5 * Copyright 1992, Linus Torvalds.
10 * These have to be done with inline assembly: that way the bit-setting
11 * is guaranteed to be atomic. All bit operations return 0 if the bit
12 * was cleared before the operation and != 0 if it was not.
14 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
18 #define LOCK_PREFIX "lock ; "
20 #define LOCK_PREFIX ""
23 #define ADDR (*(volatile long *) addr)
26 * set_bit - Atomically set a bit in memory
28 * @addr: the address to start counting from
30 * This function is atomic and may not be reordered. See __set_bit()
31 * if you do not require the atomic guarantees.
32 * Note that @nr may be almost arbitrarily large; this function is not
33 * restricted to acting on a single-word quantity.
35 static __inline__ void set_bit(int nr, volatile void * addr)
37 __asm__ __volatile__( LOCK_PREFIX
44 * __set_bit - Set a bit in memory
46 * @addr: the address to start counting from
48 * Unlike set_bit(), this function is non-atomic and may be reordered.
49 * If it's called on the same region of memory simultaneously, the effect
50 * may be that only one operation succeeds.
52 static __inline__ void __set_bit(int nr, volatile void * addr)
61 * clear_bit - Clears a bit in memory
63 * @addr: Address to start counting from
65 * clear_bit() is atomic and may not be reordered. However, it does
66 * not contain a memory barrier, so if it is used for locking purposes,
67 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
68 * in order to ensure changes are visible on other processors.
70 static __inline__ void clear_bit(int nr, volatile void * addr)
72 __asm__ __volatile__( LOCK_PREFIX
77 #define smp_mb__before_clear_bit() barrier()
78 #define smp_mb__after_clear_bit() barrier()
81 * __change_bit - Toggle a bit in memory
83 * @addr: the address to start counting from
85 * Unlike change_bit(), this function is non-atomic and may be reordered.
86 * If it's called on the same region of memory simultaneously, the effect
87 * may be that only one operation succeeds.
89 static __inline__ void __change_bit(int nr, volatile void * addr)
98 * change_bit - Toggle a bit in memory
100 * @addr: Address to start counting from
102 * change_bit() is atomic and may not be reordered.
103 * Note that @nr may be almost arbitrarily large; this function is not
104 * restricted to acting on a single-word quantity.
106 static __inline__ void change_bit(int nr, volatile void * addr)
108 __asm__ __volatile__( LOCK_PREFIX
115 * test_and_set_bit - Set a bit and return its old value
117 * @addr: Address to count from
119 * This operation is atomic and cannot be reordered.
120 * It also implies a memory barrier.
122 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
126 __asm__ __volatile__( LOCK_PREFIX
127 "btsl %2,%1\n\tsbbl %0,%0"
128 :"=r" (oldbit),"=m" (ADDR)
129 :"Ir" (nr) : "memory");
134 * __test_and_set_bit - Set a bit and return its old value
136 * @addr: Address to count from
138 * This operation is non-atomic and can be reordered.
139 * If two examples of this operation race, one can appear to succeed
140 * but actually fail. You must protect multiple accesses with a lock.
142 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
147 "btsl %2,%1\n\tsbbl %0,%0"
148 :"=r" (oldbit),"=m" (ADDR)
154 * test_and_clear_bit - Clear a bit and return its old value
156 * @addr: Address to count from
158 * This operation is atomic and cannot be reordered.
159 * It also implies a memory barrier.
161 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
165 __asm__ __volatile__( LOCK_PREFIX
166 "btrl %2,%1\n\tsbbl %0,%0"
167 :"=r" (oldbit),"=m" (ADDR)
168 :"Ir" (nr) : "memory");
173 * __test_and_clear_bit - Clear a bit and return its old value
175 * @addr: Address to count from
177 * This operation is non-atomic and can be reordered.
178 * If two examples of this operation race, one can appear to succeed
179 * but actually fail. You must protect multiple accesses with a lock.
181 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
186 "btrl %2,%1\n\tsbbl %0,%0"
187 :"=r" (oldbit),"=m" (ADDR)
192 /* WARNING: non atomic and it can be reordered! */
193 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
197 __asm__ __volatile__(
198 "btcl %2,%1\n\tsbbl %0,%0"
199 :"=r" (oldbit),"=m" (ADDR)
200 :"Ir" (nr) : "memory");
205 * test_and_change_bit - Change a bit and return its new value
207 * @addr: Address to count from
209 * This operation is atomic and cannot be reordered.
210 * It also implies a memory barrier.
212 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
216 __asm__ __volatile__( LOCK_PREFIX
217 "btcl %2,%1\n\tsbbl %0,%0"
218 :"=r" (oldbit),"=m" (ADDR)
219 :"Ir" (nr) : "memory");
223 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
225 * test_bit - Determine whether a bit is set
226 * @nr: bit number to test
227 * @addr: Address to start counting from
229 static int test_bit(int nr, const volatile void * addr);
232 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
234 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
237 static __inline__ int variable_test_bit(int nr, volatile void * addr)
241 __asm__ __volatile__(
242 "btl %2,%1\n\tsbbl %0,%0"
244 :"m" (ADDR),"Ir" (nr));
248 #define test_bit(nr,addr) \
249 (__builtin_constant_p(nr) ? \
250 constant_test_bit((nr),(addr)) : \
251 variable_test_bit((nr),(addr)))
254 * find_first_zero_bit - find the first zero bit in a memory region
255 * @addr: The address to start the search at
256 * @size: The maximum size to search
258 * Returns the bit-number of the first zero bit, not the number of the byte
261 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
268 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
269 __asm__ __volatile__(
271 "xorl %%edx,%%edx\n\t"
274 "xorl -4(%%edi),%%eax\n\t"
277 "1:\tsubl %%ebx,%%edi\n\t"
280 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
281 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
286 * find_next_zero_bit - find the first zero bit in a memory region
287 * @addr: The address to base the search on
288 * @offset: The bitnumber to start searching at
289 * @size: The maximum size to search
291 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
293 unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
294 int set = 0, bit = offset & 31, res;
298 * Look for zero in first byte
300 __asm__("bsfl %1,%0\n\t"
305 : "r" (~(*p >> bit)));
306 if (set < (32 - bit))
312 * No zero yet, search remaining full bytes for a zero
314 res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
315 return (offset + set + res);
319 * ffz - find first zero in word.
320 * @word: The word to search
322 * Undefined if no zero exists, so code should check against ~0UL first.
324 static __inline__ unsigned long ffz(unsigned long word)
335 * ffs - find first bit set
336 * @x: the word to search
338 * This is defined the same way as
339 * the libc and compiler builtin ffs routines, therefore
340 * differs in spirit from the above ffz (man ffs).
342 static __inline__ int ffs(int x)
346 __asm__("bsfl %1,%0\n\t"
349 "1:" : "=r" (r) : "g" (x));
354 * hweightN - returns the hamming weight of a N-bit word
355 * @x: the word to weigh
357 * The Hamming Weight of a number is the total number of bits set in it.
360 #define hweight32(x) generic_hweight32(x)
361 #define hweight16(x) generic_hweight16(x)
362 #define hweight8(x) generic_hweight8(x)
364 #endif /* __KERNEL__ */
368 #define ext2_set_bit __test_and_set_bit
369 #define ext2_clear_bit __test_and_clear_bit
370 #define ext2_test_bit test_bit
371 #define ext2_find_first_zero_bit find_first_zero_bit
372 #define ext2_find_next_zero_bit find_next_zero_bit
374 /* Bitmap functions for the minix filesystem. */
375 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
376 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
377 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
378 #define minix_test_bit(nr,addr) test_bit(nr,addr)
379 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
381 #endif /* __KERNEL__ */
383 #endif /* _I386_BITOPS_H */