2 * Copyright (C) 2014 Red Hat
3 * Copyright (C) 2014 Intel Corp.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
24 * Rob Clark <robdclark@gmail.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_util.h>
35 * struct drm_crtc_commit - track modeset commits on a CRTC
37 * This structure is used to track pending modeset changes and atomic commit on
38 * a per-CRTC basis. Since updating the list should never block, this structure
39 * is reference counted to allow waiters to safely wait on an event to complete,
40 * without holding any locks.
42 * It has 3 different events in total to allow a fine-grained synchronization
43 * between outstanding updates::
45 * atomic commit thread hardware
47 * write new state into hardware ----> ...
49 * switch to new state on next
52 * wait for buffers to show up ...
54 * ... send completion irq
55 * irq handler signals flip_done
60 * wait for flip_done <----
61 * clean up atomic state
63 * The important bit to know is that &cleanup_done is the terminal event, but the
64 * ordering between &flip_done and &hw_done is entirely up to the specific driver
65 * and modeset state change.
67 * For an implementation of how to use this look at
68 * drm_atomic_helper_setup_commit() from the atomic helper library.
70 * See also drm_crtc_commit_wait().
72 struct drm_crtc_commit {
76 * DRM CRTC for this commit.
78 struct drm_crtc *crtc;
83 * Reference count for this structure. Needed to allow blocking on
84 * completions without the risk of the completion disappearing
92 * Will be signaled when the hardware has flipped to the new set of
93 * buffers. Signals at the same time as when the drm event for this
94 * commit is sent to userspace, or when an out-fence is singalled. Note
95 * that for most hardware, in most cases this happens after @hw_done is
98 * Completion of this stage is signalled implicitly by calling
99 * drm_crtc_send_vblank_event() on &drm_crtc_state.event.
101 struct completion flip_done;
106 * Will be signalled when all hw register changes for this commit have
107 * been written out. Especially when disabling a pipe this can be much
108 * later than @flip_done, since that can signal already when the
109 * screen goes black, whereas to fully shut down a pipe more register
112 * Note that this does not need to include separately reference-counted
113 * resources like backing storage buffer pinning, or runtime pm
116 * Drivers should call drm_atomic_helper_commit_hw_done() to signal
117 * completion of this stage.
119 struct completion hw_done;
124 * Will be signalled after old buffers have been cleaned up by calling
125 * drm_atomic_helper_cleanup_planes(). Since this can only happen after
126 * a vblank wait completed it might be a bit later. This completion is
127 * useful to throttle updates and avoid hardware updates getting ahead
128 * of the buffer cleanup too much.
130 * Drivers should call drm_atomic_helper_commit_cleanup_done() to signal
131 * completion of this stage.
133 struct completion cleanup_done;
138 * Entry on the per-CRTC &drm_crtc.commit_list. Protected by
139 * $drm_crtc.commit_lock.
141 struct list_head commit_entry;
146 * &drm_pending_vblank_event pointer to clean up private events.
148 struct drm_pending_vblank_event *event;
153 * A flag that's set after drm_atomic_helper_setup_commit() takes a
154 * second reference for the completion of $drm_crtc_state.event. It's
155 * used by the free code to remove the second reference if commit fails.
157 bool abort_completion;
160 struct __drm_planes_state {
161 struct drm_plane *ptr;
162 struct drm_plane_state *state, *old_state, *new_state;
165 struct __drm_crtcs_state {
166 struct drm_crtc *ptr;
167 struct drm_crtc_state *state, *old_state, *new_state;
172 * A reference to the CRTC commit object that is kept for use by
173 * drm_atomic_helper_wait_for_flip_done() after
174 * drm_atomic_helper_commit_hw_done() is called. This ensures that a
175 * concurrent commit won't free a commit object that is still in use.
177 struct drm_crtc_commit *commit;
179 s32 __user *out_fence_ptr;
180 u64 last_vblank_count;
183 struct __drm_connnectors_state {
184 struct drm_connector *ptr;
185 struct drm_connector_state *state, *old_state, *new_state;
189 * User-provided pointer which the kernel uses to return a sync_file
190 * file descriptor. Used by writeback connectors to signal completion of
193 s32 __user *out_fence_ptr;
196 struct drm_private_obj;
197 struct drm_private_state;
200 * struct drm_private_state_funcs - atomic state functions for private objects
202 * These hooks are used by atomic helpers to create, swap and destroy states of
203 * private objects. The structure itself is used as a vtable to identify the
204 * associated private object type. Each private object type that needs to be
205 * added to the atomic states is expected to have an implementation of these
206 * hooks and pass a pointer to its drm_private_state_funcs struct to
207 * drm_atomic_get_private_obj_state().
209 struct drm_private_state_funcs {
211 * @atomic_duplicate_state:
213 * Duplicate the current state of the private object and return it. It
214 * is an error to call this before obj->state has been initialized.
218 * Duplicated atomic state or NULL when obj->state is not
219 * initialized or allocation failed.
221 struct drm_private_state *(*atomic_duplicate_state)(struct drm_private_obj *obj);
224 * @atomic_destroy_state:
226 * Frees the private object state created with @atomic_duplicate_state.
228 void (*atomic_destroy_state)(struct drm_private_obj *obj,
229 struct drm_private_state *state);
232 * @atomic_print_state:
234 * If driver subclasses &struct drm_private_state, it should implement
235 * this optional hook for printing additional driver specific state.
237 * Do not call this directly, use drm_atomic_private_obj_print_state()
240 void (*atomic_print_state)(struct drm_printer *p,
241 const struct drm_private_state *state);
245 * struct drm_private_obj - base struct for driver private atomic object
247 * A driver private object is initialized by calling
248 * drm_atomic_private_obj_init() and cleaned up by calling
249 * drm_atomic_private_obj_fini().
251 * Currently only tracks the state update functions and the opaque driver
252 * private state itself, but in the future might also track which
253 * &drm_modeset_lock is required to duplicate and update this object's state.
255 * All private objects must be initialized before the DRM device they are
256 * attached to is registered to the DRM subsystem (call to drm_dev_register())
257 * and should stay around until this DRM device is unregistered (call to
258 * drm_dev_unregister()). In other words, private objects lifetime is tied
259 * to the DRM device lifetime. This implies that:
261 * 1/ all calls to drm_atomic_private_obj_init() must be done before calling
263 * 2/ all calls to drm_atomic_private_obj_fini() must be done after calling
264 * drm_dev_unregister()
266 * If that private object is used to store a state shared by multiple
267 * CRTCs, proper care must be taken to ensure that non-blocking commits are
268 * properly ordered to avoid a use-after-free issue.
270 * Indeed, assuming a sequence of two non-blocking &drm_atomic_commit on two
271 * different &drm_crtc using different &drm_plane and &drm_connector, so with no
272 * resources shared, there's no guarantee on which commit is going to happen
273 * first. However, the second &drm_atomic_commit will consider the first
274 * &drm_private_obj its old state, and will be in charge of freeing it whenever
275 * the second &drm_atomic_commit is done.
277 * If the first &drm_atomic_commit happens after it, it will consider its
278 * &drm_private_obj the new state and will be likely to access it, resulting in
279 * an access to a freed memory region. Drivers should store (and get a reference
280 * to) the &drm_crtc_commit structure in our private state in
281 * &drm_mode_config_helper_funcs.atomic_commit_setup, and then wait for that
282 * commit to complete as the first step of
283 * &drm_mode_config_helper_funcs.atomic_commit_tail, similar to
284 * drm_atomic_helper_wait_for_dependencies().
286 struct drm_private_obj {
288 * @head: List entry used to attach a private object to a &drm_device
289 * (queued to &drm_mode_config.privobj_list).
291 struct list_head head;
294 * @lock: Modeset lock to protect the state object.
296 struct drm_modeset_lock lock;
299 * @state: Current atomic state for this driver private object.
301 struct drm_private_state *state;
306 * Functions to manipulate the state of this driver private object, see
307 * &drm_private_state_funcs.
309 const struct drm_private_state_funcs *funcs;
313 * drm_for_each_privobj() - private object iterator
315 * @privobj: pointer to the current private object. Updated after each
317 * @dev: the DRM device we want get private objects from
319 * Allows one to iterate over all private objects attached to @dev
321 #define drm_for_each_privobj(privobj, dev) \
322 list_for_each_entry(privobj, &(dev)->mode_config.privobj_list, head)
325 * struct drm_private_state - base struct for driver private object state
327 * Currently only contains a backpointer to the overall atomic update,
328 * and the relevant private object but in the future also might hold
329 * synchronization information similar to e.g. &drm_crtc.commit.
331 struct drm_private_state {
333 * @state: backpointer to global drm_atomic_state
335 struct drm_atomic_state *state;
338 * @obj: backpointer to the private object
340 struct drm_private_obj *obj;
343 struct __drm_private_objs_state {
344 struct drm_private_obj *ptr;
345 struct drm_private_state *state, *old_state, *new_state;
349 * struct drm_atomic_state - the global state object for atomic updates
350 * @ref: count of all references to this state (will not be freed until zero)
351 * @dev: parent DRM device
352 * @async_update: hint for asynchronous plane update
353 * @planes: pointer to array of structures with per-plane data
354 * @crtcs: pointer to array of CRTC pointers
355 * @num_connector: size of the @connectors and @connector_states arrays
356 * @connectors: pointer to array of structures with per-connector data
357 * @num_private_objs: size of the @private_objs array
358 * @private_objs: pointer to array of private object pointers
359 * @acquire_ctx: acquire context for this atomic modeset state update
361 * States are added to an atomic update by calling drm_atomic_get_crtc_state(),
362 * drm_atomic_get_plane_state(), drm_atomic_get_connector_state(), or for
363 * private state structures, drm_atomic_get_private_obj_state().
365 struct drm_atomic_state {
368 struct drm_device *dev;
373 * Allow full modeset. This is used by the ATOMIC IOCTL handler to
374 * implement the DRM_MODE_ATOMIC_ALLOW_MODESET flag. Drivers should
375 * never consult this flag, instead looking at the output of
376 * drm_atomic_crtc_needs_modeset().
378 bool allow_modeset : 1;
380 * @legacy_cursor_update:
382 * Hint to enforce legacy cursor IOCTL semantics.
384 * WARNING: This is thoroughly broken and pretty much impossible to
385 * implement correctly. Drivers must ignore this and should instead
386 * implement &drm_plane_helper_funcs.atomic_async_check and
387 * &drm_plane_helper_funcs.atomic_async_commit hooks. New users of this
388 * flag are not allowed.
390 bool legacy_cursor_update : 1;
391 bool async_update : 1;
395 * Indicates whether or not this atomic state was duplicated using
396 * drm_atomic_helper_duplicate_state(). Drivers and atomic helpers
397 * should use this to fixup normal inconsistencies in duplicated
401 struct __drm_planes_state *planes;
402 struct __drm_crtcs_state *crtcs;
404 struct __drm_connnectors_state *connectors;
405 int num_private_objs;
406 struct __drm_private_objs_state *private_objs;
408 struct drm_modeset_acquire_ctx *acquire_ctx;
413 * Used for signaling unbound planes/connectors.
414 * When a connector or plane is not bound to any CRTC, it's still important
415 * to preserve linearity to prevent the atomic states from being freed to early.
417 * This commit (if set) is not bound to any CRTC, but will be completed when
418 * drm_atomic_helper_commit_hw_done() is called.
420 struct drm_crtc_commit *fake_commit;
425 * Work item which can be used by the driver or helpers to execute the
426 * commit without blocking.
428 struct work_struct commit_work;
431 void __drm_crtc_commit_free(struct kref *kref);
434 * drm_crtc_commit_get - acquire a reference to the CRTC commit
435 * @commit: CRTC commit
437 * Increases the reference of @commit.
440 * The pointer to @commit, with reference increased.
442 static inline struct drm_crtc_commit *drm_crtc_commit_get(struct drm_crtc_commit *commit)
444 kref_get(&commit->ref);
449 * drm_crtc_commit_put - release a reference to the CRTC commmit
450 * @commit: CRTC commit
452 * This releases a reference to @commit which is freed after removing the
453 * final reference. No locking required and callable from any context.
455 static inline void drm_crtc_commit_put(struct drm_crtc_commit *commit)
457 kref_put(&commit->ref, __drm_crtc_commit_free);
460 int drm_crtc_commit_wait(struct drm_crtc_commit *commit);
462 struct drm_atomic_state * __must_check
463 drm_atomic_state_alloc(struct drm_device *dev);
464 void drm_atomic_state_clear(struct drm_atomic_state *state);
467 * drm_atomic_state_get - acquire a reference to the atomic state
468 * @state: The atomic state
470 * Returns a new reference to the @state
472 static inline struct drm_atomic_state *
473 drm_atomic_state_get(struct drm_atomic_state *state)
475 kref_get(&state->ref);
479 void __drm_atomic_state_free(struct kref *ref);
482 * drm_atomic_state_put - release a reference to the atomic state
483 * @state: The atomic state
485 * This releases a reference to @state which is freed after removing the
486 * final reference. No locking required and callable from any context.
488 static inline void drm_atomic_state_put(struct drm_atomic_state *state)
490 kref_put(&state->ref, __drm_atomic_state_free);
494 drm_atomic_state_init(struct drm_device *dev, struct drm_atomic_state *state);
495 void drm_atomic_state_default_clear(struct drm_atomic_state *state);
496 void drm_atomic_state_default_release(struct drm_atomic_state *state);
498 struct drm_crtc_state * __must_check
499 drm_atomic_get_crtc_state(struct drm_atomic_state *state,
500 struct drm_crtc *crtc);
501 struct drm_plane_state * __must_check
502 drm_atomic_get_plane_state(struct drm_atomic_state *state,
503 struct drm_plane *plane);
504 struct drm_connector_state * __must_check
505 drm_atomic_get_connector_state(struct drm_atomic_state *state,
506 struct drm_connector *connector);
508 void drm_atomic_private_obj_init(struct drm_device *dev,
509 struct drm_private_obj *obj,
510 struct drm_private_state *state,
511 const struct drm_private_state_funcs *funcs);
512 void drm_atomic_private_obj_fini(struct drm_private_obj *obj);
514 struct drm_private_state * __must_check
515 drm_atomic_get_private_obj_state(struct drm_atomic_state *state,
516 struct drm_private_obj *obj);
517 struct drm_private_state *
518 drm_atomic_get_old_private_obj_state(struct drm_atomic_state *state,
519 struct drm_private_obj *obj);
520 struct drm_private_state *
521 drm_atomic_get_new_private_obj_state(struct drm_atomic_state *state,
522 struct drm_private_obj *obj);
524 struct drm_connector *
525 drm_atomic_get_old_connector_for_encoder(struct drm_atomic_state *state,
526 struct drm_encoder *encoder);
527 struct drm_connector *
528 drm_atomic_get_new_connector_for_encoder(struct drm_atomic_state *state,
529 struct drm_encoder *encoder);
532 * drm_atomic_get_existing_crtc_state - get CRTC state, if it exists
533 * @state: global atomic state object
534 * @crtc: CRTC to grab
536 * This function returns the CRTC state for the given CRTC, or NULL
537 * if the CRTC is not part of the global atomic state.
539 * This function is deprecated, @drm_atomic_get_old_crtc_state or
540 * @drm_atomic_get_new_crtc_state should be used instead.
542 static inline struct drm_crtc_state *
543 drm_atomic_get_existing_crtc_state(struct drm_atomic_state *state,
544 struct drm_crtc *crtc)
546 return state->crtcs[drm_crtc_index(crtc)].state;
550 * drm_atomic_get_old_crtc_state - get old CRTC state, if it exists
551 * @state: global atomic state object
552 * @crtc: CRTC to grab
554 * This function returns the old CRTC state for the given CRTC, or
555 * NULL if the CRTC is not part of the global atomic state.
557 static inline struct drm_crtc_state *
558 drm_atomic_get_old_crtc_state(struct drm_atomic_state *state,
559 struct drm_crtc *crtc)
561 return state->crtcs[drm_crtc_index(crtc)].old_state;
564 * drm_atomic_get_new_crtc_state - get new CRTC state, if it exists
565 * @state: global atomic state object
566 * @crtc: CRTC to grab
568 * This function returns the new CRTC state for the given CRTC, or
569 * NULL if the CRTC is not part of the global atomic state.
571 static inline struct drm_crtc_state *
572 drm_atomic_get_new_crtc_state(struct drm_atomic_state *state,
573 struct drm_crtc *crtc)
575 return state->crtcs[drm_crtc_index(crtc)].new_state;
579 * drm_atomic_get_existing_plane_state - get plane state, if it exists
580 * @state: global atomic state object
581 * @plane: plane to grab
583 * This function returns the plane state for the given plane, or NULL
584 * if the plane is not part of the global atomic state.
586 * This function is deprecated, @drm_atomic_get_old_plane_state or
587 * @drm_atomic_get_new_plane_state should be used instead.
589 static inline struct drm_plane_state *
590 drm_atomic_get_existing_plane_state(struct drm_atomic_state *state,
591 struct drm_plane *plane)
593 return state->planes[drm_plane_index(plane)].state;
597 * drm_atomic_get_old_plane_state - get plane state, if it exists
598 * @state: global atomic state object
599 * @plane: plane to grab
601 * This function returns the old plane state for the given plane, or
602 * NULL if the plane is not part of the global atomic state.
604 static inline struct drm_plane_state *
605 drm_atomic_get_old_plane_state(struct drm_atomic_state *state,
606 struct drm_plane *plane)
608 return state->planes[drm_plane_index(plane)].old_state;
612 * drm_atomic_get_new_plane_state - get plane state, if it exists
613 * @state: global atomic state object
614 * @plane: plane to grab
616 * This function returns the new plane state for the given plane, or
617 * NULL if the plane is not part of the global atomic state.
619 static inline struct drm_plane_state *
620 drm_atomic_get_new_plane_state(struct drm_atomic_state *state,
621 struct drm_plane *plane)
623 return state->planes[drm_plane_index(plane)].new_state;
627 * drm_atomic_get_existing_connector_state - get connector state, if it exists
628 * @state: global atomic state object
629 * @connector: connector to grab
631 * This function returns the connector state for the given connector,
632 * or NULL if the connector is not part of the global atomic state.
634 * This function is deprecated, @drm_atomic_get_old_connector_state or
635 * @drm_atomic_get_new_connector_state should be used instead.
637 static inline struct drm_connector_state *
638 drm_atomic_get_existing_connector_state(struct drm_atomic_state *state,
639 struct drm_connector *connector)
641 int index = drm_connector_index(connector);
643 if (index >= state->num_connector)
646 return state->connectors[index].state;
650 * drm_atomic_get_old_connector_state - get connector state, if it exists
651 * @state: global atomic state object
652 * @connector: connector to grab
654 * This function returns the old connector state for the given connector,
655 * or NULL if the connector is not part of the global atomic state.
657 static inline struct drm_connector_state *
658 drm_atomic_get_old_connector_state(struct drm_atomic_state *state,
659 struct drm_connector *connector)
661 int index = drm_connector_index(connector);
663 if (index >= state->num_connector)
666 return state->connectors[index].old_state;
670 * drm_atomic_get_new_connector_state - get connector state, if it exists
671 * @state: global atomic state object
672 * @connector: connector to grab
674 * This function returns the new connector state for the given connector,
675 * or NULL if the connector is not part of the global atomic state.
677 static inline struct drm_connector_state *
678 drm_atomic_get_new_connector_state(struct drm_atomic_state *state,
679 struct drm_connector *connector)
681 int index = drm_connector_index(connector);
683 if (index >= state->num_connector)
686 return state->connectors[index].new_state;
690 * __drm_atomic_get_current_plane_state - get current plane state
691 * @state: global atomic state object
692 * @plane: plane to grab
694 * This function returns the plane state for the given plane, either from
695 * @state, or if the plane isn't part of the atomic state update, from @plane.
696 * This is useful in atomic check callbacks, when drivers need to peek at, but
697 * not change, state of other planes, since it avoids threading an error code
698 * back up the call chain.
702 * Note that this function is in general unsafe since it doesn't check for the
703 * required locking for access state structures. Drivers must ensure that it is
704 * safe to access the returned state structure through other means. One common
705 * example is when planes are fixed to a single CRTC, and the driver knows that
706 * the CRTC lock is held already. In that case holding the CRTC lock gives a
707 * read-lock on all planes connected to that CRTC. But if planes can be
708 * reassigned things get more tricky. In that case it's better to use
709 * drm_atomic_get_plane_state and wire up full error handling.
713 * Read-only pointer to the current plane state.
715 static inline const struct drm_plane_state *
716 __drm_atomic_get_current_plane_state(struct drm_atomic_state *state,
717 struct drm_plane *plane)
719 if (state->planes[drm_plane_index(plane)].state)
720 return state->planes[drm_plane_index(plane)].state;
726 drm_atomic_add_encoder_bridges(struct drm_atomic_state *state,
727 struct drm_encoder *encoder);
729 drm_atomic_add_affected_connectors(struct drm_atomic_state *state,
730 struct drm_crtc *crtc);
732 drm_atomic_add_affected_planes(struct drm_atomic_state *state,
733 struct drm_crtc *crtc);
735 int __must_check drm_atomic_check_only(struct drm_atomic_state *state);
736 int __must_check drm_atomic_commit(struct drm_atomic_state *state);
737 int __must_check drm_atomic_nonblocking_commit(struct drm_atomic_state *state);
739 void drm_state_dump(struct drm_device *dev, struct drm_printer *p);
742 * for_each_oldnew_connector_in_state - iterate over all connectors in an atomic update
743 * @__state: &struct drm_atomic_state pointer
744 * @connector: &struct drm_connector iteration cursor
745 * @old_connector_state: &struct drm_connector_state iteration cursor for the
747 * @new_connector_state: &struct drm_connector_state iteration cursor for the
749 * @__i: int iteration cursor, for macro-internal use
751 * This iterates over all connectors in an atomic update, tracking both old and
752 * new state. This is useful in places where the state delta needs to be
753 * considered, for example in atomic check functions.
755 #define for_each_oldnew_connector_in_state(__state, connector, old_connector_state, new_connector_state, __i) \
757 (__i) < (__state)->num_connector; \
759 for_each_if ((__state)->connectors[__i].ptr && \
760 ((connector) = (__state)->connectors[__i].ptr, \
761 (void)(connector) /* Only to avoid unused-but-set-variable warning */, \
762 (old_connector_state) = (__state)->connectors[__i].old_state, \
763 (new_connector_state) = (__state)->connectors[__i].new_state, 1))
766 * for_each_old_connector_in_state - iterate over all connectors in an atomic update
767 * @__state: &struct drm_atomic_state pointer
768 * @connector: &struct drm_connector iteration cursor
769 * @old_connector_state: &struct drm_connector_state iteration cursor for the
771 * @__i: int iteration cursor, for macro-internal use
773 * This iterates over all connectors in an atomic update, tracking only the old
774 * state. This is useful in disable functions, where we need the old state the
775 * hardware is still in.
777 #define for_each_old_connector_in_state(__state, connector, old_connector_state, __i) \
779 (__i) < (__state)->num_connector; \
781 for_each_if ((__state)->connectors[__i].ptr && \
782 ((connector) = (__state)->connectors[__i].ptr, \
783 (void)(connector) /* Only to avoid unused-but-set-variable warning */, \
784 (old_connector_state) = (__state)->connectors[__i].old_state, 1))
787 * for_each_new_connector_in_state - iterate over all connectors in an atomic update
788 * @__state: &struct drm_atomic_state pointer
789 * @connector: &struct drm_connector iteration cursor
790 * @new_connector_state: &struct drm_connector_state iteration cursor for the
792 * @__i: int iteration cursor, for macro-internal use
794 * This iterates over all connectors in an atomic update, tracking only the new
795 * state. This is useful in enable functions, where we need the new state the
796 * hardware should be in when the atomic commit operation has completed.
798 #define for_each_new_connector_in_state(__state, connector, new_connector_state, __i) \
800 (__i) < (__state)->num_connector; \
802 for_each_if ((__state)->connectors[__i].ptr && \
803 ((connector) = (__state)->connectors[__i].ptr, \
804 (void)(connector) /* Only to avoid unused-but-set-variable warning */, \
805 (new_connector_state) = (__state)->connectors[__i].new_state, \
806 (void)(new_connector_state) /* Only to avoid unused-but-set-variable warning */, 1))
809 * for_each_oldnew_crtc_in_state - iterate over all CRTCs in an atomic update
810 * @__state: &struct drm_atomic_state pointer
811 * @crtc: &struct drm_crtc iteration cursor
812 * @old_crtc_state: &struct drm_crtc_state iteration cursor for the old state
813 * @new_crtc_state: &struct drm_crtc_state iteration cursor for the new state
814 * @__i: int iteration cursor, for macro-internal use
816 * This iterates over all CRTCs in an atomic update, tracking both old and
817 * new state. This is useful in places where the state delta needs to be
818 * considered, for example in atomic check functions.
820 #define for_each_oldnew_crtc_in_state(__state, crtc, old_crtc_state, new_crtc_state, __i) \
822 (__i) < (__state)->dev->mode_config.num_crtc; \
824 for_each_if ((__state)->crtcs[__i].ptr && \
825 ((crtc) = (__state)->crtcs[__i].ptr, \
826 (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \
827 (old_crtc_state) = (__state)->crtcs[__i].old_state, \
828 (void)(old_crtc_state) /* Only to avoid unused-but-set-variable warning */, \
829 (new_crtc_state) = (__state)->crtcs[__i].new_state, \
830 (void)(new_crtc_state) /* Only to avoid unused-but-set-variable warning */, 1))
833 * for_each_old_crtc_in_state - iterate over all CRTCs in an atomic update
834 * @__state: &struct drm_atomic_state pointer
835 * @crtc: &struct drm_crtc iteration cursor
836 * @old_crtc_state: &struct drm_crtc_state iteration cursor for the old state
837 * @__i: int iteration cursor, for macro-internal use
839 * This iterates over all CRTCs in an atomic update, tracking only the old
840 * state. This is useful in disable functions, where we need the old state the
841 * hardware is still in.
843 #define for_each_old_crtc_in_state(__state, crtc, old_crtc_state, __i) \
845 (__i) < (__state)->dev->mode_config.num_crtc; \
847 for_each_if ((__state)->crtcs[__i].ptr && \
848 ((crtc) = (__state)->crtcs[__i].ptr, \
849 (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \
850 (old_crtc_state) = (__state)->crtcs[__i].old_state, 1))
853 * for_each_new_crtc_in_state - iterate over all CRTCs in an atomic update
854 * @__state: &struct drm_atomic_state pointer
855 * @crtc: &struct drm_crtc iteration cursor
856 * @new_crtc_state: &struct drm_crtc_state iteration cursor for the new state
857 * @__i: int iteration cursor, for macro-internal use
859 * This iterates over all CRTCs in an atomic update, tracking only the new
860 * state. This is useful in enable functions, where we need the new state the
861 * hardware should be in when the atomic commit operation has completed.
863 #define for_each_new_crtc_in_state(__state, crtc, new_crtc_state, __i) \
865 (__i) < (__state)->dev->mode_config.num_crtc; \
867 for_each_if ((__state)->crtcs[__i].ptr && \
868 ((crtc) = (__state)->crtcs[__i].ptr, \
869 (void)(crtc) /* Only to avoid unused-but-set-variable warning */, \
870 (new_crtc_state) = (__state)->crtcs[__i].new_state, \
871 (void)(new_crtc_state) /* Only to avoid unused-but-set-variable warning */, 1))
874 * for_each_oldnew_plane_in_state - iterate over all planes in an atomic update
875 * @__state: &struct drm_atomic_state pointer
876 * @plane: &struct drm_plane iteration cursor
877 * @old_plane_state: &struct drm_plane_state iteration cursor for the old state
878 * @new_plane_state: &struct drm_plane_state iteration cursor for the new state
879 * @__i: int iteration cursor, for macro-internal use
881 * This iterates over all planes in an atomic update, tracking both old and
882 * new state. This is useful in places where the state delta needs to be
883 * considered, for example in atomic check functions.
885 #define for_each_oldnew_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
887 (__i) < (__state)->dev->mode_config.num_total_plane; \
889 for_each_if ((__state)->planes[__i].ptr && \
890 ((plane) = (__state)->planes[__i].ptr, \
891 (void)(plane) /* Only to avoid unused-but-set-variable warning */, \
892 (old_plane_state) = (__state)->planes[__i].old_state,\
893 (new_plane_state) = (__state)->planes[__i].new_state, 1))
896 * for_each_oldnew_plane_in_state_reverse - iterate over all planes in an atomic
897 * update in reverse order
898 * @__state: &struct drm_atomic_state pointer
899 * @plane: &struct drm_plane iteration cursor
900 * @old_plane_state: &struct drm_plane_state iteration cursor for the old state
901 * @new_plane_state: &struct drm_plane_state iteration cursor for the new state
902 * @__i: int iteration cursor, for macro-internal use
904 * This iterates over all planes in an atomic update in reverse order,
905 * tracking both old and new state. This is useful in places where the
906 * state delta needs to be considered, for example in atomic check functions.
908 #define for_each_oldnew_plane_in_state_reverse(__state, plane, old_plane_state, new_plane_state, __i) \
909 for ((__i) = ((__state)->dev->mode_config.num_total_plane - 1); \
912 for_each_if ((__state)->planes[__i].ptr && \
913 ((plane) = (__state)->planes[__i].ptr, \
914 (old_plane_state) = (__state)->planes[__i].old_state,\
915 (new_plane_state) = (__state)->planes[__i].new_state, 1))
918 * for_each_new_plane_in_state_reverse - other than only tracking new state,
919 * it's the same as for_each_oldnew_plane_in_state_reverse
920 * @__state: &struct drm_atomic_state pointer
921 * @plane: &struct drm_plane iteration cursor
922 * @new_plane_state: &struct drm_plane_state iteration cursor for the new state
923 * @__i: int iteration cursor, for macro-internal use
925 #define for_each_new_plane_in_state_reverse(__state, plane, new_plane_state, __i) \
926 for ((__i) = ((__state)->dev->mode_config.num_total_plane - 1); \
929 for_each_if ((__state)->planes[__i].ptr && \
930 ((plane) = (__state)->planes[__i].ptr, \
931 (new_plane_state) = (__state)->planes[__i].new_state, 1))
934 * for_each_old_plane_in_state - iterate over all planes in an atomic update
935 * @__state: &struct drm_atomic_state pointer
936 * @plane: &struct drm_plane iteration cursor
937 * @old_plane_state: &struct drm_plane_state iteration cursor for the old state
938 * @__i: int iteration cursor, for macro-internal use
940 * This iterates over all planes in an atomic update, tracking only the old
941 * state. This is useful in disable functions, where we need the old state the
942 * hardware is still in.
944 #define for_each_old_plane_in_state(__state, plane, old_plane_state, __i) \
946 (__i) < (__state)->dev->mode_config.num_total_plane; \
948 for_each_if ((__state)->planes[__i].ptr && \
949 ((plane) = (__state)->planes[__i].ptr, \
950 (old_plane_state) = (__state)->planes[__i].old_state, 1))
952 * for_each_new_plane_in_state - iterate over all planes in an atomic update
953 * @__state: &struct drm_atomic_state pointer
954 * @plane: &struct drm_plane iteration cursor
955 * @new_plane_state: &struct drm_plane_state iteration cursor for the new state
956 * @__i: int iteration cursor, for macro-internal use
958 * This iterates over all planes in an atomic update, tracking only the new
959 * state. This is useful in enable functions, where we need the new state the
960 * hardware should be in when the atomic commit operation has completed.
962 #define for_each_new_plane_in_state(__state, plane, new_plane_state, __i) \
964 (__i) < (__state)->dev->mode_config.num_total_plane; \
966 for_each_if ((__state)->planes[__i].ptr && \
967 ((plane) = (__state)->planes[__i].ptr, \
968 (void)(plane) /* Only to avoid unused-but-set-variable warning */, \
969 (new_plane_state) = (__state)->planes[__i].new_state, \
970 (void)(new_plane_state) /* Only to avoid unused-but-set-variable warning */, 1))
973 * for_each_oldnew_private_obj_in_state - iterate over all private objects in an atomic update
974 * @__state: &struct drm_atomic_state pointer
975 * @obj: &struct drm_private_obj iteration cursor
976 * @old_obj_state: &struct drm_private_state iteration cursor for the old state
977 * @new_obj_state: &struct drm_private_state iteration cursor for the new state
978 * @__i: int iteration cursor, for macro-internal use
980 * This iterates over all private objects in an atomic update, tracking both
981 * old and new state. This is useful in places where the state delta needs
982 * to be considered, for example in atomic check functions.
984 #define for_each_oldnew_private_obj_in_state(__state, obj, old_obj_state, new_obj_state, __i) \
986 (__i) < (__state)->num_private_objs && \
987 ((obj) = (__state)->private_objs[__i].ptr, \
988 (old_obj_state) = (__state)->private_objs[__i].old_state, \
989 (new_obj_state) = (__state)->private_objs[__i].new_state, 1); \
993 * for_each_old_private_obj_in_state - iterate over all private objects in an atomic update
994 * @__state: &struct drm_atomic_state pointer
995 * @obj: &struct drm_private_obj iteration cursor
996 * @old_obj_state: &struct drm_private_state iteration cursor for the old state
997 * @__i: int iteration cursor, for macro-internal use
999 * This iterates over all private objects in an atomic update, tracking only
1000 * the old state. This is useful in disable functions, where we need the old
1001 * state the hardware is still in.
1003 #define for_each_old_private_obj_in_state(__state, obj, old_obj_state, __i) \
1005 (__i) < (__state)->num_private_objs && \
1006 ((obj) = (__state)->private_objs[__i].ptr, \
1007 (old_obj_state) = (__state)->private_objs[__i].old_state, 1); \
1011 * for_each_new_private_obj_in_state - iterate over all private objects in an atomic update
1012 * @__state: &struct drm_atomic_state pointer
1013 * @obj: &struct drm_private_obj iteration cursor
1014 * @new_obj_state: &struct drm_private_state iteration cursor for the new state
1015 * @__i: int iteration cursor, for macro-internal use
1017 * This iterates over all private objects in an atomic update, tracking only
1018 * the new state. This is useful in enable functions, where we need the new state the
1019 * hardware should be in when the atomic commit operation has completed.
1021 #define for_each_new_private_obj_in_state(__state, obj, new_obj_state, __i) \
1023 (__i) < (__state)->num_private_objs && \
1024 ((obj) = (__state)->private_objs[__i].ptr, \
1025 (new_obj_state) = (__state)->private_objs[__i].new_state, 1); \
1029 * drm_atomic_crtc_needs_modeset - compute combined modeset need
1030 * @state: &drm_crtc_state for the CRTC
1032 * To give drivers flexibility &struct drm_crtc_state has 3 booleans to track
1033 * whether the state CRTC changed enough to need a full modeset cycle:
1034 * mode_changed, active_changed and connectors_changed. This helper simply
1035 * combines these three to compute the overall need for a modeset for @state.
1037 * The atomic helper code sets these booleans, but drivers can and should
1038 * change them appropriately to accurately represent whether a modeset is
1039 * really needed. In general, drivers should avoid full modesets whenever
1042 * For example if the CRTC mode has changed, and the hardware is able to enact
1043 * the requested mode change without going through a full modeset, the driver
1044 * should clear mode_changed in its &drm_mode_config_funcs.atomic_check
1048 drm_atomic_crtc_needs_modeset(const struct drm_crtc_state *state)
1050 return state->mode_changed || state->active_changed ||
1051 state->connectors_changed;
1055 * drm_atomic_crtc_effectively_active - compute whether CRTC is actually active
1056 * @state: &drm_crtc_state for the CRTC
1058 * When in self refresh mode, the crtc_state->active value will be false, since
1059 * the CRTC is off. However in some cases we're interested in whether the CRTC
1060 * is active, or effectively active (ie: it's connected to an active display).
1061 * In these cases, use this function instead of just checking active.
1064 drm_atomic_crtc_effectively_active(const struct drm_crtc_state *state)
1066 return state->active || state->self_refresh_active;
1070 * struct drm_bus_cfg - bus configuration
1072 * This structure stores the configuration of a physical bus between two
1073 * components in an output pipeline, usually between two bridges, an encoder
1074 * and a bridge, or a bridge and a connector.
1076 * The bus configuration is stored in &drm_bridge_state separately for the
1077 * input and output buses, as seen from the point of view of each bridge. The
1078 * bus configuration of a bridge output is usually identical to the
1079 * configuration of the next bridge's input, but may differ if the signals are
1080 * modified between the two bridges, for instance by an inverter on the board.
1081 * The input and output configurations of a bridge may differ if the bridge
1082 * modifies the signals internally, for instance by performing format
1083 * conversion, or modifying signals polarities.
1085 struct drm_bus_cfg {
1087 * @format: format used on this bus (one of the MEDIA_BUS_FMT_* format)
1089 * This field should not be directly modified by drivers
1090 * (drm_atomic_bridge_chain_select_bus_fmts() takes care of the bus
1091 * format negotiation).
1096 * @flags: DRM_BUS_* flags used on this bus
1102 * struct drm_bridge_state - Atomic bridge state object
1104 struct drm_bridge_state {
1106 * @base: inherit from &drm_private_state
1108 struct drm_private_state base;
1111 * @bridge: the bridge this state refers to
1113 struct drm_bridge *bridge;
1116 * @input_bus_cfg: input bus configuration
1118 struct drm_bus_cfg input_bus_cfg;
1121 * @output_bus_cfg: input bus configuration
1123 struct drm_bus_cfg output_bus_cfg;
1126 static inline struct drm_bridge_state *
1127 drm_priv_to_bridge_state(struct drm_private_state *priv)
1129 return container_of(priv, struct drm_bridge_state, base);
1132 struct drm_bridge_state *
1133 drm_atomic_get_bridge_state(struct drm_atomic_state *state,
1134 struct drm_bridge *bridge);
1135 struct drm_bridge_state *
1136 drm_atomic_get_old_bridge_state(struct drm_atomic_state *state,
1137 struct drm_bridge *bridge);
1138 struct drm_bridge_state *
1139 drm_atomic_get_new_bridge_state(struct drm_atomic_state *state,
1140 struct drm_bridge *bridge);
1142 #endif /* DRM_ATOMIC_H_ */