2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 #include "qemu-common.h"
23 #include "qemu-timer.h"
28 struct omap_dma_channel_s {
35 enum omap_dma_port port[2];
36 target_phys_addr_t addr[2];
37 omap_dma_addressing_t mode[2];
40 int32_t frame_index[2];
41 int16_t element_index[2];
50 /* auto init and linked channel data */
57 /* interruption data */
77 int omap_3_1_compatible_disable;
80 struct omap_dma_channel_s *sibling;
82 struct omap_dma_reg_set_s {
83 target_phys_addr_t src, dest;
94 struct soc_dma_ch_s *dma;
96 /* unused parameters */
99 int interleave_disabled;
106 struct soc_dma_s *dma;
108 struct omap_mpu_state_s *mpu;
111 void (*intr_update)(struct omap_dma_s *s);
112 enum omap_dma_model model;
113 int omap_3_1_mapping_disabled;
122 struct omap_dma_channel_s ch[32];
123 struct omap_dma_lcd_channel_s lcd_ch;
127 #define TIMEOUT_INTR (1 << 0)
128 #define EVENT_DROP_INTR (1 << 1)
129 #define HALF_FRAME_INTR (1 << 2)
130 #define END_FRAME_INTR (1 << 3)
131 #define LAST_FRAME_INTR (1 << 4)
132 #define END_BLOCK_INTR (1 << 5)
133 #define SYNC (1 << 6)
134 #define END_PKT_INTR (1 << 7)
135 #define TRANS_ERR_INTR (1 << 8)
136 #define MISALIGN_INTR (1 << 11)
138 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
140 return s->intr_update(s);
143 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
145 struct omap_dma_reg_set_s *a = &ch->active_set;
147 int omap_3_1 = !ch->omap_3_1_compatible_disable;
150 * TODO: verify address ranges and alignment
151 * TODO: port endianness
154 a->src = ch->addr[0];
155 a->dest = ch->addr[1];
156 a->frames = ch->frames;
157 a->elements = ch->elements;
158 a->pck_elements = ch->frame_index[!ch->src_sync];
163 if (unlikely(!ch->elements || !ch->frames)) {
164 printf("%s: bad DMA request\n", __FUNCTION__);
168 for (i = 0; i < 2; i ++)
169 switch (ch->mode[i]) {
171 a->elem_delta[i] = 0;
172 a->frame_delta[i] = 0;
174 case post_incremented:
175 a->elem_delta[i] = ch->data_type;
176 a->frame_delta[i] = 0;
179 a->elem_delta[i] = ch->data_type +
180 ch->element_index[omap_3_1 ? 0 : i] - 1;
181 a->frame_delta[i] = 0;
184 a->elem_delta[i] = ch->data_type +
185 ch->element_index[omap_3_1 ? 0 : i] - 1;
186 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
187 ch->element_index[omap_3_1 ? 0 : i];
193 normal = !ch->transparent_copy && !ch->constant_fill &&
194 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
195 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
196 (ch->endian[0] | ch->endian_lock[0]) ==
197 (ch->endian[1] | ch->endian_lock[1]);
198 for (i = 0; i < 2; i ++) {
199 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
200 * limit min_elems in omap_dma_transfer_setup to the nearest frame
202 if (!a->elem_delta[i] && normal &&
203 (a->frames == 1 || !a->frame_delta[i]))
204 ch->dma->type[i] = soc_dma_access_const;
205 else if (a->elem_delta[i] == ch->data_type && normal &&
206 (a->frames == 1 || !a->frame_delta[i]))
207 ch->dma->type[i] = soc_dma_access_linear;
209 ch->dma->type[i] = soc_dma_access_other;
211 ch->dma->vaddr[i] = ch->addr[i];
213 soc_dma_ch_update(ch->dma);
216 static void omap_dma_activate_channel(struct omap_dma_s *s,
217 struct omap_dma_channel_s *ch)
220 if (ch->set_update) {
221 /* It's not clear when the active set is supposed to be
222 * loaded from registers. We're already loading it when the
223 * channel is enabled, and for some guests this is not enough
224 * but that may be also because of a race condition (no
225 * delays in qemu) in the guest code, which we're just
226 * working around here. */
227 omap_dma_channel_load(ch);
232 soc_dma_set_request(ch->dma, 1);
238 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
239 struct omap_dma_channel_s *ch)
242 ch->cpc = ch->active_set.dest & 0xffff;
244 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
245 /* Don't deactivate the channel */
246 ch->pending_request = 0;
250 /* Don't deactive the channel if it is synchronized and the DMA request is
252 if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
258 soc_dma_set_request(ch->dma, 0);
262 static void omap_dma_enable_channel(struct omap_dma_s *s,
263 struct omap_dma_channel_s *ch)
267 ch->waiting_end_prog = 0;
268 omap_dma_channel_load(ch);
269 /* TODO: theoretically if ch->sync && ch->prefetch &&
270 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
271 * from source and then stall until signalled. */
272 if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
273 omap_dma_activate_channel(s, ch);
277 static void omap_dma_disable_channel(struct omap_dma_s *s,
278 struct omap_dma_channel_s *ch)
282 /* Discard any pending request */
283 ch->pending_request = 0;
284 omap_dma_deactivate_channel(s, ch);
288 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
289 struct omap_dma_channel_s *ch)
291 if (ch->waiting_end_prog) {
292 ch->waiting_end_prog = 0;
293 if (!ch->sync || ch->pending_request) {
294 ch->pending_request = 0;
295 omap_dma_activate_channel(s, ch);
300 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
302 struct omap_dma_channel_s *ch = s->ch;
304 /* First three interrupts are shared between two channels each. */
305 if (ch[0].status | ch[6].status)
306 qemu_irq_raise(ch[0].irq);
307 if (ch[1].status | ch[7].status)
308 qemu_irq_raise(ch[1].irq);
309 if (ch[2].status | ch[8].status)
310 qemu_irq_raise(ch[2].irq);
312 qemu_irq_raise(ch[3].irq);
314 qemu_irq_raise(ch[4].irq);
316 qemu_irq_raise(ch[5].irq);
319 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
321 struct omap_dma_channel_s *ch = s->ch;
324 for (i = s->chans; i; ch ++, i --)
326 qemu_irq_raise(ch->irq);
329 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
331 s->omap_3_1_mapping_disabled = 0;
333 s->intr_update = omap_dma_interrupts_3_1_update;
336 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
338 s->omap_3_1_mapping_disabled = 1;
340 s->intr_update = omap_dma_interrupts_3_2_update;
343 static void omap_dma_process_request(struct omap_dma_s *s, int request)
347 struct omap_dma_channel_s *ch = s->ch;
349 for (channel = 0; channel < s->chans; channel ++, ch ++) {
350 if (ch->enable && ch->sync == request) {
352 omap_dma_activate_channel(s, ch);
353 else if (!ch->pending_request)
354 ch->pending_request = 1;
356 /* Request collision */
357 /* Second request received while processing other request */
358 ch->status |= EVENT_DROP_INTR;
365 omap_dma_interrupts_update(s);
368 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
371 struct omap_dma_channel_s *ch = dma->opaque;
372 struct omap_dma_reg_set_s *a = &ch->active_set;
373 int bytes = dma->bytes;
375 uint16_t status = ch->status;
379 /* Transfer a single element */
380 /* FIXME: check the endianness */
381 if (!ch->constant_fill)
382 cpu_physical_memory_read(a->src, value, ch->data_type);
384 *(uint32_t *) value = ch->color;
386 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
387 cpu_physical_memory_write(a->dest, value, ch->data_type);
389 a->src += a->elem_delta[0];
390 a->dest += a->elem_delta[1];
394 if (a->element == a->elements) {
397 a->src += a->frame_delta[0];
398 a->dest += a->frame_delta[1];
401 /* If the channel is async, update cpc */
403 ch->cpc = a->dest & 0xffff;
405 } while ((bytes -= ch->data_type));
407 /* If the channel is element synchronized, deactivate it */
408 if (ch->sync && !ch->fs && !ch->bs)
409 omap_dma_deactivate_channel(s, ch);
411 /* If it is the last frame, set the LAST_FRAME interrupt */
412 if (a->element == 1 && a->frame == a->frames - 1)
413 if (ch->interrupts & LAST_FRAME_INTR)
414 ch->status |= LAST_FRAME_INTR;
416 /* If the half of the frame was reached, set the HALF_FRAME
418 if (a->element == (a->elements >> 1))
419 if (ch->interrupts & HALF_FRAME_INTR)
420 ch->status |= HALF_FRAME_INTR;
422 if (ch->fs && ch->bs) {
424 /* Check if a full packet has beed transferred. */
425 if (a->pck_element == a->pck_elements) {
428 /* Set the END_PKT interrupt */
429 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
430 ch->status |= END_PKT_INTR;
432 /* If the channel is packet-synchronized, deactivate it */
434 omap_dma_deactivate_channel(s, ch);
438 if (a->element == a->elements) {
441 a->src += a->frame_delta[0];
442 a->dest += a->frame_delta[1];
445 /* If the channel is frame synchronized, deactivate it */
446 if (ch->sync && ch->fs && !ch->bs)
447 omap_dma_deactivate_channel(s, ch);
449 /* If the channel is async, update cpc */
451 ch->cpc = a->dest & 0xffff;
453 /* Set the END_FRAME interrupt */
454 if (ch->interrupts & END_FRAME_INTR)
455 ch->status |= END_FRAME_INTR;
457 if (a->frame == a->frames) {
459 /* Disable the channel */
461 if (ch->omap_3_1_compatible_disable) {
462 omap_dma_disable_channel(s, ch);
463 if (ch->link_enabled)
464 omap_dma_enable_channel(s,
465 &s->ch[ch->link_next_ch]);
468 omap_dma_disable_channel(s, ch);
469 else if (ch->repeat || ch->end_prog)
470 omap_dma_channel_load(ch);
472 ch->waiting_end_prog = 1;
473 omap_dma_deactivate_channel(s, ch);
477 if (ch->interrupts & END_BLOCK_INTR)
478 ch->status |= END_BLOCK_INTR;
481 } while (status == ch->status && ch->active);
483 omap_dma_interrupts_update(s);
488 omap_dma_intr_element_sync,
489 omap_dma_intr_last_frame,
490 omap_dma_intr_half_frame,
492 omap_dma_intr_frame_sync,
493 omap_dma_intr_packet,
494 omap_dma_intr_packet_sync,
496 __omap_dma_intr_last,
499 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
501 struct omap_dma_port_if_s *src_p, *dest_p;
502 struct omap_dma_reg_set_s *a;
503 struct omap_dma_channel_s *ch = dma->opaque;
504 struct omap_dma_s *s = dma->dma->opaque;
505 int frames, min_elems, elements[__omap_dma_intr_last];
509 src_p = &s->mpu->port[ch->port[0]];
510 dest_p = &s->mpu->port[ch->port[1]];
511 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
512 (!dest_p->addr_valid(s->mpu, a->dest))) {
515 if (ch->interrupts & TIMEOUT_INTR)
516 ch->status |= TIMEOUT_INTR;
517 omap_dma_deactivate_channel(s, ch);
520 printf("%s: Bus time-out in DMA%i operation\n",
521 __FUNCTION__, dma->num);
526 /* Check all the conditions that terminate the transfer starting
527 * with those that can occur the soonest. */
528 #define INTR_CHECK(cond, id, nelements) \
530 elements[id] = nelements; \
531 if (elements[id] < min_elems) \
532 min_elems = elements[id]; \
534 elements[id] = INT_MAX;
538 ch->sync && !ch->fs && !ch->bs,
539 omap_dma_intr_element_sync,
543 /* TODO: for transfers where entire frames can be read and written
544 * using memcpy() but a->frame_delta is non-zero, try to still do
545 * transfers using soc_dma but limit min_elems to a->elements - ...
546 * See also the TODO in omap_dma_channel_load. */
548 (ch->interrupts & LAST_FRAME_INTR) &&
549 ((a->frame < a->frames - 1) || !a->element),
550 omap_dma_intr_last_frame,
551 (a->frames - a->frame - 2) * a->elements +
552 (a->elements - a->element + 1))
554 ch->interrupts & HALF_FRAME_INTR,
555 omap_dma_intr_half_frame,
557 (a->element >= (a->elements >> 1) ? a->elements : 0) -
560 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
562 a->elements - a->element)
564 ch->sync && ch->fs && !ch->bs,
565 omap_dma_intr_frame_sync,
566 a->elements - a->element)
571 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
572 omap_dma_intr_packet,
573 a->pck_elements - a->pck_element)
575 ch->fs && ch->bs && ch->sync,
576 omap_dma_intr_packet_sync,
577 a->pck_elements - a->pck_element)
583 (a->frames - a->frame - 1) * a->elements +
584 (a->elements - a->element))
586 dma->bytes = min_elems * ch->data_type;
588 /* Set appropriate interrupts and/or deactivate channels */
591 /* TODO: should all of this only be done if dma->update, and otherwise
592 * inside omap_dma_transfer_generic below - check what's faster. */
596 /* If the channel is element synchronized, deactivate it */
597 if (min_elems == elements[omap_dma_intr_element_sync])
598 omap_dma_deactivate_channel(s, ch);
600 /* If it is the last frame, set the LAST_FRAME interrupt */
601 if (min_elems == elements[omap_dma_intr_last_frame])
602 ch->status |= LAST_FRAME_INTR;
604 /* If exactly half of the frame was reached, set the HALF_FRAME
606 if (min_elems == elements[omap_dma_intr_half_frame])
607 ch->status |= HALF_FRAME_INTR;
609 /* If a full packet has been transferred, set the END_PKT interrupt */
610 if (min_elems == elements[omap_dma_intr_packet])
611 ch->status |= END_PKT_INTR;
613 /* If the channel is packet-synchronized, deactivate it */
614 if (min_elems == elements[omap_dma_intr_packet_sync])
615 omap_dma_deactivate_channel(s, ch);
617 /* If the channel is frame synchronized, deactivate it */
618 if (min_elems == elements[omap_dma_intr_frame_sync])
619 omap_dma_deactivate_channel(s, ch);
621 /* Set the END_FRAME interrupt */
622 if (min_elems == elements[omap_dma_intr_frame])
623 ch->status |= END_FRAME_INTR;
625 if (min_elems == elements[omap_dma_intr_block]) {
627 /* Disable the channel */
629 if (ch->omap_3_1_compatible_disable) {
630 omap_dma_disable_channel(s, ch);
631 if (ch->link_enabled)
632 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
635 omap_dma_disable_channel(s, ch);
636 else if (ch->repeat || ch->end_prog)
637 omap_dma_channel_load(ch);
639 ch->waiting_end_prog = 1;
640 omap_dma_deactivate_channel(s, ch);
644 if (ch->interrupts & END_BLOCK_INTR)
645 ch->status |= END_BLOCK_INTR;
648 /* Update packet number */
649 if (ch->fs && ch->bs) {
650 a->pck_element += min_elems;
651 a->pck_element %= a->pck_elements;
654 /* TODO: check if we really need to update anything here or perhaps we
655 * can skip part of this. */
659 a->element += min_elems;
661 frames = a->element / a->elements;
662 a->element = a->element % a->elements;
664 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
665 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
667 /* If the channel is async, update cpc */
668 if (!ch->sync && frames)
669 ch->cpc = a->dest & 0xffff;
671 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
675 omap_dma_interrupts_update(s);
678 void omap_dma_reset(struct soc_dma_s *dma)
681 struct omap_dma_s *s = dma->opaque;
683 soc_dma_reset(s->dma);
684 if (s->model < omap_dma_4)
689 memset(&s->irqstat, 0, sizeof(s->irqstat));
690 memset(&s->irqen, 0, sizeof(s->irqen));
691 s->lcd_ch.src = emiff;
692 s->lcd_ch.condition = 0;
693 s->lcd_ch.interrupts = 0;
695 if (s->model < omap_dma_4)
696 omap_dma_enable_3_1_mapping(s);
697 for (i = 0; i < s->chans; i ++) {
698 s->ch[i].suspend = 0;
699 s->ch[i].prefetch = 0;
700 s->ch[i].buf_disable = 0;
701 s->ch[i].src_sync = 0;
702 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
703 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
704 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
705 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
706 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
707 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
708 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
709 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
710 s->ch[i].write_mode = 0;
711 s->ch[i].data_type = 0;
712 s->ch[i].transparent_copy = 0;
713 s->ch[i].constant_fill = 0;
714 s->ch[i].color = 0x00000000;
715 s->ch[i].end_prog = 0;
717 s->ch[i].auto_init = 0;
718 s->ch[i].link_enabled = 0;
719 if (s->model < omap_dma_4)
720 s->ch[i].interrupts = 0x0003;
722 s->ch[i].interrupts = 0x0000;
724 s->ch[i].cstatus = 0;
728 s->ch[i].pending_request = 0;
729 s->ch[i].waiting_end_prog = 0;
730 s->ch[i].cpc = 0x0000;
733 s->ch[i].omap_3_1_compatible_disable = 0;
734 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
735 s->ch[i].priority = 0;
736 s->ch[i].interleave_disabled = 0;
741 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
742 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
745 case 0x00: /* SYS_DMA_CSDP_CH0 */
746 *value = (ch->burst[1] << 14) |
747 (ch->pack[1] << 13) |
749 (ch->burst[0] << 7) |
752 (ch->data_type >> 1);
755 case 0x02: /* SYS_DMA_CCR_CH0 */
756 if (s->model <= omap_dma_3_1)
757 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
759 *value = ch->omap_3_1_compatible_disable << 10;
760 *value |= (ch->mode[1] << 14) |
761 (ch->mode[0] << 12) |
762 (ch->end_prog << 11) |
764 (ch->auto_init << 8) |
766 (ch->priority << 6) |
767 (ch->fs << 5) | ch->sync;
770 case 0x04: /* SYS_DMA_CICR_CH0 */
771 *value = ch->interrupts;
774 case 0x06: /* SYS_DMA_CSR_CH0 */
777 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
778 *value |= (ch->sibling->status & 0x3f) << 6;
779 ch->sibling->status &= SYNC;
781 qemu_irq_lower(ch->irq);
784 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
785 *value = ch->addr[0] & 0x0000ffff;
788 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
789 *value = ch->addr[0] >> 16;
792 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
793 *value = ch->addr[1] & 0x0000ffff;
796 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
797 *value = ch->addr[1] >> 16;
800 case 0x10: /* SYS_DMA_CEN_CH0 */
801 *value = ch->elements;
804 case 0x12: /* SYS_DMA_CFN_CH0 */
808 case 0x14: /* SYS_DMA_CFI_CH0 */
809 *value = ch->frame_index[0];
812 case 0x16: /* SYS_DMA_CEI_CH0 */
813 *value = ch->element_index[0];
816 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
817 if (ch->omap_3_1_compatible_disable)
818 *value = ch->active_set.src & 0xffff; /* CSAC */
823 case 0x1a: /* DMA_CDAC */
824 *value = ch->active_set.dest & 0xffff; /* CDAC */
827 case 0x1c: /* DMA_CDEI */
828 *value = ch->element_index[1];
831 case 0x1e: /* DMA_CDFI */
832 *value = ch->frame_index[1];
835 case 0x20: /* DMA_COLOR_L */
836 *value = ch->color & 0xffff;
839 case 0x22: /* DMA_COLOR_U */
840 *value = ch->color >> 16;
843 case 0x24: /* DMA_CCR2 */
844 *value = (ch->bs << 2) |
845 (ch->transparent_copy << 1) |
849 case 0x28: /* DMA_CLNK_CTRL */
850 *value = (ch->link_enabled << 15) |
851 (ch->link_next_ch & 0xf);
854 case 0x2a: /* DMA_LCH_CTRL */
855 *value = (ch->interleave_disabled << 15) |
865 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
866 struct omap_dma_channel_s *ch, int reg, uint16_t value)
869 case 0x00: /* SYS_DMA_CSDP_CH0 */
870 ch->burst[1] = (value & 0xc000) >> 14;
871 ch->pack[1] = (value & 0x2000) >> 13;
872 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
873 ch->burst[0] = (value & 0x0180) >> 7;
874 ch->pack[0] = (value & 0x0040) >> 6;
875 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
876 ch->data_type = 1 << (value & 3);
877 if (ch->port[0] >= __omap_dma_port_last)
878 printf("%s: invalid DMA port %i\n", __FUNCTION__,
880 if (ch->port[1] >= __omap_dma_port_last)
881 printf("%s: invalid DMA port %i\n", __FUNCTION__,
883 if ((value & 3) == 3)
884 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
887 case 0x02: /* SYS_DMA_CCR_CH0 */
888 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
889 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
890 ch->end_prog = (value & 0x0800) >> 11;
891 if (s->model >= omap_dma_3_2)
892 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
893 ch->repeat = (value & 0x0200) >> 9;
894 ch->auto_init = (value & 0x0100) >> 8;
895 ch->priority = (value & 0x0040) >> 6;
896 ch->fs = (value & 0x0020) >> 5;
897 ch->sync = value & 0x001f;
900 omap_dma_enable_channel(s, ch);
902 omap_dma_disable_channel(s, ch);
905 omap_dma_channel_end_prog(s, ch);
909 case 0x04: /* SYS_DMA_CICR_CH0 */
910 ch->interrupts = value & 0x3f;
913 case 0x06: /* SYS_DMA_CSR_CH0 */
914 OMAP_RO_REG((target_phys_addr_t) reg);
917 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
918 ch->addr[0] &= 0xffff0000;
919 ch->addr[0] |= value;
922 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
923 ch->addr[0] &= 0x0000ffff;
924 ch->addr[0] |= (uint32_t) value << 16;
927 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
928 ch->addr[1] &= 0xffff0000;
929 ch->addr[1] |= value;
932 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
933 ch->addr[1] &= 0x0000ffff;
934 ch->addr[1] |= (uint32_t) value << 16;
937 case 0x10: /* SYS_DMA_CEN_CH0 */
938 ch->elements = value;
941 case 0x12: /* SYS_DMA_CFN_CH0 */
945 case 0x14: /* SYS_DMA_CFI_CH0 */
946 ch->frame_index[0] = (int16_t) value;
949 case 0x16: /* SYS_DMA_CEI_CH0 */
950 ch->element_index[0] = (int16_t) value;
953 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
954 OMAP_RO_REG((target_phys_addr_t) reg);
957 case 0x1c: /* DMA_CDEI */
958 ch->element_index[1] = (int16_t) value;
961 case 0x1e: /* DMA_CDFI */
962 ch->frame_index[1] = (int16_t) value;
965 case 0x20: /* DMA_COLOR_L */
966 ch->color &= 0xffff0000;
970 case 0x22: /* DMA_COLOR_U */
972 ch->color |= value << 16;
975 case 0x24: /* DMA_CCR2 */
976 ch->bs = (value >> 2) & 0x1;
977 ch->transparent_copy = (value >> 1) & 0x1;
978 ch->constant_fill = value & 0x1;
981 case 0x28: /* DMA_CLNK_CTRL */
982 ch->link_enabled = (value >> 15) & 0x1;
983 if (value & (1 << 14)) { /* Stop_Lnk */
984 ch->link_enabled = 0;
985 omap_dma_disable_channel(s, ch);
987 ch->link_next_ch = value & 0x1f;
990 case 0x2a: /* DMA_LCH_CTRL */
991 ch->interleave_disabled = (value >> 15) & 0x1;
992 ch->type = value & 0xf;
1001 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1005 case 0xbc0: /* DMA_LCD_CSDP */
1006 s->brust_f2 = (value >> 14) & 0x3;
1007 s->pack_f2 = (value >> 13) & 0x1;
1008 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1009 s->brust_f1 = (value >> 7) & 0x3;
1010 s->pack_f1 = (value >> 6) & 0x1;
1011 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1014 case 0xbc2: /* DMA_LCD_CCR */
1015 s->mode_f2 = (value >> 14) & 0x3;
1016 s->mode_f1 = (value >> 12) & 0x3;
1017 s->end_prog = (value >> 11) & 0x1;
1018 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1019 s->repeat = (value >> 9) & 0x1;
1020 s->auto_init = (value >> 8) & 0x1;
1021 s->running = (value >> 7) & 0x1;
1022 s->priority = (value >> 6) & 0x1;
1023 s->bs = (value >> 4) & 0x1;
1026 case 0xbc4: /* DMA_LCD_CTRL */
1027 s->dst = (value >> 8) & 0x1;
1028 s->src = ((value >> 6) & 0x3) << 1;
1030 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1031 s->interrupts = (value >> 1) & 1;
1032 s->dual = value & 1;
1035 case 0xbc8: /* TOP_B1_L */
1036 s->src_f1_top &= 0xffff0000;
1037 s->src_f1_top |= 0x0000ffff & value;
1040 case 0xbca: /* TOP_B1_U */
1041 s->src_f1_top &= 0x0000ffff;
1042 s->src_f1_top |= value << 16;
1045 case 0xbcc: /* BOT_B1_L */
1046 s->src_f1_bottom &= 0xffff0000;
1047 s->src_f1_bottom |= 0x0000ffff & value;
1050 case 0xbce: /* BOT_B1_U */
1051 s->src_f1_bottom &= 0x0000ffff;
1052 s->src_f1_bottom |= (uint32_t) value << 16;
1055 case 0xbd0: /* TOP_B2_L */
1056 s->src_f2_top &= 0xffff0000;
1057 s->src_f2_top |= 0x0000ffff & value;
1060 case 0xbd2: /* TOP_B2_U */
1061 s->src_f2_top &= 0x0000ffff;
1062 s->src_f2_top |= (uint32_t) value << 16;
1065 case 0xbd4: /* BOT_B2_L */
1066 s->src_f2_bottom &= 0xffff0000;
1067 s->src_f2_bottom |= 0x0000ffff & value;
1070 case 0xbd6: /* BOT_B2_U */
1071 s->src_f2_bottom &= 0x0000ffff;
1072 s->src_f2_bottom |= (uint32_t) value << 16;
1075 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1076 s->element_index_f1 = value;
1079 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1080 s->frame_index_f1 &= 0xffff0000;
1081 s->frame_index_f1 |= 0x0000ffff & value;
1084 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1085 s->frame_index_f1 &= 0x0000ffff;
1086 s->frame_index_f1 |= (uint32_t) value << 16;
1089 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1090 s->element_index_f2 = value;
1093 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1094 s->frame_index_f2 &= 0xffff0000;
1095 s->frame_index_f2 |= 0x0000ffff & value;
1098 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1099 s->frame_index_f2 &= 0x0000ffff;
1100 s->frame_index_f2 |= (uint32_t) value << 16;
1103 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1104 s->elements_f1 = value;
1107 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1108 s->frames_f1 = value;
1111 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1112 s->elements_f2 = value;
1115 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1116 s->frames_f2 = value;
1119 case 0xbea: /* DMA_LCD_LCH_CTRL */
1120 s->lch_type = value & 0xf;
1129 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1133 case 0xbc0: /* DMA_LCD_CSDP */
1134 *ret = (s->brust_f2 << 14) |
1135 (s->pack_f2 << 13) |
1136 ((s->data_type_f2 >> 1) << 11) |
1137 (s->brust_f1 << 7) |
1139 ((s->data_type_f1 >> 1) << 0);
1142 case 0xbc2: /* DMA_LCD_CCR */
1143 *ret = (s->mode_f2 << 14) |
1144 (s->mode_f1 << 12) |
1145 (s->end_prog << 11) |
1146 (s->omap_3_1_compatible_disable << 10) |
1148 (s->auto_init << 8) |
1150 (s->priority << 6) |
1154 case 0xbc4: /* DMA_LCD_CTRL */
1155 qemu_irq_lower(s->irq);
1156 *ret = (s->dst << 8) |
1157 ((s->src & 0x6) << 5) |
1158 (s->condition << 3) |
1159 (s->interrupts << 1) |
1163 case 0xbc8: /* TOP_B1_L */
1164 *ret = s->src_f1_top & 0xffff;
1167 case 0xbca: /* TOP_B1_U */
1168 *ret = s->src_f1_top >> 16;
1171 case 0xbcc: /* BOT_B1_L */
1172 *ret = s->src_f1_bottom & 0xffff;
1175 case 0xbce: /* BOT_B1_U */
1176 *ret = s->src_f1_bottom >> 16;
1179 case 0xbd0: /* TOP_B2_L */
1180 *ret = s->src_f2_top & 0xffff;
1183 case 0xbd2: /* TOP_B2_U */
1184 *ret = s->src_f2_top >> 16;
1187 case 0xbd4: /* BOT_B2_L */
1188 *ret = s->src_f2_bottom & 0xffff;
1191 case 0xbd6: /* BOT_B2_U */
1192 *ret = s->src_f2_bottom >> 16;
1195 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1196 *ret = s->element_index_f1;
1199 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1200 *ret = s->frame_index_f1 & 0xffff;
1203 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1204 *ret = s->frame_index_f1 >> 16;
1207 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1208 *ret = s->element_index_f2;
1211 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1212 *ret = s->frame_index_f2 & 0xffff;
1215 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1216 *ret = s->frame_index_f2 >> 16;
1219 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1220 *ret = s->elements_f1;
1223 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1224 *ret = s->frames_f1;
1227 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1228 *ret = s->elements_f2;
1231 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1232 *ret = s->frames_f2;
1235 case 0xbea: /* DMA_LCD_LCH_CTRL */
1245 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1249 case 0x300: /* SYS_DMA_LCD_CTRL */
1250 s->src = (value & 0x40) ? imif : emiff;
1252 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1253 s->interrupts = (value >> 1) & 1;
1254 s->dual = value & 1;
1257 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1258 s->src_f1_top &= 0xffff0000;
1259 s->src_f1_top |= 0x0000ffff & value;
1262 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1263 s->src_f1_top &= 0x0000ffff;
1264 s->src_f1_top |= value << 16;
1267 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1268 s->src_f1_bottom &= 0xffff0000;
1269 s->src_f1_bottom |= 0x0000ffff & value;
1272 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1273 s->src_f1_bottom &= 0x0000ffff;
1274 s->src_f1_bottom |= value << 16;
1277 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1278 s->src_f2_top &= 0xffff0000;
1279 s->src_f2_top |= 0x0000ffff & value;
1282 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1283 s->src_f2_top &= 0x0000ffff;
1284 s->src_f2_top |= value << 16;
1287 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1288 s->src_f2_bottom &= 0xffff0000;
1289 s->src_f2_bottom |= 0x0000ffff & value;
1292 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1293 s->src_f2_bottom &= 0x0000ffff;
1294 s->src_f2_bottom |= value << 16;
1303 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1309 case 0x300: /* SYS_DMA_LCD_CTRL */
1312 qemu_irq_lower(s->irq);
1313 *ret = ((s->src == imif) << 6) | (i << 3) |
1314 (s->interrupts << 1) | s->dual;
1317 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1318 *ret = s->src_f1_top & 0xffff;
1321 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1322 *ret = s->src_f1_top >> 16;
1325 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1326 *ret = s->src_f1_bottom & 0xffff;
1329 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1330 *ret = s->src_f1_bottom >> 16;
1333 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1334 *ret = s->src_f2_top & 0xffff;
1337 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1338 *ret = s->src_f2_top >> 16;
1341 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1342 *ret = s->src_f2_bottom & 0xffff;
1345 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1346 *ret = s->src_f2_bottom >> 16;
1355 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1358 case 0x400: /* SYS_DMA_GCR */
1362 case 0x404: /* DMA_GSCR */
1364 omap_dma_disable_3_1_mapping(s);
1366 omap_dma_enable_3_1_mapping(s);
1369 case 0x408: /* DMA_GRST */
1371 omap_dma_reset(s->dma);
1380 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1384 case 0x400: /* SYS_DMA_GCR */
1388 case 0x404: /* DMA_GSCR */
1389 *ret = s->omap_3_1_mapping_disabled << 3;
1392 case 0x408: /* DMA_GRST */
1396 case 0x442: /* DMA_HW_ID */
1397 case 0x444: /* DMA_PCh2_ID */
1398 case 0x446: /* DMA_PCh0_ID */
1399 case 0x448: /* DMA_PCh1_ID */
1400 case 0x44a: /* DMA_PChG_ID */
1401 case 0x44c: /* DMA_PChD_ID */
1405 case 0x44e: /* DMA_CAPS_0_U */
1406 *ret = (s->caps[0] >> 16) & 0xffff;
1408 case 0x450: /* DMA_CAPS_0_L */
1409 *ret = (s->caps[0] >> 0) & 0xffff;
1412 case 0x452: /* DMA_CAPS_1_U */
1413 *ret = (s->caps[1] >> 16) & 0xffff;
1415 case 0x454: /* DMA_CAPS_1_L */
1416 *ret = (s->caps[1] >> 0) & 0xffff;
1419 case 0x456: /* DMA_CAPS_2 */
1423 case 0x458: /* DMA_CAPS_3 */
1427 case 0x45a: /* DMA_CAPS_4 */
1431 case 0x460: /* DMA_PCh2_SR */
1432 case 0x480: /* DMA_PCh0_SR */
1433 case 0x482: /* DMA_PCh1_SR */
1434 case 0x4c0: /* DMA_PChD_SR_0 */
1435 printf("%s: Physical Channel Status Registers not implemented.\n",
1446 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
1448 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1453 case 0x300 ... 0x3fe:
1454 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1455 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
1460 case 0x000 ... 0x2fe:
1462 ch = (addr >> 6) & 0x0f;
1463 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1467 case 0x404 ... 0x4fe:
1468 if (s->model <= omap_dma_3_1)
1472 if (omap_dma_sys_read(s, addr, &ret))
1476 case 0xb00 ... 0xbfe:
1477 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1478 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
1489 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
1492 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1496 case 0x300 ... 0x3fe:
1497 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1498 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
1503 case 0x000 ... 0x2fe:
1505 ch = (addr >> 6) & 0x0f;
1506 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1510 case 0x404 ... 0x4fe:
1511 if (s->model <= omap_dma_3_1)
1515 if (omap_dma_sys_write(s, addr, value))
1519 case 0xb00 ... 0xbfe:
1520 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1521 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
1531 static CPUReadMemoryFunc *omap_dma_readfn[] = {
1532 omap_badwidth_read16,
1534 omap_badwidth_read16,
1537 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
1538 omap_badwidth_write16,
1540 omap_badwidth_write16,
1543 static void omap_dma_request(void *opaque, int drq, int req)
1545 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1546 /* The request pins are level triggered in QEMU. */
1548 if (~s->dma->drqbmp & (1 << drq)) {
1549 s->dma->drqbmp |= 1 << drq;
1550 omap_dma_process_request(s, drq);
1553 s->dma->drqbmp &= ~(1 << drq);
1556 /* XXX: this won't be needed once soc_dma knows about clocks. */
1557 static void omap_dma_clk_update(void *opaque, int line, int on)
1559 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1562 s->dma->freq = omap_clk_getrate(s->clk);
1564 for (i = 0; i < s->chans; i ++)
1565 if (s->ch[i].active)
1566 soc_dma_set_request(s->ch[i].dma, on);
1569 static void omap_dma_setcaps(struct omap_dma_s *s)
1577 /* XXX Only available for sDMA */
1579 (1 << 19) | /* Constant Fill Capability */
1580 (1 << 18); /* Transparent BLT Capability */
1582 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1584 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1585 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1586 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1587 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1588 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1589 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1590 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1591 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1592 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1594 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1595 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1596 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1597 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1598 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1599 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1600 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1601 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1603 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1604 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1605 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1606 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1607 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1608 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1609 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1610 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1615 struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
1616 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1617 enum omap_dma_model model)
1619 int iomemtype, num_irqs, memsize, i;
1620 struct omap_dma_s *s = (struct omap_dma_s *)
1621 qemu_mallocz(sizeof(struct omap_dma_s));
1623 if (model <= omap_dma_3_1) {
1633 s->lcd_ch.irq = lcd_irq;
1634 s->lcd_ch.mpu = mpu;
1636 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1637 s->dma->freq = omap_clk_getrate(clk);
1638 s->dma->transfer_fn = omap_dma_transfer_generic;
1639 s->dma->setup_fn = omap_dma_transfer_setup;
1640 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1644 s->ch[num_irqs].irq = irqs[num_irqs];
1645 for (i = 0; i < 3; i ++) {
1646 s->ch[i].sibling = &s->ch[i + 6];
1647 s->ch[i + 6].sibling = &s->ch[i];
1649 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1650 s->ch[i].dma = &s->dma->ch[i];
1651 s->dma->ch[i].opaque = &s->ch[i];
1654 omap_dma_setcaps(s);
1655 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1656 omap_dma_reset(s->dma);
1657 omap_dma_clk_update(s, 0, 1);
1659 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1660 omap_dma_writefn, s);
1661 cpu_register_physical_memory(base, memsize, iomemtype);
1663 mpu->drq = s->dma->drq;
1668 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1670 struct omap_dma_channel_s *ch = s->ch;
1673 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1676 ch->cstatus |= ch->status;
1679 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1680 qemu_irq_raise(s->irq[0]);
1681 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1682 qemu_irq_raise(s->irq[1]);
1683 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1684 qemu_irq_raise(s->irq[2]);
1685 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1686 qemu_irq_raise(s->irq[3]);
1689 static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr)
1691 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1692 int irqn = 0, chnum;
1693 struct omap_dma_channel_s *ch;
1696 case 0x00: /* DMA4_REVISION */
1699 case 0x14: /* DMA4_IRQSTATUS_L3 */
1701 case 0x10: /* DMA4_IRQSTATUS_L2 */
1703 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1705 case 0x08: /* DMA4_IRQSTATUS_L0 */
1706 return s->irqstat[irqn];
1708 case 0x24: /* DMA4_IRQENABLE_L3 */
1710 case 0x20: /* DMA4_IRQENABLE_L2 */
1712 case 0x1c: /* DMA4_IRQENABLE_L1 */
1714 case 0x18: /* DMA4_IRQENABLE_L0 */
1715 return s->irqen[irqn];
1717 case 0x28: /* DMA4_SYSSTATUS */
1718 return 1; /* RESETDONE */
1720 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1723 case 0x64: /* DMA4_CAPS_0 */
1725 case 0x6c: /* DMA4_CAPS_2 */
1727 case 0x70: /* DMA4_CAPS_3 */
1729 case 0x74: /* DMA4_CAPS_4 */
1732 case 0x78: /* DMA4_GCR */
1735 case 0x80 ... 0xfff:
1737 chnum = addr / 0x60;
1739 addr -= chnum * 0x60;
1747 /* Per-channel registers */
1749 case 0x00: /* DMA4_CCR */
1750 return (ch->buf_disable << 25) |
1751 (ch->src_sync << 24) |
1752 (ch->prefetch << 23) |
1753 ((ch->sync & 0x60) << 14) |
1755 (ch->transparent_copy << 17) |
1756 (ch->constant_fill << 16) |
1757 (ch->mode[1] << 14) |
1758 (ch->mode[0] << 12) |
1759 (0 << 10) | (0 << 9) |
1760 (ch->suspend << 8) |
1762 (ch->priority << 6) |
1763 (ch->fs << 5) | (ch->sync & 0x1f);
1765 case 0x04: /* DMA4_CLNK_CTRL */
1766 return (ch->link_enabled << 15) | ch->link_next_ch;
1768 case 0x08: /* DMA4_CICR */
1769 return ch->interrupts;
1771 case 0x0c: /* DMA4_CSR */
1774 case 0x10: /* DMA4_CSDP */
1775 return (ch->endian[0] << 21) |
1776 (ch->endian_lock[0] << 20) |
1777 (ch->endian[1] << 19) |
1778 (ch->endian_lock[1] << 18) |
1779 (ch->write_mode << 16) |
1780 (ch->burst[1] << 14) |
1781 (ch->pack[1] << 13) |
1782 (ch->translate[1] << 9) |
1783 (ch->burst[0] << 7) |
1784 (ch->pack[0] << 6) |
1785 (ch->translate[0] << 2) |
1786 (ch->data_type >> 1);
1788 case 0x14: /* DMA4_CEN */
1789 return ch->elements;
1791 case 0x18: /* DMA4_CFN */
1794 case 0x1c: /* DMA4_CSSA */
1797 case 0x20: /* DMA4_CDSA */
1800 case 0x24: /* DMA4_CSEI */
1801 return ch->element_index[0];
1803 case 0x28: /* DMA4_CSFI */
1804 return ch->frame_index[0];
1806 case 0x2c: /* DMA4_CDEI */
1807 return ch->element_index[1];
1809 case 0x30: /* DMA4_CDFI */
1810 return ch->frame_index[1];
1812 case 0x34: /* DMA4_CSAC */
1813 return ch->active_set.src & 0xffff;
1815 case 0x38: /* DMA4_CDAC */
1816 return ch->active_set.dest & 0xffff;
1818 case 0x3c: /* DMA4_CCEN */
1819 return ch->active_set.element;
1821 case 0x40: /* DMA4_CCFN */
1822 return ch->active_set.frame;
1824 case 0x44: /* DMA4_COLOR */
1825 /* XXX only in sDMA */
1834 static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
1837 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1838 int chnum, irqn = 0;
1839 struct omap_dma_channel_s *ch;
1842 case 0x14: /* DMA4_IRQSTATUS_L3 */
1844 case 0x10: /* DMA4_IRQSTATUS_L2 */
1846 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1848 case 0x08: /* DMA4_IRQSTATUS_L0 */
1849 s->irqstat[irqn] &= ~value;
1850 if (!s->irqstat[irqn])
1851 qemu_irq_lower(s->irq[irqn]);
1854 case 0x24: /* DMA4_IRQENABLE_L3 */
1856 case 0x20: /* DMA4_IRQENABLE_L2 */
1858 case 0x1c: /* DMA4_IRQENABLE_L1 */
1860 case 0x18: /* DMA4_IRQENABLE_L0 */
1861 s->irqen[irqn] = value;
1864 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1865 if (value & 2) /* SOFTRESET */
1866 omap_dma_reset(s->dma);
1867 s->ocp = value & 0x3321;
1868 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
1869 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
1872 case 0x78: /* DMA4_GCR */
1873 s->gcr = value & 0x00ff00ff;
1874 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
1875 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
1878 case 0x80 ... 0xfff:
1880 chnum = addr / 0x60;
1882 addr -= chnum * 0x60;
1885 case 0x00: /* DMA4_REVISION */
1886 case 0x28: /* DMA4_SYSSTATUS */
1887 case 0x64: /* DMA4_CAPS_0 */
1888 case 0x6c: /* DMA4_CAPS_2 */
1889 case 0x70: /* DMA4_CAPS_3 */
1890 case 0x74: /* DMA4_CAPS_4 */
1899 /* Per-channel registers */
1901 case 0x00: /* DMA4_CCR */
1902 ch->buf_disable = (value >> 25) & 1;
1903 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1904 if (ch->buf_disable && !ch->src_sync)
1905 fprintf(stderr, "%s: Buffering disable is not allowed in "
1906 "destination synchronised mode\n", __FUNCTION__);
1907 ch->prefetch = (value >> 23) & 1;
1908 ch->bs = (value >> 18) & 1;
1909 ch->transparent_copy = (value >> 17) & 1;
1910 ch->constant_fill = (value >> 16) & 1;
1911 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1912 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1913 ch->suspend = (value & 0x0100) >> 8;
1914 ch->priority = (value & 0x0040) >> 6;
1915 ch->fs = (value & 0x0020) >> 5;
1916 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
1917 fprintf(stderr, "%s: For a packet transfer at least one port "
1918 "must be constant-addressed\n", __FUNCTION__);
1919 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1920 /* XXX must be 0x01 for CamDMA */
1923 omap_dma_enable_channel(s, ch);
1925 omap_dma_disable_channel(s, ch);
1929 case 0x04: /* DMA4_CLNK_CTRL */
1930 ch->link_enabled = (value >> 15) & 0x1;
1931 ch->link_next_ch = value & 0x1f;
1934 case 0x08: /* DMA4_CICR */
1935 ch->interrupts = value & 0x09be;
1938 case 0x0c: /* DMA4_CSR */
1939 ch->cstatus &= ~value;
1942 case 0x10: /* DMA4_CSDP */
1943 ch->endian[0] =(value >> 21) & 1;
1944 ch->endian_lock[0] =(value >> 20) & 1;
1945 ch->endian[1] =(value >> 19) & 1;
1946 ch->endian_lock[1] =(value >> 18) & 1;
1947 if (ch->endian[0] != ch->endian[1])
1948 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
1950 ch->write_mode = (value >> 16) & 3;
1951 ch->burst[1] = (value & 0xc000) >> 14;
1952 ch->pack[1] = (value & 0x2000) >> 13;
1953 ch->translate[1] = (value & 0x1e00) >> 9;
1954 ch->burst[0] = (value & 0x0180) >> 7;
1955 ch->pack[0] = (value & 0x0040) >> 6;
1956 ch->translate[0] = (value & 0x003c) >> 2;
1957 if (ch->translate[0] | ch->translate[1])
1958 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
1960 ch->data_type = 1 << (value & 3);
1961 if ((value & 3) == 3)
1962 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
1965 case 0x14: /* DMA4_CEN */
1967 ch->elements = value & 0xffffff;
1970 case 0x18: /* DMA4_CFN */
1971 ch->frames = value & 0xffff;
1975 case 0x1c: /* DMA4_CSSA */
1976 ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
1980 case 0x20: /* DMA4_CDSA */
1981 ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
1985 case 0x24: /* DMA4_CSEI */
1986 ch->element_index[0] = (int16_t) value;
1990 case 0x28: /* DMA4_CSFI */
1991 ch->frame_index[0] = (int32_t) value;
1995 case 0x2c: /* DMA4_CDEI */
1996 ch->element_index[1] = (int16_t) value;
2000 case 0x30: /* DMA4_CDFI */
2001 ch->frame_index[1] = (int32_t) value;
2005 case 0x44: /* DMA4_COLOR */
2006 /* XXX only in sDMA */
2010 case 0x34: /* DMA4_CSAC */
2011 case 0x38: /* DMA4_CDAC */
2012 case 0x3c: /* DMA4_CCEN */
2013 case 0x40: /* DMA4_CCFN */
2022 static CPUReadMemoryFunc *omap_dma4_readfn[] = {
2023 omap_badwidth_read16,
2028 static CPUWriteMemoryFunc *omap_dma4_writefn[] = {
2029 omap_badwidth_write16,
2034 struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
2035 struct omap_mpu_state_s *mpu, int fifo,
2036 int chans, omap_clk iclk, omap_clk fclk)
2039 struct omap_dma_s *s = (struct omap_dma_s *)
2040 qemu_mallocz(sizeof(struct omap_dma_s));
2042 s->model = omap_dma_4;
2047 s->dma = soc_dma_init(s->chans);
2048 s->dma->freq = omap_clk_getrate(fclk);
2049 s->dma->transfer_fn = omap_dma_transfer_generic;
2050 s->dma->setup_fn = omap_dma_transfer_setup;
2051 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2053 for (i = 0; i < s->chans; i ++) {
2054 s->ch[i].dma = &s->dma->ch[i];
2055 s->dma->ch[i].opaque = &s->ch[i];
2058 memcpy(&s->irq, irqs, sizeof(s->irq));
2059 s->intr_update = omap_dma_interrupts_4_update;
2061 omap_dma_setcaps(s);
2062 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
2063 omap_dma_reset(s->dma);
2064 omap_dma_clk_update(s, 0, !!s->dma->freq);
2066 iomemtype = cpu_register_io_memory(0, omap_dma4_readfn,
2067 omap_dma4_writefn, s);
2068 cpu_register_physical_memory(base, 0x1000, iomemtype);
2070 mpu->drq = s->dma->drq;
2075 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2077 struct omap_dma_s *s = dma->opaque;