powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / include / asm-generic / mshyperv.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are specified in the Hyper-V Top Level Functional
10  * Spec (TLFS) should not go in this file, but should instead go in
11  * hyperv-tlfs.h.
12  *
13  * Copyright (C) 2019, Microsoft, Inc.
14  *
15  * Author : Michael Kelley <mikelley@microsoft.com>
16  */
17
18 #ifndef _ASM_GENERIC_MSHYPERV_H
19 #define _ASM_GENERIC_MSHYPERV_H
20
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/bitops.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <asm/hyperv-tlfs.h>
28
29 #define VTPM_BASE_ADDRESS 0xfed40000
30
31 struct ms_hyperv_info {
32         u32 features;
33         u32 priv_high;
34         u32 misc_features;
35         u32 hints;
36         u32 nested_features;
37         u32 max_vp_index;
38         u32 max_lp_index;
39         union {
40                 u32 isolation_config_a;
41                 struct {
42                         u32 paravisor_present : 1;
43                         u32 reserved_a1 : 31;
44                 };
45         };
46         union {
47                 u32 isolation_config_b;
48                 struct {
49                         u32 cvm_type : 4;
50                         u32 reserved_b1 : 1;
51                         u32 shared_gpa_boundary_active : 1;
52                         u32 shared_gpa_boundary_bits : 6;
53                         u32 reserved_b2 : 20;
54                 };
55         };
56         u64 shared_gpa_boundary;
57         u8 vtl;
58 };
59 extern struct ms_hyperv_info ms_hyperv;
60 extern bool hv_nested;
61
62 extern void * __percpu *hyperv_pcpu_input_arg;
63 extern void * __percpu *hyperv_pcpu_output_arg;
64
65 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
66 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
67 bool hv_isolation_type_snp(void);
68 bool hv_isolation_type_tdx(void);
69
70 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
71 static inline int hv_result(u64 status)
72 {
73         return status & HV_HYPERCALL_RESULT_MASK;
74 }
75
76 static inline bool hv_result_success(u64 status)
77 {
78         return hv_result(status) == HV_STATUS_SUCCESS;
79 }
80
81 static inline unsigned int hv_repcomp(u64 status)
82 {
83         /* Bits [43:32] of status have 'Reps completed' data. */
84         return (status & HV_HYPERCALL_REP_COMP_MASK) >>
85                          HV_HYPERCALL_REP_COMP_OFFSET;
86 }
87
88 /*
89  * Rep hypercalls. Callers of this functions are supposed to ensure that
90  * rep_count and varhead_size comply with Hyper-V hypercall definition.
91  */
92 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
93                                       void *input, void *output)
94 {
95         u64 control = code;
96         u64 status;
97         u16 rep_comp;
98
99         control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
100         control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
101
102         do {
103                 status = hv_do_hypercall(control, input, output);
104                 if (!hv_result_success(status))
105                         return status;
106
107                 rep_comp = hv_repcomp(status);
108
109                 control &= ~HV_HYPERCALL_REP_START_MASK;
110                 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
111
112                 touch_nmi_watchdog();
113         } while (rep_comp < rep_count);
114
115         return status;
116 }
117
118 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
119 static inline u64 hv_generate_guest_id(u64 kernel_version)
120 {
121         u64 guest_id;
122
123         guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
124         guest_id |= (kernel_version << 16);
125
126         return guest_id;
127 }
128
129 /* Free the message slot and signal end-of-message if required */
130 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
131 {
132         /*
133          * On crash we're reading some other CPU's message page and we need
134          * to be careful: this other CPU may already had cleared the header
135          * and the host may already had delivered some other message there.
136          * In case we blindly write msg->header.message_type we're going
137          * to lose it. We can still lose a message of the same type but
138          * we count on the fact that there can only be one
139          * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
140          * on crash.
141          */
142         if (cmpxchg(&msg->header.message_type, old_msg_type,
143                     HVMSG_NONE) != old_msg_type)
144                 return;
145
146         /*
147          * The cmxchg() above does an implicit memory barrier to
148          * ensure the write to MessageType (ie set to
149          * HVMSG_NONE) happens before we read the
150          * MessagePending and EOMing. Otherwise, the EOMing
151          * will not deliver any more messages since there is
152          * no empty slot
153          */
154         if (msg->header.message_flags.msg_pending) {
155                 /*
156                  * This will cause message queue rescan to
157                  * possibly deliver another msg from the
158                  * hypervisor
159                  */
160                 hv_set_register(HV_REGISTER_EOM, 0);
161         }
162 }
163
164 void hv_setup_vmbus_handler(void (*handler)(void));
165 void hv_remove_vmbus_handler(void);
166 void hv_setup_stimer0_handler(void (*handler)(void));
167 void hv_remove_stimer0_handler(void);
168
169 void hv_setup_kexec_handler(void (*handler)(void));
170 void hv_remove_kexec_handler(void);
171 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
172 void hv_remove_crash_handler(void);
173
174 extern int vmbus_interrupt;
175 extern int vmbus_irq;
176
177 extern bool hv_root_partition;
178
179 #if IS_ENABLED(CONFIG_HYPERV)
180 /*
181  * Hypervisor's notion of virtual processor ID is different from
182  * Linux' notion of CPU ID. This information can only be retrieved
183  * in the context of the calling CPU. Setup a map for easy access
184  * to this information.
185  */
186 extern u32 *hv_vp_index;
187 extern u32 hv_max_vp_index;
188
189 extern u64 (*hv_read_reference_counter)(void);
190
191 /* Sentinel value for an uninitialized entry in hv_vp_index array */
192 #define VP_INVAL        U32_MAX
193
194 int __init hv_common_init(void);
195 void __init hv_common_free(void);
196 int hv_common_cpu_init(unsigned int cpu);
197 int hv_common_cpu_die(unsigned int cpu);
198
199 void *hv_alloc_hyperv_page(void);
200 void *hv_alloc_hyperv_zeroed_page(void);
201 void hv_free_hyperv_page(void *addr);
202
203 /**
204  * hv_cpu_number_to_vp_number() - Map CPU to VP.
205  * @cpu_number: CPU number in Linux terms
206  *
207  * This function returns the mapping between the Linux processor
208  * number and the hypervisor's virtual processor number, useful
209  * in making hypercalls and such that talk about specific
210  * processors.
211  *
212  * Return: Virtual processor number in Hyper-V terms
213  */
214 static inline int hv_cpu_number_to_vp_number(int cpu_number)
215 {
216         return hv_vp_index[cpu_number];
217 }
218
219 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
220                                     const struct cpumask *cpus,
221                                     bool (*func)(int cpu))
222 {
223         int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
224         int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
225
226         /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
227         if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
228                 return 0;
229
230         /*
231          * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
232          * structs are not cleared between calls, we risk flushing unneeded
233          * vCPUs otherwise.
234          */
235         for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
236                 vpset->bank_contents[vcpu_bank] = 0;
237
238         /*
239          * Some banks may end up being empty but this is acceptable.
240          */
241         for_each_cpu(cpu, cpus) {
242                 if (func && func(cpu))
243                         continue;
244                 vcpu = hv_cpu_number_to_vp_number(cpu);
245                 if (vcpu == VP_INVAL)
246                         return -1;
247                 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
248                 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
249                 __set_bit(vcpu_offset, (unsigned long *)
250                           &vpset->bank_contents[vcpu_bank]);
251                 if (vcpu_bank >= nr_bank)
252                         nr_bank = vcpu_bank + 1;
253         }
254         vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
255         return nr_bank;
256 }
257
258 /*
259  * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
260  * 'func' is called for each CPU present in cpumask.  If 'func' returns
261  * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
262  * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
263  * skipped.
264  */
265 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
266                                     const struct cpumask *cpus)
267 {
268         return __cpumask_to_vpset(vpset, cpus, NULL);
269 }
270
271 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
272                                     const struct cpumask *cpus,
273                                     bool (*func)(int cpu))
274 {
275         return __cpumask_to_vpset(vpset, cpus, func);
276 }
277
278 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
279 bool hv_is_hyperv_initialized(void);
280 bool hv_is_hibernation_supported(void);
281 enum hv_isolation_type hv_get_isolation_type(void);
282 bool hv_is_isolation_supported(void);
283 bool hv_isolation_type_snp(void);
284 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
285 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
286 void hyperv_cleanup(void);
287 bool hv_query_ext_cap(u64 cap_query);
288 void hv_setup_dma_ops(struct device *dev, bool coherent);
289 #else /* CONFIG_HYPERV */
290 static inline bool hv_is_hyperv_initialized(void) { return false; }
291 static inline bool hv_is_hibernation_supported(void) { return false; }
292 static inline void hyperv_cleanup(void) {}
293 static inline bool hv_is_isolation_supported(void) { return false; }
294 static inline enum hv_isolation_type hv_get_isolation_type(void)
295 {
296         return HV_ISOLATION_TYPE_NONE;
297 }
298 #endif /* CONFIG_HYPERV */
299
300 #endif