spelling fixes
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / asm-i386 / system.h
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
3
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
8
9 #ifdef __KERNEL__
10
11 struct task_struct;     /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
13
14 #define switch_to(prev,next,last) do {                                  \
15         unsigned long esi,edi;                                          \
16         asm volatile("pushl %%ebp\n\t"                                  \
17                      "movl %%esp,%0\n\t"        /* save ESP */          \
18                      "movl %5,%%esp\n\t"        /* restore ESP */       \
19                      "movl $1f,%1\n\t"          /* save EIP */          \
20                      "pushl %6\n\t"             /* restore EIP */       \
21                      "jmp __switch_to\n"                                \
22                      "1:\t"                                             \
23                      "popl %%ebp\n\t"                                   \
24                      :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
25                       "=a" (last),"=S" (esi),"=D" (edi)                 \
26                      :"m" (next->thread.esp),"m" (next->thread.eip),    \
27                       "2" (prev), "d" (next));                          \
28 } while (0)
29
30 #define _set_base(addr,base) do { unsigned long __pr; \
31 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
32         "rorl $16,%%edx\n\t" \
33         "movb %%dl,%2\n\t" \
34         "movb %%dh,%3" \
35         :"=&d" (__pr) \
36         :"m" (*((addr)+2)), \
37          "m" (*((addr)+4)), \
38          "m" (*((addr)+7)), \
39          "0" (base) \
40         ); } while(0)
41
42 #define _set_limit(addr,limit) do { unsigned long __lr; \
43 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
44         "rorl $16,%%edx\n\t" \
45         "movb %2,%%dh\n\t" \
46         "andb $0xf0,%%dh\n\t" \
47         "orb %%dh,%%dl\n\t" \
48         "movb %%dl,%2" \
49         :"=&d" (__lr) \
50         :"m" (*(addr)), \
51          "m" (*((addr)+6)), \
52          "0" (limit) \
53         ); } while(0)
54
55 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
56 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
57
58 /*
59  * Load a segment. Fall back on loading the zero
60  * segment if something goes wrong..
61  */
62 #define loadsegment(seg,value)                  \
63         asm volatile("\n"                       \
64                 "1:\t"                          \
65                 "mov %0,%%" #seg "\n"           \
66                 "2:\n"                          \
67                 ".section .fixup,\"ax\"\n"      \
68                 "3:\t"                          \
69                 "pushl $0\n\t"                  \
70                 "popl %%" #seg "\n\t"           \
71                 "jmp 2b\n"                      \
72                 ".previous\n"                   \
73                 ".section __ex_table,\"a\"\n\t" \
74                 ".align 4\n\t"                  \
75                 ".long 1b,3b\n"                 \
76                 ".previous"                     \
77                 : :"rm" (value))
78
79 /*
80  * Save a segment register away
81  */
82 #define savesegment(seg, value) \
83         asm volatile("mov %%" #seg ",%0":"=rm" (value))
84
85 /*
86  * Clear and set 'TS' bit respectively
87  */
88 #define clts() __asm__ __volatile__ ("clts")
89 #define read_cr0() ({ \
90         unsigned int __dummy; \
91         __asm__ __volatile__( \
92                 "movl %%cr0,%0\n\t" \
93                 :"=r" (__dummy)); \
94         __dummy; \
95 })
96 #define write_cr0(x) \
97         __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
98
99 #define read_cr2() ({ \
100         unsigned int __dummy; \
101         __asm__ __volatile__( \
102                 "movl %%cr2,%0\n\t" \
103                 :"=r" (__dummy)); \
104         __dummy; \
105 })
106 #define write_cr2(x) \
107         __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
108
109 #define read_cr3() ({ \
110         unsigned int __dummy; \
111         __asm__ ( \
112                 "movl %%cr3,%0\n\t" \
113                 :"=r" (__dummy)); \
114         __dummy; \
115 })
116 #define write_cr3(x) \
117         __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
118
119 #define read_cr4() ({ \
120         unsigned int __dummy; \
121         __asm__( \
122                 "movl %%cr4,%0\n\t" \
123                 :"=r" (__dummy)); \
124         __dummy; \
125 })
126
127 #define read_cr4_safe() ({                            \
128         unsigned int __dummy;                         \
129         /* This could fault if %cr4 does not exist */ \
130         __asm__("1: movl %%cr4, %0              \n"   \
131                 "2:                             \n"   \
132                 ".section __ex_table,\"a\"      \n"   \
133                 ".long 1b,2b                    \n"   \
134                 ".previous                      \n"   \
135                 : "=r" (__dummy): "0" (0));           \
136         __dummy;                                      \
137 })
138
139 #define write_cr4(x) \
140         __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
141 #define stts() write_cr0(8 | read_cr0())
142
143 #endif  /* __KERNEL__ */
144
145 #define wbinvd() \
146         __asm__ __volatile__ ("wbinvd": : :"memory");
147
148 static inline unsigned long get_limit(unsigned long segment)
149 {
150         unsigned long __limit;
151         __asm__("lsll %1,%0"
152                 :"=r" (__limit):"r" (segment));
153         return __limit+1;
154 }
155
156 #define nop() __asm__ __volatile__ ("nop")
157
158 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
159
160 #define tas(ptr) (xchg((ptr),1))
161
162 struct __xchg_dummy { unsigned long a[100]; };
163 #define __xg(x) ((struct __xchg_dummy *)(x))
164
165
166 #ifdef CONFIG_X86_CMPXCHG64
167
168 /*
169  * The semantics of XCHGCMP8B are a bit strange, this is why
170  * there is a loop and the loading of %%eax and %%edx has to
171  * be inside. This inlines well in most cases, the cached
172  * cost is around ~38 cycles. (in the future we might want
173  * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
174  * might have an implicit FPU-save as a cost, so it's not
175  * clear which path to go.)
176  *
177  * cmpxchg8b must be used with the lock prefix here to allow
178  * the instruction to be executed atomically, see page 3-102
179  * of the instruction set reference 24319102.pdf. We need
180  * the reader side to see the coherent 64bit value.
181  */
182 static inline void __set_64bit (unsigned long long * ptr,
183                 unsigned int low, unsigned int high)
184 {
185         __asm__ __volatile__ (
186                 "\n1:\t"
187                 "movl (%0), %%eax\n\t"
188                 "movl 4(%0), %%edx\n\t"
189                 "lock cmpxchg8b (%0)\n\t"
190                 "jnz 1b"
191                 : /* no outputs */
192                 :       "D"(ptr),
193                         "b"(low),
194                         "c"(high)
195                 :       "ax","dx","memory");
196 }
197
198 static inline void __set_64bit_constant (unsigned long long *ptr,
199                                                  unsigned long long value)
200 {
201         __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
202 }
203 #define ll_low(x)       *(((unsigned int*)&(x))+0)
204 #define ll_high(x)      *(((unsigned int*)&(x))+1)
205
206 static inline void __set_64bit_var (unsigned long long *ptr,
207                          unsigned long long value)
208 {
209         __set_64bit(ptr,ll_low(value), ll_high(value));
210 }
211
212 #define set_64bit(ptr,value) \
213 (__builtin_constant_p(value) ? \
214  __set_64bit_constant(ptr, value) : \
215  __set_64bit_var(ptr, value) )
216
217 #define _set_64bit(ptr,value) \
218 (__builtin_constant_p(value) ? \
219  __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
220  __set_64bit(ptr, ll_low(value), ll_high(value)) )
221
222 #endif
223
224 /*
225  * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
226  * Note 2: xchg has side effect, so that attribute volatile is necessary,
227  *        but generally the primitive is invalid, *ptr is output argument. --ANK
228  */
229 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
230 {
231         switch (size) {
232                 case 1:
233                         __asm__ __volatile__("xchgb %b0,%1"
234                                 :"=q" (x)
235                                 :"m" (*__xg(ptr)), "0" (x)
236                                 :"memory");
237                         break;
238                 case 2:
239                         __asm__ __volatile__("xchgw %w0,%1"
240                                 :"=r" (x)
241                                 :"m" (*__xg(ptr)), "0" (x)
242                                 :"memory");
243                         break;
244                 case 4:
245                         __asm__ __volatile__("xchgl %0,%1"
246                                 :"=r" (x)
247                                 :"m" (*__xg(ptr)), "0" (x)
248                                 :"memory");
249                         break;
250         }
251         return x;
252 }
253
254 /*
255  * Atomic compare and exchange.  Compare OLD with MEM, if identical,
256  * store NEW in MEM.  Return the initial value in MEM.  Success is
257  * indicated by comparing RETURN with OLD.
258  */
259
260 #ifdef CONFIG_X86_CMPXCHG
261 #define __HAVE_ARCH_CMPXCHG 1
262 #define cmpxchg(ptr,o,n)\
263         ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
264                                         (unsigned long)(n),sizeof(*(ptr))))
265 #endif
266
267 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
268                                       unsigned long new, int size)
269 {
270         unsigned long prev;
271         switch (size) {
272         case 1:
273                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
274                                      : "=a"(prev)
275                                      : "q"(new), "m"(*__xg(ptr)), "0"(old)
276                                      : "memory");
277                 return prev;
278         case 2:
279                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
280                                      : "=a"(prev)
281                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
282                                      : "memory");
283                 return prev;
284         case 4:
285                 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
286                                      : "=a"(prev)
287                                      : "r"(new), "m"(*__xg(ptr)), "0"(old)
288                                      : "memory");
289                 return prev;
290         }
291         return old;
292 }
293
294 #ifndef CONFIG_X86_CMPXCHG
295 /*
296  * Building a kernel capable running on 80386. It may be necessary to
297  * simulate the cmpxchg on the 80386 CPU. For that purpose we define
298  * a function for each of the sizes we support.
299  */
300
301 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
302 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
303 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
304
305 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
306                                       unsigned long new, int size)
307 {
308         switch (size) {
309         case 1:
310                 return cmpxchg_386_u8(ptr, old, new);
311         case 2:
312                 return cmpxchg_386_u16(ptr, old, new);
313         case 4:
314                 return cmpxchg_386_u32(ptr, old, new);
315         }
316         return old;
317 }
318
319 #define cmpxchg(ptr,o,n)                                                \
320 ({                                                                      \
321         __typeof__(*(ptr)) __ret;                                       \
322         if (likely(boot_cpu_data.x86 > 3))                              \
323                 __ret = __cmpxchg((ptr), (unsigned long)(o),            \
324                                         (unsigned long)(n), sizeof(*(ptr))); \
325         else                                                            \
326                 __ret = cmpxchg_386((ptr), (unsigned long)(o),          \
327                                         (unsigned long)(n), sizeof(*(ptr))); \
328         __ret;                                                          \
329 })
330 #endif
331
332 #ifdef CONFIG_X86_CMPXCHG64
333
334 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
335                                       unsigned long long new)
336 {
337         unsigned long long prev;
338         __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
339                              : "=A"(prev)
340                              : "b"((unsigned long)new),
341                                "c"((unsigned long)(new >> 32)),
342                                "m"(*__xg(ptr)),
343                                "0"(old)
344                              : "memory");
345         return prev;
346 }
347
348 #define cmpxchg64(ptr,o,n)\
349         ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
350                                         (unsigned long long)(n)))
351
352 #endif
353     
354 /*
355  * Force strict CPU ordering.
356  * And yes, this is required on UP too when we're talking
357  * to devices.
358  *
359  * For now, "wmb()" doesn't actually do anything, as all
360  * Intel CPU's follow what Intel calls a *Processor Order*,
361  * in which all writes are seen in the program order even
362  * outside the CPU.
363  *
364  * I expect future Intel CPU's to have a weaker ordering,
365  * but I'd also expect them to finally get their act together
366  * and add some real memory barriers if so.
367  *
368  * Some non intel clones support out of order store. wmb() ceases to be a
369  * nop for these.
370  */
371  
372
373 /* 
374  * Actually only lfence would be needed for mb() because all stores done 
375  * by the kernel should be already ordered. But keep a full barrier for now. 
376  */
377
378 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
379 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
380
381 /**
382  * read_barrier_depends - Flush all pending reads that subsequents reads
383  * depend on.
384  *
385  * No data-dependent reads from memory-like regions are ever reordered
386  * over this barrier.  All reads preceding this primitive are guaranteed
387  * to access memory (but not necessarily other CPUs' caches) before any
388  * reads following this primitive that depend on the data return by
389  * any of the preceding reads.  This primitive is much lighter weight than
390  * rmb() on most CPUs, and is never heavier weight than is
391  * rmb().
392  *
393  * These ordering constraints are respected by both the local CPU
394  * and the compiler.
395  *
396  * Ordering is not guaranteed by anything other than these primitives,
397  * not even by data dependencies.  See the documentation for
398  * memory_barrier() for examples and URLs to more information.
399  *
400  * For example, the following code would force ordering (the initial
401  * value of "a" is zero, "b" is one, and "p" is "&a"):
402  *
403  * <programlisting>
404  *      CPU 0                           CPU 1
405  *
406  *      b = 2;
407  *      memory_barrier();
408  *      p = &b;                         q = p;
409  *                                      read_barrier_depends();
410  *                                      d = *q;
411  * </programlisting>
412  *
413  * because the read of "*q" depends on the read of "p" and these
414  * two reads are separated by a read_barrier_depends().  However,
415  * the following code, with the same initial values for "a" and "b":
416  *
417  * <programlisting>
418  *      CPU 0                           CPU 1
419  *
420  *      a = 2;
421  *      memory_barrier();
422  *      b = 3;                          y = b;
423  *                                      read_barrier_depends();
424  *                                      x = a;
425  * </programlisting>
426  *
427  * does not enforce ordering, since there is no data dependency between
428  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
429  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
430  * in cases like this where there are no data dependencies.
431  **/
432
433 #define read_barrier_depends()  do { } while(0)
434
435 #ifdef CONFIG_X86_OOSTORE
436 /* Actually there are no OOO store capable CPUs for now that do SSE, 
437    but make it already an possibility. */
438 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
439 #else
440 #define wmb()   __asm__ __volatile__ ("": : :"memory")
441 #endif
442
443 #ifdef CONFIG_SMP
444 #define smp_mb()        mb()
445 #define smp_rmb()       rmb()
446 #define smp_wmb()       wmb()
447 #define smp_read_barrier_depends()      read_barrier_depends()
448 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
449 #else
450 #define smp_mb()        barrier()
451 #define smp_rmb()       barrier()
452 #define smp_wmb()       barrier()
453 #define smp_read_barrier_depends()      do { } while(0)
454 #define set_mb(var, value) do { var = value; barrier(); } while (0)
455 #endif
456
457 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
458
459 /* interrupt control.. */
460 #define local_save_flags(x)     do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
461 #define local_irq_restore(x)    do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
462 #define local_irq_disable()     __asm__ __volatile__("cli": : :"memory")
463 #define local_irq_enable()      __asm__ __volatile__("sti": : :"memory")
464 /* used in the idle loop; sti takes one instruction cycle to complete */
465 #define safe_halt()             __asm__ __volatile__("sti; hlt": : :"memory")
466 /* used when interrupts are already enabled or to shutdown the processor */
467 #define halt()                  __asm__ __volatile__("hlt": : :"memory")
468
469 #define irqs_disabled()                 \
470 ({                                      \
471         unsigned long flags;            \
472         local_save_flags(flags);        \
473         !(flags & (1<<9));              \
474 })
475
476 /* For spinlocks etc */
477 #define local_irq_save(x)       __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
478
479 /*
480  * disable hlt during certain critical i/o operations
481  */
482 #define HAVE_DISABLE_HLT
483 void disable_hlt(void);
484 void enable_hlt(void);
485
486 extern int es7000_plat;
487 void cpu_idle_wait(void);
488
489 /*
490  * On SMP systems, when the scheduler does migration-cost autodetection,
491  * it needs a way to flush as much of the CPU's caches as possible:
492  */
493 static inline void sched_cacheflush(void)
494 {
495         wbinvd();
496 }
497
498 extern unsigned long arch_align_stack(unsigned long sp);
499 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
500
501 void default_idle(void);
502
503 #endif