Merge git://git.denx.de/u-boot-fsl-qoriq
[platform/kernel/u-boot.git] / include / dm / device.h
1 /*
2  * Copyright (c) 2013 Google, Inc
3  *
4  * (C) Copyright 2012
5  * Pavel Herrmann <morpheus.ibis@gmail.com>
6  * Marek Vasut <marex@denx.de>
7  *
8  * SPDX-License-Identifier:     GPL-2.0+
9  */
10
11 #ifndef _DM_DEVICE_H
12 #define _DM_DEVICE_H
13
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/compat.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20
21 struct driver_info;
22
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED               (1 << 0)
25
26 /* DM is responsible for allocating and freeing platdata */
27 #define DM_FLAG_ALLOC_PDATA             (1 << 1)
28
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC               (1 << 2)
31
32 /* DM is responsible for allocating and freeing parent_platdata */
33 #define DM_FLAG_ALLOC_PARENT_PDATA      (1 << 3)
34
35 /* DM is responsible for allocating and freeing uclass_platdata */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA      (1 << 4)
37
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA          (1 << 5)
40
41 /* Device is bound */
42 #define DM_FLAG_BOUND                   (1 << 6)
43
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED            (1 << 7)
46
47 #define DM_FLAG_OF_PLATDATA             (1 << 8)
48
49 /*
50  * Call driver remove function to stop currently active DMA transfers or
51  * give DMA buffers back to the HW / controller. This may be needed for
52  * some drivers to do some final stage cleanup before the OS is called
53  * (U-Boot exit)
54  */
55 #define DM_FLAG_ACTIVE_DMA              (1 << 9)
56
57 /*
58  * Call driver remove function to do some final configuration, before
59  * U-Boot exits and the OS is started
60  */
61 #define DM_FLAG_OS_PREPARE              (1 << 10)
62
63 /*
64  * One or multiple of these flags are passed to device_remove() so that
65  * a selective device removal as specified by the remove-stage and the
66  * driver flags can be done.
67  */
68 enum {
69         /* Normal remove, remove all devices */
70         DM_REMOVE_NORMAL     = 1 << 0,
71
72         /* Remove devices with active DMA */
73         DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
74
75         /* Remove devices which need some final OS preparation steps */
76         DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
77
78         /* Add more use cases here */
79
80         /* Remove devices with any active flag */
81         DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
82 };
83
84 /**
85  * struct udevice - An instance of a driver
86  *
87  * This holds information about a device, which is a driver bound to a
88  * particular port or peripheral (essentially a driver instance).
89  *
90  * A device will come into existence through a 'bind' call, either due to
91  * a U_BOOT_DEVICE() macro (in which case platdata is non-NULL) or a node
92  * in the device tree (in which case of_offset is >= 0). In the latter case
93  * we translate the device tree information into platdata in a function
94  * implemented by the driver ofdata_to_platdata method (called just before the
95  * probe method if the device has a device tree node.
96  *
97  * All three of platdata, priv and uclass_priv can be allocated by the
98  * driver, or you can use the auto_alloc_size members of struct driver and
99  * struct uclass_driver to have driver model do this automatically.
100  *
101  * @driver: The driver used by this device
102  * @name: Name of device, typically the FDT node name
103  * @platdata: Configuration data for this device
104  * @parent_platdata: The parent bus's configuration data for this device
105  * @uclass_platdata: The uclass's configuration data for this device
106  * @of_offset: Device tree node offset for this device (- for none)
107  * @driver_data: Driver data word for the entry that matched this device with
108  *              its driver
109  * @parent: Parent of this device, or NULL for the top level device
110  * @priv: Private data for this device
111  * @uclass: Pointer to uclass for this device
112  * @uclass_priv: The uclass's private data for this device
113  * @parent_priv: The parent's private data for this device
114  * @uclass_node: Used by uclass to link its devices
115  * @child_head: List of children of this device
116  * @sibling_node: Next device in list of all devices
117  * @flags: Flags for this device DM_FLAG_...
118  * @req_seq: Requested sequence number for this device (-1 = any)
119  * @seq: Allocated sequence number for this device (-1 = none). This is set up
120  * when the device is probed and will be unique within the device's uclass.
121  * @devres_head: List of memory allocations associated with this device.
122  *              When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
123  *              add to this list. Memory so-allocated will be freed
124  *              automatically when the device is removed / unbound
125  */
126 struct udevice {
127         const struct driver *driver;
128         const char *name;
129         void *platdata;
130         void *parent_platdata;
131         void *uclass_platdata;
132         int of_offset;
133         ulong driver_data;
134         struct udevice *parent;
135         void *priv;
136         struct uclass *uclass;
137         void *uclass_priv;
138         void *parent_priv;
139         struct list_head uclass_node;
140         struct list_head child_head;
141         struct list_head sibling_node;
142         uint32_t flags;
143         int req_seq;
144         int seq;
145 #ifdef CONFIG_DEVRES
146         struct list_head devres_head;
147 #endif
148 };
149
150 /* Maximum sequence number supported */
151 #define DM_MAX_SEQ      999
152
153 /* Returns the operations for a device */
154 #define device_get_ops(dev)     (dev->driver->ops)
155
156 /* Returns non-zero if the device is active (probed and not removed) */
157 #define device_active(dev)      ((dev)->flags & DM_FLAG_ACTIVATED)
158
159 static inline int dev_of_offset(const struct udevice *dev)
160 {
161         return dev->of_offset;
162 }
163
164 static inline void dev_set_of_offset(struct udevice *dev, int of_offset)
165 {
166         dev->of_offset = of_offset;
167 }
168
169 /**
170  * struct udevice_id - Lists the compatible strings supported by a driver
171  * @compatible: Compatible string
172  * @data: Data for this compatible string
173  */
174 struct udevice_id {
175         const char *compatible;
176         ulong data;
177 };
178
179 #if CONFIG_IS_ENABLED(OF_CONTROL)
180 #define of_match_ptr(_ptr)      (_ptr)
181 #else
182 #define of_match_ptr(_ptr)      NULL
183 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
184
185 /**
186  * struct driver - A driver for a feature or peripheral
187  *
188  * This holds methods for setting up a new device, and also removing it.
189  * The device needs information to set itself up - this is provided either
190  * by platdata or a device tree node (which we find by looking up
191  * matching compatible strings with of_match).
192  *
193  * Drivers all belong to a uclass, representing a class of devices of the
194  * same type. Common elements of the drivers can be implemented in the uclass,
195  * or the uclass can provide a consistent interface to the drivers within
196  * it.
197  *
198  * @name: Device name
199  * @id: Identiies the uclass we belong to
200  * @of_match: List of compatible strings to match, and any identifying data
201  * for each.
202  * @bind: Called to bind a device to its driver
203  * @probe: Called to probe a device, i.e. activate it
204  * @remove: Called to remove a device, i.e. de-activate it
205  * @unbind: Called to unbind a device from its driver
206  * @ofdata_to_platdata: Called before probe to decode device tree data
207  * @child_post_bind: Called after a new child has been bound
208  * @child_pre_probe: Called before a child device is probed. The device has
209  * memory allocated but it has not yet been probed.
210  * @child_post_remove: Called after a child device is removed. The device
211  * has memory allocated but its device_remove() method has been called.
212  * @priv_auto_alloc_size: If non-zero this is the size of the private data
213  * to be allocated in the device's ->priv pointer. If zero, then the driver
214  * is responsible for allocating any data required.
215  * @platdata_auto_alloc_size: If non-zero this is the size of the
216  * platform data to be allocated in the device's ->platdata pointer.
217  * This is typically only useful for device-tree-aware drivers (those with
218  * an of_match), since drivers which use platdata will have the data
219  * provided in the U_BOOT_DEVICE() instantiation.
220  * @per_child_auto_alloc_size: Each device can hold private data owned by
221  * its parent. If required this will be automatically allocated if this
222  * value is non-zero.
223  * @per_child_platdata_auto_alloc_size: A bus likes to store information about
224  * its children. If non-zero this is the size of this data, to be allocated
225  * in the child's parent_platdata pointer.
226  * @ops: Driver-specific operations. This is typically a list of function
227  * pointers defined by the driver, to implement driver functions required by
228  * the uclass.
229  * @flags: driver flags - see DM_FLAGS_...
230  */
231 struct driver {
232         char *name;
233         enum uclass_id id;
234         const struct udevice_id *of_match;
235         int (*bind)(struct udevice *dev);
236         int (*probe)(struct udevice *dev);
237         int (*remove)(struct udevice *dev);
238         int (*unbind)(struct udevice *dev);
239         int (*ofdata_to_platdata)(struct udevice *dev);
240         int (*child_post_bind)(struct udevice *dev);
241         int (*child_pre_probe)(struct udevice *dev);
242         int (*child_post_remove)(struct udevice *dev);
243         int priv_auto_alloc_size;
244         int platdata_auto_alloc_size;
245         int per_child_auto_alloc_size;
246         int per_child_platdata_auto_alloc_size;
247         const void *ops;        /* driver-specific operations */
248         uint32_t flags;
249 };
250
251 /* Declare a new U-Boot driver */
252 #define U_BOOT_DRIVER(__name)                                           \
253         ll_entry_declare(struct driver, __name, driver)
254
255 /* Get a pointer to a given driver */
256 #define DM_GET_DRIVER(__name)                                           \
257         ll_entry_get(struct driver, __name, driver)
258
259 /**
260  * dev_get_platdata() - Get the platform data for a device
261  *
262  * This checks that dev is not NULL, but no other checks for now
263  *
264  * @dev         Device to check
265  * @return platform data, or NULL if none
266  */
267 void *dev_get_platdata(struct udevice *dev);
268
269 /**
270  * dev_get_parent_platdata() - Get the parent platform data for a device
271  *
272  * This checks that dev is not NULL, but no other checks for now
273  *
274  * @dev         Device to check
275  * @return parent's platform data, or NULL if none
276  */
277 void *dev_get_parent_platdata(struct udevice *dev);
278
279 /**
280  * dev_get_uclass_platdata() - Get the uclass platform data for a device
281  *
282  * This checks that dev is not NULL, but no other checks for now
283  *
284  * @dev         Device to check
285  * @return uclass's platform data, or NULL if none
286  */
287 void *dev_get_uclass_platdata(struct udevice *dev);
288
289 /**
290  * dev_get_priv() - Get the private data for a device
291  *
292  * This checks that dev is not NULL, but no other checks for now
293  *
294  * @dev         Device to check
295  * @return private data, or NULL if none
296  */
297 void *dev_get_priv(struct udevice *dev);
298
299 /**
300  * dev_get_parent_priv() - Get the parent private data for a device
301  *
302  * The parent private data is data stored in the device but owned by the
303  * parent. For example, a USB device may have parent data which contains
304  * information about how to talk to the device over USB.
305  *
306  * This checks that dev is not NULL, but no other checks for now
307  *
308  * @dev         Device to check
309  * @return parent data, or NULL if none
310  */
311 void *dev_get_parent_priv(struct udevice *dev);
312
313 /**
314  * dev_get_uclass_priv() - Get the private uclass data for a device
315  *
316  * This checks that dev is not NULL, but no other checks for now
317  *
318  * @dev         Device to check
319  * @return private uclass data for this device, or NULL if none
320  */
321 void *dev_get_uclass_priv(struct udevice *dev);
322
323 /**
324  * struct dev_get_parent() - Get the parent of a device
325  *
326  * @child:      Child to check
327  * @return parent of child, or NULL if this is the root device
328  */
329 struct udevice *dev_get_parent(struct udevice *child);
330
331 /**
332  * dev_get_driver_data() - get the driver data used to bind a device
333  *
334  * When a device is bound using a device tree node, it matches a
335  * particular compatible string in struct udevice_id. This function
336  * returns the associated data value for that compatible string. This is
337  * the 'data' field in struct udevice_id.
338  *
339  * As an example, consider this structure:
340  * static const struct udevice_id tegra_i2c_ids[] = {
341  *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
342  *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
343  *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
344  *      { }
345  * };
346  *
347  * When driver model finds a driver for this it will store the 'data' value
348  * corresponding to the compatible string it matches. This function returns
349  * that value. This allows the driver to handle several variants of a device.
350  *
351  * For USB devices, this is the driver_info field in struct usb_device_id.
352  *
353  * @dev:        Device to check
354  * @return driver data (0 if none is provided)
355  */
356 ulong dev_get_driver_data(struct udevice *dev);
357
358 /**
359  * dev_get_driver_ops() - get the device's driver's operations
360  *
361  * This checks that dev is not NULL, and returns the pointer to device's
362  * driver's operations.
363  *
364  * @dev:        Device to check
365  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
366  */
367 const void *dev_get_driver_ops(struct udevice *dev);
368
369 /**
370  * device_get_uclass_id() - return the uclass ID of a device
371  *
372  * @dev:        Device to check
373  * @return uclass ID for the device
374  */
375 enum uclass_id device_get_uclass_id(struct udevice *dev);
376
377 /**
378  * dev_get_uclass_name() - return the uclass name of a device
379  *
380  * This checks that dev is not NULL.
381  *
382  * @dev:        Device to check
383  * @return  pointer to the uclass name for the device
384  */
385 const char *dev_get_uclass_name(struct udevice *dev);
386
387 /**
388  * device_get_child() - Get the child of a device by index
389  *
390  * Returns the numbered child, 0 being the first. This does not use
391  * sequence numbers, only the natural order.
392  *
393  * @dev:        Parent device to check
394  * @index:      Child index
395  * @devp:       Returns pointer to device
396  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
397  *         to probe
398  */
399 int device_get_child(struct udevice *parent, int index, struct udevice **devp);
400
401 /**
402  * device_find_child_by_seq() - Find a child device based on a sequence
403  *
404  * This searches for a device with the given seq or req_seq.
405  *
406  * For seq, if an active device has this sequence it will be returned.
407  * If there is no such device then this will return -ENODEV.
408  *
409  * For req_seq, if a device (whether activated or not) has this req_seq
410  * value, that device will be returned. This is a strong indication that
411  * the device will receive that sequence when activated.
412  *
413  * @parent: Parent device
414  * @seq_or_req_seq: Sequence number to find (0=first)
415  * @find_req_seq: true to find req_seq, false to find seq
416  * @devp: Returns pointer to device (there is only one per for each seq).
417  * Set to NULL if none is found
418  * @return 0 if OK, -ve on error
419  */
420 int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq,
421                              bool find_req_seq, struct udevice **devp);
422
423 /**
424  * device_get_child_by_seq() - Get a child device based on a sequence
425  *
426  * If an active device has this sequence it will be returned. If there is no
427  * such device then this will check for a device that is requesting this
428  * sequence.
429  *
430  * The device is probed to activate it ready for use.
431  *
432  * @parent: Parent device
433  * @seq: Sequence number to find (0=first)
434  * @devp: Returns pointer to device (there is only one per for each seq)
435  * Set to NULL if none is found
436  * @return 0 if OK, -ve on error
437  */
438 int device_get_child_by_seq(struct udevice *parent, int seq,
439                             struct udevice **devp);
440
441 /**
442  * device_find_child_by_of_offset() - Find a child device based on FDT offset
443  *
444  * Locates a child device by its device tree offset.
445  *
446  * @parent: Parent device
447  * @of_offset: Device tree offset to find
448  * @devp: Returns pointer to device if found, otherwise this is set to NULL
449  * @return 0 if OK, -ve on error
450  */
451 int device_find_child_by_of_offset(struct udevice *parent, int of_offset,
452                                    struct udevice **devp);
453
454 /**
455  * device_get_child_by_of_offset() - Get a child device based on FDT offset
456  *
457  * Locates a child device by its device tree offset.
458  *
459  * The device is probed to activate it ready for use.
460  *
461  * @parent: Parent device
462  * @of_offset: Device tree offset to find
463  * @devp: Returns pointer to device if found, otherwise this is set to NULL
464  * @return 0 if OK, -ve on error
465  */
466 int device_get_child_by_of_offset(struct udevice *parent, int of_offset,
467                                   struct udevice **devp);
468
469 /**
470  * device_get_global_by_of_offset() - Get a device based on FDT offset
471  *
472  * Locates a device by its device tree offset, searching globally throughout
473  * the all driver model devices.
474  *
475  * The device is probed to activate it ready for use.
476  *
477  * @of_offset: Device tree offset to find
478  * @devp: Returns pointer to device if found, otherwise this is set to NULL
479  * @return 0 if OK, -ve on error
480  */
481 int device_get_global_by_of_offset(int of_offset, struct udevice **devp);
482
483 /**
484  * device_find_first_child() - Find the first child of a device
485  *
486  * @parent: Parent device to search
487  * @devp: Returns first child device, or NULL if none
488  * @return 0
489  */
490 int device_find_first_child(struct udevice *parent, struct udevice **devp);
491
492 /**
493  * device_find_next_child() - Find the next child of a device
494  *
495  * @devp: Pointer to previous child device on entry. Returns pointer to next
496  *              child device, or NULL if none
497  * @return 0
498  */
499 int device_find_next_child(struct udevice **devp);
500
501 /**
502  * dev_get_addr() - Get the reg property of a device
503  *
504  * @dev: Pointer to a device
505  *
506  * @return addr
507  */
508 fdt_addr_t dev_get_addr(struct udevice *dev);
509
510 /**
511  * dev_get_addr_ptr() - Return pointer to the address of the reg property
512  *                      of a device
513  *
514  * @dev: Pointer to a device
515  *
516  * @return Pointer to addr, or NULL if there is no such property
517  */
518 void *dev_get_addr_ptr(struct udevice *dev);
519
520 /**
521  * dev_map_physmem() - Read device address from reg property of the
522  *                     device node and map the address into CPU address
523  *                     space.
524  *
525  * @dev: Pointer to device
526  * @size: size of the memory to map
527  *
528  * @return  mapped address, or NULL if the device does not have reg
529  *          property.
530  */
531 void *dev_map_physmem(struct udevice *dev, unsigned long size);
532
533 /**
534  * dev_get_addr_index() - Get the indexed reg property of a device
535  *
536  * @dev: Pointer to a device
537  * @index: the 'reg' property can hold a list of <addr, size> pairs
538  *         and @index is used to select which one is required
539  *
540  * @return addr
541  */
542 fdt_addr_t dev_get_addr_index(struct udevice *dev, int index);
543
544 /**
545  * dev_get_addr_size_index() - Get the indexed reg property of a device
546  *
547  * Returns the address and size specified in the 'reg' property of a device.
548  *
549  * @dev: Pointer to a device
550  * @index: the 'reg' property can hold a list of <addr, size> pairs
551  *         and @index is used to select which one is required
552  * @size: Pointer to size varible - this function returns the size
553  *        specified in the 'reg' property here
554  *
555  * @return addr
556  */
557 fdt_addr_t dev_get_addr_size_index(struct udevice *dev, int index,
558                                    fdt_size_t *size);
559
560 /**
561  * dev_get_addr_name() - Get the reg property of a device, indexed by name
562  *
563  * @dev: Pointer to a device
564  * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
565  *        'reg-names' property providing named-based identification. @index
566  *        indicates the value to search for in 'reg-names'.
567  *
568  * @return addr
569  */
570 fdt_addr_t dev_get_addr_name(struct udevice *dev, const char *name);
571
572 /**
573  * device_has_children() - check if a device has any children
574  *
575  * @dev:        Device to check
576  * @return true if the device has one or more children
577  */
578 bool device_has_children(struct udevice *dev);
579
580 /**
581  * device_has_active_children() - check if a device has any active children
582  *
583  * @dev:        Device to check
584  * @return true if the device has one or more children and at least one of
585  * them is active (probed).
586  */
587 bool device_has_active_children(struct udevice *dev);
588
589 /**
590  * device_is_last_sibling() - check if a device is the last sibling
591  *
592  * This function can be useful for display purposes, when special action needs
593  * to be taken when displaying the last sibling. This can happen when a tree
594  * view of devices is being displayed.
595  *
596  * @dev:        Device to check
597  * @return true if there are no more siblings after this one - i.e. is it
598  * last in the list.
599  */
600 bool device_is_last_sibling(struct udevice *dev);
601
602 /**
603  * device_set_name() - set the name of a device
604  *
605  * This must be called in the device's bind() method and no later. Normally
606  * this is unnecessary but for probed devices which don't get a useful name
607  * this function can be helpful.
608  *
609  * The name is allocated and will be freed automatically when the device is
610  * unbound.
611  *
612  * @dev:        Device to update
613  * @name:       New name (this string is allocated new memory and attached to
614  *              the device)
615  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
616  * string
617  */
618 int device_set_name(struct udevice *dev, const char *name);
619
620 /**
621  * device_set_name_alloced() - note that a device name is allocated
622  *
623  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
624  * unbound the name will be freed. This avoids memory leaks.
625  *
626  * @dev:        Device to update
627  */
628 void device_set_name_alloced(struct udevice *dev);
629
630 /**
631  * of_device_is_compatible() - check if the device is compatible with the compat
632  *
633  * This allows to check whether the device is comaptible with the compat.
634  *
635  * @dev:        udevice pointer for which compatible needs to be verified.
636  * @compat:     Compatible string which needs to verified in the given
637  *              device
638  * @return true if OK, false if the compatible is not found
639  */
640 bool of_device_is_compatible(struct udevice *dev, const char *compat);
641
642 /**
643  * of_machine_is_compatible() - check if the machine is compatible with
644  *                              the compat
645  *
646  * This allows to check whether the machine is comaptible with the compat.
647  *
648  * @compat:     Compatible string which needs to verified
649  * @return true if OK, false if the compatible is not found
650  */
651 bool of_machine_is_compatible(const char *compat);
652
653 /**
654  * device_is_on_pci_bus - Test if a device is on a PCI bus
655  *
656  * @dev:        device to test
657  * @return:     true if it is on a PCI bus, false otherwise
658  */
659 static inline bool device_is_on_pci_bus(struct udevice *dev)
660 {
661         return device_get_uclass_id(dev->parent) == UCLASS_PCI;
662 }
663
664 /**
665  * device_foreach_child_safe() - iterate through child devices safely
666  *
667  * This allows the @pos child to be removed in the loop if required.
668  *
669  * @pos: struct udevice * for the current device
670  * @next: struct udevice * for the next device
671  * @parent: parent device to scan
672  */
673 #define device_foreach_child_safe(pos, next, parent)    \
674         list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
675
676 /**
677  * dm_scan_fdt_dev() - Bind child device in a the device tree
678  *
679  * This handles device which have sub-nodes in the device tree. It scans all
680  * sub-nodes and binds drivers for each node where a driver can be found.
681  *
682  * If this is called prior to relocation, only pre-relocation devices will be
683  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
684  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
685  * be bound.
686  *
687  * @dev:        Device to scan
688  * @return 0 if OK, -ve on error
689  */
690 int dm_scan_fdt_dev(struct udevice *dev);
691
692 /* device resource management */
693 typedef void (*dr_release_t)(struct udevice *dev, void *res);
694 typedef int (*dr_match_t)(struct udevice *dev, void *res, void *match_data);
695
696 #ifdef CONFIG_DEVRES
697
698 #ifdef CONFIG_DEBUG_DEVRES
699 void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
700                      const char *name);
701 #define _devres_alloc(release, size, gfp) \
702         __devres_alloc(release, size, gfp, #release)
703 #else
704 void *_devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
705 #endif
706
707 /**
708  * devres_alloc() - Allocate device resource data
709  * @release: Release function devres will be associated with
710  * @size: Allocation size
711  * @gfp: Allocation flags
712  *
713  * Allocate devres of @size bytes.  The allocated area is associated
714  * with @release.  The returned pointer can be passed to
715  * other devres_*() functions.
716  *
717  * RETURNS:
718  * Pointer to allocated devres on success, NULL on failure.
719  */
720 #define devres_alloc(release, size, gfp) \
721         _devres_alloc(release, size, gfp | __GFP_ZERO)
722
723 /**
724  * devres_free() - Free device resource data
725  * @res: Pointer to devres data to free
726  *
727  * Free devres created with devres_alloc().
728  */
729 void devres_free(void *res);
730
731 /**
732  * devres_add() - Register device resource
733  * @dev: Device to add resource to
734  * @res: Resource to register
735  *
736  * Register devres @res to @dev.  @res should have been allocated
737  * using devres_alloc().  On driver detach, the associated release
738  * function will be invoked and devres will be freed automatically.
739  */
740 void devres_add(struct udevice *dev, void *res);
741
742 /**
743  * devres_find() - Find device resource
744  * @dev: Device to lookup resource from
745  * @release: Look for resources associated with this release function
746  * @match: Match function (optional)
747  * @match_data: Data for the match function
748  *
749  * Find the latest devres of @dev which is associated with @release
750  * and for which @match returns 1.  If @match is NULL, it's considered
751  * to match all.
752  *
753  * @return pointer to found devres, NULL if not found.
754  */
755 void *devres_find(struct udevice *dev, dr_release_t release,
756                   dr_match_t match, void *match_data);
757
758 /**
759  * devres_get() - Find devres, if non-existent, add one atomically
760  * @dev: Device to lookup or add devres for
761  * @new_res: Pointer to new initialized devres to add if not found
762  * @match: Match function (optional)
763  * @match_data: Data for the match function
764  *
765  * Find the latest devres of @dev which has the same release function
766  * as @new_res and for which @match return 1.  If found, @new_res is
767  * freed; otherwise, @new_res is added atomically.
768  *
769  * @return ointer to found or added devres.
770  */
771 void *devres_get(struct udevice *dev, void *new_res,
772                  dr_match_t match, void *match_data);
773
774 /**
775  * devres_remove() - Find a device resource and remove it
776  * @dev: Device to find resource from
777  * @release: Look for resources associated with this release function
778  * @match: Match function (optional)
779  * @match_data: Data for the match function
780  *
781  * Find the latest devres of @dev associated with @release and for
782  * which @match returns 1.  If @match is NULL, it's considered to
783  * match all.  If found, the resource is removed atomically and
784  * returned.
785  *
786  * @return ointer to removed devres on success, NULL if not found.
787  */
788 void *devres_remove(struct udevice *dev, dr_release_t release,
789                     dr_match_t match, void *match_data);
790
791 /**
792  * devres_destroy() - Find a device resource and destroy it
793  * @dev: Device to find resource from
794  * @release: Look for resources associated with this release function
795  * @match: Match function (optional)
796  * @match_data: Data for the match function
797  *
798  * Find the latest devres of @dev associated with @release and for
799  * which @match returns 1.  If @match is NULL, it's considered to
800  * match all.  If found, the resource is removed atomically and freed.
801  *
802  * Note that the release function for the resource will not be called,
803  * only the devres-allocated data will be freed.  The caller becomes
804  * responsible for freeing any other data.
805  *
806  * @return 0 if devres is found and freed, -ENOENT if not found.
807  */
808 int devres_destroy(struct udevice *dev, dr_release_t release,
809                    dr_match_t match, void *match_data);
810
811 /**
812  * devres_release() - Find a device resource and destroy it, calling release
813  * @dev: Device to find resource from
814  * @release: Look for resources associated with this release function
815  * @match: Match function (optional)
816  * @match_data: Data for the match function
817  *
818  * Find the latest devres of @dev associated with @release and for
819  * which @match returns 1.  If @match is NULL, it's considered to
820  * match all.  If found, the resource is removed atomically, the
821  * release function called and the resource freed.
822  *
823  * @return 0 if devres is found and freed, -ENOENT if not found.
824  */
825 int devres_release(struct udevice *dev, dr_release_t release,
826                    dr_match_t match, void *match_data);
827
828 /* managed devm_k.alloc/kfree for device drivers */
829 /**
830  * devm_kmalloc() - Resource-managed kmalloc
831  * @dev: Device to allocate memory for
832  * @size: Allocation size
833  * @gfp: Allocation gfp flags
834  *
835  * Managed kmalloc.  Memory allocated with this function is
836  * automatically freed on driver detach.  Like all other devres
837  * resources, guaranteed alignment is unsigned long long.
838  *
839  * @return pointer to allocated memory on success, NULL on failure.
840  */
841 void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp);
842 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
843 {
844         return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
845 }
846 static inline void *devm_kmalloc_array(struct udevice *dev,
847                                        size_t n, size_t size, gfp_t flags)
848 {
849         if (size != 0 && n > SIZE_MAX / size)
850                 return NULL;
851         return devm_kmalloc(dev, n * size, flags);
852 }
853 static inline void *devm_kcalloc(struct udevice *dev,
854                                  size_t n, size_t size, gfp_t flags)
855 {
856         return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
857 }
858
859 /**
860  * devm_kfree() - Resource-managed kfree
861  * @dev: Device this memory belongs to
862  * @ptr: Memory to free
863  *
864  * Free memory allocated with devm_kmalloc().
865  */
866 void devm_kfree(struct udevice *dev, void *ptr);
867
868 #else /* ! CONFIG_DEVRES */
869
870 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
871 {
872         return kzalloc(size, gfp);
873 }
874
875 static inline void devres_free(void *res)
876 {
877         kfree(res);
878 }
879
880 static inline void devres_add(struct udevice *dev, void *res)
881 {
882 }
883
884 static inline void *devres_find(struct udevice *dev, dr_release_t release,
885                                 dr_match_t match, void *match_data)
886 {
887         return NULL;
888 }
889
890 static inline void *devres_get(struct udevice *dev, void *new_res,
891                                dr_match_t match, void *match_data)
892 {
893         return NULL;
894 }
895
896 static inline void *devres_remove(struct udevice *dev, dr_release_t release,
897                                   dr_match_t match, void *match_data)
898 {
899         return NULL;
900 }
901
902 static inline int devres_destroy(struct udevice *dev, dr_release_t release,
903                                  dr_match_t match, void *match_data)
904 {
905         return 0;
906 }
907
908 static inline int devres_release(struct udevice *dev, dr_release_t release,
909                                  dr_match_t match, void *match_data)
910 {
911         return 0;
912 }
913
914 static inline void *devm_kmalloc(struct udevice *dev, size_t size, gfp_t gfp)
915 {
916         return kmalloc(size, gfp);
917 }
918
919 static inline void *devm_kzalloc(struct udevice *dev, size_t size, gfp_t gfp)
920 {
921         return kzalloc(size, gfp);
922 }
923
924 static inline void *devm_kmaloc_array(struct udevice *dev,
925                                       size_t n, size_t size, gfp_t flags)
926 {
927         /* TODO: add kmalloc_array() to linux/compat.h */
928         if (size != 0 && n > SIZE_MAX / size)
929                 return NULL;
930         return kmalloc(n * size, flags);
931 }
932
933 static inline void *devm_kcalloc(struct udevice *dev,
934                                  size_t n, size_t size, gfp_t flags)
935 {
936         /* TODO: add kcalloc() to linux/compat.h */
937         return kmalloc(n * size, flags | __GFP_ZERO);
938 }
939
940 static inline void devm_kfree(struct udevice *dev, void *ptr)
941 {
942         kfree(ptr);
943 }
944
945 #endif /* ! CONFIG_DEVRES */
946
947 /**
948  * dm_set_translation_offset() - Set translation offset
949  * @offs: Translation offset
950  *
951  * Some platforms need a special address translation. Those
952  * platforms (e.g. mvebu in SPL) can configure a translation
953  * offset in the DM by calling this function. It will be
954  * added to all addresses returned in dev_get_addr().
955  */
956 void dm_set_translation_offset(fdt_addr_t offs);
957
958 /**
959  * dm_get_translation_offset() - Get translation offset
960  *
961  * This function returns the translation offset that can
962  * be configured by calling dm_set_translation_offset().
963  *
964  * @return translation offset for the device address (0 as default).
965  */
966 fdt_addr_t dm_get_translation_offset(void);
967
968 #endif