2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
14 #include "qemu-timer.h"
27 #define BP_OLED_I2C 0x01
28 #define BP_OLED_SSI 0x02
29 #define BP_GAMEPAD 0x04
31 typedef const struct {
41 } stellaris_board_info;
43 /* General purpose timer module. */
45 typedef struct gptm_state {
55 uint32_t match_prescale[2];
58 struct gptm_state *opaque[2];
60 /* The timers have an alternate output used to trigger the ADC. */
65 static void gptm_update_irq(gptm_state *s)
68 level = (s->state & s->mask) != 0;
69 qemu_set_irq(s->irq, level);
72 static void gptm_stop(gptm_state *s, int n)
74 qemu_del_timer(s->timer[n]);
77 static void gptm_reload(gptm_state *s, int n, int reset)
81 tick = qemu_get_clock_ns(vm_clock);
86 /* 32-bit CountDown. */
88 count = s->load[0] | (s->load[1] << 16);
89 tick += (int64_t)count * system_clock_scale;
90 } else if (s->config == 1) {
91 /* 32-bit RTC. 1Hz tick. */
92 tick += get_ticks_per_sec();
93 } else if (s->mode[n] == 0xa) {
94 /* PWM mode. Not implemented. */
96 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99 qemu_mod_timer(s->timer[n], tick);
102 static void gptm_tick(void *opaque)
104 gptm_state **p = (gptm_state **)opaque;
110 if (s->config == 0) {
112 if ((s->control & 0x20)) {
113 /* Output trigger. */
114 qemu_irq_pulse(s->trigger);
116 if (s->mode[0] & 1) {
121 gptm_reload(s, 0, 0);
123 } else if (s->config == 1) {
127 match = s->match[0] | (s->match[1] << 16);
133 gptm_reload(s, 0, 0);
134 } else if (s->mode[n] == 0xa) {
135 /* PWM mode. Not implemented. */
137 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
142 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
144 gptm_state *s = (gptm_state *)opaque;
149 case 0x04: /* TAMR */
151 case 0x08: /* TBMR */
160 return s->state & s->mask;
163 case 0x28: /* TAILR */
164 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
165 case 0x2c: /* TBILR */
167 case 0x30: /* TAMARCHR */
168 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
169 case 0x34: /* TBMATCHR */
171 case 0x38: /* TAPR */
172 return s->prescale[0];
173 case 0x3c: /* TBPR */
174 return s->prescale[1];
175 case 0x40: /* TAPMR */
176 return s->match_prescale[0];
177 case 0x44: /* TBPMR */
178 return s->match_prescale[1];
183 hw_error("TODO: Timer value read\n");
185 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
190 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
192 gptm_state *s = (gptm_state *)opaque;
195 /* The timers should be disabled before changing the configuration.
196 We take advantage of this and defer everything until the timer
202 case 0x04: /* TAMR */
205 case 0x08: /* TBMR */
211 /* TODO: Implement pause. */
212 if ((oldval ^ value) & 1) {
214 gptm_reload(s, 0, 1);
219 if (((oldval ^ value) & 0x100) && s->config >= 4) {
221 gptm_reload(s, 1, 1);
228 s->mask = value & 0x77;
234 case 0x28: /* TAILR */
235 s->load[0] = value & 0xffff;
237 s->load[1] = value >> 16;
240 case 0x2c: /* TBILR */
241 s->load[1] = value & 0xffff;
243 case 0x30: /* TAMARCHR */
244 s->match[0] = value & 0xffff;
246 s->match[1] = value >> 16;
249 case 0x34: /* TBMATCHR */
250 s->match[1] = value >> 16;
252 case 0x38: /* TAPR */
253 s->prescale[0] = value;
255 case 0x3c: /* TBPR */
256 s->prescale[1] = value;
258 case 0x40: /* TAPMR */
259 s->match_prescale[0] = value;
261 case 0x44: /* TBPMR */
262 s->match_prescale[0] = value;
265 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
270 static CPUReadMemoryFunc * const gptm_readfn[] = {
276 static CPUWriteMemoryFunc * const gptm_writefn[] = {
282 static void gptm_save(QEMUFile *f, void *opaque)
284 gptm_state *s = (gptm_state *)opaque;
286 qemu_put_be32(f, s->config);
287 qemu_put_be32(f, s->mode[0]);
288 qemu_put_be32(f, s->mode[1]);
289 qemu_put_be32(f, s->control);
290 qemu_put_be32(f, s->state);
291 qemu_put_be32(f, s->mask);
292 qemu_put_be32(f, s->mode[0]);
293 qemu_put_be32(f, s->mode[0]);
294 qemu_put_be32(f, s->load[0]);
295 qemu_put_be32(f, s->load[1]);
296 qemu_put_be32(f, s->match[0]);
297 qemu_put_be32(f, s->match[1]);
298 qemu_put_be32(f, s->prescale[0]);
299 qemu_put_be32(f, s->prescale[1]);
300 qemu_put_be32(f, s->match_prescale[0]);
301 qemu_put_be32(f, s->match_prescale[1]);
302 qemu_put_be32(f, s->rtc);
303 qemu_put_be64(f, s->tick[0]);
304 qemu_put_be64(f, s->tick[1]);
305 qemu_put_timer(f, s->timer[0]);
306 qemu_put_timer(f, s->timer[1]);
309 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
311 gptm_state *s = (gptm_state *)opaque;
316 s->config = qemu_get_be32(f);
317 s->mode[0] = qemu_get_be32(f);
318 s->mode[1] = qemu_get_be32(f);
319 s->control = qemu_get_be32(f);
320 s->state = qemu_get_be32(f);
321 s->mask = qemu_get_be32(f);
322 s->mode[0] = qemu_get_be32(f);
323 s->mode[0] = qemu_get_be32(f);
324 s->load[0] = qemu_get_be32(f);
325 s->load[1] = qemu_get_be32(f);
326 s->match[0] = qemu_get_be32(f);
327 s->match[1] = qemu_get_be32(f);
328 s->prescale[0] = qemu_get_be32(f);
329 s->prescale[1] = qemu_get_be32(f);
330 s->match_prescale[0] = qemu_get_be32(f);
331 s->match_prescale[1] = qemu_get_be32(f);
332 s->rtc = qemu_get_be32(f);
333 s->tick[0] = qemu_get_be64(f);
334 s->tick[1] = qemu_get_be64(f);
335 qemu_get_timer(f, s->timer[0]);
336 qemu_get_timer(f, s->timer[1]);
341 static int stellaris_gptm_init(SysBusDevice *dev)
344 gptm_state *s = FROM_SYSBUS(gptm_state, dev);
346 sysbus_init_irq(dev, &s->irq);
347 qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
349 iomemtype = cpu_register_io_memory(gptm_readfn,
351 DEVICE_NATIVE_ENDIAN);
352 sysbus_init_mmio(dev, 0x1000, iomemtype);
354 s->opaque[0] = s->opaque[1] = s;
355 s->timer[0] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[0]);
356 s->timer[1] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[1]);
357 register_savevm(&dev->qdev, "stellaris_gptm", -1, 1,
358 gptm_save, gptm_load, s);
363 /* System controller. */
380 stellaris_board_info *board;
383 static void ssys_update(ssys_state *s)
385 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
388 static uint32_t pllcfg_sandstorm[16] = {
390 0x1ae0, /* 1.8432 Mhz */
392 0xd573, /* 2.4576 Mhz */
393 0x37a6, /* 3.57954 Mhz */
394 0x1ae2, /* 3.6864 Mhz */
396 0x98bc, /* 4.906 Mhz */
397 0x935b, /* 4.9152 Mhz */
399 0x4dee, /* 5.12 Mhz */
401 0x75db, /* 6.144 Mhz */
402 0x1ae6, /* 7.3728 Mhz */
404 0x585b /* 8.192 Mhz */
407 static uint32_t pllcfg_fury[16] = {
409 0x1b20, /* 1.8432 Mhz */
411 0xf42b, /* 2.4576 Mhz */
412 0x37e3, /* 3.57954 Mhz */
413 0x1b21, /* 3.6864 Mhz */
415 0x98ee, /* 4.906 Mhz */
416 0xd5b4, /* 4.9152 Mhz */
418 0x4e27, /* 5.12 Mhz */
420 0xec1c, /* 6.144 Mhz */
421 0x1b23, /* 7.3728 Mhz */
423 0xb11c /* 8.192 Mhz */
426 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
428 ssys_state *s = (ssys_state *)opaque;
431 case 0x000: /* DID0 */
432 return s->board->did0;
433 case 0x004: /* DID1 */
434 return s->board->did1;
435 case 0x008: /* DC0 */
436 return s->board->dc0;
437 case 0x010: /* DC1 */
438 return s->board->dc1;
439 case 0x014: /* DC2 */
440 return s->board->dc2;
441 case 0x018: /* DC3 */
442 return s->board->dc3;
443 case 0x01c: /* DC4 */
444 return s->board->dc4;
445 case 0x030: /* PBORCTL */
447 case 0x034: /* LDOPCTL */
449 case 0x040: /* SRCR0 */
451 case 0x044: /* SRCR1 */
453 case 0x048: /* SRCR2 */
455 case 0x050: /* RIS */
456 return s->int_status;
457 case 0x054: /* IMC */
459 case 0x058: /* MISC */
460 return s->int_status & s->int_mask;
461 case 0x05c: /* RESC */
463 case 0x060: /* RCC */
465 case 0x064: /* PLLCFG */
468 xtal = (s->rcc >> 6) & 0xf;
469 if (s->board->did0 & (1 << 16)) {
470 return pllcfg_fury[xtal];
472 return pllcfg_sandstorm[xtal];
475 case 0x100: /* RCGC0 */
477 case 0x104: /* RCGC1 */
479 case 0x108: /* RCGC2 */
481 case 0x110: /* SCGC0 */
483 case 0x114: /* SCGC1 */
485 case 0x118: /* SCGC2 */
487 case 0x120: /* DCGC0 */
489 case 0x124: /* DCGC1 */
491 case 0x128: /* DCGC2 */
493 case 0x150: /* CLKVCLR */
495 case 0x160: /* LDOARST */
497 case 0x1e0: /* USER0 */
499 case 0x1e4: /* USER1 */
502 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
507 static void ssys_calculate_system_clock(ssys_state *s)
509 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
512 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
514 ssys_state *s = (ssys_state *)opaque;
517 case 0x030: /* PBORCTL */
518 s->pborctl = value & 0xffff;
520 case 0x034: /* LDOPCTL */
521 s->ldopctl = value & 0x1f;
523 case 0x040: /* SRCR0 */
524 case 0x044: /* SRCR1 */
525 case 0x048: /* SRCR2 */
526 fprintf(stderr, "Peripheral reset not implemented\n");
528 case 0x054: /* IMC */
529 s->int_mask = value & 0x7f;
531 case 0x058: /* MISC */
532 s->int_status &= ~value;
534 case 0x05c: /* RESC */
535 s->resc = value & 0x3f;
537 case 0x060: /* RCC */
538 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
540 s->int_status |= (1 << 6);
543 ssys_calculate_system_clock(s);
545 case 0x100: /* RCGC0 */
548 case 0x104: /* RCGC1 */
551 case 0x108: /* RCGC2 */
554 case 0x110: /* SCGC0 */
557 case 0x114: /* SCGC1 */
560 case 0x118: /* SCGC2 */
563 case 0x120: /* DCGC0 */
566 case 0x124: /* DCGC1 */
569 case 0x128: /* DCGC2 */
572 case 0x150: /* CLKVCLR */
575 case 0x160: /* LDOARST */
579 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
584 static CPUReadMemoryFunc * const ssys_readfn[] = {
590 static CPUWriteMemoryFunc * const ssys_writefn[] = {
596 static void ssys_reset(void *opaque)
598 ssys_state *s = (ssys_state *)opaque;
607 static void ssys_save(QEMUFile *f, void *opaque)
609 ssys_state *s = (ssys_state *)opaque;
611 qemu_put_be32(f, s->pborctl);
612 qemu_put_be32(f, s->ldopctl);
613 qemu_put_be32(f, s->int_mask);
614 qemu_put_be32(f, s->int_status);
615 qemu_put_be32(f, s->resc);
616 qemu_put_be32(f, s->rcc);
617 qemu_put_be32(f, s->rcgc[0]);
618 qemu_put_be32(f, s->rcgc[1]);
619 qemu_put_be32(f, s->rcgc[2]);
620 qemu_put_be32(f, s->scgc[0]);
621 qemu_put_be32(f, s->scgc[1]);
622 qemu_put_be32(f, s->scgc[2]);
623 qemu_put_be32(f, s->dcgc[0]);
624 qemu_put_be32(f, s->dcgc[1]);
625 qemu_put_be32(f, s->dcgc[2]);
626 qemu_put_be32(f, s->clkvclr);
627 qemu_put_be32(f, s->ldoarst);
630 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
632 ssys_state *s = (ssys_state *)opaque;
637 s->pborctl = qemu_get_be32(f);
638 s->ldopctl = qemu_get_be32(f);
639 s->int_mask = qemu_get_be32(f);
640 s->int_status = qemu_get_be32(f);
641 s->resc = qemu_get_be32(f);
642 s->rcc = qemu_get_be32(f);
643 s->rcgc[0] = qemu_get_be32(f);
644 s->rcgc[1] = qemu_get_be32(f);
645 s->rcgc[2] = qemu_get_be32(f);
646 s->scgc[0] = qemu_get_be32(f);
647 s->scgc[1] = qemu_get_be32(f);
648 s->scgc[2] = qemu_get_be32(f);
649 s->dcgc[0] = qemu_get_be32(f);
650 s->dcgc[1] = qemu_get_be32(f);
651 s->dcgc[2] = qemu_get_be32(f);
652 s->clkvclr = qemu_get_be32(f);
653 s->ldoarst = qemu_get_be32(f);
654 ssys_calculate_system_clock(s);
659 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
660 stellaris_board_info * board,
666 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
669 /* Most devices come preprogrammed with a MAC address in the user data. */
670 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
671 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
673 iomemtype = cpu_register_io_memory(ssys_readfn,
675 DEVICE_NATIVE_ENDIAN);
676 cpu_register_physical_memory(base, 0x00001000, iomemtype);
678 register_savevm(NULL, "stellaris_sys", -1, 1, ssys_save, ssys_load, s);
683 /* I2C controller. */
696 } stellaris_i2c_state;
698 #define STELLARIS_I2C_MCS_BUSY 0x01
699 #define STELLARIS_I2C_MCS_ERROR 0x02
700 #define STELLARIS_I2C_MCS_ADRACK 0x04
701 #define STELLARIS_I2C_MCS_DATACK 0x08
702 #define STELLARIS_I2C_MCS_ARBLST 0x10
703 #define STELLARIS_I2C_MCS_IDLE 0x20
704 #define STELLARIS_I2C_MCS_BUSBSY 0x40
706 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
708 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
714 /* We don't emulate timing, so the controller is never busy. */
715 return s->mcs | STELLARIS_I2C_MCS_IDLE;
718 case 0x0c: /* MTPR */
720 case 0x10: /* MIMR */
722 case 0x14: /* MRIS */
724 case 0x18: /* MMIS */
725 return s->mris & s->mimr;
729 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
734 static void stellaris_i2c_update(stellaris_i2c_state *s)
738 level = (s->mris & s->mimr) != 0;
739 qemu_set_irq(s->irq, level);
742 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
745 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
749 s->msa = value & 0xff;
752 if ((s->mcr & 0x10) == 0) {
753 /* Disabled. Do nothing. */
756 /* Grab the bus if this is starting a transfer. */
757 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
758 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
759 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
761 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
762 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
765 /* If we don't have the bus then indicate an error. */
766 if (!i2c_bus_busy(s->bus)
767 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
768 s->mcs |= STELLARIS_I2C_MCS_ERROR;
771 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
773 /* Transfer a byte. */
774 /* TODO: Handle errors. */
777 s->mdr = i2c_recv(s->bus) & 0xff;
780 i2c_send(s->bus, s->mdr);
782 /* Raise an interrupt. */
786 /* Finish transfer. */
787 i2c_end_transfer(s->bus);
788 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
792 s->mdr = value & 0xff;
794 case 0x0c: /* MTPR */
795 s->mtpr = value & 0xff;
797 case 0x10: /* MIMR */
800 case 0x1c: /* MICR */
806 "stellaris_i2c_write: Loopback not implemented\n");
809 "stellaris_i2c_write: Slave mode not implemented\n");
810 s->mcr = value & 0x31;
813 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
816 stellaris_i2c_update(s);
819 static void stellaris_i2c_reset(stellaris_i2c_state *s)
821 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
822 i2c_end_transfer(s->bus);
831 stellaris_i2c_update(s);
834 static CPUReadMemoryFunc * const stellaris_i2c_readfn[] = {
840 static CPUWriteMemoryFunc * const stellaris_i2c_writefn[] = {
846 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
848 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
850 qemu_put_be32(f, s->msa);
851 qemu_put_be32(f, s->mcs);
852 qemu_put_be32(f, s->mdr);
853 qemu_put_be32(f, s->mtpr);
854 qemu_put_be32(f, s->mimr);
855 qemu_put_be32(f, s->mris);
856 qemu_put_be32(f, s->mcr);
859 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
861 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
866 s->msa = qemu_get_be32(f);
867 s->mcs = qemu_get_be32(f);
868 s->mdr = qemu_get_be32(f);
869 s->mtpr = qemu_get_be32(f);
870 s->mimr = qemu_get_be32(f);
871 s->mris = qemu_get_be32(f);
872 s->mcr = qemu_get_be32(f);
877 static int stellaris_i2c_init(SysBusDevice * dev)
879 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
883 sysbus_init_irq(dev, &s->irq);
884 bus = i2c_init_bus(&dev->qdev, "i2c");
887 iomemtype = cpu_register_io_memory(stellaris_i2c_readfn,
888 stellaris_i2c_writefn, s,
889 DEVICE_NATIVE_ENDIAN);
890 sysbus_init_mmio(dev, 0x1000, iomemtype);
891 /* ??? For now we only implement the master interface. */
892 stellaris_i2c_reset(s);
893 register_savevm(&dev->qdev, "stellaris_i2c", -1, 1,
894 stellaris_i2c_save, stellaris_i2c_load, s);
898 /* Analogue to Digital Converter. This is only partially implemented,
899 enough for applications that use a combined ADC and timer tick. */
901 #define STELLARIS_ADC_EM_CONTROLLER 0
902 #define STELLARIS_ADC_EM_COMP 1
903 #define STELLARIS_ADC_EM_EXTERNAL 4
904 #define STELLARIS_ADC_EM_TIMER 5
905 #define STELLARIS_ADC_EM_PWM0 6
906 #define STELLARIS_ADC_EM_PWM1 7
907 #define STELLARIS_ADC_EM_PWM2 8
909 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
910 #define STELLARIS_ADC_FIFO_FULL 0x1000
931 } stellaris_adc_state;
933 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
937 tail = s->fifo[n].state & 0xf;
938 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
941 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
942 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
943 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
944 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
946 return s->fifo[n].data[tail];
949 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
954 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
955 FIFO fir each sequencer. */
956 head = (s->fifo[n].state >> 4) & 0xf;
957 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
961 s->fifo[n].data[head] = value;
962 head = (head + 1) & 0xf;
963 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
964 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
965 if ((s->fifo[n].state & 0xf) == head)
966 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
969 static void stellaris_adc_update(stellaris_adc_state *s)
974 for (n = 0; n < 4; n++) {
975 level = (s->ris & s->im & (1 << n)) != 0;
976 qemu_set_irq(s->irq[n], level);
980 static void stellaris_adc_trigger(void *opaque, int irq, int level)
982 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
985 for (n = 0; n < 4; n++) {
986 if ((s->actss & (1 << n)) == 0) {
990 if (((s->emux >> (n * 4)) & 0xff) != 5) {
994 /* Some applications use the ADC as a random number source, so introduce
995 some variation into the signal. */
996 s->noise = s->noise * 314159 + 1;
997 /* ??? actual inputs not implemented. Return an arbitrary value. */
998 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1000 stellaris_adc_update(s);
1004 static void stellaris_adc_reset(stellaris_adc_state *s)
1008 for (n = 0; n < 4; n++) {
1011 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1015 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
1017 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1019 /* TODO: Implement this. */
1020 if (offset >= 0x40 && offset < 0xc0) {
1022 n = (offset - 0x40) >> 5;
1023 switch (offset & 0x1f) {
1024 case 0x00: /* SSMUX */
1026 case 0x04: /* SSCTL */
1028 case 0x08: /* SSFIFO */
1029 return stellaris_adc_fifo_read(s, n);
1030 case 0x0c: /* SSFSTAT */
1031 return s->fifo[n].state;
1037 case 0x00: /* ACTSS */
1039 case 0x04: /* RIS */
1043 case 0x0c: /* ISC */
1044 return s->ris & s->im;
1045 case 0x10: /* OSTAT */
1047 case 0x14: /* EMUX */
1049 case 0x18: /* USTAT */
1051 case 0x20: /* SSPRI */
1053 case 0x30: /* SAC */
1056 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1062 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1065 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1067 /* TODO: Implement this. */
1068 if (offset >= 0x40 && offset < 0xc0) {
1070 n = (offset - 0x40) >> 5;
1071 switch (offset & 0x1f) {
1072 case 0x00: /* SSMUX */
1073 s->ssmux[n] = value & 0x33333333;
1075 case 0x04: /* SSCTL */
1077 hw_error("ADC: Unimplemented sequence %x\n",
1080 s->ssctl[n] = value;
1087 case 0x00: /* ACTSS */
1088 s->actss = value & 0xf;
1093 case 0x0c: /* ISC */
1096 case 0x10: /* OSTAT */
1099 case 0x14: /* EMUX */
1102 case 0x18: /* USTAT */
1105 case 0x20: /* SSPRI */
1108 case 0x28: /* PSSI */
1109 hw_error("Not implemented: ADC sample initiate\n");
1111 case 0x30: /* SAC */
1115 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1117 stellaris_adc_update(s);
1120 static CPUReadMemoryFunc * const stellaris_adc_readfn[] = {
1126 static CPUWriteMemoryFunc * const stellaris_adc_writefn[] = {
1127 stellaris_adc_write,
1128 stellaris_adc_write,
1132 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1134 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1138 qemu_put_be32(f, s->actss);
1139 qemu_put_be32(f, s->ris);
1140 qemu_put_be32(f, s->im);
1141 qemu_put_be32(f, s->emux);
1142 qemu_put_be32(f, s->ostat);
1143 qemu_put_be32(f, s->ustat);
1144 qemu_put_be32(f, s->sspri);
1145 qemu_put_be32(f, s->sac);
1146 for (i = 0; i < 4; i++) {
1147 qemu_put_be32(f, s->fifo[i].state);
1148 for (j = 0; j < 16; j++) {
1149 qemu_put_be32(f, s->fifo[i].data[j]);
1151 qemu_put_be32(f, s->ssmux[i]);
1152 qemu_put_be32(f, s->ssctl[i]);
1154 qemu_put_be32(f, s->noise);
1157 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1159 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1163 if (version_id != 1)
1166 s->actss = qemu_get_be32(f);
1167 s->ris = qemu_get_be32(f);
1168 s->im = qemu_get_be32(f);
1169 s->emux = qemu_get_be32(f);
1170 s->ostat = qemu_get_be32(f);
1171 s->ustat = qemu_get_be32(f);
1172 s->sspri = qemu_get_be32(f);
1173 s->sac = qemu_get_be32(f);
1174 for (i = 0; i < 4; i++) {
1175 s->fifo[i].state = qemu_get_be32(f);
1176 for (j = 0; j < 16; j++) {
1177 s->fifo[i].data[j] = qemu_get_be32(f);
1179 s->ssmux[i] = qemu_get_be32(f);
1180 s->ssctl[i] = qemu_get_be32(f);
1182 s->noise = qemu_get_be32(f);
1187 static int stellaris_adc_init(SysBusDevice *dev)
1189 stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1193 for (n = 0; n < 4; n++) {
1194 sysbus_init_irq(dev, &s->irq[n]);
1197 iomemtype = cpu_register_io_memory(stellaris_adc_readfn,
1198 stellaris_adc_writefn, s,
1199 DEVICE_NATIVE_ENDIAN);
1200 sysbus_init_mmio(dev, 0x1000, iomemtype);
1201 stellaris_adc_reset(s);
1202 qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1203 register_savevm(&dev->qdev, "stellaris_adc", -1, 1,
1204 stellaris_adc_save, stellaris_adc_load, s);
1208 /* Some boards have both an OLED controller and SD card connected to
1209 the same SSI port, with the SD card chip select connected to a
1210 GPIO pin. Technically the OLED chip select is connected to the SSI
1211 Fss pin. We do not bother emulating that as both devices should
1212 never be selected simultaneously, and our OLED controller ignores stray
1213 0xff commands that occur when deselecting the SD card. */
1220 } stellaris_ssi_bus_state;
1222 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1224 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1226 s->current_dev = level;
1229 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1231 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1233 return ssi_transfer(s->bus[s->current_dev], val);
1236 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1238 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1240 qemu_put_be32(f, s->current_dev);
1243 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1245 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1247 if (version_id != 1)
1250 s->current_dev = qemu_get_be32(f);
1255 static int stellaris_ssi_bus_init(SSISlave *dev)
1257 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1259 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1260 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1261 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1263 register_savevm(&dev->qdev, "stellaris_ssi_bus", -1, 1,
1264 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1269 static stellaris_board_info stellaris_boards[] = {
1273 0x001f001f, /* dc0 */
1283 0x00ff007f, /* dc0 */
1288 BP_OLED_SSI | BP_GAMEPAD
1292 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1293 stellaris_board_info *board)
1295 static const int uart_irq[] = {5, 6, 33, 34};
1296 static const int timer_irq[] = {19, 21, 23, 35};
1297 static const uint32_t gpio_addr[7] =
1298 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1299 0x40024000, 0x40025000, 0x40026000};
1300 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1303 DeviceState *gpio_dev[7];
1304 qemu_irq gpio_in[7][8];
1305 qemu_irq gpio_out[7][8];
1314 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1315 sram_size = (board->dc0 >> 18) + 1;
1316 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1318 if (board->dc1 & (1 << 16)) {
1319 dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1320 pic[14], pic[15], pic[16], pic[17], NULL);
1321 adc = qdev_get_gpio_in(dev, 0);
1325 for (i = 0; i < 4; i++) {
1326 if (board->dc2 & (0x10000 << i)) {
1327 dev = sysbus_create_simple("stellaris-gptm",
1328 0x40030000 + i * 0x1000,
1330 /* TODO: This is incorrect, but we get away with it because
1331 the ADC output is only ever pulsed. */
1332 qdev_connect_gpio_out(dev, 0, adc);
1336 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1338 for (i = 0; i < 7; i++) {
1339 if (board->dc4 & (1 << i)) {
1340 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1342 for (j = 0; j < 8; j++) {
1343 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1344 gpio_out[i][j] = NULL;
1349 if (board->dc2 & (1 << 12)) {
1350 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1351 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1352 if (board->peripherals & BP_OLED_I2C) {
1353 i2c_create_slave(i2c, "ssd0303", 0x3d);
1357 for (i = 0; i < 4; i++) {
1358 if (board->dc2 & (1 << i)) {
1359 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1363 if (board->dc2 & (1 << 4)) {
1364 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1365 if (board->peripherals & BP_OLED_SSI) {
1369 bus = qdev_get_child_bus(dev, "ssi");
1370 mux = ssi_create_slave(bus, "evb6965-ssi");
1371 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1373 bus = qdev_get_child_bus(mux, "ssi0");
1374 ssi_create_slave(bus, "ssi-sd");
1376 bus = qdev_get_child_bus(mux, "ssi1");
1377 dev = ssi_create_slave(bus, "ssd0323");
1378 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1380 /* Make sure the select pin is high. */
1381 qemu_irq_raise(gpio_out[GPIO_D][0]);
1384 if (board->dc4 & (1 << 28)) {
1387 qemu_check_nic_model(&nd_table[0], "stellaris");
1389 enet = qdev_create(NULL, "stellaris_enet");
1390 qdev_set_nic_properties(enet, &nd_table[0]);
1391 qdev_init_nofail(enet);
1392 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1393 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1395 if (board->peripherals & BP_GAMEPAD) {
1396 qemu_irq gpad_irq[5];
1397 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1399 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1400 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1401 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1402 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1403 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1405 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1407 for (i = 0; i < 7; i++) {
1408 if (board->dc4 & (1 << i)) {
1409 for (j = 0; j < 8; j++) {
1410 if (gpio_out[i][j]) {
1411 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1418 /* FIXME: Figure out how to generate these from stellaris_boards. */
1419 static void lm3s811evb_init(ram_addr_t ram_size,
1420 const char *boot_device,
1421 const char *kernel_filename, const char *kernel_cmdline,
1422 const char *initrd_filename, const char *cpu_model)
1424 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1427 static void lm3s6965evb_init(ram_addr_t ram_size,
1428 const char *boot_device,
1429 const char *kernel_filename, const char *kernel_cmdline,
1430 const char *initrd_filename, const char *cpu_model)
1432 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1435 static QEMUMachine lm3s811evb_machine = {
1436 .name = "lm3s811evb",
1437 .desc = "Stellaris LM3S811EVB",
1438 .init = lm3s811evb_init,
1441 static QEMUMachine lm3s6965evb_machine = {
1442 .name = "lm3s6965evb",
1443 .desc = "Stellaris LM3S6965EVB",
1444 .init = lm3s6965evb_init,
1447 static void stellaris_machine_init(void)
1449 qemu_register_machine(&lm3s811evb_machine);
1450 qemu_register_machine(&lm3s6965evb_machine);
1453 machine_init(stellaris_machine_init);
1455 static SSISlaveInfo stellaris_ssi_bus_info = {
1456 .qdev.name = "evb6965-ssi",
1457 .qdev.size = sizeof(stellaris_ssi_bus_state),
1458 .init = stellaris_ssi_bus_init,
1459 .transfer = stellaris_ssi_bus_transfer
1462 static void stellaris_register_devices(void)
1464 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state),
1465 stellaris_i2c_init);
1466 sysbus_register_dev("stellaris-gptm", sizeof(gptm_state),
1467 stellaris_gptm_init);
1468 sysbus_register_dev("stellaris-adc", sizeof(stellaris_adc_state),
1469 stellaris_adc_init);
1470 ssi_register_slave(&stellaris_ssi_bus_info);
1473 device_init(stellaris_register_devices)