *
208  * @param blob  FDT blob
209  * @param node  node to examine
210  * @param prop_name     name of property to find
211  * @param default_val   default value to return if the property is not found
212  * @return integer value, if found, or default_val if not
213  */
214 s32 fdtdec_get_int(const void *blob, int node, const char *prop_name,
215                 s32 default_val);
216
217 /**
218  * Look up a 64-bit integer property in a node and return it. The property
219  * must have at least 8 bytes of data (2 cells). The first two cells are
220  * concatenated to form a 8 bytes value, where the first cell is top half and
221  * the second cell is bottom half.
222  *
223  * @param blob  FDT blob
224  * @param node  node to examine
225  * @param prop_name     name of property to find
226  * @param default_val   default value to return if the property is not found
227  * @return integer value, if found, or default_val if not
228  */
229 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
230                 uint64_t default_val);
231
232 /**
233  * Checks whether a node is enabled.
234  * This looks for a 'status' property. If this exists, then returns 1 if
235  * the status is 'ok' and 0 otherwise. If there is no status property,
236  * it returns 1 on the assumption that anything mentioned should be enabled
237  * by default.
238  *
239  * @param blob  FDT blob
240  * @param node  node to examine
241  * @return integer value 0 (not enabled) or 1 (enabled)
242  */
243 int fdtdec_get_is_enabled(const void *blob, int node);
244
245 /**
246  * Make sure we have a valid fdt available to control U-Boot.
247  *
248  * If not, a message is printed to the console if the console is ready.
249  *
250  * @return 0 if all ok, -1 if not
251  */
252 int fdtdec_prepare_fdt(void);
253
254 /**
255  * Checks that we have a valid fdt available to control U-Boot.
256
257  * However, if not then for the moment nothing is done, since this function
258  * is called too early to panic().
259  *
260  * @returns 0
261  */
262 int fdtdec_check_fdt(void);
263
264 /**
265  * Find the nodes for a peripheral and return a list of them in the correct
266  * order. This is used to enumerate all the peripherals of a certain type.
267  *
268  * To use this, optionally set up a /aliases node with alias properties for
269  * a peripheral. For example, for usb you could have:
270  *
271  * aliases {
272  *              usb0 = "/ehci@c5008000";
273  *              usb1 = "/ehci@c5000000";
274  * };
275  *
276  * Pass "usb" as the name to this function and will return a list of two
277  * nodes offsets: /ehci@c5008000 and ehci@c5000000.
278  *
279  * All nodes returned will match the compatible ID, as it is assumed that
280  * all peripherals use the same driver.
281  *
282  * If no alias node is found, then the node list will be returned in the
283  * order found in the fdt. If the aliases mention a node which doesn't
284  * exist, then this will be ignored. If nodes are found with no aliases,
285  * they will be added in any order.
286  *
287  * If there is a gap in the aliases, then this function return a 0 node at
288  * that position. The return value will also count these gaps.
289  *
290  * This function checks node properties and will not return nodes which are
291  * marked disabled (status = "disabled").
292  *
293  * @param blob          FDT blob to use
294  * @param name          Root name of alias to search for
295  * @param id            Compatible ID to look for
296  * @param node_list     Place to put list of found nodes
297  * @param maxcount      Maximum number of nodes to find
298  * @return number of nodes found on success, FTD_ERR_... on error
299  */
300 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
301                         enum fdt_compat_id id, int *node_list, int maxcount);
302
303 /*
304  * This function is similar to fdtdec_find_aliases_for_id() except that it
305  * adds to the node_list that is passed in. Any 0 elements are considered
306  * available for allocation - others are considered already used and are
307  * skipped.
308  *
309  * You can use this by calling fdtdec_find_aliases_for_id() with an
310  * uninitialised array, then setting the elements that are returned to -1,
311  * say, then calling this function, perhaps with a different compat id.
312  * Any elements you get back that are >0 are new nodes added by the call
313  * to this function.
314  *
315  * Note that if you have some nodes with aliases and some without, you are
316  * sailing close to the wind. The call to fdtdec_find_aliases_for_id() with
317  * one compat_id may fill in positions for which you have aliases defined
318  * for another compat_id. When you later call *this* function with the second
319  * compat_id, the alias positions may already be used. A debug warning may
320  * be generated in this case, but it is safest to define aliases for all
321  * nodes when you care about the ordering.
322  */
323 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
324                         enum fdt_compat_id id, int *node_list, int maxcount);
325
326 /*
327  * Get the name for a compatible ID
328  *
329  * @param id            Compatible ID to look for
330  * @return compatible string for that id
331  */
332 const char *fdtdec_get_compatible(enum fdt_compat_id id);
333
334 /* Look up a phandle and follow it to its node. Then return the offset
335  * of that node.
336  *
337  * @param blob          FDT blob
338  * @param node          node to examine
339  * @param prop_name     name of property to find
340  * @return node offset if found, -ve error code on error
341  */
342 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name);
343
344 /**
345  * Look up a property in a node and return its contents in an integer
346  * array of given length. The property must have at least enough data for
347  * the array (4*count bytes). It may have more, but this will be ignored.
348  *
349  * @param blob          FDT blob
350  * @param node          node to examine
351  * @param prop_name     name of property to find
352  * @param array         array to fill with data
353  * @param count         number of array elements
354  * @return 0 if ok, or -FDT_ERR_NOTFOUND if the property is not found,
355  *              or -FDT_ERR_BADLAYOUT if not enough data
356  */
357 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
358                 u32 *array, int count);
359
360 /**
361  * Look up a property in a node and return a pointer to its contents as a
362  * unsigned int array of given length. The property must have at least enough
363  * data for the array ('count' cells). It may have more, but this will be
364  * ignored. The data is not copied.
365  *
366  * Note that you must access elements of the array with fdt32_to_cpu(),
367  * since the elements will be big endian even on a little endian machine.
368  *
369  * @param blob          FDT blob
370  * @param node          node to examine
371  * @param prop_name     name of property to find
372  * @param count         number of array elements
373  * @return pointer to array if found, or NULL if the property is not
374  *              found or there is not enough data
375  */
376 const u32 *fdtdec_locate_array(const void *blob, int node,
377                                const char *prop_name, int count);
378
379 /**
380  * Look up a boolean property in a node and return it.
381  *
382  * A boolean properly is true if present in the device tree and false if not
383  * present, regardless of its value.
384  *
385  * @param blob  FDT blob
386  * @param node  node to examine
387  * @param prop_name     name of property to find
388  * @return 1 if the properly is present; 0 if it isn't present
389  */
390 int fdtdec_get_bool(const void *blob, int node, const char *prop_name);
391
392 /**
393  * Decode a single GPIOs from an FDT.
394  *
395  * If the property is not found, then the GPIO structure will still be
396  * initialised, with gpio set to FDT_GPIO_NONE. This makes it easy to
397  * provide optional GPIOs.
398  *
399  * @param blob          FDT blob to use
400  * @param node          Node to look at
401  * @param prop_name     Node property name
402  * @param gpio          gpio elements to fill from FDT
403  * @return 0 if ok, -FDT_ERR_NOTFOUND if the property is missing.
404  */
405 int fdtdec_decode_gpio(const void *blob, int node, const char *prop_name,
406                 struct fdt_gpio_state *gpio);
407
408 /**
409  * Decode a list of GPIOs from an FDT. This creates a list of GPIOs with no
410  * terminating item.
411  *
412  * @param blob         FDT blob to use
413  * @param node         Node to look at
414  * @param prop_name    Node property name
415  * @param gpio         Array of gpio elements to fill from FDT. This will be
416  *                     untouched if either 0 or an error is returned
417  * @param max_count    Maximum number of elements allowed
418  * @return number of GPIOs read if ok, -FDT_ERR_BADLAYOUT if max_count would
419  * be exceeded, or -FDT_ERR_NOTFOUND if the property is missing.
420  */
421 int fdtdec_decode_gpios(const void *blob, int node, const char *prop_name,
422                 struct fdt_gpio_state *gpio, int max_count);
423
424 /**
425  * Set up a GPIO pin according to the provided gpio information. At present this
426  * just requests the GPIO.
427  *
428  * If the gpio is FDT_GPIO_NONE, no action is taken. This makes it easy to
429  * deal with optional GPIOs.
430  *
431  * @param gpio          GPIO info to use for set up
432  * @return 0 if all ok or gpio was FDT_GPIO_NONE; -1 on error
433  */
434 int fdtdec_setup_gpio(struct fdt_gpio_state *gpio);
435
436 /**
437  * Look in the FDT for a config item with the given name and return its value
438  * as a 32-bit integer. The property must have at least 4 bytes of data. The
439  * value of the first cell is returned.
440  *
441  * @param blob          FDT blob to use
442  * @param prop_name     Node property name
443  * @param default_val   default value to return if the property is not found
444  * @return integer value, if found, or default_val if not
445  */
446 int fdtdec_get_config_int(const void *blob, const char *prop_name,
447                 int default_val);
448
449 /**
450  * Look in the FDT for a config item with the given name
451  * and return whether it exists.
452  *
453  * @param blob          FDT blob
454  * @param prop_name     property name to look up
455  * @return 1, if it exists, or 0 if not
456  */
457 int fdtdec_get_config_bool(const void *blob, const char *prop_name);
458
459 /**
460  * Look in the FDT for a config item with the given name and return its value
461  * as a string.
462  *
463  * @param blob          FDT blob
464  * @param prop_name     property name to look up
465  * @returns property string, NULL on error.
466  */
467 char *fdtdec_get_config_string(const void *blob, const char *prop_name);
468
469 /*
470  * Look up a property in a node and return its contents in a byte
471  * array of given length. The property must have at least enough data for
472  * the array (count bytes). It may have more, but this will be ignored.
473  *
474  * @param blob          FDT blob
475  * @param node          node to examine
476  * @param prop_name     name of property to find
477  * @param array         array to fill with data
478  * @param count         number of array elements
479  * @return 0 if ok, or -FDT_ERR_MISSING if the property is not found,
480  *              or -FDT_ERR_BADLAYOUT if not enough data
481  */
482 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
483                 u8 *array, int count);
484
485 /**
486  * Look up a property in a node and return a pointer to its contents as a
487  * byte array of given length. The property must have at least enough data
488  * for the array (count bytes). It may have more, but this will be ignored.
489  * The data is not copied.
490  *
491  * @param blob          FDT blob
492  * @param node          node to examine
493  * @param prop_name     name of property to find
494  * @param count         number of array elements
495  * @return pointer to byte array if found, or NULL if the property is not
496  *              found or there is not enough data
497  */
498 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
499                              const char *prop_name, int count);
500
501 /**
502  * Look up a property in a node which contains a memory region address and
503  * size. Then return a pointer to this address.
504  *
505  * The property must hold one address with a length. This is only tested on
506  * 32-bit machines.
507  *
508  * @param blob          FDT blob
509  * @param node          node to examine
510  * @param prop_name     name of property to find
511  * @param ptrp          returns pointer to region, or NULL if no address
512  * @param size          returns size of region
513  * @return 0 if ok, -1 on error (propery not found)
514  */
515 int fdtdec_decode_region(const void *blob, int node,
516                 const char *prop_name, void **ptrp, size_t *size);
517 #endif