1 /**************************************************************************
3 * Copyright (c) 2006-2009 Vmware, Inc., Palo Alto, CA., USA
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 #ifndef _TTM_BO_DRIVER_H_
31 #define _TTM_BO_DRIVER_H_
33 #include <ttm/ttm_bo_api.h>
34 #include <ttm/ttm_memory.h>
35 #include <ttm/ttm_module.h>
36 #include <ttm/ttm_placement.h>
37 #include <drm/drm_mm.h>
38 #include <drm/drm_global.h>
39 #include <drm/drm_vma_manager.h>
40 #include <linux/workqueue.h>
42 #include <linux/spinlock.h>
43 #include <linux/reservation.h>
45 struct ttm_backend_func {
47 * struct ttm_backend_func member bind
49 * @ttm: Pointer to a struct ttm_tt.
50 * @bo_mem: Pointer to a struct ttm_mem_reg describing the
51 * memory type and location for binding.
53 * Bind the backend pages into the aperture in the location
54 * indicated by @bo_mem. This function should be able to handle
55 * differences between aperture and system page sizes.
57 int (*bind) (struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem);
60 * struct ttm_backend_func member unbind
62 * @ttm: Pointer to a struct ttm_tt.
64 * Unbind previously bound backend pages. This function should be
65 * able to handle differences between aperture and system page sizes.
67 int (*unbind) (struct ttm_tt *ttm);
70 * struct ttm_backend_func member destroy
72 * @ttm: Pointer to a struct ttm_tt.
74 * Destroy the backend. This will be call back from ttm_tt_destroy so
75 * don't call ttm_tt_destroy from the callback or infinite loop.
77 void (*destroy) (struct ttm_tt *ttm);
80 #define TTM_PAGE_FLAG_WRITE (1 << 3)
81 #define TTM_PAGE_FLAG_SWAPPED (1 << 4)
82 #define TTM_PAGE_FLAG_PERSISTENT_SWAP (1 << 5)
83 #define TTM_PAGE_FLAG_ZERO_ALLOC (1 << 6)
84 #define TTM_PAGE_FLAG_DMA32 (1 << 7)
85 #define TTM_PAGE_FLAG_SG (1 << 8)
87 enum ttm_caching_state {
96 * @bdev: Pointer to a struct ttm_bo_device.
97 * @func: Pointer to a struct ttm_backend_func that describes
98 * the backend methods.
99 * @dummy_read_page: Page to map where the ttm_tt page array contains a NULL
101 * @pages: Array of pages backing the data.
102 * @num_pages: Number of pages in the page array.
103 * @bdev: Pointer to the current struct ttm_bo_device.
104 * @be: Pointer to the ttm backend.
105 * @swap_storage: Pointer to shmem struct file for swap storage.
106 * @caching_state: The current caching state of the pages.
107 * @state: The current binding state of the pages.
109 * This is a structure holding the pages, caching- and aperture binding
110 * status for a buffer object that isn't backed by fixed (VRAM / AGP)
115 struct ttm_bo_device *bdev;
116 struct ttm_backend_func *func;
117 struct page *dummy_read_page;
120 unsigned long num_pages;
121 struct sg_table *sg; /* for SG objects via dma-buf */
122 struct ttm_bo_global *glob;
123 struct file *swap_storage;
124 enum ttm_caching_state caching_state;
135 * @ttm: Base ttm_tt struct.
136 * @cpu_address: The CPU address of the pages
137 * @dma_address: The DMA (bus) addresses of the pages
138 * @pages_list: used by some page allocation backend
140 * This is a structure holding the pages, caching- and aperture binding
141 * status for a buffer object that isn't backed by fixed (VRAM / AGP)
147 dma_addr_t *dma_address;
148 struct list_head pages_list;
151 #define TTM_MEMTYPE_FLAG_FIXED (1 << 0) /* Fixed (on-card) PCI memory */
152 #define TTM_MEMTYPE_FLAG_MAPPABLE (1 << 1) /* Memory mappable */
153 #define TTM_MEMTYPE_FLAG_CMA (1 << 3) /* Can't map aperture */
155 struct ttm_mem_type_manager;
157 struct ttm_mem_type_manager_func {
159 * struct ttm_mem_type_manager member init
161 * @man: Pointer to a memory type manager.
162 * @p_size: Implementation dependent, but typically the size of the
163 * range to be managed in pages.
165 * Called to initialize a private range manager. The function is
166 * expected to initialize the man::priv member.
167 * Returns 0 on success, negative error code on failure.
169 int (*init)(struct ttm_mem_type_manager *man, unsigned long p_size);
172 * struct ttm_mem_type_manager member takedown
174 * @man: Pointer to a memory type manager.
176 * Called to undo the setup done in init. All allocated resources
179 int (*takedown)(struct ttm_mem_type_manager *man);
182 * struct ttm_mem_type_manager member get_node
184 * @man: Pointer to a memory type manager.
185 * @bo: Pointer to the buffer object we're allocating space for.
186 * @placement: Placement details.
187 * @flags: Additional placement flags.
188 * @mem: Pointer to a struct ttm_mem_reg to be filled in.
190 * This function should allocate space in the memory type managed
191 * by @man. Placement details if
192 * applicable are given by @placement. If successful,
193 * @mem::mm_node should be set to a non-null value, and
194 * @mem::start should be set to a value identifying the beginning
195 * of the range allocated, and the function should return zero.
196 * If the memory region accommodate the buffer object, @mem::mm_node
197 * should be set to NULL, and the function should return 0.
198 * If a system error occurred, preventing the request to be fulfilled,
199 * the function should return a negative error code.
201 * Note that @mem::mm_node will only be dereferenced by
202 * struct ttm_mem_type_manager functions and optionally by the driver,
203 * which has knowledge of the underlying type.
205 * This function may not be called from within atomic context, so
206 * an implementation can and must use either a mutex or a spinlock to
207 * protect any data structures managing the space.
209 int (*get_node)(struct ttm_mem_type_manager *man,
210 struct ttm_buffer_object *bo,
211 const struct ttm_place *place,
212 struct ttm_mem_reg *mem);
215 * struct ttm_mem_type_manager member put_node
217 * @man: Pointer to a memory type manager.
218 * @mem: Pointer to a struct ttm_mem_reg to be filled in.
220 * This function frees memory type resources previously allocated
221 * and that are identified by @mem::mm_node and @mem::start. May not
222 * be called from within atomic context.
224 void (*put_node)(struct ttm_mem_type_manager *man,
225 struct ttm_mem_reg *mem);
228 * struct ttm_mem_type_manager member debug
230 * @man: Pointer to a memory type manager.
231 * @prefix: Prefix to be used in printout to identify the caller.
233 * This function is called to print out the state of the memory
234 * type manager to aid debugging of out-of-memory conditions.
235 * It may not be called from within atomic context.
237 void (*debug)(struct ttm_mem_type_manager *man, const char *prefix);
241 * struct ttm_mem_type_manager
243 * @has_type: The memory type has been initialized.
244 * @use_type: The memory type is enabled.
245 * @flags: TTM_MEMTYPE_XX flags identifying the traits of the memory
246 * managed by this memory type.
247 * @gpu_offset: If used, the GPU offset of the first managed page of
248 * fixed memory or the first managed location in an aperture.
249 * @size: Size of the managed region.
250 * @available_caching: A mask of available caching types, TTM_PL_FLAG_XX,
251 * as defined in ttm_placement_common.h
252 * @default_caching: The default caching policy used for a buffer object
253 * placed in this memory type if the user doesn't provide one.
254 * @func: structure pointer implementing the range manager. See above
255 * @priv: Driver private closure for @func.
256 * @io_reserve_mutex: Mutex optionally protecting shared io_reserve structures
257 * @use_io_reserve_lru: Use an lru list to try to unreserve io_mem_regions
258 * reserved by the TTM vm system.
259 * @io_reserve_lru: Optional lru list for unreserving io mem regions.
260 * @io_reserve_fastpath: Only use bdev::driver::io_mem_reserve to obtain
261 * @move_lock: lock for move fence
262 * static information. bdev::driver::io_mem_free is never used.
263 * @lru: The lru list for this memory type.
264 * @move: The fence of the last pipelined move operation.
266 * This structure is used to identify and manage memory types for a device.
267 * It's set up by the ttm_bo_driver::init_mem_type method.
272 struct ttm_mem_type_manager {
273 struct ttm_bo_device *bdev;
276 * No protection. Constant from start.
282 uint64_t gpu_offset; /* GPU address space is independent of CPU word size */
284 uint32_t available_caching;
285 uint32_t default_caching;
286 const struct ttm_mem_type_manager_func *func;
288 struct mutex io_reserve_mutex;
289 bool use_io_reserve_lru;
290 bool io_reserve_fastpath;
291 spinlock_t move_lock;
294 * Protected by @io_reserve_mutex:
297 struct list_head io_reserve_lru;
300 * Protected by the global->lru_lock.
303 struct list_head lru;
306 * Protected by @move_lock.
312 * struct ttm_bo_driver
314 * @create_ttm_backend_entry: Callback to create a struct ttm_backend.
315 * @invalidate_caches: Callback to invalidate read caches when a buffer object
317 * @init_mem_type: Callback to initialize a struct ttm_mem_type_manager
319 * @evict_flags: Callback to obtain placement flags when a buffer is evicted.
320 * @move: Callback for a driver to hook in accelerated functions to
322 * If set to NULL, a potentially slow memcpy() move is used.
325 struct ttm_bo_driver {
329 * @bdev: pointer to a struct ttm_bo_device:
330 * @size: Size of the data needed backing.
331 * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
332 * @dummy_read_page: See struct ttm_bo_device.
334 * Create a struct ttm_tt to back data with system memory pages.
335 * No pages are actually allocated.
337 * NULL: Out of memory.
339 struct ttm_tt *(*ttm_tt_create)(struct ttm_bo_device *bdev,
342 struct page *dummy_read_page);
347 * @ttm: The struct ttm_tt to contain the backing pages.
349 * Allocate all backing pages
351 * -ENOMEM: Out of memory.
353 int (*ttm_tt_populate)(struct ttm_tt *ttm);
358 * @ttm: The struct ttm_tt to contain the backing pages.
360 * Free all backing page
362 void (*ttm_tt_unpopulate)(struct ttm_tt *ttm);
365 * struct ttm_bo_driver member invalidate_caches
367 * @bdev: the buffer object device.
368 * @flags: new placement of the rebound buffer object.
370 * A previosly evicted buffer has been rebound in a
371 * potentially new location. Tell the driver that it might
372 * consider invalidating read (texture) caches on the next command
373 * submission as a consequence.
376 int (*invalidate_caches) (struct ttm_bo_device *bdev, uint32_t flags);
377 int (*init_mem_type) (struct ttm_bo_device *bdev, uint32_t type,
378 struct ttm_mem_type_manager *man);
380 * struct ttm_bo_driver member evict_flags:
382 * @bo: the buffer object to be evicted
384 * Return the bo flags for a buffer which is not mapped to the hardware.
385 * These will be placed in proposed_flags so that when the move is
386 * finished, they'll end up in bo->mem.flags
389 void(*evict_flags) (struct ttm_buffer_object *bo,
390 struct ttm_placement *placement);
392 * struct ttm_bo_driver member move:
394 * @bo: the buffer to move
395 * @evict: whether this motion is evicting the buffer from
396 * the graphics address space
397 * @interruptible: Use interruptible sleeps if possible when sleeping.
398 * @no_wait: whether this should give up and return -EBUSY
399 * if this move would require sleeping
400 * @new_mem: the new memory region receiving the buffer
402 * Move a buffer between two memory regions.
404 int (*move) (struct ttm_buffer_object *bo,
405 bool evict, bool interruptible,
407 struct ttm_mem_reg *new_mem);
410 * struct ttm_bo_driver_member verify_access
412 * @bo: Pointer to a buffer object.
413 * @filp: Pointer to a struct file trying to access the object.
415 * Called from the map / write / read methods to verify that the
416 * caller is permitted to access the buffer object.
417 * This member may be set to NULL, which will refuse this kind of
418 * access for all buffer objects.
419 * This function should return 0 if access is granted, -EPERM otherwise.
421 int (*verify_access) (struct ttm_buffer_object *bo,
424 /* hook to notify driver about a driver move so it
425 * can do tiling things */
426 void (*move_notify)(struct ttm_buffer_object *bo,
427 struct ttm_mem_reg *new_mem);
428 /* notify the driver we are taking a fault on this BO
429 * and have reserved it */
430 int (*fault_reserve_notify)(struct ttm_buffer_object *bo);
433 * notify the driver that we're about to swap out this bo
435 void (*swap_notify) (struct ttm_buffer_object *bo);
438 * Driver callback on when mapping io memory (for bo_move_memcpy
439 * for instance). TTM will take care to call io_mem_free whenever
440 * the mapping is not use anymore. io_mem_reserve & io_mem_free
443 int (*io_mem_reserve)(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem);
444 void (*io_mem_free)(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem);
447 * Optional driver callback for when BO is removed from the LRU.
448 * Called with LRU lock held immediately before the removal.
450 void (*lru_removal)(struct ttm_buffer_object *bo);
453 * Return the list_head after which a BO should be inserted in the LRU.
455 struct list_head *(*lru_tail)(struct ttm_buffer_object *bo);
456 struct list_head *(*swap_lru_tail)(struct ttm_buffer_object *bo);
460 * struct ttm_bo_global_ref - Argument to initialize a struct ttm_bo_global.
463 struct ttm_bo_global_ref {
464 struct drm_global_reference ref;
465 struct ttm_mem_global *mem_glob;
469 * struct ttm_bo_global - Buffer object driver global data.
471 * @mem_glob: Pointer to a struct ttm_mem_global object for accounting.
472 * @dummy_read_page: Pointer to a dummy page used for mapping requests
473 * of unpopulated pages.
474 * @shrink: A shrink callback object used for buffer object swap.
475 * @device_list_mutex: Mutex protecting the device list.
476 * This mutex is held while traversing the device list for pm options.
477 * @lru_lock: Spinlock protecting the bo subsystem lru lists.
478 * @device_list: List of buffer object devices.
479 * @swap_lru: Lru list of buffer objects used for swapping.
482 struct ttm_bo_global {
485 * Constant after init.
489 struct ttm_mem_global *mem_glob;
490 struct page *dummy_read_page;
491 struct ttm_mem_shrink shrink;
492 struct mutex device_list_mutex;
496 * Protected by device_list_mutex.
498 struct list_head device_list;
501 * Protected by the lru_lock.
503 struct list_head swap_lru;
506 * Internal protection.
512 #define TTM_NUM_MEM_TYPES 8
515 * struct ttm_bo_device - Buffer object driver device-specific data.
517 * @driver: Pointer to a struct ttm_bo_driver struct setup by the driver.
518 * @man: An array of mem_type_managers.
519 * @vma_manager: Address space manager
520 * lru_lock: Spinlock that protects the buffer+device lru lists and
522 * @dev_mapping: A pointer to the struct address_space representing the
523 * device address space.
524 * @wq: Work queue structure for the delayed delete workqueue.
528 struct ttm_bo_device {
531 * Constant after bo device init / atomic.
533 struct list_head device_list;
534 struct ttm_bo_global *glob;
535 struct ttm_bo_driver *driver;
536 struct ttm_mem_type_manager man[TTM_NUM_MEM_TYPES];
539 * Protected by internal locks.
541 struct drm_vma_offset_manager vma_manager;
544 * Protected by the global:lru lock.
546 struct list_head ddestroy;
549 * Protected by load / firstopen / lastclose /unload sync.
552 struct address_space *dev_mapping;
555 * Internal protection.
558 struct delayed_work wq;
566 * @old: Pointer to the result and original value.
567 * @new: New value of bits.
568 * @mask: Mask of bits to change.
570 * Convenience function to change a number of bits identified by a mask.
573 static inline uint32_t
574 ttm_flag_masked(uint32_t *old, uint32_t new, uint32_t mask)
576 *old ^= (*old ^ new) & mask;
583 * @ttm: The struct ttm_tt.
584 * @bdev: pointer to a struct ttm_bo_device:
585 * @size: Size of the data needed backing.
586 * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
587 * @dummy_read_page: See struct ttm_bo_device.
589 * Create a struct ttm_tt to back data with system memory pages.
590 * No pages are actually allocated.
592 * NULL: Out of memory.
594 extern int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
595 unsigned long size, uint32_t page_flags,
596 struct page *dummy_read_page);
597 extern int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
598 unsigned long size, uint32_t page_flags,
599 struct page *dummy_read_page);
604 * @ttm: the ttm_tt structure.
606 * Free memory of ttm_tt structure
608 extern void ttm_tt_fini(struct ttm_tt *ttm);
609 extern void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma);
614 * @ttm: The struct ttm_tt containing backing pages.
615 * @bo_mem: The struct ttm_mem_reg identifying the binding location.
617 * Bind the pages of @ttm to an aperture location identified by @bo_mem
619 extern int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem);
624 * @ttm: The struct ttm_tt.
626 * Unbind, unpopulate and destroy common struct ttm_tt.
628 extern void ttm_tt_destroy(struct ttm_tt *ttm);
633 * @ttm: The struct ttm_tt.
635 * Unbind a struct ttm_tt.
637 extern void ttm_tt_unbind(struct ttm_tt *ttm);
642 * @ttm: The struct ttm_tt.
644 * Swap in a previously swap out ttm_tt.
646 extern int ttm_tt_swapin(struct ttm_tt *ttm);
649 * ttm_tt_set_placement_caching:
651 * @ttm A struct ttm_tt the backing pages of which will change caching policy.
652 * @placement: Flag indicating the desired caching policy.
654 * This function will change caching policy of any default kernel mappings of
655 * the pages backing @ttm. If changing from cached to uncached or
657 * all CPU caches will first be flushed to make sure the data of the pages
658 * hit RAM. This function may be very costly as it involves global TLB
659 * and cache flushes and potential page splitting / combining.
661 extern int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement);
662 extern int ttm_tt_swapout(struct ttm_tt *ttm,
663 struct file *persistent_swap_storage);
666 * ttm_tt_unpopulate - free pages from a ttm
668 * @ttm: Pointer to the ttm_tt structure
670 * Calls the driver method to free all pages from a ttm
672 extern void ttm_tt_unpopulate(struct ttm_tt *ttm);
681 * @bdev: Pointer to a struct ttm_bo_device.
682 * @mem: A valid struct ttm_mem_reg.
684 * Returns true if the memory described by @mem is PCI memory,
687 extern bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev,
688 struct ttm_mem_reg *mem);
693 * @bo: Pointer to a struct ttm_buffer_object. the data of which
694 * we want to allocate space for.
695 * @proposed_placement: Proposed new placement for the buffer object.
696 * @mem: A struct ttm_mem_reg.
697 * @interruptible: Sleep interruptible when sliping.
698 * @no_wait_gpu: Return immediately if the GPU is busy.
700 * Allocate memory space for the buffer object pointed to by @bo, using
701 * the placement flags in @mem, potentially evicting other idle buffer objects.
702 * This function may sleep while waiting for space to become available.
704 * -EBUSY: No space available (only if no_wait == 1).
705 * -ENOMEM: Could not allocate memory for the buffer object, either due to
706 * fragmentation or concurrent allocators.
707 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
709 extern int ttm_bo_mem_space(struct ttm_buffer_object *bo,
710 struct ttm_placement *placement,
711 struct ttm_mem_reg *mem,
715 extern void ttm_bo_mem_put(struct ttm_buffer_object *bo,
716 struct ttm_mem_reg *mem);
717 extern void ttm_bo_mem_put_locked(struct ttm_buffer_object *bo,
718 struct ttm_mem_reg *mem);
720 extern void ttm_bo_global_release(struct drm_global_reference *ref);
721 extern int ttm_bo_global_init(struct drm_global_reference *ref);
723 extern int ttm_bo_device_release(struct ttm_bo_device *bdev);
728 * @bdev: A pointer to a struct ttm_bo_device to initialize.
729 * @glob: A pointer to an initialized struct ttm_bo_global.
730 * @driver: A pointer to a struct ttm_bo_driver set up by the caller.
731 * @mapping: The address space to use for this bo.
732 * @file_page_offset: Offset into the device address space that is available
733 * for buffer data. This ensures compatibility with other users of the
736 * Initializes a struct ttm_bo_device:
740 extern int ttm_bo_device_init(struct ttm_bo_device *bdev,
741 struct ttm_bo_global *glob,
742 struct ttm_bo_driver *driver,
743 struct address_space *mapping,
744 uint64_t file_page_offset, bool need_dma32);
747 * ttm_bo_unmap_virtual
749 * @bo: tear down the virtual mappings for this BO
751 extern void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
754 * ttm_bo_unmap_virtual
756 * @bo: tear down the virtual mappings for this BO
758 * The caller must take ttm_mem_io_lock before calling this function.
760 extern void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo);
762 extern int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo);
763 extern void ttm_mem_io_free_vm(struct ttm_buffer_object *bo);
764 extern int ttm_mem_io_lock(struct ttm_mem_type_manager *man,
766 extern void ttm_mem_io_unlock(struct ttm_mem_type_manager *man);
768 extern void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo);
769 extern void ttm_bo_add_to_lru(struct ttm_buffer_object *bo);
771 struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo);
772 struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo);
777 * @bo: A pointer to a struct ttm_buffer_object.
778 * @interruptible: Sleep interruptible if waiting.
779 * @no_wait: Don't sleep while trying to reserve, rather return -EBUSY.
780 * @ticket: ticket used to acquire the ww_mutex.
782 * Will not remove reserved buffers from the lru lists.
783 * Otherwise identical to ttm_bo_reserve.
786 * -EDEADLK: The reservation may cause a deadlock.
787 * Release all buffer reservations, wait for @bo to become unreserved and
788 * try again. (only if use_sequence == 1).
789 * -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by
790 * a signal. Release all buffer reservations and return to user-space.
791 * -EBUSY: The function needed to sleep, but @no_wait was true
792 * -EALREADY: Bo already reserved using @ticket. This error code will only
793 * be returned if @use_ticket is set to true.
795 static inline int __ttm_bo_reserve(struct ttm_buffer_object *bo,
796 bool interruptible, bool no_wait,
797 struct ww_acquire_ctx *ticket)
806 success = ww_mutex_trylock(&bo->resv->lock);
807 return success ? 0 : -EBUSY;
811 ret = ww_mutex_lock_interruptible(&bo->resv->lock, ticket);
813 ret = ww_mutex_lock(&bo->resv->lock, ticket);
822 * @bo: A pointer to a struct ttm_buffer_object.
823 * @interruptible: Sleep interruptible if waiting.
824 * @no_wait: Don't sleep while trying to reserve, rather return -EBUSY.
825 * @ticket: ticket used to acquire the ww_mutex.
827 * Locks a buffer object for validation. (Or prevents other processes from
828 * locking it for validation) and removes it from lru lists, while taking
829 * a number of measures to prevent deadlocks.
831 * Deadlocks may occur when two processes try to reserve multiple buffers in
832 * different order, either by will or as a result of a buffer being evicted
833 * to make room for a buffer already reserved. (Buffers are reserved before
834 * they are evicted). The following algorithm prevents such deadlocks from
836 * Processes attempting to reserve multiple buffers other than for eviction,
837 * (typically execbuf), should first obtain a unique 32-bit
838 * validation sequence number,
839 * and call this function with @use_ticket == 1 and @ticket->stamp == the unique
840 * sequence number. If upon call of this function, the buffer object is already
841 * reserved, the validation sequence is checked against the validation
842 * sequence of the process currently reserving the buffer,
843 * and if the current validation sequence is greater than that of the process
844 * holding the reservation, the function returns -EDEADLK. Otherwise it sleeps
845 * waiting for the buffer to become unreserved, after which it retries
847 * The caller should, when receiving an -EDEADLK error
848 * release all its buffer reservations, wait for @bo to become unreserved, and
849 * then rerun the validation with the same validation sequence. This procedure
850 * will always guarantee that the process with the lowest validation sequence
851 * will eventually succeed, preventing both deadlocks and starvation.
854 * -EDEADLK: The reservation may cause a deadlock.
855 * Release all buffer reservations, wait for @bo to become unreserved and
856 * try again. (only if use_sequence == 1).
857 * -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by
858 * a signal. Release all buffer reservations and return to user-space.
859 * -EBUSY: The function needed to sleep, but @no_wait was true
860 * -EALREADY: Bo already reserved using @ticket. This error code will only
861 * be returned if @use_ticket is set to true.
863 static inline int ttm_bo_reserve(struct ttm_buffer_object *bo,
864 bool interruptible, bool no_wait,
865 struct ww_acquire_ctx *ticket)
869 WARN_ON(!atomic_read(&bo->kref.refcount));
871 ret = __ttm_bo_reserve(bo, interruptible, no_wait, ticket);
872 if (likely(ret == 0))
873 ttm_bo_del_sub_from_lru(bo);
879 * ttm_bo_reserve_slowpath:
880 * @bo: A pointer to a struct ttm_buffer_object.
881 * @interruptible: Sleep interruptible if waiting.
882 * @sequence: Set (@bo)->sequence to this value after lock
884 * This is called after ttm_bo_reserve returns -EAGAIN and we backed off
885 * from all our other reservations. Because there are no other reservations
886 * held by us, this function cannot deadlock any more.
888 static inline int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
890 struct ww_acquire_ctx *ticket)
894 WARN_ON(!atomic_read(&bo->kref.refcount));
897 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
900 ww_mutex_lock_slow(&bo->resv->lock, ticket);
902 if (likely(ret == 0))
903 ttm_bo_del_sub_from_lru(bo);
904 else if (ret == -EINTR)
912 * @bo: A pointer to a struct ttm_buffer_object.
914 * Unreserve a previous reservation of @bo where the buffer object is
915 * already on lru lists.
917 static inline void __ttm_bo_unreserve(struct ttm_buffer_object *bo)
919 ww_mutex_unlock(&bo->resv->lock);
925 * @bo: A pointer to a struct ttm_buffer_object.
927 * Unreserve a previous reservation of @bo.
929 static inline void ttm_bo_unreserve(struct ttm_buffer_object *bo)
931 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
932 spin_lock(&bo->glob->lru_lock);
933 ttm_bo_add_to_lru(bo);
934 spin_unlock(&bo->glob->lru_lock);
936 __ttm_bo_unreserve(bo);
940 * ttm_bo_unreserve_ticket
941 * @bo: A pointer to a struct ttm_buffer_object.
942 * @ticket: ww_acquire_ctx used for reserving
944 * Unreserve a previous reservation of @bo made with @ticket.
946 static inline void ttm_bo_unreserve_ticket(struct ttm_buffer_object *bo,
947 struct ww_acquire_ctx *t)
949 ttm_bo_unreserve(bo);
956 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
957 struct ttm_mem_reg *mem);
958 void ttm_mem_io_free(struct ttm_bo_device *bdev,
959 struct ttm_mem_reg *mem);
963 * @bo: A pointer to a struct ttm_buffer_object.
964 * @evict: 1: This is an eviction. Don't try to pipeline.
965 * @no_wait_gpu: Return immediately if the GPU is busy.
966 * @new_mem: struct ttm_mem_reg indicating where to move.
968 * Optimized move function for a buffer object with both old and
969 * new placement backed by a TTM. The function will, if successful,
970 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
971 * and update the (@bo)->mem placement flags. If unsuccessful, the old
972 * data remains untouched, and it's up to the caller to free the
973 * memory space indicated by @new_mem.
978 extern int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
979 bool evict, bool no_wait_gpu,
980 struct ttm_mem_reg *new_mem);
985 * @bo: A pointer to a struct ttm_buffer_object.
986 * @evict: 1: This is an eviction. Don't try to pipeline.
987 * @interruptible: Sleep interruptible if waiting.
988 * @no_wait_gpu: Return immediately if the GPU is busy.
989 * @new_mem: struct ttm_mem_reg indicating where to move.
991 * Fallback move function for a mappable buffer object in mappable memory.
992 * The function will, if successful,
993 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
994 * and update the (@bo)->mem placement flags. If unsuccessful, the old
995 * data remains untouched, and it's up to the caller to free the
996 * memory space indicated by @new_mem.
1001 extern int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
1002 bool evict, bool interruptible,
1004 struct ttm_mem_reg *new_mem);
1007 * ttm_bo_free_old_node
1009 * @bo: A pointer to a struct ttm_buffer_object.
1011 * Utility function to free an old placement after a successful move.
1013 extern void ttm_bo_free_old_node(struct ttm_buffer_object *bo);
1016 * ttm_bo_move_accel_cleanup.
1018 * @bo: A pointer to a struct ttm_buffer_object.
1019 * @fence: A fence object that signals when moving is complete.
1020 * @evict: This is an evict move. Don't return until the buffer is idle.
1021 * @new_mem: struct ttm_mem_reg indicating where to move.
1023 * Accelerated move function to be called when an accelerated move
1024 * has been scheduled. The function will create a new temporary buffer object
1025 * representing the old placement, and put the sync object on both buffer
1026 * objects. After that the newly created buffer object is unref'd to be
1027 * destroyed when the move is complete. This will help pipeline
1031 extern int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
1032 struct fence *fence, bool evict,
1033 struct ttm_mem_reg *new_mem);
1036 * ttm_bo_pipeline_move.
1038 * @bo: A pointer to a struct ttm_buffer_object.
1039 * @fence: A fence object that signals when moving is complete.
1040 * @evict: This is an evict move. Don't return until the buffer is idle.
1041 * @new_mem: struct ttm_mem_reg indicating where to move.
1043 * Function for pipelining accelerated moves. Either free the memory
1044 * immediately or hang it on a temporary buffer object.
1046 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
1047 struct fence *fence, bool evict,
1048 struct ttm_mem_reg *new_mem);
1053 * @c_state: Caching state.
1054 * @tmp: Page protection flag for a normal, cached mapping.
1056 * Utility function that returns the pgprot_t that should be used for
1057 * setting up a PTE with the caching model indicated by @c_state.
1059 extern pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp);
1061 extern const struct ttm_mem_type_manager_func ttm_bo_manager_func;
1063 #if IS_ENABLED(CONFIG_AGP)
1064 #include <linux/agp_backend.h>
1069 * @bdev: Pointer to a struct ttm_bo_device.
1070 * @bridge: The agp bridge this device is sitting on.
1071 * @size: Size of the data needed backing.
1072 * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags.
1073 * @dummy_read_page: See struct ttm_bo_device.
1076 * Create a TTM backend that uses the indicated AGP bridge as an aperture
1077 * for TT memory. This function uses the linux agpgart interface to
1078 * bind and unbind memory backing a ttm_tt.
1080 extern struct ttm_tt *ttm_agp_tt_create(struct ttm_bo_device *bdev,
1081 struct agp_bridge_data *bridge,
1082 unsigned long size, uint32_t page_flags,
1083 struct page *dummy_read_page);
1084 int ttm_agp_tt_populate(struct ttm_tt *ttm);
1085 void ttm_agp_tt_unpopulate(struct ttm_tt *ttm);