1 // Copyright 2014 BVLC and contributors.
3 // Fillers are random number generators that fills a blob using the specified
4 // algorithm. The expectation is that they are only going to be used during
5 // initialization time and will not involve any GPUs.
7 #ifndef CAFFE_FILLER_HPP
8 #define CAFFE_FILLER_HPP
12 #include "caffe/common.hpp"
13 #include "caffe/blob.hpp"
14 #include "caffe/syncedmem.hpp"
15 #include "caffe/util/math_functions.hpp"
16 #include "caffe/proto/caffe.pb.h"
20 template <typename Dtype>
23 explicit Filler(const FillerParameter& param) : filler_param_(param) {}
25 virtual void Fill(Blob<Dtype>* blob) = 0;
27 FillerParameter filler_param_;
31 template <typename Dtype>
32 class ConstantFiller : public Filler<Dtype> {
34 explicit ConstantFiller(const FillerParameter& param)
35 : Filler<Dtype>(param) {}
36 virtual void Fill(Blob<Dtype>* blob) {
37 Dtype* data = blob->mutable_cpu_data();
38 const int count = blob->count();
39 const Dtype value = this->filler_param_.value();
41 for (int i = 0; i < count; ++i) {
44 CHECK_EQ(this->filler_param_.sparse(), -1)
45 << "Sparsity not supported by this Filler.";
49 template <typename Dtype>
50 class UniformFiller : public Filler<Dtype> {
52 explicit UniformFiller(const FillerParameter& param)
53 : Filler<Dtype>(param) {}
54 virtual void Fill(Blob<Dtype>* blob) {
56 caffe_rng_uniform<Dtype>(blob->count(), Dtype(this->filler_param_.min()),
57 Dtype(this->filler_param_.max()), blob->mutable_cpu_data());
58 CHECK_EQ(this->filler_param_.sparse(), -1)
59 << "Sparsity not supported by this Filler.";
63 template <typename Dtype>
64 class GaussianFiller : public Filler<Dtype> {
66 explicit GaussianFiller(const FillerParameter& param)
67 : Filler<Dtype>(param) {}
68 virtual void Fill(Blob<Dtype>* blob) {
69 Dtype* data = blob->mutable_cpu_data();
71 caffe_rng_gaussian<Dtype>(blob->count(), Dtype(this->filler_param_.mean()),
72 Dtype(this->filler_param_.std()), blob->mutable_cpu_data());
73 int sparse = this->filler_param_.sparse();
76 // Sparse initialization is implemented for "weight" blobs; i.e. matrices.
77 // These have num == channels == 1; height is number of inputs; width is
78 // number of outputs. The 'sparse' variable specifies the mean number
79 // of non-zero input weights for a given output.
80 CHECK_EQ(blob->num(), 1);
81 CHECK_EQ(blob->channels(), 1);
82 int num_inputs = blob->height();
83 Dtype non_zero_probability = Dtype(sparse) / Dtype(num_inputs);
84 rand_vec_.reset(new SyncedMemory(blob->count() * sizeof(int)));
85 int* mask = reinterpret_cast<int*>(rand_vec_->mutable_cpu_data());
86 caffe_rng_bernoulli(blob->count(), non_zero_probability, mask);
87 for (int i = 0; i < blob->count(); ++i) {
94 shared_ptr<SyncedMemory> rand_vec_;
97 template <typename Dtype>
98 class PositiveUnitballFiller : public Filler<Dtype> {
100 explicit PositiveUnitballFiller(const FillerParameter& param)
101 : Filler<Dtype>(param) {}
102 virtual void Fill(Blob<Dtype>* blob) {
103 Dtype* data = blob->mutable_cpu_data();
104 DCHECK(blob->count());
105 caffe_rng_uniform<Dtype>(blob->count(), 0, 1, blob->mutable_cpu_data());
106 // We expect the filler to not be called very frequently, so we will
107 // just use a simple implementation
108 int dim = blob->count() / blob->num();
110 for (int i = 0; i < blob->num(); ++i) {
112 for (int j = 0; j < dim; ++j) {
113 sum += data[i * dim + j];
115 for (int j = 0; j < dim; ++j) {
116 data[i * dim + j] /= sum;
119 CHECK_EQ(this->filler_param_.sparse(), -1)
120 << "Sparsity not supported by this Filler.";
124 // A filler based on the paper [Bengio and Glorot 2010]: Understanding
125 // the difficulty of training deep feedforward neuralnetworks, but does not
126 // use the fan_out value.
128 // It fills the incoming matrix by randomly sampling uniform data from
129 // [-scale, scale] where scale = sqrt(3 / fan_in) where fan_in is the number
130 // of input nodes. You should make sure the input blob has shape (num, a, b, c)
131 // where a * b * c = fan_in.
132 template <typename Dtype>
133 class XavierFiller : public Filler<Dtype> {
135 explicit XavierFiller(const FillerParameter& param)
136 : Filler<Dtype>(param) {}
137 virtual void Fill(Blob<Dtype>* blob) {
138 CHECK(blob->count());
139 int fan_in = blob->count() / blob->num();
140 Dtype scale = sqrt(Dtype(3) / fan_in);
141 caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
142 blob->mutable_cpu_data());
143 CHECK_EQ(this->filler_param_.sparse(), -1)
144 << "Sparsity not supported by this Filler.";
149 // A function to get a specific filler from the specification given in
150 // FillerParameter. Ideally this would be replaced by a factory pattern,
151 // but we will leave it this way for now.
152 template <typename Dtype>
153 Filler<Dtype>* GetFiller(const FillerParameter& param) {
154 const std::string& type = param.type();
155 if (type == "constant") {
156 return new ConstantFiller<Dtype>(param);
157 } else if (type == "gaussian") {
158 return new GaussianFiller<Dtype>(param);
159 } else if (type == "positive_unitball") {
160 return new PositiveUnitballFiller<Dtype>(param);
161 } else if (type == "uniform") {
162 return new UniformFiller<Dtype>(param);
163 } else if (type == "xavier") {
164 return new XavierFiller<Dtype>(param);
166 CHECK(false) << "Unknown filler name: " << param.type();
168 return (Filler<Dtype>*)(NULL);
173 #endif // CAFFE_FILLER_HPP_