change all other clock references to use nanosecond resolution accessors
[sdk/emulator/qemu.git] / hw / omap1.c
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
25 #include "soc_dma.h"
26 /* We use pc-style serial ports.  */
27 #include "pc.h"
28 #include "blockdev.h"
29 #include "range.h"
30
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33 {
34     uint8_t ret;
35
36     OMAP_8B_REG(addr);
37     cpu_physical_memory_read(addr, (void *) &ret, 1);
38     return ret;
39 }
40
41 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42                 uint32_t value)
43 {
44     uint8_t val8 = value;
45
46     OMAP_8B_REG(addr);
47     cpu_physical_memory_write(addr, (void *) &val8, 1);
48 }
49
50 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51 {
52     uint16_t ret;
53
54     OMAP_16B_REG(addr);
55     cpu_physical_memory_read(addr, (void *) &ret, 2);
56     return ret;
57 }
58
59 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60                 uint32_t value)
61 {
62     uint16_t val16 = value;
63
64     OMAP_16B_REG(addr);
65     cpu_physical_memory_write(addr, (void *) &val16, 2);
66 }
67
68 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69 {
70     uint32_t ret;
71
72     OMAP_32B_REG(addr);
73     cpu_physical_memory_read(addr, (void *) &ret, 4);
74     return ret;
75 }
76
77 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78                 uint32_t value)
79 {
80     OMAP_32B_REG(addr);
81     cpu_physical_memory_write(addr, (void *) &value, 4);
82 }
83
84 /* MPU OS timers */
85 struct omap_mpu_timer_s {
86     qemu_irq irq;
87     omap_clk clk;
88     uint32_t val;
89     int64_t time;
90     QEMUTimer *timer;
91     QEMUBH *tick;
92     int64_t rate;
93     int it_ena;
94
95     int enable;
96     int ptv;
97     int ar;
98     int st;
99     uint32_t reset_val;
100 };
101
102 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
103 {
104     uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
105
106     if (timer->st && timer->enable && timer->rate)
107         return timer->val - muldiv64(distance >> (timer->ptv + 1),
108                                      timer->rate, get_ticks_per_sec());
109     else
110         return timer->val;
111 }
112
113 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
114 {
115     timer->val = omap_timer_read(timer);
116     timer->time = qemu_get_clock_ns(vm_clock);
117 }
118
119 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
120 {
121     int64_t expires;
122
123     if (timer->enable && timer->st && timer->rate) {
124         timer->val = timer->reset_val;  /* Should skip this on clk enable */
125         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
126                            get_ticks_per_sec(), timer->rate);
127
128         /* If timer expiry would be sooner than in about 1 ms and
129          * auto-reload isn't set, then fire immediately.  This is a hack
130          * to make systems like PalmOS run in acceptable time.  PalmOS
131          * sets the interval to a very low value and polls the status bit
132          * in a busy loop when it wants to sleep just a couple of CPU
133          * ticks.  */
134         if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
135             qemu_mod_timer(timer->timer, timer->time + expires);
136         else
137             qemu_bh_schedule(timer->tick);
138     } else
139         qemu_del_timer(timer->timer);
140 }
141
142 static void omap_timer_fire(void *opaque)
143 {
144     struct omap_mpu_timer_s *timer = opaque;
145
146     if (!timer->ar) {
147         timer->val = 0;
148         timer->st = 0;
149     }
150
151     if (timer->it_ena)
152         /* Edge-triggered irq */
153         qemu_irq_pulse(timer->irq);
154 }
155
156 static void omap_timer_tick(void *opaque)
157 {
158     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
159
160     omap_timer_sync(timer);
161     omap_timer_fire(timer);
162     omap_timer_update(timer);
163 }
164
165 static void omap_timer_clk_update(void *opaque, int line, int on)
166 {
167     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168
169     omap_timer_sync(timer);
170     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
171     omap_timer_update(timer);
172 }
173
174 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
175 {
176     omap_clk_adduser(timer->clk,
177                     qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
178     timer->rate = omap_clk_getrate(timer->clk);
179 }
180
181 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
182 {
183     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184
185     switch (addr) {
186     case 0x00:  /* CNTL_TIMER */
187         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
188
189     case 0x04:  /* LOAD_TIM */
190         break;
191
192     case 0x08:  /* READ_TIM */
193         return omap_timer_read(s);
194     }
195
196     OMAP_BAD_REG(addr);
197     return 0;
198 }
199
200 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
201                 uint32_t value)
202 {
203     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
204
205     switch (addr) {
206     case 0x00:  /* CNTL_TIMER */
207         omap_timer_sync(s);
208         s->enable = (value >> 5) & 1;
209         s->ptv = (value >> 2) & 7;
210         s->ar = (value >> 1) & 1;
211         s->st = value & 1;
212         omap_timer_update(s);
213         return;
214
215     case 0x04:  /* LOAD_TIM */
216         s->reset_val = value;
217         return;
218
219     case 0x08:  /* READ_TIM */
220         OMAP_RO_REG(addr);
221         break;
222
223     default:
224         OMAP_BAD_REG(addr);
225     }
226 }
227
228 static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
229     omap_badwidth_read32,
230     omap_badwidth_read32,
231     omap_mpu_timer_read,
232 };
233
234 static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
235     omap_badwidth_write32,
236     omap_badwidth_write32,
237     omap_mpu_timer_write,
238 };
239
240 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
241 {
242     qemu_del_timer(s->timer);
243     s->enable = 0;
244     s->reset_val = 31337;
245     s->val = 0;
246     s->ptv = 0;
247     s->ar = 0;
248     s->st = 0;
249     s->it_ena = 1;
250 }
251
252 static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
253                 qemu_irq irq, omap_clk clk)
254 {
255     int iomemtype;
256     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
257             qemu_mallocz(sizeof(struct omap_mpu_timer_s));
258
259     s->irq = irq;
260     s->clk = clk;
261     s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
262     s->tick = qemu_bh_new(omap_timer_fire, s);
263     omap_mpu_timer_reset(s);
264     omap_timer_clk_setup(s);
265
266     iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
267                     omap_mpu_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
268     cpu_register_physical_memory(base, 0x100, iomemtype);
269
270     return s;
271 }
272
273 /* Watchdog timer */
274 struct omap_watchdog_timer_s {
275     struct omap_mpu_timer_s timer;
276     uint8_t last_wr;
277     int mode;
278     int free;
279     int reset;
280 };
281
282 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
283 {
284     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
285
286     switch (addr) {
287     case 0x00:  /* CNTL_TIMER */
288         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
289                 (s->timer.st << 7) | (s->free << 1);
290
291     case 0x04:  /* READ_TIMER */
292         return omap_timer_read(&s->timer);
293
294     case 0x08:  /* TIMER_MODE */
295         return s->mode << 15;
296     }
297
298     OMAP_BAD_REG(addr);
299     return 0;
300 }
301
302 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
303                 uint32_t value)
304 {
305     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
306
307     switch (addr) {
308     case 0x00:  /* CNTL_TIMER */
309         omap_timer_sync(&s->timer);
310         s->timer.ptv = (value >> 9) & 7;
311         s->timer.ar = (value >> 8) & 1;
312         s->timer.st = (value >> 7) & 1;
313         s->free = (value >> 1) & 1;
314         omap_timer_update(&s->timer);
315         break;
316
317     case 0x04:  /* LOAD_TIMER */
318         s->timer.reset_val = value & 0xffff;
319         break;
320
321     case 0x08:  /* TIMER_MODE */
322         if (!s->mode && ((value >> 15) & 1))
323             omap_clk_get(s->timer.clk);
324         s->mode |= (value >> 15) & 1;
325         if (s->last_wr == 0xf5) {
326             if ((value & 0xff) == 0xa0) {
327                 if (s->mode) {
328                     s->mode = 0;
329                     omap_clk_put(s->timer.clk);
330                 }
331             } else {
332                 /* XXX: on T|E hardware somehow this has no effect,
333                  * on Zire 71 it works as specified.  */
334                 s->reset = 1;
335                 qemu_system_reset_request();
336             }
337         }
338         s->last_wr = value & 0xff;
339         break;
340
341     default:
342         OMAP_BAD_REG(addr);
343     }
344 }
345
346 static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
347     omap_badwidth_read16,
348     omap_wd_timer_read,
349     omap_badwidth_read16,
350 };
351
352 static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
353     omap_badwidth_write16,
354     omap_wd_timer_write,
355     omap_badwidth_write16,
356 };
357
358 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
359 {
360     qemu_del_timer(s->timer.timer);
361     if (!s->mode)
362         omap_clk_get(s->timer.clk);
363     s->mode = 1;
364     s->free = 1;
365     s->reset = 0;
366     s->timer.enable = 1;
367     s->timer.it_ena = 1;
368     s->timer.reset_val = 0xffff;
369     s->timer.val = 0;
370     s->timer.st = 0;
371     s->timer.ptv = 0;
372     s->timer.ar = 0;
373     omap_timer_update(&s->timer);
374 }
375
376 static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
377                 qemu_irq irq, omap_clk clk)
378 {
379     int iomemtype;
380     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
381             qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
382
383     s->timer.irq = irq;
384     s->timer.clk = clk;
385     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
386     omap_wd_timer_reset(s);
387     omap_timer_clk_setup(&s->timer);
388
389     iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
390                     omap_wd_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
391     cpu_register_physical_memory(base, 0x100, iomemtype);
392
393     return s;
394 }
395
396 /* 32-kHz timer */
397 struct omap_32khz_timer_s {
398     struct omap_mpu_timer_s timer;
399 };
400
401 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
402 {
403     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
404     int offset = addr & OMAP_MPUI_REG_MASK;
405
406     switch (offset) {
407     case 0x00:  /* TVR */
408         return s->timer.reset_val;
409
410     case 0x04:  /* TCR */
411         return omap_timer_read(&s->timer);
412
413     case 0x08:  /* CR */
414         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
415
416     default:
417         break;
418     }
419     OMAP_BAD_REG(addr);
420     return 0;
421 }
422
423 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
424                 uint32_t value)
425 {
426     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
427     int offset = addr & OMAP_MPUI_REG_MASK;
428
429     switch (offset) {
430     case 0x00:  /* TVR */
431         s->timer.reset_val = value & 0x00ffffff;
432         break;
433
434     case 0x04:  /* TCR */
435         OMAP_RO_REG(addr);
436         break;
437
438     case 0x08:  /* CR */
439         s->timer.ar = (value >> 3) & 1;
440         s->timer.it_ena = (value >> 2) & 1;
441         if (s->timer.st != (value & 1) || (value & 2)) {
442             omap_timer_sync(&s->timer);
443             s->timer.enable = value & 1;
444             s->timer.st = value & 1;
445             omap_timer_update(&s->timer);
446         }
447         break;
448
449     default:
450         OMAP_BAD_REG(addr);
451     }
452 }
453
454 static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
455     omap_badwidth_read32,
456     omap_badwidth_read32,
457     omap_os_timer_read,
458 };
459
460 static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
461     omap_badwidth_write32,
462     omap_badwidth_write32,
463     omap_os_timer_write,
464 };
465
466 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
467 {
468     qemu_del_timer(s->timer.timer);
469     s->timer.enable = 0;
470     s->timer.it_ena = 0;
471     s->timer.reset_val = 0x00ffffff;
472     s->timer.val = 0;
473     s->timer.st = 0;
474     s->timer.ptv = 0;
475     s->timer.ar = 1;
476 }
477
478 static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
479                 qemu_irq irq, omap_clk clk)
480 {
481     int iomemtype;
482     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
483             qemu_mallocz(sizeof(struct omap_32khz_timer_s));
484
485     s->timer.irq = irq;
486     s->timer.clk = clk;
487     s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
488     omap_os_timer_reset(s);
489     omap_timer_clk_setup(&s->timer);
490
491     iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
492                     omap_os_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
493     cpu_register_physical_memory(base, 0x800, iomemtype);
494
495     return s;
496 }
497
498 /* Ultra Low-Power Device Module */
499 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
500 {
501     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
502     uint16_t ret;
503
504     switch (addr) {
505     case 0x14:  /* IT_STATUS */
506         ret = s->ulpd_pm_regs[addr >> 2];
507         s->ulpd_pm_regs[addr >> 2] = 0;
508         qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
509         return ret;
510
511     case 0x18:  /* Reserved */
512     case 0x1c:  /* Reserved */
513     case 0x20:  /* Reserved */
514     case 0x28:  /* Reserved */
515     case 0x2c:  /* Reserved */
516         OMAP_BAD_REG(addr);
517     case 0x00:  /* COUNTER_32_LSB */
518     case 0x04:  /* COUNTER_32_MSB */
519     case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
520     case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
521     case 0x10:  /* GAUGING_CTRL */
522     case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
523     case 0x30:  /* CLOCK_CTRL */
524     case 0x34:  /* SOFT_REQ */
525     case 0x38:  /* COUNTER_32_FIQ */
526     case 0x3c:  /* DPLL_CTRL */
527     case 0x40:  /* STATUS_REQ */
528         /* XXX: check clk::usecount state for every clock */
529     case 0x48:  /* LOCL_TIME */
530     case 0x4c:  /* APLL_CTRL */
531     case 0x50:  /* POWER_CTRL */
532         return s->ulpd_pm_regs[addr >> 2];
533     }
534
535     OMAP_BAD_REG(addr);
536     return 0;
537 }
538
539 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
540                 uint16_t diff, uint16_t value)
541 {
542     if (diff & (1 << 4))                                /* USB_MCLK_EN */
543         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
544     if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
545         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
546 }
547
548 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
549                 uint16_t diff, uint16_t value)
550 {
551     if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
552         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
553     if (diff & (1 << 1))                                /* SOFT_COM_REQ */
554         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
555     if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
556         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
557     if (diff & (1 << 3))                                /* SOFT_USB_REQ */
558         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
559 }
560
561 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
562                 uint32_t value)
563 {
564     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
565     int64_t now, ticks;
566     int div, mult;
567     static const int bypass_div[4] = { 1, 2, 4, 4 };
568     uint16_t diff;
569
570     switch (addr) {
571     case 0x00:  /* COUNTER_32_LSB */
572     case 0x04:  /* COUNTER_32_MSB */
573     case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
574     case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
575     case 0x14:  /* IT_STATUS */
576     case 0x40:  /* STATUS_REQ */
577         OMAP_RO_REG(addr);
578         break;
579
580     case 0x10:  /* GAUGING_CTRL */
581         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
582         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
583             now = qemu_get_clock_ns(vm_clock);
584
585             if (value & 1)
586                 s->ulpd_gauge_start = now;
587             else {
588                 now -= s->ulpd_gauge_start;
589
590                 /* 32-kHz ticks */
591                 ticks = muldiv64(now, 32768, get_ticks_per_sec());
592                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
593                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
594                 if (ticks >> 32)        /* OVERFLOW_32K */
595                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
596
597                 /* High frequency ticks */
598                 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
599                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
600                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
601                 if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
602                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
603
604                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
605                 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
606             }
607         }
608         s->ulpd_pm_regs[addr >> 2] = value;
609         break;
610
611     case 0x18:  /* Reserved */
612     case 0x1c:  /* Reserved */
613     case 0x20:  /* Reserved */
614     case 0x28:  /* Reserved */
615     case 0x2c:  /* Reserved */
616         OMAP_BAD_REG(addr);
617     case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
618     case 0x38:  /* COUNTER_32_FIQ */
619     case 0x48:  /* LOCL_TIME */
620     case 0x50:  /* POWER_CTRL */
621         s->ulpd_pm_regs[addr >> 2] = value;
622         break;
623
624     case 0x30:  /* CLOCK_CTRL */
625         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
626         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
627         omap_ulpd_clk_update(s, diff, value);
628         break;
629
630     case 0x34:  /* SOFT_REQ */
631         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
632         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
633         omap_ulpd_req_update(s, diff, value);
634         break;
635
636     case 0x3c:  /* DPLL_CTRL */
637         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
638          * omitted altogether, probably a typo.  */
639         /* This register has identical semantics with DPLL(1:3) control
640          * registers, see omap_dpll_write() */
641         diff = s->ulpd_pm_regs[addr >> 2] & value;
642         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
643         if (diff & (0x3ff << 2)) {
644             if (value & (1 << 4)) {                     /* PLL_ENABLE */
645                 div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
646                 mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
647             } else {
648                 div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
649                 mult = 1;
650             }
651             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
652         }
653
654         /* Enter the desired mode.  */
655         s->ulpd_pm_regs[addr >> 2] =
656                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
657                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
658
659         /* Act as if the lock is restored.  */
660         s->ulpd_pm_regs[addr >> 2] |= 2;
661         break;
662
663     case 0x4c:  /* APLL_CTRL */
664         diff = s->ulpd_pm_regs[addr >> 2] & value;
665         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
666         if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
667             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
668                                     (value & (1 << 0)) ? "apll" : "dpll4"));
669         break;
670
671     default:
672         OMAP_BAD_REG(addr);
673     }
674 }
675
676 static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
677     omap_badwidth_read16,
678     omap_ulpd_pm_read,
679     omap_badwidth_read16,
680 };
681
682 static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
683     omap_badwidth_write16,
684     omap_ulpd_pm_write,
685     omap_badwidth_write16,
686 };
687
688 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
689 {
690     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
691     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
692     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
693     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
694     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
695     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
696     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
697     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
698     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
699     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
700     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
701     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
702     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
703     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
704     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
705     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
706     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
707     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
708     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
709     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
710     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
711     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
712     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
713 }
714
715 static void omap_ulpd_pm_init(target_phys_addr_t base,
716                 struct omap_mpu_state_s *mpu)
717 {
718     int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
719                     omap_ulpd_pm_writefn, mpu, DEVICE_NATIVE_ENDIAN);
720
721     cpu_register_physical_memory(base, 0x800, iomemtype);
722     omap_ulpd_pm_reset(mpu);
723 }
724
725 /* OMAP Pin Configuration */
726 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
727 {
728     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
729
730     switch (addr) {
731     case 0x00:  /* FUNC_MUX_CTRL_0 */
732     case 0x04:  /* FUNC_MUX_CTRL_1 */
733     case 0x08:  /* FUNC_MUX_CTRL_2 */
734         return s->func_mux_ctrl[addr >> 2];
735
736     case 0x0c:  /* COMP_MODE_CTRL_0 */
737         return s->comp_mode_ctrl[0];
738
739     case 0x10:  /* FUNC_MUX_CTRL_3 */
740     case 0x14:  /* FUNC_MUX_CTRL_4 */
741     case 0x18:  /* FUNC_MUX_CTRL_5 */
742     case 0x1c:  /* FUNC_MUX_CTRL_6 */
743     case 0x20:  /* FUNC_MUX_CTRL_7 */
744     case 0x24:  /* FUNC_MUX_CTRL_8 */
745     case 0x28:  /* FUNC_MUX_CTRL_9 */
746     case 0x2c:  /* FUNC_MUX_CTRL_A */
747     case 0x30:  /* FUNC_MUX_CTRL_B */
748     case 0x34:  /* FUNC_MUX_CTRL_C */
749     case 0x38:  /* FUNC_MUX_CTRL_D */
750         return s->func_mux_ctrl[(addr >> 2) - 1];
751
752     case 0x40:  /* PULL_DWN_CTRL_0 */
753     case 0x44:  /* PULL_DWN_CTRL_1 */
754     case 0x48:  /* PULL_DWN_CTRL_2 */
755     case 0x4c:  /* PULL_DWN_CTRL_3 */
756         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
757
758     case 0x50:  /* GATE_INH_CTRL_0 */
759         return s->gate_inh_ctrl[0];
760
761     case 0x60:  /* VOLTAGE_CTRL_0 */
762         return s->voltage_ctrl[0];
763
764     case 0x70:  /* TEST_DBG_CTRL_0 */
765         return s->test_dbg_ctrl[0];
766
767     case 0x80:  /* MOD_CONF_CTRL_0 */
768         return s->mod_conf_ctrl[0];
769     }
770
771     OMAP_BAD_REG(addr);
772     return 0;
773 }
774
775 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
776                 uint32_t diff, uint32_t value)
777 {
778     if (s->compat1509) {
779         if (diff & (1 << 9))                    /* BLUETOOTH */
780             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
781                             (~value >> 9) & 1);
782         if (diff & (1 << 7))                    /* USB.CLKO */
783             omap_clk_onoff(omap_findclk(s, "usb.clko"),
784                             (value >> 7) & 1);
785     }
786 }
787
788 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
789                 uint32_t diff, uint32_t value)
790 {
791     if (s->compat1509) {
792         if (diff & (1 << 31))                   /* MCBSP3_CLK_HIZ_DI */
793             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
794                             (value >> 31) & 1);
795         if (diff & (1 << 1))                    /* CLK32K */
796             omap_clk_onoff(omap_findclk(s, "clk32k_out"),
797                             (~value >> 1) & 1);
798     }
799 }
800
801 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
802                 uint32_t diff, uint32_t value)
803 {
804     if (diff & (1 << 31))                       /* CONF_MOD_UART3_CLK_MODE_R */
805          omap_clk_reparent(omap_findclk(s, "uart3_ck"),
806                          omap_findclk(s, ((value >> 31) & 1) ?
807                                  "ck_48m" : "armper_ck"));
808     if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
809          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
810                          omap_findclk(s, ((value >> 30) & 1) ?
811                                  "ck_48m" : "armper_ck"));
812     if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
813          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
814                          omap_findclk(s, ((value >> 29) & 1) ?
815                                  "ck_48m" : "armper_ck"));
816     if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
817          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
818                          omap_findclk(s, ((value >> 23) & 1) ?
819                                  "ck_48m" : "armper_ck"));
820     if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
821          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
822                          omap_findclk(s, ((value >> 12) & 1) ?
823                                  "ck_48m" : "armper_ck"));
824     if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
825          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
826 }
827
828 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
829                 uint32_t value)
830 {
831     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
832     uint32_t diff;
833
834     switch (addr) {
835     case 0x00:  /* FUNC_MUX_CTRL_0 */
836         diff = s->func_mux_ctrl[addr >> 2] ^ value;
837         s->func_mux_ctrl[addr >> 2] = value;
838         omap_pin_funcmux0_update(s, diff, value);
839         return;
840
841     case 0x04:  /* FUNC_MUX_CTRL_1 */
842         diff = s->func_mux_ctrl[addr >> 2] ^ value;
843         s->func_mux_ctrl[addr >> 2] = value;
844         omap_pin_funcmux1_update(s, diff, value);
845         return;
846
847     case 0x08:  /* FUNC_MUX_CTRL_2 */
848         s->func_mux_ctrl[addr >> 2] = value;
849         return;
850
851     case 0x0c:  /* COMP_MODE_CTRL_0 */
852         s->comp_mode_ctrl[0] = value;
853         s->compat1509 = (value != 0x0000eaef);
854         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
855         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
856         return;
857
858     case 0x10:  /* FUNC_MUX_CTRL_3 */
859     case 0x14:  /* FUNC_MUX_CTRL_4 */
860     case 0x18:  /* FUNC_MUX_CTRL_5 */
861     case 0x1c:  /* FUNC_MUX_CTRL_6 */
862     case 0x20:  /* FUNC_MUX_CTRL_7 */
863     case 0x24:  /* FUNC_MUX_CTRL_8 */
864     case 0x28:  /* FUNC_MUX_CTRL_9 */
865     case 0x2c:  /* FUNC_MUX_CTRL_A */
866     case 0x30:  /* FUNC_MUX_CTRL_B */
867     case 0x34:  /* FUNC_MUX_CTRL_C */
868     case 0x38:  /* FUNC_MUX_CTRL_D */
869         s->func_mux_ctrl[(addr >> 2) - 1] = value;
870         return;
871
872     case 0x40:  /* PULL_DWN_CTRL_0 */
873     case 0x44:  /* PULL_DWN_CTRL_1 */
874     case 0x48:  /* PULL_DWN_CTRL_2 */
875     case 0x4c:  /* PULL_DWN_CTRL_3 */
876         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
877         return;
878
879     case 0x50:  /* GATE_INH_CTRL_0 */
880         s->gate_inh_ctrl[0] = value;
881         return;
882
883     case 0x60:  /* VOLTAGE_CTRL_0 */
884         s->voltage_ctrl[0] = value;
885         return;
886
887     case 0x70:  /* TEST_DBG_CTRL_0 */
888         s->test_dbg_ctrl[0] = value;
889         return;
890
891     case 0x80:  /* MOD_CONF_CTRL_0 */
892         diff = s->mod_conf_ctrl[0] ^ value;
893         s->mod_conf_ctrl[0] = value;
894         omap_pin_modconf1_update(s, diff, value);
895         return;
896
897     default:
898         OMAP_BAD_REG(addr);
899     }
900 }
901
902 static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
903     omap_badwidth_read32,
904     omap_badwidth_read32,
905     omap_pin_cfg_read,
906 };
907
908 static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
909     omap_badwidth_write32,
910     omap_badwidth_write32,
911     omap_pin_cfg_write,
912 };
913
914 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
915 {
916     /* Start in Compatibility Mode.  */
917     mpu->compat1509 = 1;
918     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
919     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
920     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
921     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
922     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
923     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
924     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
925     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
926     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
927     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
928 }
929
930 static void omap_pin_cfg_init(target_phys_addr_t base,
931                 struct omap_mpu_state_s *mpu)
932 {
933     int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
934                     omap_pin_cfg_writefn, mpu, DEVICE_NATIVE_ENDIAN);
935
936     cpu_register_physical_memory(base, 0x800, iomemtype);
937     omap_pin_cfg_reset(mpu);
938 }
939
940 /* Device Identification, Die Identification */
941 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
942 {
943     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
944
945     switch (addr) {
946     case 0xfffe1800:    /* DIE_ID_LSB */
947         return 0xc9581f0e;
948     case 0xfffe1804:    /* DIE_ID_MSB */
949         return 0xa8858bfa;
950
951     case 0xfffe2000:    /* PRODUCT_ID_LSB */
952         return 0x00aaaafc;
953     case 0xfffe2004:    /* PRODUCT_ID_MSB */
954         return 0xcafeb574;
955
956     case 0xfffed400:    /* JTAG_ID_LSB */
957         switch (s->mpu_model) {
958         case omap310:
959             return 0x03310315;
960         case omap1510:
961             return 0x03310115;
962         default:
963             hw_error("%s: bad mpu model\n", __FUNCTION__);
964         }
965         break;
966
967     case 0xfffed404:    /* JTAG_ID_MSB */
968         switch (s->mpu_model) {
969         case omap310:
970             return 0xfb57402f;
971         case omap1510:
972             return 0xfb47002f;
973         default:
974             hw_error("%s: bad mpu model\n", __FUNCTION__);
975         }
976         break;
977     }
978
979     OMAP_BAD_REG(addr);
980     return 0;
981 }
982
983 static void omap_id_write(void *opaque, target_phys_addr_t addr,
984                 uint32_t value)
985 {
986     OMAP_BAD_REG(addr);
987 }
988
989 static CPUReadMemoryFunc * const omap_id_readfn[] = {
990     omap_badwidth_read32,
991     omap_badwidth_read32,
992     omap_id_read,
993 };
994
995 static CPUWriteMemoryFunc * const omap_id_writefn[] = {
996     omap_badwidth_write32,
997     omap_badwidth_write32,
998     omap_id_write,
999 };
1000
1001 static void omap_id_init(struct omap_mpu_state_s *mpu)
1002 {
1003     int iomemtype = cpu_register_io_memory(omap_id_readfn,
1004                     omap_id_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1005     cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1006     cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1007     if (!cpu_is_omap15xx(mpu))
1008         cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1009 }
1010
1011 /* MPUI Control (Dummy) */
1012 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1013 {
1014     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1015
1016     switch (addr) {
1017     case 0x00:  /* CTRL */
1018         return s->mpui_ctrl;
1019     case 0x04:  /* DEBUG_ADDR */
1020         return 0x01ffffff;
1021     case 0x08:  /* DEBUG_DATA */
1022         return 0xffffffff;
1023     case 0x0c:  /* DEBUG_FLAG */
1024         return 0x00000800;
1025     case 0x10:  /* STATUS */
1026         return 0x00000000;
1027
1028     /* Not in OMAP310 */
1029     case 0x14:  /* DSP_STATUS */
1030     case 0x18:  /* DSP_BOOT_CONFIG */
1031         return 0x00000000;
1032     case 0x1c:  /* DSP_MPUI_CONFIG */
1033         return 0x0000ffff;
1034     }
1035
1036     OMAP_BAD_REG(addr);
1037     return 0;
1038 }
1039
1040 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1041                 uint32_t value)
1042 {
1043     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1044
1045     switch (addr) {
1046     case 0x00:  /* CTRL */
1047         s->mpui_ctrl = value & 0x007fffff;
1048         break;
1049
1050     case 0x04:  /* DEBUG_ADDR */
1051     case 0x08:  /* DEBUG_DATA */
1052     case 0x0c:  /* DEBUG_FLAG */
1053     case 0x10:  /* STATUS */
1054     /* Not in OMAP310 */
1055     case 0x14:  /* DSP_STATUS */
1056         OMAP_RO_REG(addr);
1057     case 0x18:  /* DSP_BOOT_CONFIG */
1058     case 0x1c:  /* DSP_MPUI_CONFIG */
1059         break;
1060
1061     default:
1062         OMAP_BAD_REG(addr);
1063     }
1064 }
1065
1066 static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1067     omap_badwidth_read32,
1068     omap_badwidth_read32,
1069     omap_mpui_read,
1070 };
1071
1072 static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1073     omap_badwidth_write32,
1074     omap_badwidth_write32,
1075     omap_mpui_write,
1076 };
1077
1078 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1079 {
1080     s->mpui_ctrl = 0x0003ff1b;
1081 }
1082
1083 static void omap_mpui_init(target_phys_addr_t base,
1084                 struct omap_mpu_state_s *mpu)
1085 {
1086     int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1087                     omap_mpui_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1088
1089     cpu_register_physical_memory(base, 0x100, iomemtype);
1090
1091     omap_mpui_reset(mpu);
1092 }
1093
1094 /* TIPB Bridges */
1095 struct omap_tipb_bridge_s {
1096     qemu_irq abort;
1097
1098     int width_intr;
1099     uint16_t control;
1100     uint16_t alloc;
1101     uint16_t buffer;
1102     uint16_t enh_control;
1103 };
1104
1105 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1106 {
1107     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1108
1109     switch (addr) {
1110     case 0x00:  /* TIPB_CNTL */
1111         return s->control;
1112     case 0x04:  /* TIPB_BUS_ALLOC */
1113         return s->alloc;
1114     case 0x08:  /* MPU_TIPB_CNTL */
1115         return s->buffer;
1116     case 0x0c:  /* ENHANCED_TIPB_CNTL */
1117         return s->enh_control;
1118     case 0x10:  /* ADDRESS_DBG */
1119     case 0x14:  /* DATA_DEBUG_LOW */
1120     case 0x18:  /* DATA_DEBUG_HIGH */
1121         return 0xffff;
1122     case 0x1c:  /* DEBUG_CNTR_SIG */
1123         return 0x00f8;
1124     }
1125
1126     OMAP_BAD_REG(addr);
1127     return 0;
1128 }
1129
1130 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1131                 uint32_t value)
1132 {
1133     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1134
1135     switch (addr) {
1136     case 0x00:  /* TIPB_CNTL */
1137         s->control = value & 0xffff;
1138         break;
1139
1140     case 0x04:  /* TIPB_BUS_ALLOC */
1141         s->alloc = value & 0x003f;
1142         break;
1143
1144     case 0x08:  /* MPU_TIPB_CNTL */
1145         s->buffer = value & 0x0003;
1146         break;
1147
1148     case 0x0c:  /* ENHANCED_TIPB_CNTL */
1149         s->width_intr = !(value & 2);
1150         s->enh_control = value & 0x000f;
1151         break;
1152
1153     case 0x10:  /* ADDRESS_DBG */
1154     case 0x14:  /* DATA_DEBUG_LOW */
1155     case 0x18:  /* DATA_DEBUG_HIGH */
1156     case 0x1c:  /* DEBUG_CNTR_SIG */
1157         OMAP_RO_REG(addr);
1158         break;
1159
1160     default:
1161         OMAP_BAD_REG(addr);
1162     }
1163 }
1164
1165 static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1166     omap_badwidth_read16,
1167     omap_tipb_bridge_read,
1168     omap_tipb_bridge_read,
1169 };
1170
1171 static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1172     omap_badwidth_write16,
1173     omap_tipb_bridge_write,
1174     omap_tipb_bridge_write,
1175 };
1176
1177 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1178 {
1179     s->control = 0xffff;
1180     s->alloc = 0x0009;
1181     s->buffer = 0x0000;
1182     s->enh_control = 0x000f;
1183 }
1184
1185 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1186                 qemu_irq abort_irq, omap_clk clk)
1187 {
1188     int iomemtype;
1189     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1190             qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1191
1192     s->abort = abort_irq;
1193     omap_tipb_bridge_reset(s);
1194
1195     iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1196                     omap_tipb_bridge_writefn, s, DEVICE_NATIVE_ENDIAN);
1197     cpu_register_physical_memory(base, 0x100, iomemtype);
1198
1199     return s;
1200 }
1201
1202 /* Dummy Traffic Controller's Memory Interface */
1203 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1204 {
1205     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1206     uint32_t ret;
1207
1208     switch (addr) {
1209     case 0x00:  /* IMIF_PRIO */
1210     case 0x04:  /* EMIFS_PRIO */
1211     case 0x08:  /* EMIFF_PRIO */
1212     case 0x0c:  /* EMIFS_CONFIG */
1213     case 0x10:  /* EMIFS_CS0_CONFIG */
1214     case 0x14:  /* EMIFS_CS1_CONFIG */
1215     case 0x18:  /* EMIFS_CS2_CONFIG */
1216     case 0x1c:  /* EMIFS_CS3_CONFIG */
1217     case 0x24:  /* EMIFF_MRS */
1218     case 0x28:  /* TIMEOUT1 */
1219     case 0x2c:  /* TIMEOUT2 */
1220     case 0x30:  /* TIMEOUT3 */
1221     case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1222     case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1223         return s->tcmi_regs[addr >> 2];
1224
1225     case 0x20:  /* EMIFF_SDRAM_CONFIG */
1226         ret = s->tcmi_regs[addr >> 2];
1227         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1228         /* XXX: We can try using the VGA_DIRTY flag for this */
1229         return ret;
1230     }
1231
1232     OMAP_BAD_REG(addr);
1233     return 0;
1234 }
1235
1236 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1237                 uint32_t value)
1238 {
1239     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1240
1241     switch (addr) {
1242     case 0x00:  /* IMIF_PRIO */
1243     case 0x04:  /* EMIFS_PRIO */
1244     case 0x08:  /* EMIFF_PRIO */
1245     case 0x10:  /* EMIFS_CS0_CONFIG */
1246     case 0x14:  /* EMIFS_CS1_CONFIG */
1247     case 0x18:  /* EMIFS_CS2_CONFIG */
1248     case 0x1c:  /* EMIFS_CS3_CONFIG */
1249     case 0x20:  /* EMIFF_SDRAM_CONFIG */
1250     case 0x24:  /* EMIFF_MRS */
1251     case 0x28:  /* TIMEOUT1 */
1252     case 0x2c:  /* TIMEOUT2 */
1253     case 0x30:  /* TIMEOUT3 */
1254     case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1255     case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1256         s->tcmi_regs[addr >> 2] = value;
1257         break;
1258     case 0x0c:  /* EMIFS_CONFIG */
1259         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1260         break;
1261
1262     default:
1263         OMAP_BAD_REG(addr);
1264     }
1265 }
1266
1267 static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1268     omap_badwidth_read32,
1269     omap_badwidth_read32,
1270     omap_tcmi_read,
1271 };
1272
1273 static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1274     omap_badwidth_write32,
1275     omap_badwidth_write32,
1276     omap_tcmi_write,
1277 };
1278
1279 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1280 {
1281     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1282     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1283     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1284     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1285     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1286     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1287     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1288     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1289     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1290     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1291     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1292     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1293     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1294     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1295     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1296 }
1297
1298 static void omap_tcmi_init(target_phys_addr_t base,
1299                 struct omap_mpu_state_s *mpu)
1300 {
1301     int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1302                     omap_tcmi_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1303
1304     cpu_register_physical_memory(base, 0x100, iomemtype);
1305     omap_tcmi_reset(mpu);
1306 }
1307
1308 /* Digital phase-locked loops control */
1309 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1310 {
1311     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1312
1313     if (addr == 0x00)   /* CTL_REG */
1314         return s->mode;
1315
1316     OMAP_BAD_REG(addr);
1317     return 0;
1318 }
1319
1320 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1321                 uint32_t value)
1322 {
1323     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1324     uint16_t diff;
1325     static const int bypass_div[4] = { 1, 2, 4, 4 };
1326     int div, mult;
1327
1328     if (addr == 0x00) { /* CTL_REG */
1329         /* See omap_ulpd_pm_write() too */
1330         diff = s->mode & value;
1331         s->mode = value & 0x2fff;
1332         if (diff & (0x3ff << 2)) {
1333             if (value & (1 << 4)) {                     /* PLL_ENABLE */
1334                 div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1335                 mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1336             } else {
1337                 div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1338                 mult = 1;
1339             }
1340             omap_clk_setrate(s->dpll, div, mult);
1341         }
1342
1343         /* Enter the desired mode.  */
1344         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1345
1346         /* Act as if the lock is restored.  */
1347         s->mode |= 2;
1348     } else {
1349         OMAP_BAD_REG(addr);
1350     }
1351 }
1352
1353 static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1354     omap_badwidth_read16,
1355     omap_dpll_read,
1356     omap_badwidth_read16,
1357 };
1358
1359 static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1360     omap_badwidth_write16,
1361     omap_dpll_write,
1362     omap_badwidth_write16,
1363 };
1364
1365 static void omap_dpll_reset(struct dpll_ctl_s *s)
1366 {
1367     s->mode = 0x2002;
1368     omap_clk_setrate(s->dpll, 1, 1);
1369 }
1370
1371 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1372                 omap_clk clk)
1373 {
1374     int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1375                     omap_dpll_writefn, s, DEVICE_NATIVE_ENDIAN);
1376
1377     s->dpll = clk;
1378     omap_dpll_reset(s);
1379
1380     cpu_register_physical_memory(base, 0x100, iomemtype);
1381 }
1382
1383 /* MPU Clock/Reset/Power Mode Control */
1384 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1385 {
1386     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1387
1388     switch (addr) {
1389     case 0x00:  /* ARM_CKCTL */
1390         return s->clkm.arm_ckctl;
1391
1392     case 0x04:  /* ARM_IDLECT1 */
1393         return s->clkm.arm_idlect1;
1394
1395     case 0x08:  /* ARM_IDLECT2 */
1396         return s->clkm.arm_idlect2;
1397
1398     case 0x0c:  /* ARM_EWUPCT */
1399         return s->clkm.arm_ewupct;
1400
1401     case 0x10:  /* ARM_RSTCT1 */
1402         return s->clkm.arm_rstct1;
1403
1404     case 0x14:  /* ARM_RSTCT2 */
1405         return s->clkm.arm_rstct2;
1406
1407     case 0x18:  /* ARM_SYSST */
1408         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1409
1410     case 0x1c:  /* ARM_CKOUT1 */
1411         return s->clkm.arm_ckout1;
1412
1413     case 0x20:  /* ARM_CKOUT2 */
1414         break;
1415     }
1416
1417     OMAP_BAD_REG(addr);
1418     return 0;
1419 }
1420
1421 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1422                 uint16_t diff, uint16_t value)
1423 {
1424     omap_clk clk;
1425
1426     if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1427         if (value & (1 << 14))
1428             /* Reserved */;
1429         else {
1430             clk = omap_findclk(s, "arminth_ck");
1431             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1432         }
1433     }
1434     if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1435         clk = omap_findclk(s, "armtim_ck");
1436         if (value & (1 << 12))
1437             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1438         else
1439             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1440     }
1441     /* XXX: en_dspck */
1442     if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1443         clk = omap_findclk(s, "dspmmu_ck");
1444         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1445     }
1446     if (diff & (3 << 8)) {                              /* TCDIV */
1447         clk = omap_findclk(s, "tc_ck");
1448         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1449     }
1450     if (diff & (3 << 6)) {                              /* DSPDIV */
1451         clk = omap_findclk(s, "dsp_ck");
1452         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1453     }
1454     if (diff & (3 << 4)) {                              /* ARMDIV */
1455         clk = omap_findclk(s, "arm_ck");
1456         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1457     }
1458     if (diff & (3 << 2)) {                              /* LCDDIV */
1459         clk = omap_findclk(s, "lcd_ck");
1460         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1461     }
1462     if (diff & (3 << 0)) {                              /* PERDIV */
1463         clk = omap_findclk(s, "armper_ck");
1464         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1465     }
1466 }
1467
1468 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1469                 uint16_t diff, uint16_t value)
1470 {
1471     omap_clk clk;
1472
1473     if (value & (1 << 11))                              /* SETARM_IDLE */
1474         cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1475     if (!(value & (1 << 10)))                           /* WKUP_MODE */
1476         qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1477
1478 #define SET_CANIDLE(clock, bit)                         \
1479     if (diff & (1 << bit)) {                            \
1480         clk = omap_findclk(s, clock);                   \
1481         omap_clk_canidle(clk, (value >> bit) & 1);      \
1482     }
1483     SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1484     SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1485     SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1486     SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1487     SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1488     SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1489     SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1490     SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1491     SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1492     SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1493     SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1494     SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1495     SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1496     SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1497 }
1498
1499 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1500                 uint16_t diff, uint16_t value)
1501 {
1502     omap_clk clk;
1503
1504 #define SET_ONOFF(clock, bit)                           \
1505     if (diff & (1 << bit)) {                            \
1506         clk = omap_findclk(s, clock);                   \
1507         omap_clk_onoff(clk, (value >> bit) & 1);        \
1508     }
1509     SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1510     SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1511     SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1512     SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1513     SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1514     SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1515     SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1516     SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1517     SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1518     SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1519     SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1520 }
1521
1522 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1523                 uint16_t diff, uint16_t value)
1524 {
1525     omap_clk clk;
1526
1527     if (diff & (3 << 4)) {                              /* TCLKOUT */
1528         clk = omap_findclk(s, "tclk_out");
1529         switch ((value >> 4) & 3) {
1530         case 1:
1531             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1532             omap_clk_onoff(clk, 1);
1533             break;
1534         case 2:
1535             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1536             omap_clk_onoff(clk, 1);
1537             break;
1538         default:
1539             omap_clk_onoff(clk, 0);
1540         }
1541     }
1542     if (diff & (3 << 2)) {                              /* DCLKOUT */
1543         clk = omap_findclk(s, "dclk_out");
1544         switch ((value >> 2) & 3) {
1545         case 0:
1546             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1547             break;
1548         case 1:
1549             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1550             break;
1551         case 2:
1552             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1553             break;
1554         case 3:
1555             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1556             break;
1557         }
1558     }
1559     if (diff & (3 << 0)) {                              /* ACLKOUT */
1560         clk = omap_findclk(s, "aclk_out");
1561         switch ((value >> 0) & 3) {
1562         case 1:
1563             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1564             omap_clk_onoff(clk, 1);
1565             break;
1566         case 2:
1567             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1568             omap_clk_onoff(clk, 1);
1569             break;
1570         case 3:
1571             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1572             omap_clk_onoff(clk, 1);
1573             break;
1574         default:
1575             omap_clk_onoff(clk, 0);
1576         }
1577     }
1578 }
1579
1580 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1581                 uint32_t value)
1582 {
1583     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1584     uint16_t diff;
1585     omap_clk clk;
1586     static const char *clkschemename[8] = {
1587         "fully synchronous", "fully asynchronous", "synchronous scalable",
1588         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1589     };
1590
1591     switch (addr) {
1592     case 0x00:  /* ARM_CKCTL */
1593         diff = s->clkm.arm_ckctl ^ value;
1594         s->clkm.arm_ckctl = value & 0x7fff;
1595         omap_clkm_ckctl_update(s, diff, value);
1596         return;
1597
1598     case 0x04:  /* ARM_IDLECT1 */
1599         diff = s->clkm.arm_idlect1 ^ value;
1600         s->clkm.arm_idlect1 = value & 0x0fff;
1601         omap_clkm_idlect1_update(s, diff, value);
1602         return;
1603
1604     case 0x08:  /* ARM_IDLECT2 */
1605         diff = s->clkm.arm_idlect2 ^ value;
1606         s->clkm.arm_idlect2 = value & 0x07ff;
1607         omap_clkm_idlect2_update(s, diff, value);
1608         return;
1609
1610     case 0x0c:  /* ARM_EWUPCT */
1611         s->clkm.arm_ewupct = value & 0x003f;
1612         return;
1613
1614     case 0x10:  /* ARM_RSTCT1 */
1615         diff = s->clkm.arm_rstct1 ^ value;
1616         s->clkm.arm_rstct1 = value & 0x0007;
1617         if (value & 9) {
1618             qemu_system_reset_request();
1619             s->clkm.cold_start = 0xa;
1620         }
1621         if (diff & ~value & 4) {                                /* DSP_RST */
1622             omap_mpui_reset(s);
1623             omap_tipb_bridge_reset(s->private_tipb);
1624             omap_tipb_bridge_reset(s->public_tipb);
1625         }
1626         if (diff & 2) {                                         /* DSP_EN */
1627             clk = omap_findclk(s, "dsp_ck");
1628             omap_clk_canidle(clk, (~value >> 1) & 1);
1629         }
1630         return;
1631
1632     case 0x14:  /* ARM_RSTCT2 */
1633         s->clkm.arm_rstct2 = value & 0x0001;
1634         return;
1635
1636     case 0x18:  /* ARM_SYSST */
1637         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1638             s->clkm.clocking_scheme = (value >> 11) & 7;
1639             printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1640                             clkschemename[s->clkm.clocking_scheme]);
1641         }
1642         s->clkm.cold_start &= value & 0x3f;
1643         return;
1644
1645     case 0x1c:  /* ARM_CKOUT1 */
1646         diff = s->clkm.arm_ckout1 ^ value;
1647         s->clkm.arm_ckout1 = value & 0x003f;
1648         omap_clkm_ckout1_update(s, diff, value);
1649         return;
1650
1651     case 0x20:  /* ARM_CKOUT2 */
1652     default:
1653         OMAP_BAD_REG(addr);
1654     }
1655 }
1656
1657 static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
1658     omap_badwidth_read16,
1659     omap_clkm_read,
1660     omap_badwidth_read16,
1661 };
1662
1663 static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
1664     omap_badwidth_write16,
1665     omap_clkm_write,
1666     omap_badwidth_write16,
1667 };
1668
1669 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
1670 {
1671     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672
1673     switch (addr) {
1674     case 0x04:  /* DSP_IDLECT1 */
1675         return s->clkm.dsp_idlect1;
1676
1677     case 0x08:  /* DSP_IDLECT2 */
1678         return s->clkm.dsp_idlect2;
1679
1680     case 0x14:  /* DSP_RSTCT2 */
1681         return s->clkm.dsp_rstct2;
1682
1683     case 0x18:  /* DSP_SYSST */
1684         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1685                 (s->env->halted << 6);  /* Quite useless... */
1686     }
1687
1688     OMAP_BAD_REG(addr);
1689     return 0;
1690 }
1691
1692 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1693                 uint16_t diff, uint16_t value)
1694 {
1695     omap_clk clk;
1696
1697     SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1698 }
1699
1700 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1701                 uint16_t diff, uint16_t value)
1702 {
1703     omap_clk clk;
1704
1705     SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1706 }
1707
1708 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
1709                 uint32_t value)
1710 {
1711     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1712     uint16_t diff;
1713
1714     switch (addr) {
1715     case 0x04:  /* DSP_IDLECT1 */
1716         diff = s->clkm.dsp_idlect1 ^ value;
1717         s->clkm.dsp_idlect1 = value & 0x01f7;
1718         omap_clkdsp_idlect1_update(s, diff, value);
1719         break;
1720
1721     case 0x08:  /* DSP_IDLECT2 */
1722         s->clkm.dsp_idlect2 = value & 0x0037;
1723         diff = s->clkm.dsp_idlect1 ^ value;
1724         omap_clkdsp_idlect2_update(s, diff, value);
1725         break;
1726
1727     case 0x14:  /* DSP_RSTCT2 */
1728         s->clkm.dsp_rstct2 = value & 0x0001;
1729         break;
1730
1731     case 0x18:  /* DSP_SYSST */
1732         s->clkm.cold_start &= value & 0x3f;
1733         break;
1734
1735     default:
1736         OMAP_BAD_REG(addr);
1737     }
1738 }
1739
1740 static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
1741     omap_badwidth_read16,
1742     omap_clkdsp_read,
1743     omap_badwidth_read16,
1744 };
1745
1746 static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
1747     omap_badwidth_write16,
1748     omap_clkdsp_write,
1749     omap_badwidth_write16,
1750 };
1751
1752 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1753 {
1754     if (s->wdt && s->wdt->reset)
1755         s->clkm.cold_start = 0x6;
1756     s->clkm.clocking_scheme = 0;
1757     omap_clkm_ckctl_update(s, ~0, 0x3000);
1758     s->clkm.arm_ckctl = 0x3000;
1759     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1760     s->clkm.arm_idlect1 = 0x0400;
1761     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1762     s->clkm.arm_idlect2 = 0x0100;
1763     s->clkm.arm_ewupct = 0x003f;
1764     s->clkm.arm_rstct1 = 0x0000;
1765     s->clkm.arm_rstct2 = 0x0000;
1766     s->clkm.arm_ckout1 = 0x0015;
1767     s->clkm.dpll1_mode = 0x2002;
1768     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1769     s->clkm.dsp_idlect1 = 0x0040;
1770     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1771     s->clkm.dsp_idlect2 = 0x0000;
1772     s->clkm.dsp_rstct2 = 0x0000;
1773 }
1774
1775 static void omap_clkm_init(target_phys_addr_t mpu_base,
1776                 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
1777 {
1778     int iomemtype[2] = {
1779         cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s,
1780                                DEVICE_NATIVE_ENDIAN),
1781         cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s,
1782                                DEVICE_NATIVE_ENDIAN),
1783     };
1784
1785     s->clkm.arm_idlect1 = 0x03ff;
1786     s->clkm.arm_idlect2 = 0x0100;
1787     s->clkm.dsp_idlect1 = 0x0002;
1788     omap_clkm_reset(s);
1789     s->clkm.cold_start = 0x3a;
1790
1791     cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
1792     cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
1793 }
1794
1795 /* MPU I/O */
1796 struct omap_mpuio_s {
1797     qemu_irq irq;
1798     qemu_irq kbd_irq;
1799     qemu_irq *in;
1800     qemu_irq handler[16];
1801     qemu_irq wakeup;
1802
1803     uint16_t inputs;
1804     uint16_t outputs;
1805     uint16_t dir;
1806     uint16_t edge;
1807     uint16_t mask;
1808     uint16_t ints;
1809
1810     uint16_t debounce;
1811     uint16_t latch;
1812     uint8_t event;
1813
1814     uint8_t buttons[5];
1815     uint8_t row_latch;
1816     uint8_t cols;
1817     int kbd_mask;
1818     int clk;
1819 };
1820
1821 static void omap_mpuio_set(void *opaque, int line, int level)
1822 {
1823     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1824     uint16_t prev = s->inputs;
1825
1826     if (level)
1827         s->inputs |= 1 << line;
1828     else
1829         s->inputs &= ~(1 << line);
1830
1831     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1832         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1833             s->ints |= 1 << line;
1834             qemu_irq_raise(s->irq);
1835             /* TODO: wakeup */
1836         }
1837         if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1838                 (s->event >> 1) == line)        /* PIN_SELECT */
1839             s->latch = s->inputs;
1840     }
1841 }
1842
1843 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1844 {
1845     int i;
1846     uint8_t *row, rows = 0, cols = ~s->cols;
1847
1848     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1849         if (*row & cols)
1850             rows |= i;
1851
1852     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1853     s->row_latch = ~rows;
1854 }
1855
1856 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
1857 {
1858     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1859     int offset = addr & OMAP_MPUI_REG_MASK;
1860     uint16_t ret;
1861
1862     switch (offset) {
1863     case 0x00:  /* INPUT_LATCH */
1864         return s->inputs;
1865
1866     case 0x04:  /* OUTPUT_REG */
1867         return s->outputs;
1868
1869     case 0x08:  /* IO_CNTL */
1870         return s->dir;
1871
1872     case 0x10:  /* KBR_LATCH */
1873         return s->row_latch;
1874
1875     case 0x14:  /* KBC_REG */
1876         return s->cols;
1877
1878     case 0x18:  /* GPIO_EVENT_MODE_REG */
1879         return s->event;
1880
1881     case 0x1c:  /* GPIO_INT_EDGE_REG */
1882         return s->edge;
1883
1884     case 0x20:  /* KBD_INT */
1885         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1886
1887     case 0x24:  /* GPIO_INT */
1888         ret = s->ints;
1889         s->ints &= s->mask;
1890         if (ret)
1891             qemu_irq_lower(s->irq);
1892         return ret;
1893
1894     case 0x28:  /* KBD_MASKIT */
1895         return s->kbd_mask;
1896
1897     case 0x2c:  /* GPIO_MASKIT */
1898         return s->mask;
1899
1900     case 0x30:  /* GPIO_DEBOUNCING_REG */
1901         return s->debounce;
1902
1903     case 0x34:  /* GPIO_LATCH_REG */
1904         return s->latch;
1905     }
1906
1907     OMAP_BAD_REG(addr);
1908     return 0;
1909 }
1910
1911 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
1912                 uint32_t value)
1913 {
1914     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915     int offset = addr & OMAP_MPUI_REG_MASK;
1916     uint16_t diff;
1917     int ln;
1918
1919     switch (offset) {
1920     case 0x04:  /* OUTPUT_REG */
1921         diff = (s->outputs ^ value) & ~s->dir;
1922         s->outputs = value;
1923         while ((ln = ffs(diff))) {
1924             ln --;
1925             if (s->handler[ln])
1926                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1927             diff &= ~(1 << ln);
1928         }
1929         break;
1930
1931     case 0x08:  /* IO_CNTL */
1932         diff = s->outputs & (s->dir ^ value);
1933         s->dir = value;
1934
1935         value = s->outputs & ~s->dir;
1936         while ((ln = ffs(diff))) {
1937             ln --;
1938             if (s->handler[ln])
1939                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1940             diff &= ~(1 << ln);
1941         }
1942         break;
1943
1944     case 0x14:  /* KBC_REG */
1945         s->cols = value;
1946         omap_mpuio_kbd_update(s);
1947         break;
1948
1949     case 0x18:  /* GPIO_EVENT_MODE_REG */
1950         s->event = value & 0x1f;
1951         break;
1952
1953     case 0x1c:  /* GPIO_INT_EDGE_REG */
1954         s->edge = value;
1955         break;
1956
1957     case 0x28:  /* KBD_MASKIT */
1958         s->kbd_mask = value & 1;
1959         omap_mpuio_kbd_update(s);
1960         break;
1961
1962     case 0x2c:  /* GPIO_MASKIT */
1963         s->mask = value;
1964         break;
1965
1966     case 0x30:  /* GPIO_DEBOUNCING_REG */
1967         s->debounce = value & 0x1ff;
1968         break;
1969
1970     case 0x00:  /* INPUT_LATCH */
1971     case 0x10:  /* KBR_LATCH */
1972     case 0x20:  /* KBD_INT */
1973     case 0x24:  /* GPIO_INT */
1974     case 0x34:  /* GPIO_LATCH_REG */
1975         OMAP_RO_REG(addr);
1976         return;
1977
1978     default:
1979         OMAP_BAD_REG(addr);
1980         return;
1981     }
1982 }
1983
1984 static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
1985     omap_badwidth_read16,
1986     omap_mpuio_read,
1987     omap_badwidth_read16,
1988 };
1989
1990 static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
1991     omap_badwidth_write16,
1992     omap_mpuio_write,
1993     omap_badwidth_write16,
1994 };
1995
1996 static void omap_mpuio_reset(struct omap_mpuio_s *s)
1997 {
1998     s->inputs = 0;
1999     s->outputs = 0;
2000     s->dir = ~0;
2001     s->event = 0;
2002     s->edge = 0;
2003     s->kbd_mask = 0;
2004     s->mask = 0;
2005     s->debounce = 0;
2006     s->latch = 0;
2007     s->ints = 0;
2008     s->row_latch = 0x1f;
2009     s->clk = 1;
2010 }
2011
2012 static void omap_mpuio_onoff(void *opaque, int line, int on)
2013 {
2014     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2015
2016     s->clk = on;
2017     if (on)
2018         omap_mpuio_kbd_update(s);
2019 }
2020
2021 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2022                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2023                 omap_clk clk)
2024 {
2025     int iomemtype;
2026     struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2027             qemu_mallocz(sizeof(struct omap_mpuio_s));
2028
2029     s->irq = gpio_int;
2030     s->kbd_irq = kbd_int;
2031     s->wakeup = wakeup;
2032     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2033     omap_mpuio_reset(s);
2034
2035     iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2036                     omap_mpuio_writefn, s, DEVICE_NATIVE_ENDIAN);
2037     cpu_register_physical_memory(base, 0x800, iomemtype);
2038
2039     omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2040
2041     return s;
2042 }
2043
2044 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2045 {
2046     return s->in;
2047 }
2048
2049 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2050 {
2051     if (line >= 16 || line < 0)
2052         hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2053     s->handler[line] = handler;
2054 }
2055
2056 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2057 {
2058     if (row >= 5 || row < 0)
2059         hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2060
2061     if (down)
2062         s->buttons[row] |= 1 << col;
2063     else
2064         s->buttons[row] &= ~(1 << col);
2065
2066     omap_mpuio_kbd_update(s);
2067 }
2068
2069 /* MicroWire Interface */
2070 struct omap_uwire_s {
2071     qemu_irq txirq;
2072     qemu_irq rxirq;
2073     qemu_irq txdrq;
2074
2075     uint16_t txbuf;
2076     uint16_t rxbuf;
2077     uint16_t control;
2078     uint16_t setup[5];
2079
2080     uWireSlave *chip[4];
2081 };
2082
2083 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2084 {
2085     int chipselect = (s->control >> 10) & 3;            /* INDEX */
2086     uWireSlave *slave = s->chip[chipselect];
2087
2088     if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2089         if (s->control & (1 << 12))                     /* CS_CMD */
2090             if (slave && slave->send)
2091                 slave->send(slave->opaque,
2092                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2093         s->control &= ~(1 << 14);                       /* CSRB */
2094         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2095          * a DRQ.  When is the level IRQ supposed to be reset?  */
2096     }
2097
2098     if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2099         if (s->control & (1 << 12))                     /* CS_CMD */
2100             if (slave && slave->receive)
2101                 s->rxbuf = slave->receive(slave->opaque);
2102         s->control |= 1 << 15;                          /* RDRB */
2103         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2104          * a DRQ.  When is the level IRQ supposed to be reset?  */
2105     }
2106 }
2107
2108 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2109 {
2110     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2111     int offset = addr & OMAP_MPUI_REG_MASK;
2112
2113     switch (offset) {
2114     case 0x00:  /* RDR */
2115         s->control &= ~(1 << 15);                       /* RDRB */
2116         return s->rxbuf;
2117
2118     case 0x04:  /* CSR */
2119         return s->control;
2120
2121     case 0x08:  /* SR1 */
2122         return s->setup[0];
2123     case 0x0c:  /* SR2 */
2124         return s->setup[1];
2125     case 0x10:  /* SR3 */
2126         return s->setup[2];
2127     case 0x14:  /* SR4 */
2128         return s->setup[3];
2129     case 0x18:  /* SR5 */
2130         return s->setup[4];
2131     }
2132
2133     OMAP_BAD_REG(addr);
2134     return 0;
2135 }
2136
2137 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2138                 uint32_t value)
2139 {
2140     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2141     int offset = addr & OMAP_MPUI_REG_MASK;
2142
2143     switch (offset) {
2144     case 0x00:  /* TDR */
2145         s->txbuf = value;                               /* TD */
2146         if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2147                         ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2148                          (s->control & (1 << 12)))) {   /* CS_CMD */
2149             s->control |= 1 << 14;                      /* CSRB */
2150             omap_uwire_transfer_start(s);
2151         }
2152         break;
2153
2154     case 0x04:  /* CSR */
2155         s->control = value & 0x1fff;
2156         if (value & (1 << 13))                          /* START */
2157             omap_uwire_transfer_start(s);
2158         break;
2159
2160     case 0x08:  /* SR1 */
2161         s->setup[0] = value & 0x003f;
2162         break;
2163
2164     case 0x0c:  /* SR2 */
2165         s->setup[1] = value & 0x0fc0;
2166         break;
2167
2168     case 0x10:  /* SR3 */
2169         s->setup[2] = value & 0x0003;
2170         break;
2171
2172     case 0x14:  /* SR4 */
2173         s->setup[3] = value & 0x0001;
2174         break;
2175
2176     case 0x18:  /* SR5 */
2177         s->setup[4] = value & 0x000f;
2178         break;
2179
2180     default:
2181         OMAP_BAD_REG(addr);
2182         return;
2183     }
2184 }
2185
2186 static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
2187     omap_badwidth_read16,
2188     omap_uwire_read,
2189     omap_badwidth_read16,
2190 };
2191
2192 static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
2193     omap_badwidth_write16,
2194     omap_uwire_write,
2195     omap_badwidth_write16,
2196 };
2197
2198 static void omap_uwire_reset(struct omap_uwire_s *s)
2199 {
2200     s->control = 0;
2201     s->setup[0] = 0;
2202     s->setup[1] = 0;
2203     s->setup[2] = 0;
2204     s->setup[3] = 0;
2205     s->setup[4] = 0;
2206 }
2207
2208 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2209                 qemu_irq *irq, qemu_irq dma, omap_clk clk)
2210 {
2211     int iomemtype;
2212     struct omap_uwire_s *s = (struct omap_uwire_s *)
2213             qemu_mallocz(sizeof(struct omap_uwire_s));
2214
2215     s->txirq = irq[0];
2216     s->rxirq = irq[1];
2217     s->txdrq = dma;
2218     omap_uwire_reset(s);
2219
2220     iomemtype = cpu_register_io_memory(omap_uwire_readfn,
2221                     omap_uwire_writefn, s, DEVICE_NATIVE_ENDIAN);
2222     cpu_register_physical_memory(base, 0x800, iomemtype);
2223
2224     return s;
2225 }
2226
2227 void omap_uwire_attach(struct omap_uwire_s *s,
2228                 uWireSlave *slave, int chipselect)
2229 {
2230     if (chipselect < 0 || chipselect > 3) {
2231         fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2232         exit(-1);
2233     }
2234
2235     s->chip[chipselect] = slave;
2236 }
2237
2238 /* Pseudonoise Pulse-Width Light Modulator */
2239 static void omap_pwl_update(struct omap_mpu_state_s *s)
2240 {
2241     int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2242
2243     if (output != s->pwl.output) {
2244         s->pwl.output = output;
2245         printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2246     }
2247 }
2248
2249 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2250 {
2251     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2252     int offset = addr & OMAP_MPUI_REG_MASK;
2253
2254     switch (offset) {
2255     case 0x00:  /* PWL_LEVEL */
2256         return s->pwl.level;
2257     case 0x04:  /* PWL_CTRL */
2258         return s->pwl.enable;
2259     }
2260     OMAP_BAD_REG(addr);
2261     return 0;
2262 }
2263
2264 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2265                 uint32_t value)
2266 {
2267     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2268     int offset = addr & OMAP_MPUI_REG_MASK;
2269
2270     switch (offset) {
2271     case 0x00:  /* PWL_LEVEL */
2272         s->pwl.level = value;
2273         omap_pwl_update(s);
2274         break;
2275     case 0x04:  /* PWL_CTRL */
2276         s->pwl.enable = value & 1;
2277         omap_pwl_update(s);
2278         break;
2279     default:
2280         OMAP_BAD_REG(addr);
2281         return;
2282     }
2283 }
2284
2285 static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
2286     omap_pwl_read,
2287     omap_badwidth_read8,
2288     omap_badwidth_read8,
2289 };
2290
2291 static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
2292     omap_pwl_write,
2293     omap_badwidth_write8,
2294     omap_badwidth_write8,
2295 };
2296
2297 static void omap_pwl_reset(struct omap_mpu_state_s *s)
2298 {
2299     s->pwl.output = 0;
2300     s->pwl.level = 0;
2301     s->pwl.enable = 0;
2302     s->pwl.clk = 1;
2303     omap_pwl_update(s);
2304 }
2305
2306 static void omap_pwl_clk_update(void *opaque, int line, int on)
2307 {
2308     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2309
2310     s->pwl.clk = on;
2311     omap_pwl_update(s);
2312 }
2313
2314 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2315                 omap_clk clk)
2316 {
2317     int iomemtype;
2318
2319     omap_pwl_reset(s);
2320
2321     iomemtype = cpu_register_io_memory(omap_pwl_readfn,
2322                     omap_pwl_writefn, s, DEVICE_NATIVE_ENDIAN);
2323     cpu_register_physical_memory(base, 0x800, iomemtype);
2324
2325     omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2326 }
2327
2328 /* Pulse-Width Tone module */
2329 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2330 {
2331     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2332     int offset = addr & OMAP_MPUI_REG_MASK;
2333
2334     switch (offset) {
2335     case 0x00:  /* FRC */
2336         return s->pwt.frc;
2337     case 0x04:  /* VCR */
2338         return s->pwt.vrc;
2339     case 0x08:  /* GCR */
2340         return s->pwt.gcr;
2341     }
2342     OMAP_BAD_REG(addr);
2343     return 0;
2344 }
2345
2346 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2347                 uint32_t value)
2348 {
2349     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2350     int offset = addr & OMAP_MPUI_REG_MASK;
2351
2352     switch (offset) {
2353     case 0x00:  /* FRC */
2354         s->pwt.frc = value & 0x3f;
2355         break;
2356     case 0x04:  /* VRC */
2357         if ((value ^ s->pwt.vrc) & 1) {
2358             if (value & 1)
2359                 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2360                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2361                                 ((omap_clk_getrate(s->pwt.clk) >> 3) /
2362                                  /* Pre-multiplexer divider */
2363                                  ((s->pwt.gcr & 2) ? 1 : 154) /
2364                                  /* Octave multiplexer */
2365                                  (2 << (value & 3)) *
2366                                  /* 101/107 divider */
2367                                  ((value & (1 << 2)) ? 101 : 107) *
2368                                  /*  49/55 divider */
2369                                  ((value & (1 << 3)) ?  49 : 55) *
2370                                  /*  50/63 divider */
2371                                  ((value & (1 << 4)) ?  50 : 63) *
2372                                  /*  80/127 divider */
2373                                  ((value & (1 << 5)) ?  80 : 127) /
2374                                  (107 * 55 * 63 * 127)));
2375             else
2376                 printf("%s: silence!\n", __FUNCTION__);
2377         }
2378         s->pwt.vrc = value & 0x7f;
2379         break;
2380     case 0x08:  /* GCR */
2381         s->pwt.gcr = value & 3;
2382         break;
2383     default:
2384         OMAP_BAD_REG(addr);
2385         return;
2386     }
2387 }
2388
2389 static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
2390     omap_pwt_read,
2391     omap_badwidth_read8,
2392     omap_badwidth_read8,
2393 };
2394
2395 static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
2396     omap_pwt_write,
2397     omap_badwidth_write8,
2398     omap_badwidth_write8,
2399 };
2400
2401 static void omap_pwt_reset(struct omap_mpu_state_s *s)
2402 {
2403     s->pwt.frc = 0;
2404     s->pwt.vrc = 0;
2405     s->pwt.gcr = 0;
2406 }
2407
2408 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2409                 omap_clk clk)
2410 {
2411     int iomemtype;
2412
2413     s->pwt.clk = clk;
2414     omap_pwt_reset(s);
2415
2416     iomemtype = cpu_register_io_memory(omap_pwt_readfn,
2417                     omap_pwt_writefn, s, DEVICE_NATIVE_ENDIAN);
2418     cpu_register_physical_memory(base, 0x800, iomemtype);
2419 }
2420
2421 /* Real-time Clock module */
2422 struct omap_rtc_s {
2423     qemu_irq irq;
2424     qemu_irq alarm;
2425     QEMUTimer *clk;
2426
2427     uint8_t interrupts;
2428     uint8_t status;
2429     int16_t comp_reg;
2430     int running;
2431     int pm_am;
2432     int auto_comp;
2433     int round;
2434     struct tm alarm_tm;
2435     time_t alarm_ti;
2436
2437     struct tm current_tm;
2438     time_t ti;
2439     uint64_t tick;
2440 };
2441
2442 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2443 {
2444     /* s->alarm is level-triggered */
2445     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2446 }
2447
2448 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2449 {
2450     s->alarm_ti = mktimegm(&s->alarm_tm);
2451     if (s->alarm_ti == -1)
2452         printf("%s: conversion failed\n", __FUNCTION__);
2453 }
2454
2455 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
2456 {
2457     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2458     int offset = addr & OMAP_MPUI_REG_MASK;
2459     uint8_t i;
2460
2461     switch (offset) {
2462     case 0x00:  /* SECONDS_REG */
2463         return to_bcd(s->current_tm.tm_sec);
2464
2465     case 0x04:  /* MINUTES_REG */
2466         return to_bcd(s->current_tm.tm_min);
2467
2468     case 0x08:  /* HOURS_REG */
2469         if (s->pm_am)
2470             return ((s->current_tm.tm_hour > 11) << 7) |
2471                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2472         else
2473             return to_bcd(s->current_tm.tm_hour);
2474
2475     case 0x0c:  /* DAYS_REG */
2476         return to_bcd(s->current_tm.tm_mday);
2477
2478     case 0x10:  /* MONTHS_REG */
2479         return to_bcd(s->current_tm.tm_mon + 1);
2480
2481     case 0x14:  /* YEARS_REG */
2482         return to_bcd(s->current_tm.tm_year % 100);
2483
2484     case 0x18:  /* WEEK_REG */
2485         return s->current_tm.tm_wday;
2486
2487     case 0x20:  /* ALARM_SECONDS_REG */
2488         return to_bcd(s->alarm_tm.tm_sec);
2489
2490     case 0x24:  /* ALARM_MINUTES_REG */
2491         return to_bcd(s->alarm_tm.tm_min);
2492
2493     case 0x28:  /* ALARM_HOURS_REG */
2494         if (s->pm_am)
2495             return ((s->alarm_tm.tm_hour > 11) << 7) |
2496                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2497         else
2498             return to_bcd(s->alarm_tm.tm_hour);
2499
2500     case 0x2c:  /* ALARM_DAYS_REG */
2501         return to_bcd(s->alarm_tm.tm_mday);
2502
2503     case 0x30:  /* ALARM_MONTHS_REG */
2504         return to_bcd(s->alarm_tm.tm_mon + 1);
2505
2506     case 0x34:  /* ALARM_YEARS_REG */
2507         return to_bcd(s->alarm_tm.tm_year % 100);
2508
2509     case 0x40:  /* RTC_CTRL_REG */
2510         return (s->pm_am << 3) | (s->auto_comp << 2) |
2511                 (s->round << 1) | s->running;
2512
2513     case 0x44:  /* RTC_STATUS_REG */
2514         i = s->status;
2515         s->status &= ~0x3d;
2516         return i;
2517
2518     case 0x48:  /* RTC_INTERRUPTS_REG */
2519         return s->interrupts;
2520
2521     case 0x4c:  /* RTC_COMP_LSB_REG */
2522         return ((uint16_t) s->comp_reg) & 0xff;
2523
2524     case 0x50:  /* RTC_COMP_MSB_REG */
2525         return ((uint16_t) s->comp_reg) >> 8;
2526     }
2527
2528     OMAP_BAD_REG(addr);
2529     return 0;
2530 }
2531
2532 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
2533                 uint32_t value)
2534 {
2535     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2536     int offset = addr & OMAP_MPUI_REG_MASK;
2537     struct tm new_tm;
2538     time_t ti[2];
2539
2540     switch (offset) {
2541     case 0x00:  /* SECONDS_REG */
2542 #ifdef ALMDEBUG
2543         printf("RTC SEC_REG <-- %02x\n", value);
2544 #endif
2545         s->ti -= s->current_tm.tm_sec;
2546         s->ti += from_bcd(value);
2547         return;
2548
2549     case 0x04:  /* MINUTES_REG */
2550 #ifdef ALMDEBUG
2551         printf("RTC MIN_REG <-- %02x\n", value);
2552 #endif
2553         s->ti -= s->current_tm.tm_min * 60;
2554         s->ti += from_bcd(value) * 60;
2555         return;
2556
2557     case 0x08:  /* HOURS_REG */
2558 #ifdef ALMDEBUG
2559         printf("RTC HRS_REG <-- %02x\n", value);
2560 #endif
2561         s->ti -= s->current_tm.tm_hour * 3600;
2562         if (s->pm_am) {
2563             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2564             s->ti += ((value >> 7) & 1) * 43200;
2565         } else
2566             s->ti += from_bcd(value & 0x3f) * 3600;
2567         return;
2568
2569     case 0x0c:  /* DAYS_REG */
2570 #ifdef ALMDEBUG
2571         printf("RTC DAY_REG <-- %02x\n", value);
2572 #endif
2573         s->ti -= s->current_tm.tm_mday * 86400;
2574         s->ti += from_bcd(value) * 86400;
2575         return;
2576
2577     case 0x10:  /* MONTHS_REG */
2578 #ifdef ALMDEBUG
2579         printf("RTC MTH_REG <-- %02x\n", value);
2580 #endif
2581         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2582         new_tm.tm_mon = from_bcd(value);
2583         ti[0] = mktimegm(&s->current_tm);
2584         ti[1] = mktimegm(&new_tm);
2585
2586         if (ti[0] != -1 && ti[1] != -1) {
2587             s->ti -= ti[0];
2588             s->ti += ti[1];
2589         } else {
2590             /* A less accurate version */
2591             s->ti -= s->current_tm.tm_mon * 2592000;
2592             s->ti += from_bcd(value) * 2592000;
2593         }
2594         return;
2595
2596     case 0x14:  /* YEARS_REG */
2597 #ifdef ALMDEBUG
2598         printf("RTC YRS_REG <-- %02x\n", value);
2599 #endif
2600         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2601         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2602         ti[0] = mktimegm(&s->current_tm);
2603         ti[1] = mktimegm(&new_tm);
2604
2605         if (ti[0] != -1 && ti[1] != -1) {
2606             s->ti -= ti[0];
2607             s->ti += ti[1];
2608         } else {
2609             /* A less accurate version */
2610             s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2611             s->ti += from_bcd(value) * 31536000;
2612         }
2613         return;
2614
2615     case 0x18:  /* WEEK_REG */
2616         return; /* Ignored */
2617
2618     case 0x20:  /* ALARM_SECONDS_REG */
2619 #ifdef ALMDEBUG
2620         printf("ALM SEC_REG <-- %02x\n", value);
2621 #endif
2622         s->alarm_tm.tm_sec = from_bcd(value);
2623         omap_rtc_alarm_update(s);
2624         return;
2625
2626     case 0x24:  /* ALARM_MINUTES_REG */
2627 #ifdef ALMDEBUG
2628         printf("ALM MIN_REG <-- %02x\n", value);
2629 #endif
2630         s->alarm_tm.tm_min = from_bcd(value);
2631         omap_rtc_alarm_update(s);
2632         return;
2633
2634     case 0x28:  /* ALARM_HOURS_REG */
2635 #ifdef ALMDEBUG
2636         printf("ALM HRS_REG <-- %02x\n", value);
2637 #endif
2638         if (s->pm_am)
2639             s->alarm_tm.tm_hour =
2640                     ((from_bcd(value & 0x3f)) % 12) +
2641                     ((value >> 7) & 1) * 12;
2642         else
2643             s->alarm_tm.tm_hour = from_bcd(value);
2644         omap_rtc_alarm_update(s);
2645         return;
2646
2647     case 0x2c:  /* ALARM_DAYS_REG */
2648 #ifdef ALMDEBUG
2649         printf("ALM DAY_REG <-- %02x\n", value);
2650 #endif
2651         s->alarm_tm.tm_mday = from_bcd(value);
2652         omap_rtc_alarm_update(s);
2653         return;
2654
2655     case 0x30:  /* ALARM_MONTHS_REG */
2656 #ifdef ALMDEBUG
2657         printf("ALM MON_REG <-- %02x\n", value);
2658 #endif
2659         s->alarm_tm.tm_mon = from_bcd(value);
2660         omap_rtc_alarm_update(s);
2661         return;
2662
2663     case 0x34:  /* ALARM_YEARS_REG */
2664 #ifdef ALMDEBUG
2665         printf("ALM YRS_REG <-- %02x\n", value);
2666 #endif
2667         s->alarm_tm.tm_year = from_bcd(value);
2668         omap_rtc_alarm_update(s);
2669         return;
2670
2671     case 0x40:  /* RTC_CTRL_REG */
2672 #ifdef ALMDEBUG
2673         printf("RTC CONTROL <-- %02x\n", value);
2674 #endif
2675         s->pm_am = (value >> 3) & 1;
2676         s->auto_comp = (value >> 2) & 1;
2677         s->round = (value >> 1) & 1;
2678         s->running = value & 1;
2679         s->status &= 0xfd;
2680         s->status |= s->running << 1;
2681         return;
2682
2683     case 0x44:  /* RTC_STATUS_REG */
2684 #ifdef ALMDEBUG
2685         printf("RTC STATUSL <-- %02x\n", value);
2686 #endif
2687         s->status &= ~((value & 0xc0) ^ 0x80);
2688         omap_rtc_interrupts_update(s);
2689         return;
2690
2691     case 0x48:  /* RTC_INTERRUPTS_REG */
2692 #ifdef ALMDEBUG
2693         printf("RTC INTRS <-- %02x\n", value);
2694 #endif
2695         s->interrupts = value;
2696         return;
2697
2698     case 0x4c:  /* RTC_COMP_LSB_REG */
2699 #ifdef ALMDEBUG
2700         printf("RTC COMPLSB <-- %02x\n", value);
2701 #endif
2702         s->comp_reg &= 0xff00;
2703         s->comp_reg |= 0x00ff & value;
2704         return;
2705
2706     case 0x50:  /* RTC_COMP_MSB_REG */
2707 #ifdef ALMDEBUG
2708         printf("RTC COMPMSB <-- %02x\n", value);
2709 #endif
2710         s->comp_reg &= 0x00ff;
2711         s->comp_reg |= 0xff00 & (value << 8);
2712         return;
2713
2714     default:
2715         OMAP_BAD_REG(addr);
2716         return;
2717     }
2718 }
2719
2720 static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
2721     omap_rtc_read,
2722     omap_badwidth_read8,
2723     omap_badwidth_read8,
2724 };
2725
2726 static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
2727     omap_rtc_write,
2728     omap_badwidth_write8,
2729     omap_badwidth_write8,
2730 };
2731
2732 static void omap_rtc_tick(void *opaque)
2733 {
2734     struct omap_rtc_s *s = opaque;
2735
2736     if (s->round) {
2737         /* Round to nearest full minute.  */
2738         if (s->current_tm.tm_sec < 30)
2739             s->ti -= s->current_tm.tm_sec;
2740         else
2741             s->ti += 60 - s->current_tm.tm_sec;
2742
2743         s->round = 0;
2744     }
2745
2746     memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2747
2748     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2749         s->status |= 0x40;
2750         omap_rtc_interrupts_update(s);
2751     }
2752
2753     if (s->interrupts & 0x04)
2754         switch (s->interrupts & 3) {
2755         case 0:
2756             s->status |= 0x04;
2757             qemu_irq_pulse(s->irq);
2758             break;
2759         case 1:
2760             if (s->current_tm.tm_sec)
2761                 break;
2762             s->status |= 0x08;
2763             qemu_irq_pulse(s->irq);
2764             break;
2765         case 2:
2766             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2767                 break;
2768             s->status |= 0x10;
2769             qemu_irq_pulse(s->irq);
2770             break;
2771         case 3:
2772             if (s->current_tm.tm_sec ||
2773                             s->current_tm.tm_min || s->current_tm.tm_hour)
2774                 break;
2775             s->status |= 0x20;
2776             qemu_irq_pulse(s->irq);
2777             break;
2778         }
2779
2780     /* Move on */
2781     if (s->running)
2782         s->ti ++;
2783     s->tick += 1000;
2784
2785     /*
2786      * Every full hour add a rough approximation of the compensation
2787      * register to the 32kHz Timer (which drives the RTC) value. 
2788      */
2789     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2790         s->tick += s->comp_reg * 1000 / 32768;
2791
2792     qemu_mod_timer(s->clk, s->tick);
2793 }
2794
2795 static void omap_rtc_reset(struct omap_rtc_s *s)
2796 {
2797     struct tm tm;
2798
2799     s->interrupts = 0;
2800     s->comp_reg = 0;
2801     s->running = 0;
2802     s->pm_am = 0;
2803     s->auto_comp = 0;
2804     s->round = 0;
2805     s->tick = qemu_get_clock_ms(rt_clock);
2806     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2807     s->alarm_tm.tm_mday = 0x01;
2808     s->status = 1 << 7;
2809     qemu_get_timedate(&tm, 0);
2810     s->ti = mktimegm(&tm);
2811
2812     omap_rtc_alarm_update(s);
2813     omap_rtc_tick(s);
2814 }
2815
2816 static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
2817                 qemu_irq *irq, omap_clk clk)
2818 {
2819     int iomemtype;
2820     struct omap_rtc_s *s = (struct omap_rtc_s *)
2821             qemu_mallocz(sizeof(struct omap_rtc_s));
2822
2823     s->irq = irq[0];
2824     s->alarm = irq[1];
2825     s->clk = qemu_new_timer_ms(rt_clock, omap_rtc_tick, s);
2826
2827     omap_rtc_reset(s);
2828
2829     iomemtype = cpu_register_io_memory(omap_rtc_readfn,
2830                     omap_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
2831     cpu_register_physical_memory(base, 0x800, iomemtype);
2832
2833     return s;
2834 }
2835
2836 /* Multi-channel Buffered Serial Port interfaces */
2837 struct omap_mcbsp_s {
2838     qemu_irq txirq;
2839     qemu_irq rxirq;
2840     qemu_irq txdrq;
2841     qemu_irq rxdrq;
2842
2843     uint16_t spcr[2];
2844     uint16_t rcr[2];
2845     uint16_t xcr[2];
2846     uint16_t srgr[2];
2847     uint16_t mcr[2];
2848     uint16_t pcr;
2849     uint16_t rcer[8];
2850     uint16_t xcer[8];
2851     int tx_rate;
2852     int rx_rate;
2853     int tx_req;
2854     int rx_req;
2855
2856     I2SCodec *codec;
2857     QEMUTimer *source_timer;
2858     QEMUTimer *sink_timer;
2859 };
2860
2861 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2862 {
2863     int irq;
2864
2865     switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2866     case 0:
2867         irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2868         break;
2869     case 3:
2870         irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2871         break;
2872     default:
2873         irq = 0;
2874         break;
2875     }
2876
2877     if (irq)
2878         qemu_irq_pulse(s->rxirq);
2879
2880     switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
2881     case 0:
2882         irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
2883         break;
2884     case 3:
2885         irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
2886         break;
2887     default:
2888         irq = 0;
2889         break;
2890     }
2891
2892     if (irq)
2893         qemu_irq_pulse(s->txirq);
2894 }
2895
2896 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2897 {
2898     if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
2899         s->spcr[0] |= 1 << 2;                           /* RFULL */
2900     s->spcr[0] |= 1 << 1;                               /* RRDY */
2901     qemu_irq_raise(s->rxdrq);
2902     omap_mcbsp_intr_update(s);
2903 }
2904
2905 static void omap_mcbsp_source_tick(void *opaque)
2906 {
2907     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2908     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2909
2910     if (!s->rx_rate)
2911         return;
2912     if (s->rx_req)
2913         printf("%s: Rx FIFO overrun\n", __FUNCTION__);
2914
2915     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2916
2917     omap_mcbsp_rx_newdata(s);
2918     qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
2919                    get_ticks_per_sec());
2920 }
2921
2922 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2923 {
2924     if (!s->codec || !s->codec->rts)
2925         omap_mcbsp_source_tick(s);
2926     else if (s->codec->in.len) {
2927         s->rx_req = s->codec->in.len;
2928         omap_mcbsp_rx_newdata(s);
2929     }
2930 }
2931
2932 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
2933 {
2934     qemu_del_timer(s->source_timer);
2935 }
2936
2937 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
2938 {
2939     s->spcr[0] &= ~(1 << 1);                            /* RRDY */
2940     qemu_irq_lower(s->rxdrq);
2941     omap_mcbsp_intr_update(s);
2942 }
2943
2944 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
2945 {
2946     s->spcr[1] |= 1 << 1;                               /* XRDY */
2947     qemu_irq_raise(s->txdrq);
2948     omap_mcbsp_intr_update(s);
2949 }
2950
2951 static void omap_mcbsp_sink_tick(void *opaque)
2952 {
2953     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2954     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2955
2956     if (!s->tx_rate)
2957         return;
2958     if (s->tx_req)
2959         printf("%s: Tx FIFO underrun\n", __FUNCTION__);
2960
2961     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
2962
2963     omap_mcbsp_tx_newdata(s);
2964     qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
2965                    get_ticks_per_sec());
2966 }
2967
2968 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
2969 {
2970     if (!s->codec || !s->codec->cts)
2971         omap_mcbsp_sink_tick(s);
2972     else if (s->codec->out.size) {
2973         s->tx_req = s->codec->out.size;
2974         omap_mcbsp_tx_newdata(s);
2975     }
2976 }
2977
2978 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
2979 {
2980     s->spcr[1] &= ~(1 << 1);                            /* XRDY */
2981     qemu_irq_lower(s->txdrq);
2982     omap_mcbsp_intr_update(s);
2983     if (s->codec && s->codec->cts)
2984         s->codec->tx_swallow(s->codec->opaque);
2985 }
2986
2987 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
2988 {
2989     s->tx_req = 0;
2990     omap_mcbsp_tx_done(s);
2991     qemu_del_timer(s->sink_timer);
2992 }
2993
2994 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
2995 {
2996     int prev_rx_rate, prev_tx_rate;
2997     int rx_rate = 0, tx_rate = 0;
2998     int cpu_rate = 1500000;     /* XXX */
2999
3000     /* TODO: check CLKSTP bit */
3001     if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3002         if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3003             if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3004                             (s->pcr & (1 << 8))) {      /* CLKRM */
3005                 if (~s->pcr & (1 << 7))                 /* SCLKME */
3006                     rx_rate = cpu_rate /
3007                             ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3008             } else
3009                 if (s->codec)
3010                     rx_rate = s->codec->rx_rate;
3011         }
3012
3013         if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3014             if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3015                             (s->pcr & (1 << 9))) {      /* CLKXM */
3016                 if (~s->pcr & (1 << 7))                 /* SCLKME */
3017                     tx_rate = cpu_rate /
3018                             ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3019             } else
3020                 if (s->codec)
3021                     tx_rate = s->codec->tx_rate;
3022         }
3023     }
3024     prev_tx_rate = s->tx_rate;
3025     prev_rx_rate = s->rx_rate;
3026     s->tx_rate = tx_rate;
3027     s->rx_rate = rx_rate;
3028
3029     if (s->codec)
3030         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3031
3032     if (!prev_tx_rate && tx_rate)
3033         omap_mcbsp_tx_start(s);
3034     else if (s->tx_rate && !tx_rate)
3035         omap_mcbsp_tx_stop(s);
3036
3037     if (!prev_rx_rate && rx_rate)
3038         omap_mcbsp_rx_start(s);
3039     else if (prev_tx_rate && !tx_rate)
3040         omap_mcbsp_rx_stop(s);
3041 }
3042
3043 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3044 {
3045     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3046     int offset = addr & OMAP_MPUI_REG_MASK;
3047     uint16_t ret;
3048
3049     switch (offset) {
3050     case 0x00:  /* DRR2 */
3051         if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3052             return 0x0000;
3053         /* Fall through.  */
3054     case 0x02:  /* DRR1 */
3055         if (s->rx_req < 2) {
3056             printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3057             omap_mcbsp_rx_done(s);
3058         } else {
3059             s->tx_req -= 2;
3060             if (s->codec && s->codec->in.len >= 2) {
3061                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3062                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3063                 s->codec->in.len -= 2;
3064             } else
3065                 ret = 0x0000;
3066             if (!s->tx_req)
3067                 omap_mcbsp_rx_done(s);
3068             return ret;
3069         }
3070         return 0x0000;
3071
3072     case 0x04:  /* DXR2 */
3073     case 0x06:  /* DXR1 */
3074         return 0x0000;
3075
3076     case 0x08:  /* SPCR2 */
3077         return s->spcr[1];
3078     case 0x0a:  /* SPCR1 */
3079         return s->spcr[0];
3080     case 0x0c:  /* RCR2 */
3081         return s->rcr[1];
3082     case 0x0e:  /* RCR1 */
3083         return s->rcr[0];
3084     case 0x10:  /* XCR2 */
3085         return s->xcr[1];
3086     case 0x12:  /* XCR1 */
3087         return s->xcr[0];
3088     case 0x14:  /* SRGR2 */
3089         return s->srgr[1];
3090     case 0x16:  /* SRGR1 */
3091         return s->srgr[0];
3092     case 0x18:  /* MCR2 */
3093         return s->mcr[1];
3094     case 0x1a:  /* MCR1 */
3095         return s->mcr[0];
3096     case 0x1c:  /* RCERA */
3097         return s->rcer[0];
3098     case 0x1e:  /* RCERB */
3099         return s->rcer[1];
3100     case 0x20:  /* XCERA */
3101         return s->xcer[0];
3102     case 0x22:  /* XCERB */
3103         return s->xcer[1];
3104     case 0x24:  /* PCR0 */
3105         return s->pcr;
3106     case 0x26:  /* RCERC */
3107         return s->rcer[2];
3108     case 0x28:  /* RCERD */
3109         return s->rcer[3];
3110     case 0x2a:  /* XCERC */
3111         return s->xcer[2];
3112     case 0x2c:  /* XCERD */
3113         return s->xcer[3];
3114     case 0x2e:  /* RCERE */
3115         return s->rcer[4];
3116     case 0x30:  /* RCERF */
3117         return s->rcer[5];
3118     case 0x32:  /* XCERE */
3119         return s->xcer[4];
3120     case 0x34:  /* XCERF */
3121         return s->xcer[5];
3122     case 0x36:  /* RCERG */
3123         return s->rcer[6];
3124     case 0x38:  /* RCERH */
3125         return s->rcer[7];
3126     case 0x3a:  /* XCERG */
3127         return s->xcer[6];
3128     case 0x3c:  /* XCERH */
3129         return s->xcer[7];
3130     }
3131
3132     OMAP_BAD_REG(addr);
3133     return 0;
3134 }
3135
3136 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3137                 uint32_t value)
3138 {
3139     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3140     int offset = addr & OMAP_MPUI_REG_MASK;
3141
3142     switch (offset) {
3143     case 0x00:  /* DRR2 */
3144     case 0x02:  /* DRR1 */
3145         OMAP_RO_REG(addr);
3146         return;
3147
3148     case 0x04:  /* DXR2 */
3149         if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3150             return;
3151         /* Fall through.  */
3152     case 0x06:  /* DXR1 */
3153         if (s->tx_req > 1) {
3154             s->tx_req -= 2;
3155             if (s->codec && s->codec->cts) {
3156                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3157                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3158             }
3159             if (s->tx_req < 2)
3160                 omap_mcbsp_tx_done(s);
3161         } else
3162             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3163         return;
3164
3165     case 0x08:  /* SPCR2 */
3166         s->spcr[1] &= 0x0002;
3167         s->spcr[1] |= 0x03f9 & value;
3168         s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3169         if (~value & 1)                                 /* XRST */
3170             s->spcr[1] &= ~6;
3171         omap_mcbsp_req_update(s);
3172         return;
3173     case 0x0a:  /* SPCR1 */
3174         s->spcr[0] &= 0x0006;
3175         s->spcr[0] |= 0xf8f9 & value;
3176         if (value & (1 << 15))                          /* DLB */
3177             printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3178         if (~value & 1) {                               /* RRST */
3179             s->spcr[0] &= ~6;
3180             s->rx_req = 0;
3181             omap_mcbsp_rx_done(s);
3182         }
3183         omap_mcbsp_req_update(s);
3184         return;
3185
3186     case 0x0c:  /* RCR2 */
3187         s->rcr[1] = value & 0xffff;
3188         return;
3189     case 0x0e:  /* RCR1 */
3190         s->rcr[0] = value & 0x7fe0;
3191         return;
3192     case 0x10:  /* XCR2 */
3193         s->xcr[1] = value & 0xffff;
3194         return;
3195     case 0x12:  /* XCR1 */
3196         s->xcr[0] = value & 0x7fe0;
3197         return;
3198     case 0x14:  /* SRGR2 */
3199         s->srgr[1] = value & 0xffff;
3200         omap_mcbsp_req_update(s);
3201         return;
3202     case 0x16:  /* SRGR1 */
3203         s->srgr[0] = value & 0xffff;
3204         omap_mcbsp_req_update(s);
3205         return;
3206     case 0x18:  /* MCR2 */
3207         s->mcr[1] = value & 0x03e3;
3208         if (value & 3)                                  /* XMCM */
3209             printf("%s: Tx channel selection mode enable attempt\n",
3210                             __FUNCTION__);
3211         return;
3212     case 0x1a:  /* MCR1 */
3213         s->mcr[0] = value & 0x03e1;
3214         if (value & 1)                                  /* RMCM */
3215             printf("%s: Rx channel selection mode enable attempt\n",
3216                             __FUNCTION__);
3217         return;
3218     case 0x1c:  /* RCERA */
3219         s->rcer[0] = value & 0xffff;
3220         return;
3221     case 0x1e:  /* RCERB */
3222         s->rcer[1] = value & 0xffff;
3223         return;
3224     case 0x20:  /* XCERA */
3225         s->xcer[0] = value & 0xffff;
3226         return;
3227     case 0x22:  /* XCERB */
3228         s->xcer[1] = value & 0xffff;
3229         return;
3230     case 0x24:  /* PCR0 */
3231         s->pcr = value & 0x7faf;
3232         return;
3233     case 0x26:  /* RCERC */
3234         s->rcer[2] = value & 0xffff;
3235         return;
3236     case 0x28:  /* RCERD */
3237         s->rcer[3] = value & 0xffff;
3238         return;
3239     case 0x2a:  /* XCERC */
3240         s->xcer[2] = value & 0xffff;
3241         return;
3242     case 0x2c:  /* XCERD */
3243         s->xcer[3] = value & 0xffff;
3244         return;
3245     case 0x2e:  /* RCERE */
3246         s->rcer[4] = value & 0xffff;
3247         return;
3248     case 0x30:  /* RCERF */
3249         s->rcer[5] = value & 0xffff;
3250         return;
3251     case 0x32:  /* XCERE */
3252         s->xcer[4] = value & 0xffff;
3253         return;
3254     case 0x34:  /* XCERF */
3255         s->xcer[5] = value & 0xffff;
3256         return;
3257     case 0x36:  /* RCERG */
3258         s->rcer[6] = value & 0xffff;
3259         return;
3260     case 0x38:  /* RCERH */
3261         s->rcer[7] = value & 0xffff;
3262         return;
3263     case 0x3a:  /* XCERG */
3264         s->xcer[6] = value & 0xffff;
3265         return;
3266     case 0x3c:  /* XCERH */
3267         s->xcer[7] = value & 0xffff;
3268         return;
3269     }
3270
3271     OMAP_BAD_REG(addr);
3272 }
3273
3274 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3275                 uint32_t value)
3276 {
3277     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3278     int offset = addr & OMAP_MPUI_REG_MASK;
3279
3280     if (offset == 0x04) {                               /* DXR */
3281         if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3282             return;
3283         if (s->tx_req > 3) {
3284             s->tx_req -= 4;
3285             if (s->codec && s->codec->cts) {
3286                 s->codec->out.fifo[s->codec->out.len ++] =
3287                         (value >> 24) & 0xff;
3288                 s->codec->out.fifo[s->codec->out.len ++] =
3289                         (value >> 16) & 0xff;
3290                 s->codec->out.fifo[s->codec->out.len ++] =
3291                         (value >> 8) & 0xff;
3292                 s->codec->out.fifo[s->codec->out.len ++] =
3293                         (value >> 0) & 0xff;
3294             }
3295             if (s->tx_req < 4)
3296                 omap_mcbsp_tx_done(s);
3297         } else
3298             printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3299         return;
3300     }
3301
3302     omap_badwidth_write16(opaque, addr, value);
3303 }
3304
3305 static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
3306     omap_badwidth_read16,
3307     omap_mcbsp_read,
3308     omap_badwidth_read16,
3309 };
3310
3311 static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
3312     omap_badwidth_write16,
3313     omap_mcbsp_writeh,
3314     omap_mcbsp_writew,
3315 };
3316
3317 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3318 {
3319     memset(&s->spcr, 0, sizeof(s->spcr));
3320     memset(&s->rcr, 0, sizeof(s->rcr));
3321     memset(&s->xcr, 0, sizeof(s->xcr));
3322     s->srgr[0] = 0x0001;
3323     s->srgr[1] = 0x2000;
3324     memset(&s->mcr, 0, sizeof(s->mcr));
3325     memset(&s->pcr, 0, sizeof(s->pcr));
3326     memset(&s->rcer, 0, sizeof(s->rcer));
3327     memset(&s->xcer, 0, sizeof(s->xcer));
3328     s->tx_req = 0;
3329     s->rx_req = 0;
3330     s->tx_rate = 0;
3331     s->rx_rate = 0;
3332     qemu_del_timer(s->source_timer);
3333     qemu_del_timer(s->sink_timer);
3334 }
3335
3336 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3337                 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3338 {
3339     int iomemtype;
3340     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3341             qemu_mallocz(sizeof(struct omap_mcbsp_s));
3342
3343     s->txirq = irq[0];
3344     s->rxirq = irq[1];
3345     s->txdrq = dma[0];
3346     s->rxdrq = dma[1];
3347     s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3348     s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3349     omap_mcbsp_reset(s);
3350
3351     iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
3352                     omap_mcbsp_writefn, s, DEVICE_NATIVE_ENDIAN);
3353     cpu_register_physical_memory(base, 0x800, iomemtype);
3354
3355     return s;
3356 }
3357
3358 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3359 {
3360     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3361
3362     if (s->rx_rate) {
3363         s->rx_req = s->codec->in.len;
3364         omap_mcbsp_rx_newdata(s);
3365     }
3366 }
3367
3368 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3369 {
3370     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3371
3372     if (s->tx_rate) {
3373         s->tx_req = s->codec->out.size;
3374         omap_mcbsp_tx_newdata(s);
3375     }
3376 }
3377
3378 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3379 {
3380     s->codec = slave;
3381     slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3382     slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3383 }
3384
3385 /* LED Pulse Generators */
3386 struct omap_lpg_s {
3387     QEMUTimer *tm;
3388
3389     uint8_t control;
3390     uint8_t power;
3391     int64_t on;
3392     int64_t period;
3393     int clk;
3394     int cycle;
3395 };
3396
3397 static void omap_lpg_tick(void *opaque)
3398 {
3399     struct omap_lpg_s *s = opaque;
3400
3401     if (s->cycle)
3402         qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->period - s->on);
3403     else
3404         qemu_mod_timer(s->tm, qemu_get_clock_ms(rt_clock) + s->on);
3405
3406     s->cycle = !s->cycle;
3407     printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3408 }
3409
3410 static void omap_lpg_update(struct omap_lpg_s *s)
3411 {
3412     int64_t on, period = 1, ticks = 1000;
3413     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3414
3415     if (~s->control & (1 << 6))                                 /* LPGRES */
3416         on = 0;
3417     else if (s->control & (1 << 7))                             /* PERM_ON */
3418         on = period;
3419     else {
3420         period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3421                         256 / 32);
3422         on = (s->clk && s->power) ? muldiv64(ticks,
3423                         per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3424     }
3425
3426     qemu_del_timer(s->tm);
3427     if (on == period && s->on < s->period)
3428         printf("%s: LED is on\n", __FUNCTION__);
3429     else if (on == 0 && s->on)
3430         printf("%s: LED is off\n", __FUNCTION__);
3431     else if (on && (on != s->on || period != s->period)) {
3432         s->cycle = 0;
3433         s->on = on;
3434         s->period = period;
3435         omap_lpg_tick(s);
3436         return;
3437     }
3438
3439     s->on = on;
3440     s->period = period;
3441 }
3442
3443 static void omap_lpg_reset(struct omap_lpg_s *s)
3444 {
3445     s->control = 0x00;
3446     s->power = 0x00;
3447     s->clk = 1;
3448     omap_lpg_update(s);
3449 }
3450
3451 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
3452 {
3453     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3454     int offset = addr & OMAP_MPUI_REG_MASK;
3455
3456     switch (offset) {
3457     case 0x00:  /* LCR */
3458         return s->control;
3459
3460     case 0x04:  /* PMR */
3461         return s->power;
3462     }
3463
3464     OMAP_BAD_REG(addr);
3465     return 0;
3466 }
3467
3468 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
3469                 uint32_t value)
3470 {
3471     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3472     int offset = addr & OMAP_MPUI_REG_MASK;
3473
3474     switch (offset) {
3475     case 0x00:  /* LCR */
3476         if (~value & (1 << 6))                                  /* LPGRES */
3477             omap_lpg_reset(s);
3478         s->control = value & 0xff;
3479         omap_lpg_update(s);
3480         return;
3481
3482     case 0x04:  /* PMR */
3483         s->power = value & 0x01;
3484         omap_lpg_update(s);
3485         return;
3486
3487     default:
3488         OMAP_BAD_REG(addr);
3489         return;
3490     }
3491 }
3492
3493 static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
3494     omap_lpg_read,
3495     omap_badwidth_read8,
3496     omap_badwidth_read8,
3497 };
3498
3499 static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
3500     omap_lpg_write,
3501     omap_badwidth_write8,
3502     omap_badwidth_write8,
3503 };
3504
3505 static void omap_lpg_clk_update(void *opaque, int line, int on)
3506 {
3507     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3508
3509     s->clk = on;
3510     omap_lpg_update(s);
3511 }
3512
3513 static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
3514 {
3515     int iomemtype;
3516     struct omap_lpg_s *s = (struct omap_lpg_s *)
3517             qemu_mallocz(sizeof(struct omap_lpg_s));
3518
3519     s->tm = qemu_new_timer_ms(rt_clock, omap_lpg_tick, s);
3520
3521     omap_lpg_reset(s);
3522
3523     iomemtype = cpu_register_io_memory(omap_lpg_readfn,
3524                     omap_lpg_writefn, s, DEVICE_NATIVE_ENDIAN);
3525     cpu_register_physical_memory(base, 0x800, iomemtype);
3526
3527     omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3528
3529     return s;
3530 }
3531
3532 /* MPUI Peripheral Bridge configuration */
3533 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
3534 {
3535     if (addr == OMAP_MPUI_BASE) /* CMR */
3536         return 0xfe4d;
3537
3538     OMAP_BAD_REG(addr);
3539     return 0;
3540 }
3541
3542 static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
3543     omap_badwidth_read16,
3544     omap_mpui_io_read,
3545     omap_badwidth_read16,
3546 };
3547
3548 static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
3549     omap_badwidth_write16,
3550     omap_badwidth_write16,
3551     omap_badwidth_write16,
3552 };
3553
3554 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
3555 {
3556     int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
3557                     omap_mpui_io_writefn, mpu, DEVICE_NATIVE_ENDIAN);
3558     cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
3559 }
3560
3561 /* General chip reset */
3562 static void omap1_mpu_reset(void *opaque)
3563 {
3564     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3565
3566     omap_inth_reset(mpu->ih[0]);
3567     omap_inth_reset(mpu->ih[1]);
3568     omap_dma_reset(mpu->dma);
3569     omap_mpu_timer_reset(mpu->timer[0]);
3570     omap_mpu_timer_reset(mpu->timer[1]);
3571     omap_mpu_timer_reset(mpu->timer[2]);
3572     omap_wd_timer_reset(mpu->wdt);
3573     omap_os_timer_reset(mpu->os_timer);
3574     omap_lcdc_reset(mpu->lcd);
3575     omap_ulpd_pm_reset(mpu);
3576     omap_pin_cfg_reset(mpu);
3577     omap_mpui_reset(mpu);
3578     omap_tipb_bridge_reset(mpu->private_tipb);
3579     omap_tipb_bridge_reset(mpu->public_tipb);
3580     omap_dpll_reset(&mpu->dpll[0]);
3581     omap_dpll_reset(&mpu->dpll[1]);
3582     omap_dpll_reset(&mpu->dpll[2]);
3583     omap_uart_reset(mpu->uart[0]);
3584     omap_uart_reset(mpu->uart[1]);
3585     omap_uart_reset(mpu->uart[2]);
3586     omap_mmc_reset(mpu->mmc);
3587     omap_mpuio_reset(mpu->mpuio);
3588     omap_gpio_reset(mpu->gpio);
3589     omap_uwire_reset(mpu->microwire);
3590     omap_pwl_reset(mpu);
3591     omap_pwt_reset(mpu);
3592     omap_i2c_reset(mpu->i2c[0]);
3593     omap_rtc_reset(mpu->rtc);
3594     omap_mcbsp_reset(mpu->mcbsp1);
3595     omap_mcbsp_reset(mpu->mcbsp2);
3596     omap_mcbsp_reset(mpu->mcbsp3);
3597     omap_lpg_reset(mpu->led[0]);
3598     omap_lpg_reset(mpu->led[1]);
3599     omap_clkm_reset(mpu);
3600     cpu_reset(mpu->env);
3601 }
3602
3603 static const struct omap_map_s {
3604     target_phys_addr_t phys_dsp;
3605     target_phys_addr_t phys_mpu;
3606     uint32_t size;
3607     const char *name;
3608 } omap15xx_dsp_mm[] = {
3609     /* Strobe 0 */
3610     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3611     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3612     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3613     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3614     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3615     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3616     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3617     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3618     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3619     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3620     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3621     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3622     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3623     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3624     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3625     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3626     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3627     /* Strobe 1 */
3628     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3629
3630     { 0 }
3631 };
3632
3633 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
3634 {
3635     int io;
3636
3637     for (; map->phys_dsp; map ++) {
3638         io = cpu_get_physical_page_desc(map->phys_mpu);
3639
3640         cpu_register_physical_memory(map->phys_dsp, map->size, io);
3641     }
3642 }
3643
3644 void omap_mpu_wakeup(void *opaque, int irq, int req)
3645 {
3646     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3647
3648     if (mpu->env->halted)
3649         cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3650 }
3651
3652 static const struct dma_irq_map omap1_dma_irq_map[] = {
3653     { 0, OMAP_INT_DMA_CH0_6 },
3654     { 0, OMAP_INT_DMA_CH1_7 },
3655     { 0, OMAP_INT_DMA_CH2_8 },
3656     { 0, OMAP_INT_DMA_CH3 },
3657     { 0, OMAP_INT_DMA_CH4 },
3658     { 0, OMAP_INT_DMA_CH5 },
3659     { 1, OMAP_INT_1610_DMA_CH6 },
3660     { 1, OMAP_INT_1610_DMA_CH7 },
3661     { 1, OMAP_INT_1610_DMA_CH8 },
3662     { 1, OMAP_INT_1610_DMA_CH9 },
3663     { 1, OMAP_INT_1610_DMA_CH10 },
3664     { 1, OMAP_INT_1610_DMA_CH11 },
3665     { 1, OMAP_INT_1610_DMA_CH12 },
3666     { 1, OMAP_INT_1610_DMA_CH13 },
3667     { 1, OMAP_INT_1610_DMA_CH14 },
3668     { 1, OMAP_INT_1610_DMA_CH15 }
3669 };
3670
3671 /* DMA ports for OMAP1 */
3672 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3673                 target_phys_addr_t addr)
3674 {
3675     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3676 }
3677
3678 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3679                 target_phys_addr_t addr)
3680 {
3681     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3682                              addr);
3683 }
3684
3685 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3686                 target_phys_addr_t addr)
3687 {
3688     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3689 }
3690
3691 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3692                 target_phys_addr_t addr)
3693 {
3694     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3695 }
3696
3697 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3698                 target_phys_addr_t addr)
3699 {
3700     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3701 }
3702
3703 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3704                 target_phys_addr_t addr)
3705 {
3706     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3707 }
3708
3709 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3710                 const char *core)
3711 {
3712     int i;
3713     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3714             qemu_mallocz(sizeof(struct omap_mpu_state_s));
3715     ram_addr_t imif_base, emiff_base;
3716     qemu_irq *cpu_irq;
3717     qemu_irq dma_irqs[6];
3718     DriveInfo *dinfo;
3719
3720     if (!core)
3721         core = "ti925t";
3722
3723     /* Core */
3724     s->mpu_model = omap310;
3725     s->env = cpu_init(core);
3726     if (!s->env) {
3727         fprintf(stderr, "Unable to find CPU definition\n");
3728         exit(1);
3729     }
3730     s->sdram_size = sdram_size;
3731     s->sram_size = OMAP15XX_SRAM_SIZE;
3732
3733     s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3734
3735     /* Clocks */
3736     omap_clk_init(s);
3737
3738     /* Memory-mapped stuff */
3739     cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3740                     (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
3741                                                  s->sdram_size)) | IO_MEM_RAM);
3742     cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3743                     (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
3744                                                 s->sram_size)) | IO_MEM_RAM);
3745
3746     omap_clkm_init(0xfffece00, 0xe1008000, s);
3747
3748     cpu_irq = arm_pic_init_cpu(s->env);
3749     s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
3750                     cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
3751                     omap_findclk(s, "arminth_ck"));
3752     s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
3753                     omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
3754                     NULL, omap_findclk(s, "arminth_ck"));
3755
3756     for (i = 0; i < 6; i ++)
3757         dma_irqs[i] =
3758                 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
3759     s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
3760                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3761
3762     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3763     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3764     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3765     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3766     s->port[local    ].addr_valid = omap_validate_local_addr;
3767     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3768
3769     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3770     soc_dma_port_add_mem_ram(s->dma,
3771                     emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
3772     soc_dma_port_add_mem_ram(s->dma,
3773                     imif_base, OMAP_IMIF_BASE, s->sram_size);
3774
3775     s->timer[0] = omap_mpu_timer_init(0xfffec500,
3776                     s->irq[0][OMAP_INT_TIMER1],
3777                     omap_findclk(s, "mputim_ck"));
3778     s->timer[1] = omap_mpu_timer_init(0xfffec600,
3779                     s->irq[0][OMAP_INT_TIMER2],
3780                     omap_findclk(s, "mputim_ck"));
3781     s->timer[2] = omap_mpu_timer_init(0xfffec700,
3782                     s->irq[0][OMAP_INT_TIMER3],
3783                     omap_findclk(s, "mputim_ck"));
3784
3785     s->wdt = omap_wd_timer_init(0xfffec800,
3786                     s->irq[0][OMAP_INT_WD_TIMER],
3787                     omap_findclk(s, "armwdt_ck"));
3788
3789     s->os_timer = omap_os_timer_init(0xfffb9000,
3790                     s->irq[1][OMAP_INT_OS_TIMER],
3791                     omap_findclk(s, "clk32-kHz"));
3792
3793     s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3794                     omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
3795                     omap_findclk(s, "lcd_ck"));
3796
3797     omap_ulpd_pm_init(0xfffe0800, s);
3798     omap_pin_cfg_init(0xfffe1000, s);
3799     omap_id_init(s);
3800
3801     omap_mpui_init(0xfffec900, s);
3802
3803     s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3804                     s->irq[0][OMAP_INT_BRIDGE_PRIV],
3805                     omap_findclk(s, "tipb_ck"));
3806     s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3807                     s->irq[0][OMAP_INT_BRIDGE_PUB],
3808                     omap_findclk(s, "tipb_ck"));
3809
3810     omap_tcmi_init(0xfffecc00, s);
3811
3812     s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3813                     omap_findclk(s, "uart1_ck"),
3814                     omap_findclk(s, "uart1_ck"),
3815                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3816                     "uart1",
3817                     serial_hds[0]);
3818     s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3819                     omap_findclk(s, "uart2_ck"),
3820                     omap_findclk(s, "uart2_ck"),
3821                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3822                     "uart2",
3823                     serial_hds[0] ? serial_hds[1] : NULL);
3824     s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
3825                     omap_findclk(s, "uart3_ck"),
3826                     omap_findclk(s, "uart3_ck"),
3827                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3828                     "uart3",
3829                     serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3830
3831     omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3832     omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3833     omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3834
3835     dinfo = drive_get(IF_SD, 0, 0);
3836     if (!dinfo) {
3837         fprintf(stderr, "qemu: missing SecureDigital device\n");
3838         exit(1);
3839     }
3840     s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
3841                     s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
3842                     omap_findclk(s, "mmc_ck"));
3843
3844     s->mpuio = omap_mpuio_init(0xfffb5000,
3845                     s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3846                     s->wakeup, omap_findclk(s, "clk32-kHz"));
3847
3848     s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3849                     omap_findclk(s, "arm_gpio_ck"));
3850
3851     s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3852                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3853
3854     omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
3855     omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
3856
3857     s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
3858                     &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
3859
3860     s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
3861                     omap_findclk(s, "clk32-kHz"));
3862
3863     s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
3864                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
3865     s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
3866                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
3867     s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
3868                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
3869
3870     s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
3871     s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
3872
3873     /* Register mappings not currenlty implemented:
3874      * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
3875      * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
3876      * USB W2FC         fffb4000 - fffb47ff
3877      * Camera Interface fffb6800 - fffb6fff
3878      * USB Host         fffba000 - fffba7ff
3879      * FAC              fffba800 - fffbafff
3880      * HDQ/1-Wire       fffbc000 - fffbc7ff
3881      * TIPB switches    fffbc800 - fffbcfff
3882      * Mailbox          fffcf000 - fffcf7ff
3883      * Local bus IF     fffec100 - fffec1ff
3884      * Local bus MMU    fffec200 - fffec2ff
3885      * DSP MMU          fffed200 - fffed2ff
3886      */
3887
3888     omap_setup_dsp_mapping(omap15xx_dsp_mm);
3889     omap_setup_mpui_io(s);
3890
3891     qemu_register_reset(omap1_mpu_reset, s);
3892
3893     return s;
3894 }