2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
44 #include "hw/pci/msi.h"
46 #include "sysemu/kvm.h"
48 #include "hw/pci/pci.h"
50 #include "exec/address-spaces.h"
52 #include "qemu/config-file.h"
56 /* SLOF memory layout:
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
64 * We load our kernel at 4M, leaving space for SLOF initial image
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
73 #define MIN_RMA_SLOF 128UL
75 #define TIMEBASE_FREQ 512000000ULL
78 #define XICS_IRQS 1024
80 #define PHANDLE_XICP 0x00001111
82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
84 sPAPREnvironment *spapr;
86 int spapr_allocate_irq(int hint, bool lsi)
92 /* FIXME: we should probably check for collisions somehow */
94 irq = spapr->next_irq++;
97 /* Configure irq type */
98 if (!xics_get_qirq(spapr->icp, irq)) {
102 xics_set_irq_type(spapr->icp, irq, lsi);
107 /* Allocate block of consequtive IRQs, returns a number of the first */
108 int spapr_allocate_irq_block(int num, bool lsi)
113 for (i = 0; i < num; ++i) {
116 irq = spapr_allocate_irq(0, lsi);
125 /* If the above doesn't create a consecutive block then that's
127 assert(irq == (first + i));
133 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
139 int smt = kvmppc_smt_threads();
140 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
142 assert(spapr->cpu_model);
144 for (env = first_cpu; env != NULL; env = env->next_cpu) {
145 cpu = CPU(ppc_env_get_cpu(env));
146 uint32_t associativity[] = {cpu_to_be32(0x5),
150 cpu_to_be32(cpu->numa_node),
151 cpu_to_be32(cpu->cpu_index)};
153 if ((cpu->cpu_index % smt) != 0) {
157 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
160 offset = fdt_path_offset(fdt, cpu_model);
165 if (nb_numa_nodes > 1) {
166 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
167 sizeof(associativity));
173 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
174 pft_size_prop, sizeof(pft_size_prop));
183 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
186 size_t maxcells = maxsize / sizeof(uint32_t);
190 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
191 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
193 if (!sps->page_shift) {
196 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
197 if (sps->enc[count].page_shift == 0) {
201 if ((p - prop) >= (maxcells - 3 - count * 2)) {
204 *(p++) = cpu_to_be32(sps->page_shift);
205 *(p++) = cpu_to_be32(sps->slb_enc);
206 *(p++) = cpu_to_be32(count);
207 for (j = 0; j < count; j++) {
208 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
209 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
213 return (p - prop) * sizeof(uint32_t);
220 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
221 #exp, fdt_strerror(ret)); \
227 static void *spapr_create_fdt_skel(const char *cpu_model,
231 const char *boot_device,
232 const char *kernel_cmdline,
237 uint32_t start_prop = cpu_to_be32(initrd_base);
238 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
239 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
240 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
241 char qemu_hypertas_prop[] = "hcall-memop1";
242 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
243 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
245 int i, smt = kvmppc_smt_threads();
246 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
248 fdt = g_malloc0(FDT_MAX_SIZE);
249 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
252 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
255 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
257 _FDT((fdt_finish_reservemap(fdt)));
260 _FDT((fdt_begin_node(fdt, "")));
261 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
262 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
263 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
265 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
266 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
269 _FDT((fdt_begin_node(fdt, "chosen")));
271 /* Set Form1_affinity */
272 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
274 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
275 _FDT((fdt_property(fdt, "linux,initrd-start",
276 &start_prop, sizeof(start_prop))));
277 _FDT((fdt_property(fdt, "linux,initrd-end",
278 &end_prop, sizeof(end_prop))));
280 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
281 cpu_to_be64(kernel_size) };
283 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
286 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
292 _FDT((fdt_end_node(fdt)));
295 _FDT((fdt_begin_node(fdt, "cpus")));
297 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
300 modelname = g_strdup(cpu_model);
302 for (i = 0; i < strlen(modelname); i++) {
303 modelname[i] = toupper(modelname[i]);
306 /* This is needed during FDT finalization */
307 spapr->cpu_model = g_strdup(modelname);
309 for (env = first_cpu; env != NULL; env = env->next_cpu) {
310 CPUState *cpu = CPU(ppc_env_get_cpu(env));
311 int index = cpu->cpu_index;
312 uint32_t servers_prop[smp_threads];
313 uint32_t gservers_prop[smp_threads * 2];
315 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
316 0xffffffff, 0xffffffff};
317 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
318 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
319 uint32_t page_sizes_prop[64];
320 size_t page_sizes_prop_size;
322 if ((index % smt) != 0) {
326 nodename = g_strdup_printf("%s@%x", modelname, index);
328 _FDT((fdt_begin_node(fdt, nodename)));
332 _FDT((fdt_property_cell(fdt, "reg", index)));
333 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
335 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
336 _FDT((fdt_property_cell(fdt, "dcache-block-size",
337 env->dcache_line_size)));
338 _FDT((fdt_property_cell(fdt, "icache-block-size",
339 env->icache_line_size)));
340 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
341 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
342 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
343 _FDT((fdt_property_string(fdt, "status", "okay")));
344 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
346 /* Build interrupt servers and gservers properties */
347 for (i = 0; i < smp_threads; i++) {
348 servers_prop[i] = cpu_to_be32(index + i);
349 /* Hack, direct the group queues back to cpu 0 */
350 gservers_prop[i*2] = cpu_to_be32(index + i);
351 gservers_prop[i*2 + 1] = 0;
353 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
354 servers_prop, sizeof(servers_prop))));
355 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
356 gservers_prop, sizeof(gservers_prop))));
358 if (env->mmu_model & POWERPC_MMU_1TSEG) {
359 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
360 segs, sizeof(segs))));
363 /* Advertise VMX/VSX (vector extensions) if available
364 * 0 / no property == no vector extensions
365 * 1 == VMX / Altivec available
366 * 2 == VSX available */
367 if (env->insns_flags & PPC_ALTIVEC) {
368 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
370 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
373 /* Advertise DFP (Decimal Floating Point) if available
374 * 0 / no property == no DFP
375 * 1 == DFP available */
376 if (env->insns_flags2 & PPC2_DFP) {
377 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
380 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
381 sizeof(page_sizes_prop));
382 if (page_sizes_prop_size) {
383 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
384 page_sizes_prop, page_sizes_prop_size)));
387 _FDT((fdt_end_node(fdt)));
392 _FDT((fdt_end_node(fdt)));
395 _FDT((fdt_begin_node(fdt, "rtas")));
397 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
398 sizeof(hypertas_prop))));
399 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
400 sizeof(qemu_hypertas_prop))));
402 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
403 refpoints, sizeof(refpoints))));
405 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
407 _FDT((fdt_end_node(fdt)));
409 /* interrupt controller */
410 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
412 _FDT((fdt_property_string(fdt, "device_type",
413 "PowerPC-External-Interrupt-Presentation")));
414 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
415 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
416 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
417 interrupt_server_ranges_prop,
418 sizeof(interrupt_server_ranges_prop))));
419 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
420 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
421 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
423 _FDT((fdt_end_node(fdt)));
426 _FDT((fdt_begin_node(fdt, "vdevice")));
428 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
429 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
430 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
431 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
432 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
433 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
435 _FDT((fdt_end_node(fdt)));
438 spapr_events_fdt_skel(fdt, epow_irq);
440 _FDT((fdt_end_node(fdt))); /* close root node */
441 _FDT((fdt_finish(fdt)));
446 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
448 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
449 cpu_to_be32(0x0), cpu_to_be32(0x0),
452 hwaddr node0_size, mem_start;
453 uint64_t mem_reg_property[2];
457 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
458 if (spapr->rma_size > node0_size) {
459 spapr->rma_size = node0_size;
463 mem_reg_property[0] = 0;
464 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
465 off = fdt_add_subnode(fdt, 0, "memory@0");
467 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
468 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
469 sizeof(mem_reg_property))));
470 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
471 sizeof(associativity))));
474 if (node0_size > spapr->rma_size) {
475 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
476 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
478 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
479 off = fdt_add_subnode(fdt, 0, mem_name);
481 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
482 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
483 sizeof(mem_reg_property))));
484 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
485 sizeof(associativity))));
488 /* RAM: Node 1 and beyond */
489 mem_start = node0_size;
490 for (i = 1; i < nb_numa_nodes; i++) {
491 mem_reg_property[0] = cpu_to_be64(mem_start);
492 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
493 associativity[3] = associativity[4] = cpu_to_be32(i);
494 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
495 off = fdt_add_subnode(fdt, 0, mem_name);
497 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
498 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
499 sizeof(mem_reg_property))));
500 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
501 sizeof(associativity))));
502 mem_start += node_mem[i];
508 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
517 fdt = g_malloc(FDT_MAX_SIZE);
519 /* open out the base tree into a temp buffer for the final tweaks */
520 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
522 ret = spapr_populate_memory(spapr, fdt);
524 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
528 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
530 fprintf(stderr, "couldn't setup vio devices in fdt\n");
534 QLIST_FOREACH(phb, &spapr->phbs, list) {
535 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
539 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
544 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
546 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
549 /* Advertise NUMA via ibm,associativity */
550 ret = spapr_fixup_cpu_dt(fdt, spapr);
552 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
555 if (!spapr->has_graphics) {
556 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
559 _FDT((fdt_pack(fdt)));
561 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
562 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
563 fdt_totalsize(fdt), FDT_MAX_SIZE);
567 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
572 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
574 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
577 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
579 CPUPPCState *env = &cpu->env;
582 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
583 env->gpr[3] = H_PRIVILEGE;
585 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
589 static void spapr_reset_htab(sPAPREnvironment *spapr)
593 /* allocate hash page table. For now we always make this 16mb,
594 * later we should probably make it scale to the size of guest
597 shift = kvmppc_reset_htab(spapr->htab_shift);
600 /* Kernel handles htab, we don't need to allocate one */
601 spapr->htab_shift = shift;
604 /* Allocate an htab if we don't yet have one */
605 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
609 memset(spapr->htab, 0, HTAB_SIZE(spapr));
612 /* Update the RMA size if necessary */
613 if (spapr->vrma_adjust) {
614 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
618 static void ppc_spapr_reset(void)
620 /* Reset the hash table & recalc the RMA */
621 spapr_reset_htab(spapr);
623 qemu_devices_reset();
626 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
629 /* Set up the entry state */
630 first_cpu->gpr[3] = spapr->fdt_addr;
631 first_cpu->gpr[5] = 0;
632 first_cpu->halted = 0;
633 first_cpu->nip = spapr->entry_point;
637 static void spapr_cpu_reset(void *opaque)
639 PowerPCCPU *cpu = opaque;
640 CPUPPCState *env = &cpu->env;
644 /* All CPUs start halted. CPU0 is unhalted from the machine level
645 * reset code and the rest are explicitly started up by the guest
646 * using an RTAS call */
649 env->spr[SPR_HIOR] = 0;
651 env->external_htab = spapr->htab;
653 env->htab_mask = HTAB_SIZE(spapr) - 1;
654 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
655 (spapr->htab_shift - 18);
658 static void spapr_create_nvram(sPAPREnvironment *spapr)
660 QemuOpts *machine_opts;
663 dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
665 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
667 const char *drivename;
669 drivename = qemu_opt_get(machine_opts, "nvram");
671 BlockDriverState *bs;
673 bs = bdrv_find(drivename);
675 fprintf(stderr, "No such block device \"%s\" for nvram\n",
679 qdev_prop_set_drive_nofail(dev, "drive", bs);
683 qdev_init_nofail(dev);
685 spapr->nvram = (struct sPAPRNVRAM *)dev;
688 /* Returns whether we want to use VGA or not */
689 static int spapr_vga_init(PCIBus *pci_bus)
691 switch (vga_interface_type) {
694 return pci_vga_init(pci_bus) != NULL;
696 fprintf(stderr, "This vga model is not supported,"
697 "currently it only supports -vga std\n");
703 /* pSeries LPAR / sPAPR hardware init */
704 static void ppc_spapr_init(QEMUMachineInitArgs *args)
706 ram_addr_t ram_size = args->ram_size;
707 const char *cpu_model = args->cpu_model;
708 const char *kernel_filename = args->kernel_filename;
709 const char *kernel_cmdline = args->kernel_cmdline;
710 const char *initrd_filename = args->initrd_filename;
711 const char *boot_device = args->boot_device;
716 MemoryRegion *sysmem = get_system_memory();
717 MemoryRegion *ram = g_new(MemoryRegion, 1);
718 hwaddr rma_alloc_size;
719 uint32_t initrd_base = 0;
720 long kernel_size = 0, initrd_size = 0;
721 long load_limit, rtas_limit, fw_size;
724 msi_supported = true;
726 spapr = g_malloc0(sizeof(*spapr));
727 QLIST_INIT(&spapr->phbs);
729 cpu_ppc_hypercall = emulate_spapr_hypercall;
731 /* Allocate RMA if necessary */
732 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
734 if (rma_alloc_size == -1) {
735 hw_error("qemu: Unable to create RMA\n");
739 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
740 spapr->rma_size = rma_alloc_size;
742 spapr->rma_size = ram_size;
744 /* With KVM, we don't actually know whether KVM supports an
745 * unbounded RMA (PR KVM) or is limited by the hash table size
746 * (HV KVM using VRMA), so we always assume the latter
748 * In that case, we also limit the initial allocations for RTAS
749 * etc... to 256M since we have no way to know what the VRMA size
750 * is going to be as it depends on the size of the hash table
751 * isn't determined yet.
754 spapr->vrma_adjust = 1;
755 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
759 /* We place the device tree and RTAS just below either the top of the RMA,
760 * or just below 2GB, whichever is lowere, so that it can be
761 * processed with 32-bit real mode code if necessary */
762 rtas_limit = MIN(spapr->rma_size, 0x80000000);
763 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
764 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
765 load_limit = spapr->fdt_addr - FW_OVERHEAD;
767 /* We aim for a hash table of size 1/128 the size of RAM. The
768 * normal rule of thumb is 1/64 the size of RAM, but that's much
769 * more than needed for the Linux guests we support. */
770 spapr->htab_shift = 18; /* Minimum architected size */
771 while (spapr->htab_shift <= 46) {
772 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
779 if (cpu_model == NULL) {
780 cpu_model = kvm_enabled() ? "host" : "POWER7";
782 for (i = 0; i < smp_cpus; i++) {
783 cpu = cpu_ppc_init(cpu_model);
785 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
790 /* Set time-base frequency to 512 MHz */
791 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
793 /* PAPR always has exception vectors in RAM not ROM */
794 env->hreset_excp_prefix = 0;
796 /* Tell KVM that we're in PAPR mode */
798 kvmppc_set_papr(cpu);
801 qemu_register_reset(spapr_cpu_reset, cpu);
805 spapr->ram_limit = ram_size;
806 if (spapr->ram_limit > rma_alloc_size) {
807 ram_addr_t nonrma_base = rma_alloc_size;
808 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
810 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
811 vmstate_register_ram_global(ram);
812 memory_region_add_subregion(sysmem, nonrma_base, ram);
815 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
816 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
817 rtas_limit - spapr->rtas_addr);
818 if (spapr->rtas_size < 0) {
819 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
822 if (spapr->rtas_size > RTAS_MAX_SIZE) {
823 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
824 spapr->rtas_size, RTAS_MAX_SIZE);
830 /* Set up Interrupt Controller */
831 spapr->icp = xics_system_init(XICS_IRQS);
832 spapr->next_irq = XICS_IRQ_BASE;
834 /* Set up EPOW events infrastructure */
835 spapr_events_init(spapr);
841 spapr->vio_bus = spapr_vio_bus_init();
843 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
845 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
849 /* We always have at least the nvram device on VIO */
850 spapr_create_nvram(spapr);
853 spapr_pci_rtas_init();
855 phb = spapr_create_phb(spapr, 0, "pci");
857 for (i = 0; i < nb_nics; i++) {
858 NICInfo *nd = &nd_table[i];
861 nd->model = g_strdup("ibmveth");
864 if (strcmp(nd->model, "ibmveth") == 0) {
865 spapr_vlan_create(spapr->vio_bus, nd);
867 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
871 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
872 spapr_vscsi_create(spapr->vio_bus);
876 if (spapr_vga_init(phb->bus)) {
877 spapr->has_graphics = true;
880 if (usb_enabled(spapr->has_graphics)) {
881 pci_create_simple(phb->bus, -1, "pci-ohci");
882 if (spapr->has_graphics) {
883 usbdevice_create("keyboard");
884 usbdevice_create("mouse");
888 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
889 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
890 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
894 if (kernel_filename) {
895 uint64_t lowaddr = 0;
897 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
898 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
899 if (kernel_size < 0) {
900 kernel_size = load_image_targphys(kernel_filename,
902 load_limit - KERNEL_LOAD_ADDR);
904 if (kernel_size < 0) {
905 fprintf(stderr, "qemu: could not load kernel '%s'\n",
911 if (initrd_filename) {
912 /* Try to locate the initrd in the gap between the kernel
913 * and the firmware. Add a bit of space just in case
915 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
916 initrd_size = load_image_targphys(initrd_filename, initrd_base,
917 load_limit - initrd_base);
918 if (initrd_size < 0) {
919 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
929 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
930 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
932 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
937 spapr->entry_point = 0x100;
939 /* Prepare the device tree */
940 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
941 initrd_base, initrd_size,
943 boot_device, kernel_cmdline,
945 assert(spapr->fdt_skel != NULL);
948 static QEMUMachine spapr_machine = {
950 .desc = "pSeries Logical Partition (PAPR compliant)",
951 .init = ppc_spapr_init,
952 .reset = ppc_spapr_reset,
953 .block_default_type = IF_SCSI,
954 .max_cpus = MAX_CPUS,
959 static void spapr_machine_init(void)
961 qemu_register_machine(&spapr_machine);
964 machine_init(spapr_machine_init);