1d81a633c7d40ece46ec32445c4573c0d6843e2d
[sdk/emulator/qemu.git] / hw / slavio_misc.c
1 /*
2  * QEMU Sparc SLAVIO aux io port emulation
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "sysemu.h"
26 #include "sysbus.h"
27 #include "trace.h"
28
29 /*
30  * This is the auxio port, chip control and system control part of
31  * chip STP2001 (Slave I/O), also produced as NCR89C105. See
32  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
33  *
34  * This also includes the PMC CPU idle controller.
35  */
36
37 typedef struct MiscState {
38     SysBusDevice busdev;
39     qemu_irq irq;
40     uint32_t dummy;
41     uint8_t config;
42     uint8_t aux1, aux2;
43     uint8_t diag, mctrl;
44     uint8_t sysctrl;
45     uint16_t leds;
46     qemu_irq fdc_tc;
47 } MiscState;
48
49 typedef struct APCState {
50     SysBusDevice busdev;
51     qemu_irq cpu_halt;
52 } APCState;
53
54 #define MISC_SIZE 1
55 #define SYSCTRL_SIZE 4
56
57 #define AUX1_TC        0x02
58
59 #define AUX2_PWROFF    0x01
60 #define AUX2_PWRINTCLR 0x02
61 #define AUX2_PWRFAIL   0x20
62
63 #define CFG_PWRINTEN   0x08
64
65 #define SYS_RESET      0x01
66 #define SYS_RESETSTAT  0x02
67
68 static void slavio_misc_update_irq(void *opaque)
69 {
70     MiscState *s = opaque;
71
72     if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
73         trace_slavio_misc_update_irq_raise();
74         qemu_irq_raise(s->irq);
75     } else {
76         trace_slavio_misc_update_irq_lower();
77         qemu_irq_lower(s->irq);
78     }
79 }
80
81 static void slavio_misc_reset(DeviceState *d)
82 {
83     MiscState *s = container_of(d, MiscState, busdev.qdev);
84
85     // Diagnostic and system control registers not cleared in reset
86     s->config = s->aux1 = s->aux2 = s->mctrl = 0;
87 }
88
89 static void slavio_set_power_fail(void *opaque, int irq, int power_failing)
90 {
91     MiscState *s = opaque;
92
93     trace_slavio_set_power_fail(power_failing, s->config);
94     if (power_failing && (s->config & CFG_PWRINTEN)) {
95         s->aux2 |= AUX2_PWRFAIL;
96     } else {
97         s->aux2 &= ~AUX2_PWRFAIL;
98     }
99     slavio_misc_update_irq(s);
100 }
101
102 static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
103                                   uint32_t val)
104 {
105     MiscState *s = opaque;
106
107     trace_slavio_cfg_mem_writeb(val & 0xff);
108     s->config = val & 0xff;
109     slavio_misc_update_irq(s);
110 }
111
112 static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
113 {
114     MiscState *s = opaque;
115     uint32_t ret = 0;
116
117     ret = s->config;
118     trace_slavio_cfg_mem_readb(ret);
119     return ret;
120 }
121
122 static CPUReadMemoryFunc * const slavio_cfg_mem_read[3] = {
123     slavio_cfg_mem_readb,
124     NULL,
125     NULL,
126 };
127
128 static CPUWriteMemoryFunc * const slavio_cfg_mem_write[3] = {
129     slavio_cfg_mem_writeb,
130     NULL,
131     NULL,
132 };
133
134 static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
135                                    uint32_t val)
136 {
137     MiscState *s = opaque;
138
139     trace_slavio_diag_mem_writeb(val & 0xff);
140     s->diag = val & 0xff;
141 }
142
143 static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
144 {
145     MiscState *s = opaque;
146     uint32_t ret = 0;
147
148     ret = s->diag;
149     trace_slavio_diag_mem_readb(ret);
150     return ret;
151 }
152
153 static CPUReadMemoryFunc * const slavio_diag_mem_read[3] = {
154     slavio_diag_mem_readb,
155     NULL,
156     NULL,
157 };
158
159 static CPUWriteMemoryFunc * const slavio_diag_mem_write[3] = {
160     slavio_diag_mem_writeb,
161     NULL,
162     NULL,
163 };
164
165 static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
166                                   uint32_t val)
167 {
168     MiscState *s = opaque;
169
170     trace_slavio_mdm_mem_writeb(val & 0xff);
171     s->mctrl = val & 0xff;
172 }
173
174 static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
175 {
176     MiscState *s = opaque;
177     uint32_t ret = 0;
178
179     ret = s->mctrl;
180     trace_slavio_mdm_mem_readb(ret);
181     return ret;
182 }
183
184 static CPUReadMemoryFunc * const slavio_mdm_mem_read[3] = {
185     slavio_mdm_mem_readb,
186     NULL,
187     NULL,
188 };
189
190 static CPUWriteMemoryFunc * const slavio_mdm_mem_write[3] = {
191     slavio_mdm_mem_writeb,
192     NULL,
193     NULL,
194 };
195
196 static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
197                                    uint32_t val)
198 {
199     MiscState *s = opaque;
200
201     trace_slavio_aux1_mem_writeb(val & 0xff);
202     if (val & AUX1_TC) {
203         // Send a pulse to floppy terminal count line
204         if (s->fdc_tc) {
205             qemu_irq_raise(s->fdc_tc);
206             qemu_irq_lower(s->fdc_tc);
207         }
208         val &= ~AUX1_TC;
209     }
210     s->aux1 = val & 0xff;
211 }
212
213 static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
214 {
215     MiscState *s = opaque;
216     uint32_t ret = 0;
217
218     ret = s->aux1;
219     trace_slavio_aux1_mem_readb(ret);
220     return ret;
221 }
222
223 static CPUReadMemoryFunc * const slavio_aux1_mem_read[3] = {
224     slavio_aux1_mem_readb,
225     NULL,
226     NULL,
227 };
228
229 static CPUWriteMemoryFunc * const slavio_aux1_mem_write[3] = {
230     slavio_aux1_mem_writeb,
231     NULL,
232     NULL,
233 };
234
235 static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
236                                    uint32_t val)
237 {
238     MiscState *s = opaque;
239
240     val &= AUX2_PWRINTCLR | AUX2_PWROFF;
241     trace_slavio_aux2_mem_writeb(val & 0xff);
242     val |= s->aux2 & AUX2_PWRFAIL;
243     if (val & AUX2_PWRINTCLR) // Clear Power Fail int
244         val &= AUX2_PWROFF;
245     s->aux2 = val;
246     if (val & AUX2_PWROFF)
247         qemu_system_shutdown_request();
248     slavio_misc_update_irq(s);
249 }
250
251 static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
252 {
253     MiscState *s = opaque;
254     uint32_t ret = 0;
255
256     ret = s->aux2;
257     trace_slavio_aux2_mem_readb(ret);
258     return ret;
259 }
260
261 static CPUReadMemoryFunc * const slavio_aux2_mem_read[3] = {
262     slavio_aux2_mem_readb,
263     NULL,
264     NULL,
265 };
266
267 static CPUWriteMemoryFunc * const slavio_aux2_mem_write[3] = {
268     slavio_aux2_mem_writeb,
269     NULL,
270     NULL,
271 };
272
273 static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
274 {
275     APCState *s = opaque;
276
277     trace_apc_mem_writeb(val & 0xff);
278     qemu_irq_raise(s->cpu_halt);
279 }
280
281 static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
282 {
283     uint32_t ret = 0;
284
285     trace_apc_mem_readb(ret);
286     return ret;
287 }
288
289 static CPUReadMemoryFunc * const apc_mem_read[3] = {
290     apc_mem_readb,
291     NULL,
292     NULL,
293 };
294
295 static CPUWriteMemoryFunc * const apc_mem_write[3] = {
296     apc_mem_writeb,
297     NULL,
298     NULL,
299 };
300
301 static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
302 {
303     MiscState *s = opaque;
304     uint32_t ret = 0;
305
306     switch (addr) {
307     case 0:
308         ret = s->sysctrl;
309         break;
310     default:
311         break;
312     }
313     trace_slavio_sysctrl_mem_readl(ret);
314     return ret;
315 }
316
317 static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
318                                       uint32_t val)
319 {
320     MiscState *s = opaque;
321
322     trace_slavio_sysctrl_mem_writel(val);
323     switch (addr) {
324     case 0:
325         if (val & SYS_RESET) {
326             s->sysctrl = SYS_RESETSTAT;
327             qemu_system_reset_request();
328         }
329         break;
330     default:
331         break;
332     }
333 }
334
335 static CPUReadMemoryFunc * const slavio_sysctrl_mem_read[3] = {
336     NULL,
337     NULL,
338     slavio_sysctrl_mem_readl,
339 };
340
341 static CPUWriteMemoryFunc * const slavio_sysctrl_mem_write[3] = {
342     NULL,
343     NULL,
344     slavio_sysctrl_mem_writel,
345 };
346
347 static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
348 {
349     MiscState *s = opaque;
350     uint32_t ret = 0;
351
352     switch (addr) {
353     case 0:
354         ret = s->leds;
355         break;
356     default:
357         break;
358     }
359     trace_slavio_led_mem_readw(ret);
360     return ret;
361 }
362
363 static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
364                                   uint32_t val)
365 {
366     MiscState *s = opaque;
367
368     trace_slavio_led_mem_readw(val & 0xffff);
369     switch (addr) {
370     case 0:
371         s->leds = val;
372         break;
373     default:
374         break;
375     }
376 }
377
378 static CPUReadMemoryFunc * const slavio_led_mem_read[3] = {
379     NULL,
380     slavio_led_mem_readw,
381     NULL,
382 };
383
384 static CPUWriteMemoryFunc * const slavio_led_mem_write[3] = {
385     NULL,
386     slavio_led_mem_writew,
387     NULL,
388 };
389
390 static const VMStateDescription vmstate_misc = {
391     .name ="slavio_misc",
392     .version_id = 1,
393     .minimum_version_id = 1,
394     .minimum_version_id_old = 1,
395     .fields      = (VMStateField []) {
396         VMSTATE_UINT32(dummy, MiscState),
397         VMSTATE_UINT8(config, MiscState),
398         VMSTATE_UINT8(aux1, MiscState),
399         VMSTATE_UINT8(aux2, MiscState),
400         VMSTATE_UINT8(diag, MiscState),
401         VMSTATE_UINT8(mctrl, MiscState),
402         VMSTATE_UINT8(sysctrl, MiscState),
403         VMSTATE_END_OF_LIST()
404     }
405 };
406
407 static int apc_init1(SysBusDevice *dev)
408 {
409     APCState *s = FROM_SYSBUS(APCState, dev);
410     int io;
411
412     sysbus_init_irq(dev, &s->cpu_halt);
413
414     /* Power management (APC) XXX: not a Slavio device */
415     io = cpu_register_io_memory(apc_mem_read, apc_mem_write, s);
416     sysbus_init_mmio(dev, MISC_SIZE, io);
417     return 0;
418 }
419
420 static int slavio_misc_init1(SysBusDevice *dev)
421 {
422     MiscState *s = FROM_SYSBUS(MiscState, dev);
423     int io;
424
425     sysbus_init_irq(dev, &s->irq);
426     sysbus_init_irq(dev, &s->fdc_tc);
427
428     /* 8 bit registers */
429     /* Slavio control */
430     io = cpu_register_io_memory(slavio_cfg_mem_read,
431                                 slavio_cfg_mem_write, s);
432     sysbus_init_mmio(dev, MISC_SIZE, io);
433
434     /* Diagnostics */
435     io = cpu_register_io_memory(slavio_diag_mem_read,
436                                 slavio_diag_mem_write, s);
437     sysbus_init_mmio(dev, MISC_SIZE, io);
438
439     /* Modem control */
440     io = cpu_register_io_memory(slavio_mdm_mem_read,
441                                 slavio_mdm_mem_write, s);
442     sysbus_init_mmio(dev, MISC_SIZE, io);
443
444     /* 16 bit registers */
445     /* ss600mp diag LEDs */
446     io = cpu_register_io_memory(slavio_led_mem_read,
447                                 slavio_led_mem_write, s);
448     sysbus_init_mmio(dev, MISC_SIZE, io);
449
450     /* 32 bit registers */
451     /* System control */
452     io = cpu_register_io_memory(slavio_sysctrl_mem_read,
453                                 slavio_sysctrl_mem_write, s);
454     sysbus_init_mmio(dev, SYSCTRL_SIZE, io);
455
456     /* AUX 1 (Misc System Functions) */
457     io = cpu_register_io_memory(slavio_aux1_mem_read,
458                                 slavio_aux1_mem_write, s);
459     sysbus_init_mmio(dev, MISC_SIZE, io);
460
461     /* AUX 2 (Software Powerdown Control) */
462     io = cpu_register_io_memory(slavio_aux2_mem_read,
463                                 slavio_aux2_mem_write, s);
464     sysbus_init_mmio(dev, MISC_SIZE, io);
465
466     qdev_init_gpio_in(&dev->qdev, slavio_set_power_fail, 1);
467
468     return 0;
469 }
470
471 static SysBusDeviceInfo slavio_misc_info = {
472     .init = slavio_misc_init1,
473     .qdev.name  = "slavio_misc",
474     .qdev.size  = sizeof(MiscState),
475     .qdev.vmsd  = &vmstate_misc,
476     .qdev.reset  = slavio_misc_reset,
477 };
478
479 static SysBusDeviceInfo apc_info = {
480     .init = apc_init1,
481     .qdev.name  = "apc",
482     .qdev.size  = sizeof(MiscState),
483 };
484
485 static void slavio_misc_register_devices(void)
486 {
487     sysbus_register_withprop(&slavio_misc_info);
488     sysbus_register_withprop(&apc_info);
489 }
490
491 device_init(slavio_misc_register_devices)