xfs: fix internal error from AGFL exhaustion
[platform/kernel/linux-starfive.git] / include / crypto / hash.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Hash: Hash algorithms under the crypto API
4  * 
5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/atomic.h>
12 #include <linux/crypto.h>
13 #include <linux/string.h>
14
15 struct crypto_ahash;
16
17 /**
18  * DOC: Message Digest Algorithm Definitions
19  *
20  * These data structures define modular message digest algorithm
21  * implementations, managed via crypto_register_ahash(),
22  * crypto_register_shash(), crypto_unregister_ahash() and
23  * crypto_unregister_shash().
24  */
25
26 /*
27  * struct crypto_istat_hash - statistics for has algorithm
28  * @hash_cnt:           number of hash requests
29  * @hash_tlen:          total data size hashed
30  * @err_cnt:            number of error for hash requests
31  */
32 struct crypto_istat_hash {
33         atomic64_t hash_cnt;
34         atomic64_t hash_tlen;
35         atomic64_t err_cnt;
36 };
37
38 #ifdef CONFIG_CRYPTO_STATS
39 #define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat;
40 #else
41 #define HASH_ALG_COMMON_STAT
42 #endif
43
44 /*
45  * struct hash_alg_common - define properties of message digest
46  * @stat: Statistics for hash algorithm.
47  * @digestsize: Size of the result of the transformation. A buffer of this size
48  *              must be available to the @final and @finup calls, so they can
49  *              store the resulting hash into it. For various predefined sizes,
50  *              search include/crypto/ using
51  *              git grep _DIGEST_SIZE include/crypto.
52  * @statesize: Size of the block for partial state of the transformation. A
53  *             buffer of this size must be passed to the @export function as it
54  *             will save the partial state of the transformation into it. On the
55  *             other side, the @import function will load the state from a
56  *             buffer of this size as well.
57  * @base: Start of data structure of cipher algorithm. The common data
58  *        structure of crypto_alg contains information common to all ciphers.
59  *        The hash_alg_common data structure now adds the hash-specific
60  *        information.
61  */
62 #define HASH_ALG_COMMON {               \
63         HASH_ALG_COMMON_STAT            \
64                                         \
65         unsigned int digestsize;        \
66         unsigned int statesize;         \
67                                         \
68         struct crypto_alg base;         \
69 }
70 struct hash_alg_common HASH_ALG_COMMON;
71
72 struct ahash_request {
73         struct crypto_async_request base;
74
75         unsigned int nbytes;
76         struct scatterlist *src;
77         u8 *result;
78
79         /* This field may only be used by the ahash API code. */
80         void *priv;
81
82         void *__ctx[] CRYPTO_MINALIGN_ATTR;
83 };
84
85 /**
86  * struct ahash_alg - asynchronous message digest definition
87  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
88  *        state of the HASH transformation at the beginning. This shall fill in
89  *        the internal structures used during the entire duration of the whole
90  *        transformation. No data processing happens at this point. Driver code
91  *        implementation must not use req->result.
92  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
93  *         function actually pushes blocks of data from upper layers into the
94  *         driver, which then passes those to the hardware as seen fit. This
95  *         function must not finalize the HASH transformation by calculating the
96  *         final message digest as this only adds more data into the
97  *         transformation. This function shall not modify the transformation
98  *         context, as this function may be called in parallel with the same
99  *         transformation object. Data processing can happen synchronously
100  *         [SHASH] or asynchronously [AHASH] at this point. Driver must not use
101  *         req->result.
102  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
103  *         transformation and retrieves the resulting hash from the driver and
104  *         pushes it back to upper layers. No data processing happens at this
105  *         point unless hardware requires it to finish the transformation
106  *         (then the data buffered by the device driver is processed).
107  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
108  *         combination of @update and @final calls issued in sequence. As some
109  *         hardware cannot do @update and @final separately, this callback was
110  *         added to allow such hardware to be used at least by IPsec. Data
111  *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
112  *         at this point.
113  * @digest: Combination of @init and @update and @final. This function
114  *          effectively behaves as the entire chain of operations, @init,
115  *          @update and @final issued in sequence. Just like @finup, this was
116  *          added for hardware which cannot do even the @finup, but can only do
117  *          the whole transformation in one run. Data processing can happen
118  *          synchronously [SHASH] or asynchronously [AHASH] at this point.
119  * @setkey: Set optional key used by the hashing algorithm. Intended to push
120  *          optional key used by the hashing algorithm from upper layers into
121  *          the driver. This function can store the key in the transformation
122  *          context or can outright program it into the hardware. In the former
123  *          case, one must be careful to program the key into the hardware at
124  *          appropriate time and one must be careful that .setkey() can be
125  *          called multiple times during the existence of the transformation
126  *          object. Not  all hashing algorithms do implement this function as it
127  *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
128  *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
129  *          this function. This function must be called before any other of the
130  *          @init, @update, @final, @finup, @digest is called. No data
131  *          processing happens at this point.
132  * @export: Export partial state of the transformation. This function dumps the
133  *          entire state of the ongoing transformation into a provided block of
134  *          data so it can be @import 'ed back later on. This is useful in case
135  *          you want to save partial result of the transformation after
136  *          processing certain amount of data and reload this partial result
137  *          multiple times later on for multiple re-use. No data processing
138  *          happens at this point. Driver must not use req->result.
139  * @import: Import partial state of the transformation. This function loads the
140  *          entire state of the ongoing transformation from a provided block of
141  *          data so the transformation can continue from this point onward. No
142  *          data processing happens at this point. Driver must not use
143  *          req->result.
144  * @init_tfm: Initialize the cryptographic transformation object.
145  *            This function is called only once at the instantiation
146  *            time, right after the transformation context was
147  *            allocated. In case the cryptographic hardware has
148  *            some special requirements which need to be handled
149  *            by software, this function shall check for the precise
150  *            requirement of the transformation and put any software
151  *            fallbacks in place.
152  * @exit_tfm: Deinitialize the cryptographic transformation object.
153  *            This is a counterpart to @init_tfm, used to remove
154  *            various changes set in @init_tfm.
155  * @clone_tfm: Copy transform into new object, may allocate memory.
156  * @halg: see struct hash_alg_common
157  */
158 struct ahash_alg {
159         int (*init)(struct ahash_request *req);
160         int (*update)(struct ahash_request *req);
161         int (*final)(struct ahash_request *req);
162         int (*finup)(struct ahash_request *req);
163         int (*digest)(struct ahash_request *req);
164         int (*export)(struct ahash_request *req, void *out);
165         int (*import)(struct ahash_request *req, const void *in);
166         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
167                       unsigned int keylen);
168         int (*init_tfm)(struct crypto_ahash *tfm);
169         void (*exit_tfm)(struct crypto_ahash *tfm);
170         int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
171
172         struct hash_alg_common halg;
173 };
174
175 struct shash_desc {
176         struct crypto_shash *tfm;
177         void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
178 };
179
180 #define HASH_MAX_DIGESTSIZE      64
181
182 /*
183  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
184  * containing a 'struct sha3_state'.
185  */
186 #define HASH_MAX_DESCSIZE       (sizeof(struct shash_desc) + 360)
187
188 #define SHASH_DESC_ON_STACK(shash, ctx)                                      \
189         char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
190                 __aligned(__alignof__(struct shash_desc));                   \
191         struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
192
193 /**
194  * struct shash_alg - synchronous message digest definition
195  * @init: see struct ahash_alg
196  * @update: see struct ahash_alg
197  * @final: see struct ahash_alg
198  * @finup: see struct ahash_alg
199  * @digest: see struct ahash_alg
200  * @export: see struct ahash_alg
201  * @import: see struct ahash_alg
202  * @setkey: see struct ahash_alg
203  * @init_tfm: Initialize the cryptographic transformation object.
204  *            This function is called only once at the instantiation
205  *            time, right after the transformation context was
206  *            allocated. In case the cryptographic hardware has
207  *            some special requirements which need to be handled
208  *            by software, this function shall check for the precise
209  *            requirement of the transformation and put any software
210  *            fallbacks in place.
211  * @exit_tfm: Deinitialize the cryptographic transformation object.
212  *            This is a counterpart to @init_tfm, used to remove
213  *            various changes set in @init_tfm.
214  * @clone_tfm: Copy transform into new object, may allocate memory.
215  * @digestsize: see struct ahash_alg
216  * @statesize: see struct ahash_alg
217  * @descsize: Size of the operational state for the message digest. This state
218  *            size is the memory size that needs to be allocated for
219  *            shash_desc.__ctx
220  * @stat: Statistics for hash algorithm.
221  * @base: internally used
222  * @halg: see struct hash_alg_common
223  * @HASH_ALG_COMMON: see struct hash_alg_common
224  */
225 struct shash_alg {
226         int (*init)(struct shash_desc *desc);
227         int (*update)(struct shash_desc *desc, const u8 *data,
228                       unsigned int len);
229         int (*final)(struct shash_desc *desc, u8 *out);
230         int (*finup)(struct shash_desc *desc, const u8 *data,
231                      unsigned int len, u8 *out);
232         int (*digest)(struct shash_desc *desc, const u8 *data,
233                       unsigned int len, u8 *out);
234         int (*export)(struct shash_desc *desc, void *out);
235         int (*import)(struct shash_desc *desc, const void *in);
236         int (*setkey)(struct crypto_shash *tfm, const u8 *key,
237                       unsigned int keylen);
238         int (*init_tfm)(struct crypto_shash *tfm);
239         void (*exit_tfm)(struct crypto_shash *tfm);
240         int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
241
242         unsigned int descsize;
243
244         union {
245                 struct HASH_ALG_COMMON;
246                 struct hash_alg_common halg;
247         };
248 };
249 #undef HASH_ALG_COMMON
250 #undef HASH_ALG_COMMON_STAT
251
252 struct crypto_ahash {
253         int (*init)(struct ahash_request *req);
254         int (*update)(struct ahash_request *req);
255         int (*final)(struct ahash_request *req);
256         int (*finup)(struct ahash_request *req);
257         int (*digest)(struct ahash_request *req);
258         int (*export)(struct ahash_request *req, void *out);
259         int (*import)(struct ahash_request *req, const void *in);
260         int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
261                       unsigned int keylen);
262
263         unsigned int statesize;
264         unsigned int reqsize;
265         struct crypto_tfm base;
266 };
267
268 struct crypto_shash {
269         unsigned int descsize;
270         struct crypto_tfm base;
271 };
272
273 /**
274  * DOC: Asynchronous Message Digest API
275  *
276  * The asynchronous message digest API is used with the ciphers of type
277  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
278  *
279  * The asynchronous cipher operation discussion provided for the
280  * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
281  */
282
283 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
284 {
285         return container_of(tfm, struct crypto_ahash, base);
286 }
287
288 /**
289  * crypto_alloc_ahash() - allocate ahash cipher handle
290  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
291  *            ahash cipher
292  * @type: specifies the type of the cipher
293  * @mask: specifies the mask for the cipher
294  *
295  * Allocate a cipher handle for an ahash. The returned struct
296  * crypto_ahash is the cipher handle that is required for any subsequent
297  * API invocation for that ahash.
298  *
299  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
300  *         of an error, PTR_ERR() returns the error code.
301  */
302 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
303                                         u32 mask);
304
305 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
306
307 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
308 {
309         return &tfm->base;
310 }
311
312 /**
313  * crypto_free_ahash() - zeroize and free the ahash handle
314  * @tfm: cipher handle to be freed
315  *
316  * If @tfm is a NULL or error pointer, this function does nothing.
317  */
318 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
319 {
320         crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
321 }
322
323 /**
324  * crypto_has_ahash() - Search for the availability of an ahash.
325  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
326  *            ahash
327  * @type: specifies the type of the ahash
328  * @mask: specifies the mask for the ahash
329  *
330  * Return: true when the ahash is known to the kernel crypto API; false
331  *         otherwise
332  */
333 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
334
335 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
336 {
337         return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
338 }
339
340 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
341 {
342         return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
343 }
344
345 static inline unsigned int crypto_ahash_alignmask(
346         struct crypto_ahash *tfm)
347 {
348         return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
349 }
350
351 /**
352  * crypto_ahash_blocksize() - obtain block size for cipher
353  * @tfm: cipher handle
354  *
355  * The block size for the message digest cipher referenced with the cipher
356  * handle is returned.
357  *
358  * Return: block size of cipher
359  */
360 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
361 {
362         return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
363 }
364
365 static inline struct hash_alg_common *__crypto_hash_alg_common(
366         struct crypto_alg *alg)
367 {
368         return container_of(alg, struct hash_alg_common, base);
369 }
370
371 static inline struct hash_alg_common *crypto_hash_alg_common(
372         struct crypto_ahash *tfm)
373 {
374         return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
375 }
376
377 /**
378  * crypto_ahash_digestsize() - obtain message digest size
379  * @tfm: cipher handle
380  *
381  * The size for the message digest created by the message digest cipher
382  * referenced with the cipher handle is returned.
383  *
384  *
385  * Return: message digest size of cipher
386  */
387 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
388 {
389         return crypto_hash_alg_common(tfm)->digestsize;
390 }
391
392 /**
393  * crypto_ahash_statesize() - obtain size of the ahash state
394  * @tfm: cipher handle
395  *
396  * Return the size of the ahash state. With the crypto_ahash_export()
397  * function, the caller can export the state into a buffer whose size is
398  * defined with this function.
399  *
400  * Return: size of the ahash state
401  */
402 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
403 {
404         return tfm->statesize;
405 }
406
407 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
408 {
409         return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
410 }
411
412 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
413 {
414         crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
415 }
416
417 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
418 {
419         crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
420 }
421
422 /**
423  * crypto_ahash_reqtfm() - obtain cipher handle from request
424  * @req: asynchronous request handle that contains the reference to the ahash
425  *       cipher handle
426  *
427  * Return the ahash cipher handle that is registered with the asynchronous
428  * request handle ahash_request.
429  *
430  * Return: ahash cipher handle
431  */
432 static inline struct crypto_ahash *crypto_ahash_reqtfm(
433         struct ahash_request *req)
434 {
435         return __crypto_ahash_cast(req->base.tfm);
436 }
437
438 /**
439  * crypto_ahash_reqsize() - obtain size of the request data structure
440  * @tfm: cipher handle
441  *
442  * Return: size of the request data
443  */
444 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
445 {
446         return tfm->reqsize;
447 }
448
449 static inline void *ahash_request_ctx(struct ahash_request *req)
450 {
451         return req->__ctx;
452 }
453
454 /**
455  * crypto_ahash_setkey - set key for cipher handle
456  * @tfm: cipher handle
457  * @key: buffer holding the key
458  * @keylen: length of the key in bytes
459  *
460  * The caller provided key is set for the ahash cipher. The cipher
461  * handle must point to a keyed hash in order for this function to succeed.
462  *
463  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
464  */
465 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
466                         unsigned int keylen);
467
468 /**
469  * crypto_ahash_finup() - update and finalize message digest
470  * @req: reference to the ahash_request handle that holds all information
471  *       needed to perform the cipher operation
472  *
473  * This function is a "short-hand" for the function calls of
474  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
475  * meaning as discussed for those separate functions.
476  *
477  * Return: see crypto_ahash_final()
478  */
479 int crypto_ahash_finup(struct ahash_request *req);
480
481 /**
482  * crypto_ahash_final() - calculate message digest
483  * @req: reference to the ahash_request handle that holds all information
484  *       needed to perform the cipher operation
485  *
486  * Finalize the message digest operation and create the message digest
487  * based on all data added to the cipher handle. The message digest is placed
488  * into the output buffer registered with the ahash_request handle.
489  *
490  * Return:
491  * 0            if the message digest was successfully calculated;
492  * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
493  * -EBUSY       if queue is full and request should be resubmitted later;
494  * other < 0    if an error occurred
495  */
496 int crypto_ahash_final(struct ahash_request *req);
497
498 /**
499  * crypto_ahash_digest() - calculate message digest for a buffer
500  * @req: reference to the ahash_request handle that holds all information
501  *       needed to perform the cipher operation
502  *
503  * This function is a "short-hand" for the function calls of crypto_ahash_init,
504  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
505  * meaning as discussed for those separate three functions.
506  *
507  * Return: see crypto_ahash_final()
508  */
509 int crypto_ahash_digest(struct ahash_request *req);
510
511 /**
512  * crypto_ahash_export() - extract current message digest state
513  * @req: reference to the ahash_request handle whose state is exported
514  * @out: output buffer of sufficient size that can hold the hash state
515  *
516  * This function exports the hash state of the ahash_request handle into the
517  * caller-allocated output buffer out which must have sufficient size (e.g. by
518  * calling crypto_ahash_statesize()).
519  *
520  * Return: 0 if the export was successful; < 0 if an error occurred
521  */
522 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
523 {
524         return crypto_ahash_reqtfm(req)->export(req, out);
525 }
526
527 /**
528  * crypto_ahash_import() - import message digest state
529  * @req: reference to ahash_request handle the state is imported into
530  * @in: buffer holding the state
531  *
532  * This function imports the hash state into the ahash_request handle from the
533  * input buffer. That buffer should have been generated with the
534  * crypto_ahash_export function.
535  *
536  * Return: 0 if the import was successful; < 0 if an error occurred
537  */
538 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
539 {
540         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
541
542         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
543                 return -ENOKEY;
544
545         return tfm->import(req, in);
546 }
547
548 /**
549  * crypto_ahash_init() - (re)initialize message digest handle
550  * @req: ahash_request handle that already is initialized with all necessary
551  *       data using the ahash_request_* API functions
552  *
553  * The call (re-)initializes the message digest referenced by the ahash_request
554  * handle. Any potentially existing state created by previous operations is
555  * discarded.
556  *
557  * Return: see crypto_ahash_final()
558  */
559 static inline int crypto_ahash_init(struct ahash_request *req)
560 {
561         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
562
563         if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
564                 return -ENOKEY;
565
566         return tfm->init(req);
567 }
568
569 static inline struct crypto_istat_hash *hash_get_stat(
570         struct hash_alg_common *alg)
571 {
572 #ifdef CONFIG_CRYPTO_STATS
573         return &alg->stat;
574 #else
575         return NULL;
576 #endif
577 }
578
579 static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err)
580 {
581         if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
582                 return err;
583
584         if (err && err != -EINPROGRESS && err != -EBUSY)
585                 atomic64_inc(&hash_get_stat(alg)->err_cnt);
586
587         return err;
588 }
589
590 /**
591  * crypto_ahash_update() - add data to message digest for processing
592  * @req: ahash_request handle that was previously initialized with the
593  *       crypto_ahash_init call.
594  *
595  * Updates the message digest state of the &ahash_request handle. The input data
596  * is pointed to by the scatter/gather list registered in the &ahash_request
597  * handle
598  *
599  * Return: see crypto_ahash_final()
600  */
601 static inline int crypto_ahash_update(struct ahash_request *req)
602 {
603         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
604         struct hash_alg_common *alg = crypto_hash_alg_common(tfm);
605
606         if (IS_ENABLED(CONFIG_CRYPTO_STATS))
607                 atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen);
608
609         return crypto_hash_errstat(alg, tfm->update(req));
610 }
611
612 /**
613  * DOC: Asynchronous Hash Request Handle
614  *
615  * The &ahash_request data structure contains all pointers to data
616  * required for the asynchronous cipher operation. This includes the cipher
617  * handle (which can be used by multiple &ahash_request instances), pointer
618  * to plaintext and the message digest output buffer, asynchronous callback
619  * function, etc. It acts as a handle to the ahash_request_* API calls in a
620  * similar way as ahash handle to the crypto_ahash_* API calls.
621  */
622
623 /**
624  * ahash_request_set_tfm() - update cipher handle reference in request
625  * @req: request handle to be modified
626  * @tfm: cipher handle that shall be added to the request handle
627  *
628  * Allow the caller to replace the existing ahash handle in the request
629  * data structure with a different one.
630  */
631 static inline void ahash_request_set_tfm(struct ahash_request *req,
632                                          struct crypto_ahash *tfm)
633 {
634         req->base.tfm = crypto_ahash_tfm(tfm);
635 }
636
637 /**
638  * ahash_request_alloc() - allocate request data structure
639  * @tfm: cipher handle to be registered with the request
640  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
641  *
642  * Allocate the request data structure that must be used with the ahash
643  * message digest API calls. During
644  * the allocation, the provided ahash handle
645  * is registered in the request data structure.
646  *
647  * Return: allocated request handle in case of success, or NULL if out of memory
648  */
649 static inline struct ahash_request *ahash_request_alloc(
650         struct crypto_ahash *tfm, gfp_t gfp)
651 {
652         struct ahash_request *req;
653
654         req = kmalloc(sizeof(struct ahash_request) +
655                       crypto_ahash_reqsize(tfm), gfp);
656
657         if (likely(req))
658                 ahash_request_set_tfm(req, tfm);
659
660         return req;
661 }
662
663 /**
664  * ahash_request_free() - zeroize and free the request data structure
665  * @req: request data structure cipher handle to be freed
666  */
667 static inline void ahash_request_free(struct ahash_request *req)
668 {
669         kfree_sensitive(req);
670 }
671
672 static inline void ahash_request_zero(struct ahash_request *req)
673 {
674         memzero_explicit(req, sizeof(*req) +
675                               crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
676 }
677
678 static inline struct ahash_request *ahash_request_cast(
679         struct crypto_async_request *req)
680 {
681         return container_of(req, struct ahash_request, base);
682 }
683
684 /**
685  * ahash_request_set_callback() - set asynchronous callback function
686  * @req: request handle
687  * @flags: specify zero or an ORing of the flags
688  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
689  *         increase the wait queue beyond the initial maximum size;
690  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
691  * @compl: callback function pointer to be registered with the request handle
692  * @data: The data pointer refers to memory that is not used by the kernel
693  *        crypto API, but provided to the callback function for it to use. Here,
694  *        the caller can provide a reference to memory the callback function can
695  *        operate on. As the callback function is invoked asynchronously to the
696  *        related functionality, it may need to access data structures of the
697  *        related functionality which can be referenced using this pointer. The
698  *        callback function can access the memory via the "data" field in the
699  *        &crypto_async_request data structure provided to the callback function.
700  *
701  * This function allows setting the callback function that is triggered once
702  * the cipher operation completes.
703  *
704  * The callback function is registered with the &ahash_request handle and
705  * must comply with the following template::
706  *
707  *      void callback_function(struct crypto_async_request *req, int error)
708  */
709 static inline void ahash_request_set_callback(struct ahash_request *req,
710                                               u32 flags,
711                                               crypto_completion_t compl,
712                                               void *data)
713 {
714         req->base.complete = compl;
715         req->base.data = data;
716         req->base.flags = flags;
717 }
718
719 /**
720  * ahash_request_set_crypt() - set data buffers
721  * @req: ahash_request handle to be updated
722  * @src: source scatter/gather list
723  * @result: buffer that is filled with the message digest -- the caller must
724  *          ensure that the buffer has sufficient space by, for example, calling
725  *          crypto_ahash_digestsize()
726  * @nbytes: number of bytes to process from the source scatter/gather list
727  *
728  * By using this call, the caller references the source scatter/gather list.
729  * The source scatter/gather list points to the data the message digest is to
730  * be calculated for.
731  */
732 static inline void ahash_request_set_crypt(struct ahash_request *req,
733                                            struct scatterlist *src, u8 *result,
734                                            unsigned int nbytes)
735 {
736         req->src = src;
737         req->nbytes = nbytes;
738         req->result = result;
739 }
740
741 /**
742  * DOC: Synchronous Message Digest API
743  *
744  * The synchronous message digest API is used with the ciphers of type
745  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
746  *
747  * The message digest API is able to maintain state information for the
748  * caller.
749  *
750  * The synchronous message digest API can store user-related context in its
751  * shash_desc request data structure.
752  */
753
754 /**
755  * crypto_alloc_shash() - allocate message digest handle
756  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
757  *            message digest cipher
758  * @type: specifies the type of the cipher
759  * @mask: specifies the mask for the cipher
760  *
761  * Allocate a cipher handle for a message digest. The returned &struct
762  * crypto_shash is the cipher handle that is required for any subsequent
763  * API invocation for that message digest.
764  *
765  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
766  *         of an error, PTR_ERR() returns the error code.
767  */
768 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
769                                         u32 mask);
770
771 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
772
773 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
774
775 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
776 {
777         return &tfm->base;
778 }
779
780 /**
781  * crypto_free_shash() - zeroize and free the message digest handle
782  * @tfm: cipher handle to be freed
783  *
784  * If @tfm is a NULL or error pointer, this function does nothing.
785  */
786 static inline void crypto_free_shash(struct crypto_shash *tfm)
787 {
788         crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
789 }
790
791 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
792 {
793         return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
794 }
795
796 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
797 {
798         return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
799 }
800
801 static inline unsigned int crypto_shash_alignmask(
802         struct crypto_shash *tfm)
803 {
804         return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
805 }
806
807 /**
808  * crypto_shash_blocksize() - obtain block size for cipher
809  * @tfm: cipher handle
810  *
811  * The block size for the message digest cipher referenced with the cipher
812  * handle is returned.
813  *
814  * Return: block size of cipher
815  */
816 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
817 {
818         return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
819 }
820
821 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
822 {
823         return container_of(alg, struct shash_alg, base);
824 }
825
826 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
827 {
828         return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
829 }
830
831 /**
832  * crypto_shash_digestsize() - obtain message digest size
833  * @tfm: cipher handle
834  *
835  * The size for the message digest created by the message digest cipher
836  * referenced with the cipher handle is returned.
837  *
838  * Return: digest size of cipher
839  */
840 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
841 {
842         return crypto_shash_alg(tfm)->digestsize;
843 }
844
845 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
846 {
847         return crypto_shash_alg(tfm)->statesize;
848 }
849
850 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
851 {
852         return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
853 }
854
855 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
856 {
857         crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
858 }
859
860 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
861 {
862         crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
863 }
864
865 /**
866  * crypto_shash_descsize() - obtain the operational state size
867  * @tfm: cipher handle
868  *
869  * The size of the operational state the cipher needs during operation is
870  * returned for the hash referenced with the cipher handle. This size is
871  * required to calculate the memory requirements to allow the caller allocating
872  * sufficient memory for operational state.
873  *
874  * The operational state is defined with struct shash_desc where the size of
875  * that data structure is to be calculated as
876  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
877  *
878  * Return: size of the operational state
879  */
880 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
881 {
882         return tfm->descsize;
883 }
884
885 static inline void *shash_desc_ctx(struct shash_desc *desc)
886 {
887         return desc->__ctx;
888 }
889
890 /**
891  * crypto_shash_setkey() - set key for message digest
892  * @tfm: cipher handle
893  * @key: buffer holding the key
894  * @keylen: length of the key in bytes
895  *
896  * The caller provided key is set for the keyed message digest cipher. The
897  * cipher handle must point to a keyed message digest cipher in order for this
898  * function to succeed.
899  *
900  * Context: Any context.
901  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
902  */
903 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
904                         unsigned int keylen);
905
906 /**
907  * crypto_shash_digest() - calculate message digest for buffer
908  * @desc: see crypto_shash_final()
909  * @data: see crypto_shash_update()
910  * @len: see crypto_shash_update()
911  * @out: see crypto_shash_final()
912  *
913  * This function is a "short-hand" for the function calls of crypto_shash_init,
914  * crypto_shash_update and crypto_shash_final. The parameters have the same
915  * meaning as discussed for those separate three functions.
916  *
917  * Context: Any context.
918  * Return: 0 if the message digest creation was successful; < 0 if an error
919  *         occurred
920  */
921 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
922                         unsigned int len, u8 *out);
923
924 /**
925  * crypto_shash_tfm_digest() - calculate message digest for buffer
926  * @tfm: hash transformation object
927  * @data: see crypto_shash_update()
928  * @len: see crypto_shash_update()
929  * @out: see crypto_shash_final()
930  *
931  * This is a simplified version of crypto_shash_digest() for users who don't
932  * want to allocate their own hash descriptor (shash_desc).  Instead,
933  * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
934  * directly, and it allocates a hash descriptor on the stack internally.
935  * Note that this stack allocation may be fairly large.
936  *
937  * Context: Any context.
938  * Return: 0 on success; < 0 if an error occurred.
939  */
940 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
941                             unsigned int len, u8 *out);
942
943 /**
944  * crypto_shash_export() - extract operational state for message digest
945  * @desc: reference to the operational state handle whose state is exported
946  * @out: output buffer of sufficient size that can hold the hash state
947  *
948  * This function exports the hash state of the operational state handle into the
949  * caller-allocated output buffer out which must have sufficient size (e.g. by
950  * calling crypto_shash_descsize).
951  *
952  * Context: Any context.
953  * Return: 0 if the export creation was successful; < 0 if an error occurred
954  */
955 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
956 {
957         return crypto_shash_alg(desc->tfm)->export(desc, out);
958 }
959
960 /**
961  * crypto_shash_import() - import operational state
962  * @desc: reference to the operational state handle the state imported into
963  * @in: buffer holding the state
964  *
965  * This function imports the hash state into the operational state handle from
966  * the input buffer. That buffer should have been generated with the
967  * crypto_ahash_export function.
968  *
969  * Context: Any context.
970  * Return: 0 if the import was successful; < 0 if an error occurred
971  */
972 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
973 {
974         struct crypto_shash *tfm = desc->tfm;
975
976         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
977                 return -ENOKEY;
978
979         return crypto_shash_alg(tfm)->import(desc, in);
980 }
981
982 /**
983  * crypto_shash_init() - (re)initialize message digest
984  * @desc: operational state handle that is already filled
985  *
986  * The call (re-)initializes the message digest referenced by the
987  * operational state handle. Any potentially existing state created by
988  * previous operations is discarded.
989  *
990  * Context: Any context.
991  * Return: 0 if the message digest initialization was successful; < 0 if an
992  *         error occurred
993  */
994 static inline int crypto_shash_init(struct shash_desc *desc)
995 {
996         struct crypto_shash *tfm = desc->tfm;
997
998         if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
999                 return -ENOKEY;
1000
1001         return crypto_shash_alg(tfm)->init(desc);
1002 }
1003
1004 /**
1005  * crypto_shash_update() - add data to message digest for processing
1006  * @desc: operational state handle that is already initialized
1007  * @data: input data to be added to the message digest
1008  * @len: length of the input data
1009  *
1010  * Updates the message digest state of the operational state handle.
1011  *
1012  * Context: Any context.
1013  * Return: 0 if the message digest update was successful; < 0 if an error
1014  *         occurred
1015  */
1016 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
1017                         unsigned int len);
1018
1019 /**
1020  * crypto_shash_final() - calculate message digest
1021  * @desc: operational state handle that is already filled with data
1022  * @out: output buffer filled with the message digest
1023  *
1024  * Finalize the message digest operation and create the message digest
1025  * based on all data added to the cipher handle. The message digest is placed
1026  * into the output buffer. The caller must ensure that the output buffer is
1027  * large enough by using crypto_shash_digestsize.
1028  *
1029  * Context: Any context.
1030  * Return: 0 if the message digest creation was successful; < 0 if an error
1031  *         occurred
1032  */
1033 int crypto_shash_final(struct shash_desc *desc, u8 *out);
1034
1035 /**
1036  * crypto_shash_finup() - calculate message digest of buffer
1037  * @desc: see crypto_shash_final()
1038  * @data: see crypto_shash_update()
1039  * @len: see crypto_shash_update()
1040  * @out: see crypto_shash_final()
1041  *
1042  * This function is a "short-hand" for the function calls of
1043  * crypto_shash_update and crypto_shash_final. The parameters have the same
1044  * meaning as discussed for those separate functions.
1045  *
1046  * Context: Any context.
1047  * Return: 0 if the message digest creation was successful; < 0 if an error
1048  *         occurred
1049  */
1050 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
1051                        unsigned int len, u8 *out);
1052
1053 static inline void shash_desc_zero(struct shash_desc *desc)
1054 {
1055         memzero_explicit(desc,
1056                          sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1057 }
1058
1059 #endif  /* _CRYPTO_HASH_H */