2 * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
3 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
4 * Copyright (c) 2009-2010, Code Aurora Forum.
5 * Copyright 2016 Intel Corp.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
30 #include <linux/list.h>
31 #include <linux/irqreturn.h>
33 #include <drm/drm_device.h>
36 struct drm_gem_object;
40 struct dma_buf_attachment;
41 struct drm_display_mode;
42 struct drm_mode_create_dumb;
47 * enum drm_driver_feature - feature flags
49 * See &drm_driver.driver_features, drm_device.driver_features and
50 * drm_core_check_feature().
52 enum drm_driver_feature {
56 * Driver use the GEM memory manager. This should be set for all modern
63 * Driver supports mode setting interfaces (KMS).
65 DRIVER_MODESET = BIT(1),
69 * Driver supports dedicated render nodes. See also the :ref:`section on
70 * render nodes <drm_render_node>` for details.
72 DRIVER_RENDER = BIT(3),
76 * Driver supports the full atomic modesetting userspace API. Drivers
77 * which only use atomic internally, but do not support the full
78 * userspace API (e.g. not all properties converted to atomic, or
79 * multi-plane updates are not guaranteed to be tear-free) should not
82 DRIVER_ATOMIC = BIT(4),
86 * Driver supports &drm_syncobj for explicit synchronization of command
89 DRIVER_SYNCOBJ = BIT(5),
91 * @DRIVER_SYNCOBJ_TIMELINE:
93 * Driver supports the timeline flavor of &drm_syncobj for explicit
94 * synchronization of command submission.
96 DRIVER_SYNCOBJ_TIMELINE = BIT(6),
98 /* IMPORTANT: Below are all the legacy flags, add new ones above. */
103 * Set up DRM AGP support, see drm_agp_init(), the DRM core will manage
104 * AGP resources. New drivers don't need this.
106 DRIVER_USE_AGP = BIT(25),
110 * Denote a legacy driver using shadow attach. Do not use.
112 DRIVER_LEGACY = BIT(26),
116 * Driver is capable of PCI DMA, mapping of PCI DMA buffers to userspace
117 * will be enabled. Only for legacy drivers. Do not use.
119 DRIVER_PCI_DMA = BIT(27),
123 * Driver can perform scatter/gather DMA, allocation and mapping of
124 * scatter/gather buffers will be enabled. Only for legacy drivers. Do
132 * Driver supports DMA, the userspace DMA API will be supported. Only
133 * for legacy drivers. Do not use.
135 DRIVER_HAVE_DMA = BIT(29),
139 * Legacy irq support. Only for legacy drivers. Do not use.
141 DRIVER_HAVE_IRQ = BIT(30),
143 * @DRIVER_KMS_LEGACY_CONTEXT:
145 * Used only by nouveau for backwards compatibility with existing
146 * userspace. Do not use.
148 DRIVER_KMS_LEGACY_CONTEXT = BIT(31),
152 * struct drm_driver - DRM driver structure
154 * This structure represent the common code for a family of cards. There will be
155 * one &struct drm_device for each card present in this family. It contains lots
156 * of vfunc entries, and a pile of those probably should be moved to more
157 * appropriate places like &drm_mode_config_funcs or into a new operations
158 * structure for GEM drivers.
164 * Backward-compatible driver callback to complete initialization steps
165 * after the driver is registered. For this reason, may suffer from
166 * race conditions and its use is deprecated for new drivers. It is
167 * therefore only supported for existing drivers not yet converted to
168 * the new scheme. See devm_drm_dev_alloc() and drm_dev_register() for
169 * proper and race-free way to set up a &struct drm_device.
171 * This is deprecated, do not use!
175 * Zero on success, non-zero value on failure.
177 int (*load) (struct drm_device *, unsigned long flags);
182 * Driver callback when a new &struct drm_file is opened. Useful for
183 * setting up driver-private data structures like buffer allocators,
184 * execution contexts or similar things. Such driver-private resources
185 * must be released again in @postclose.
187 * Since the display/modeset side of DRM can only be owned by exactly
188 * one &struct drm_file (see &drm_file.is_master and &drm_device.master)
189 * there should never be a need to set up any modeset related resources
190 * in this callback. Doing so would be a driver design bug.
194 * 0 on success, a negative error code on failure, which will be
195 * promoted to userspace as the result of the open() system call.
197 int (*open) (struct drm_device *, struct drm_file *);
202 * One of the driver callbacks when a new &struct drm_file is closed.
203 * Useful for tearing down driver-private data structures allocated in
204 * @open like buffer allocators, execution contexts or similar things.
206 * Since the display/modeset side of DRM can only be owned by exactly
207 * one &struct drm_file (see &drm_file.is_master and &drm_device.master)
208 * there should never be a need to tear down any modeset related
209 * resources in this callback. Doing so would be a driver design bug.
211 void (*postclose) (struct drm_device *, struct drm_file *);
216 * Called when the last &struct drm_file has been closed and there's
217 * currently no userspace client for the &struct drm_device.
219 * Modern drivers should only use this to force-restore the fbdev
220 * framebuffer using drm_fb_helper_restore_fbdev_mode_unlocked().
221 * Anything else would indicate there's something seriously wrong.
222 * Modern drivers can also use this to execute delayed power switching
223 * state changes, e.g. in conjunction with the :ref:`vga_switcheroo`
226 * This is called after @postclose hook has been called.
230 * All legacy drivers use this callback to de-initialize the hardware.
231 * This is purely because of the shadow-attach model, where the DRM
232 * kernel driver does not really own the hardware. Instead ownershipe is
233 * handled with the help of userspace through an inheritedly racy dance
234 * to set/unset the VT into raw mode.
236 * Legacy drivers initialize the hardware in the @firstopen callback,
237 * which isn't even called for modern drivers.
239 void (*lastclose) (struct drm_device *);
244 * Reverse the effects of the driver load callback. Ideally,
245 * the clean up performed by the driver should happen in the
246 * reverse order of the initialization. Similarly to the load
247 * hook, this handler is deprecated and its usage should be
248 * dropped in favor of an open-coded teardown function at the
249 * driver layer. See drm_dev_unregister() and drm_dev_put()
250 * for the proper way to remove a &struct drm_device.
252 * The unload() hook is called right after unregistering
256 void (*unload) (struct drm_device *);
261 * Optional callback for destroying device data after the final
262 * reference is released, i.e. the device is being destroyed.
264 * This is deprecated, clean up all memory allocations associated with a
265 * &drm_device using drmm_add_action(), drmm_kmalloc() and related
266 * managed resources functions.
268 void (*release) (struct drm_device *);
273 * Called whenever the minor master is set. Only used by vmwgfx.
275 void (*master_set)(struct drm_device *dev, struct drm_file *file_priv,
280 * Called whenever the minor master is dropped. Only used by vmwgfx.
282 void (*master_drop)(struct drm_device *dev, struct drm_file *file_priv);
287 * Allows drivers to create driver-specific debugfs files.
289 void (*debugfs_init)(struct drm_minor *minor);
292 * @gem_create_object: constructor for gem objects
294 * Hook for allocating the GEM object struct, for use by the CMA and
297 struct drm_gem_object *(*gem_create_object)(struct drm_device *dev,
301 * @prime_handle_to_fd:
303 * Main PRIME export function. Should be implemented with
304 * drm_gem_prime_handle_to_fd() for GEM based drivers.
306 * For an in-depth discussion see :ref:`PRIME buffer sharing
307 * documentation <prime_buffer_sharing>`.
309 int (*prime_handle_to_fd)(struct drm_device *dev, struct drm_file *file_priv,
310 uint32_t handle, uint32_t flags, int *prime_fd);
312 * @prime_fd_to_handle:
314 * Main PRIME import function. Should be implemented with
315 * drm_gem_prime_fd_to_handle() for GEM based drivers.
317 * For an in-depth discussion see :ref:`PRIME buffer sharing
318 * documentation <prime_buffer_sharing>`.
320 int (*prime_fd_to_handle)(struct drm_device *dev, struct drm_file *file_priv,
321 int prime_fd, uint32_t *handle);
326 * Import hook for GEM drivers.
328 * This defaults to drm_gem_prime_import() if not set.
330 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
331 struct dma_buf *dma_buf);
333 * @gem_prime_import_sg_table:
335 * Optional hook used by the PRIME helper functions
336 * drm_gem_prime_import() respectively drm_gem_prime_import_dev().
338 struct drm_gem_object *(*gem_prime_import_sg_table)(
339 struct drm_device *dev,
340 struct dma_buf_attachment *attach,
341 struct sg_table *sgt);
345 * mmap hook for GEM drivers, used to implement dma-buf mmap in the
348 * FIXME: There's way too much duplication going on here, and also moved
349 * to &drm_gem_object_funcs.
351 int (*gem_prime_mmap)(struct drm_gem_object *obj,
352 struct vm_area_struct *vma);
357 * This creates a new dumb buffer in the driver's backing storage manager (GEM,
358 * TTM or something else entirely) and returns the resulting buffer handle. This
359 * handle can then be wrapped up into a framebuffer modeset object.
361 * Note that userspace is not allowed to use such objects for render
362 * acceleration - drivers must create their own private ioctls for such a use
365 * Width, height and depth are specified in the &drm_mode_create_dumb
366 * argument. The callback needs to fill the handle, pitch and size for
367 * the created buffer.
369 * Called by the user via ioctl.
373 * Zero on success, negative errno on failure.
375 int (*dumb_create)(struct drm_file *file_priv,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args);
381 * Allocate an offset in the drm device node's address space to be able to
382 * memory map a dumb buffer.
384 * The default implementation is drm_gem_create_mmap_offset(). GEM based
385 * drivers must not overwrite this.
387 * Called by the user via ioctl.
391 * Zero on success, negative errno on failure.
393 int (*dumb_map_offset)(struct drm_file *file_priv,
394 struct drm_device *dev, uint32_t handle,
399 * This destroys the userspace handle for the given dumb backing storage buffer.
400 * Since buffer objects must be reference counted in the kernel a buffer object
401 * won't be immediately freed if a framebuffer modeset object still uses it.
403 * Called by the user via ioctl.
405 * The default implementation is drm_gem_dumb_destroy(). GEM based drivers
406 * must not overwrite this.
410 * Zero on success, negative errno on failure.
412 int (*dumb_destroy)(struct drm_file *file_priv,
413 struct drm_device *dev,
416 /** @major: driver major number */
418 /** @minor: driver minor number */
420 /** @patchlevel: driver patch level */
422 /** @name: driver name */
424 /** @desc: driver description */
426 /** @date: driver date */
431 * Driver features, see &enum drm_driver_feature. Drivers can disable
432 * some features on a per-instance basis using
433 * &drm_device.driver_features.
440 * Array of driver-private IOCTL description entries. See the chapter on
441 * :ref:`IOCTL support in the userland interfaces
442 * chapter<drm_driver_ioctl>` for the full details.
445 const struct drm_ioctl_desc *ioctls;
446 /** @num_ioctls: Number of entries in @ioctls. */
452 * File operations for the DRM device node. See the discussion in
453 * :ref:`file operations<drm_driver_fops>` for in-depth coverage and
456 const struct file_operations *fops;
458 #ifdef CONFIG_DRM_LEGACY
459 /* Everything below here is for legacy driver, never use! */
462 int (*firstopen) (struct drm_device *);
463 void (*preclose) (struct drm_device *, struct drm_file *file_priv);
464 int (*dma_ioctl) (struct drm_device *dev, void *data, struct drm_file *file_priv);
465 int (*dma_quiescent) (struct drm_device *);
466 int (*context_dtor) (struct drm_device *dev, int context);
467 irqreturn_t (*irq_handler)(int irq, void *arg);
468 void (*irq_preinstall)(struct drm_device *dev);
469 int (*irq_postinstall)(struct drm_device *dev);
470 void (*irq_uninstall)(struct drm_device *dev);
471 u32 (*get_vblank_counter)(struct drm_device *dev, unsigned int pipe);
472 int (*enable_vblank)(struct drm_device *dev, unsigned int pipe);
473 void (*disable_vblank)(struct drm_device *dev, unsigned int pipe);
478 void *__devm_drm_dev_alloc(struct device *parent,
479 const struct drm_driver *driver,
480 size_t size, size_t offset);
483 * devm_drm_dev_alloc - Resource managed allocation of a &drm_device instance
484 * @parent: Parent device object
485 * @driver: DRM driver
486 * @type: the type of the struct which contains struct &drm_device
487 * @member: the name of the &drm_device within @type.
489 * This allocates and initialize a new DRM device. No device registration is done.
490 * Call drm_dev_register() to advertice the device to user space and register it
491 * with other core subsystems. This should be done last in the device
492 * initialization sequence to make sure userspace can't access an inconsistent
495 * The initial ref-count of the object is 1. Use drm_dev_get() and
496 * drm_dev_put() to take and drop further ref-counts.
498 * It is recommended that drivers embed &struct drm_device into their own device
501 * Note that this manages the lifetime of the resulting &drm_device
502 * automatically using devres. The DRM device initialized with this function is
503 * automatically put on driver detach using drm_dev_put().
506 * Pointer to new DRM device, or ERR_PTR on failure.
508 #define devm_drm_dev_alloc(parent, driver, type, member) \
509 ((type *) __devm_drm_dev_alloc(parent, driver, sizeof(type), \
510 offsetof(type, member)))
512 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
513 struct device *parent);
514 int drm_dev_register(struct drm_device *dev, unsigned long flags);
515 void drm_dev_unregister(struct drm_device *dev);
517 void drm_dev_get(struct drm_device *dev);
518 void drm_dev_put(struct drm_device *dev);
519 void drm_put_dev(struct drm_device *dev);
520 bool drm_dev_enter(struct drm_device *dev, int *idx);
521 void drm_dev_exit(int idx);
522 void drm_dev_unplug(struct drm_device *dev);
525 * drm_dev_is_unplugged - is a DRM device unplugged
528 * This function can be called to check whether a hotpluggable is unplugged.
529 * Unplugging itself is singalled through drm_dev_unplug(). If a device is
530 * unplugged, these two functions guarantee that any store before calling
531 * drm_dev_unplug() is visible to callers of this function after it completes
533 * WARNING: This function fundamentally races against drm_dev_unplug(). It is
534 * recommended that drivers instead use the underlying drm_dev_enter() and
535 * drm_dev_exit() function pairs.
537 static inline bool drm_dev_is_unplugged(struct drm_device *dev)
541 if (drm_dev_enter(dev, &idx)) {
550 * drm_core_check_all_features - check driver feature flags mask
551 * @dev: DRM device to check
552 * @features: feature flag(s) mask
554 * This checks @dev for driver features, see &drm_driver.driver_features,
555 * &drm_device.driver_features, and the various &enum drm_driver_feature flags.
557 * Returns true if all features in the @features mask are supported, false
560 static inline bool drm_core_check_all_features(const struct drm_device *dev,
563 u32 supported = dev->driver->driver_features & dev->driver_features;
565 return features && (supported & features) == features;
569 * drm_core_check_feature - check driver feature flags
570 * @dev: DRM device to check
571 * @feature: feature flag
573 * This checks @dev for driver features, see &drm_driver.driver_features,
574 * &drm_device.driver_features, and the various &enum drm_driver_feature flags.
576 * Returns true if the @feature is supported, false otherwise.
578 static inline bool drm_core_check_feature(const struct drm_device *dev,
579 enum drm_driver_feature feature)
581 return drm_core_check_all_features(dev, feature);
585 * drm_drv_uses_atomic_modeset - check if the driver implements
589 * This check is useful if drivers do not have DRIVER_ATOMIC set but
590 * have atomic modesetting internally implemented.
592 static inline bool drm_drv_uses_atomic_modeset(struct drm_device *dev)
594 return drm_core_check_feature(dev, DRIVER_ATOMIC) ||
595 (dev->mode_config.funcs && dev->mode_config.funcs->atomic_commit != NULL);
599 int drm_dev_set_unique(struct drm_device *dev, const char *name);