Remove unused sysemu.h include directives
[sdk/emulator/qemu.git] / hw / lm32_boards.c
1 /*
2  *  QEMU models for LatticeMico32 uclinux and evr32 boards.
3  *
4  *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "sysbus.h"
21 #include "hw.h"
22 #include "net.h"
23 #include "flash.h"
24 #include "devices.h"
25 #include "boards.h"
26 #include "loader.h"
27 #include "blockdev.h"
28 #include "elf.h"
29 #include "lm32_hwsetup.h"
30 #include "lm32.h"
31
32 typedef struct {
33     CPUState *env;
34     target_phys_addr_t bootstrap_pc;
35     target_phys_addr_t flash_base;
36     target_phys_addr_t hwsetup_base;
37     target_phys_addr_t initrd_base;
38     size_t initrd_size;
39     target_phys_addr_t cmdline_base;
40 } ResetInfo;
41
42 static void cpu_irq_handler(void *opaque, int irq, int level)
43 {
44     CPUState *env = opaque;
45
46     if (level) {
47         cpu_interrupt(env, CPU_INTERRUPT_HARD);
48     } else {
49         cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
50     }
51 }
52
53 static void main_cpu_reset(void *opaque)
54 {
55     ResetInfo *reset_info = opaque;
56     CPUState *env = reset_info->env;
57
58     cpu_reset(env);
59
60     /* init defaults */
61     env->pc = (uint32_t)reset_info->bootstrap_pc;
62     env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
63     env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
64     env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
65     env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
66         reset_info->initrd_size);
67     env->eba = reset_info->flash_base;
68     env->deba = reset_info->flash_base;
69 }
70
71 static void lm32_evr_init(ram_addr_t ram_size_not_used,
72                           const char *boot_device,
73                           const char *kernel_filename,
74                           const char *kernel_cmdline,
75                           const char *initrd_filename, const char *cpu_model)
76 {
77     CPUState *env;
78     DriveInfo *dinfo;
79     ram_addr_t phys_ram;
80     ram_addr_t phys_flash;
81     qemu_irq *cpu_irq, irq[32];
82     ResetInfo *reset_info;
83     int i;
84
85     /* memory map */
86     target_phys_addr_t flash_base  = 0x04000000;
87     size_t flash_sector_size       = 256 * 1024;
88     size_t flash_size              = 32 * 1024 * 1024;
89     target_phys_addr_t ram_base    = 0x08000000;
90     size_t ram_size                = 64 * 1024 * 1024;
91     target_phys_addr_t timer0_base = 0x80002000;
92     target_phys_addr_t uart0_base  = 0x80006000;
93     target_phys_addr_t timer1_base = 0x8000a000;
94     int uart0_irq                  = 0;
95     int timer0_irq                 = 1;
96     int timer1_irq                 = 3;
97
98     reset_info = qemu_mallocz(sizeof(ResetInfo));
99
100     if (cpu_model == NULL) {
101         cpu_model = "lm32-full";
102     }
103     env = cpu_init(cpu_model);
104     reset_info->env = env;
105
106     reset_info->flash_base = flash_base;
107
108     phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
109     cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
110
111     phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
112     dinfo = drive_get(IF_PFLASH, 0, 0);
113     /* Spansion S29NS128P */
114     pflash_cfi02_register(flash_base, phys_flash,
115                           dinfo ? dinfo->bdrv : NULL, flash_sector_size,
116                           flash_size / flash_sector_size, 1, 2,
117                           0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
118
119     /* create irq lines */
120     cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
121     env->pic_state = lm32_pic_init(*cpu_irq);
122     for (i = 0; i < 32; i++) {
123         irq[i] = qdev_get_gpio_in(env->pic_state, i);
124     }
125
126     sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
127     sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
128     sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
129
130     /* make sure juart isn't the first chardev */
131     env->juart_state = lm32_juart_init();
132
133     reset_info->bootstrap_pc = flash_base;
134
135     if (kernel_filename) {
136         uint64_t entry;
137         int kernel_size;
138
139         kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
140                                1, ELF_MACHINE, 0);
141         reset_info->bootstrap_pc = entry;
142
143         if (kernel_size < 0) {
144             kernel_size = load_image_targphys(kernel_filename, ram_base,
145                                               ram_size);
146             reset_info->bootstrap_pc = ram_base;
147         }
148
149         if (kernel_size < 0) {
150             fprintf(stderr, "qemu: could not load kernel '%s'\n",
151                     kernel_filename);
152             exit(1);
153         }
154     }
155
156     qemu_register_reset(main_cpu_reset, reset_info);
157 }
158
159 static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
160                           const char *boot_device,
161                           const char *kernel_filename,
162                           const char *kernel_cmdline,
163                           const char *initrd_filename, const char *cpu_model)
164 {
165     CPUState *env;
166     DriveInfo *dinfo;
167     ram_addr_t phys_ram;
168     ram_addr_t phys_flash;
169     qemu_irq *cpu_irq, irq[32];
170     HWSetup *hw;
171     ResetInfo *reset_info;
172     int i;
173
174     /* memory map */
175     target_phys_addr_t flash_base   = 0x04000000;
176     size_t flash_sector_size        = 256 * 1024;
177     size_t flash_size               = 32 * 1024 * 1024;
178     target_phys_addr_t ram_base     = 0x08000000;
179     size_t ram_size                 = 64 * 1024 * 1024;
180     target_phys_addr_t uart0_base   = 0x80000000;
181     target_phys_addr_t timer0_base  = 0x80002000;
182     target_phys_addr_t timer1_base  = 0x80010000;
183     target_phys_addr_t timer2_base  = 0x80012000;
184     int uart0_irq                   = 0;
185     int timer0_irq                  = 1;
186     int timer1_irq                  = 20;
187     int timer2_irq                  = 21;
188     target_phys_addr_t hwsetup_base = 0x0bffe000;
189     target_phys_addr_t cmdline_base = 0x0bfff000;
190     target_phys_addr_t initrd_base  = 0x08400000;
191     size_t initrd_max               = 0x01000000;
192
193     reset_info = qemu_mallocz(sizeof(ResetInfo));
194
195     if (cpu_model == NULL) {
196         cpu_model = "lm32-full";
197     }
198     env = cpu_init(cpu_model);
199     reset_info->env = env;
200
201     reset_info->flash_base = flash_base;
202
203     phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
204     cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
205
206     phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
207     dinfo = drive_get(IF_PFLASH, 0, 0);
208     /* Spansion S29NS128P */
209     pflash_cfi02_register(flash_base, phys_flash,
210                           dinfo ? dinfo->bdrv : NULL, flash_sector_size,
211                           flash_size / flash_sector_size, 1, 2,
212                           0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
213
214     /* create irq lines */
215     cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
216     env->pic_state = lm32_pic_init(*cpu_irq);
217     for (i = 0; i < 32; i++) {
218         irq[i] = qdev_get_gpio_in(env->pic_state, i);
219     }
220
221     sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
222     sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
223     sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
224     sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
225
226     /* make sure juart isn't the first chardev */
227     env->juart_state = lm32_juart_init();
228
229     reset_info->bootstrap_pc = flash_base;
230
231     if (kernel_filename) {
232         uint64_t entry;
233         int kernel_size;
234
235         kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
236                                1, ELF_MACHINE, 0);
237         reset_info->bootstrap_pc = entry;
238
239         if (kernel_size < 0) {
240             kernel_size = load_image_targphys(kernel_filename, ram_base,
241                                               ram_size);
242             reset_info->bootstrap_pc = ram_base;
243         }
244
245         if (kernel_size < 0) {
246             fprintf(stderr, "qemu: could not load kernel '%s'\n",
247                     kernel_filename);
248             exit(1);
249         }
250     }
251
252     /* generate a rom with the hardware description */
253     hw = hwsetup_init();
254     hwsetup_add_cpu(hw, "LM32", 75000000);
255     hwsetup_add_flash(hw, "flash", flash_base, flash_size);
256     hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
257     hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
258     hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
259     hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
260     hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
261     hwsetup_add_trailer(hw);
262     hwsetup_create_rom(hw, hwsetup_base);
263     hwsetup_free(hw);
264
265     reset_info->hwsetup_base = hwsetup_base;
266
267     if (kernel_cmdline && strlen(kernel_cmdline)) {
268         pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
269                 kernel_cmdline);
270         reset_info->cmdline_base = cmdline_base;
271     }
272
273     if (initrd_filename) {
274         size_t initrd_size;
275         initrd_size = load_image_targphys(initrd_filename, initrd_base,
276                 initrd_max);
277         reset_info->initrd_base = initrd_base;
278         reset_info->initrd_size = initrd_size;
279     }
280
281     qemu_register_reset(main_cpu_reset, reset_info);
282 }
283
284 static QEMUMachine lm32_evr_machine = {
285     .name = "lm32-evr",
286     .desc = "LatticeMico32 EVR32 eval system",
287     .init = lm32_evr_init,
288     .is_default = 1
289 };
290
291 static QEMUMachine lm32_uclinux_machine = {
292     .name = "lm32-uclinux",
293     .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
294     .init = lm32_uclinux_init,
295     .is_default = 0
296 };
297
298 static void lm32_machine_init(void)
299 {
300     qemu_register_machine(&lm32_uclinux_machine);
301     qemu_register_machine(&lm32_evr_machine);
302 }
303
304 machine_init(lm32_machine_init);