sync with tizen_2.2
[sdk/emulator/qemu.git] / hw / fmopl.c
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10
11 /*
12         preliminary :
13         Problem :
14         note:
15 */
16
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31  */
32
33 #define INLINE          static inline
34 #define HAS_YM3812      1
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <stdarg.h>
40 #include <math.h>
41 //#include "driver.h"           /* use M.A.M.E. */
42 #include "fmopl.h"
43
44 #ifndef PI
45 #define PI 3.14159265358979323846
46 #endif
47
48 #ifndef ARRAY_SIZE
49 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
50 #endif
51
52 /* -------------------- for debug --------------------- */
53 /* #define OPL_OUTPUT_LOG */
54 #ifdef OPL_OUTPUT_LOG
55 static FILE *opl_dbg_fp = NULL;
56 static FM_OPL *opl_dbg_opl[16];
57 static int opl_dbg_maxchip,opl_dbg_chip;
58 #endif
59
60 /* -------------------- preliminary define section --------------------- */
61 /* attack/decay rate time rate */
62 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
63 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
64
65 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
66
67 #define FREQ_BITS 24                    /* frequency turn          */
68
69 /* counter bits = 20 , octerve 7 */
70 #define FREQ_RATE   (1<<(FREQ_BITS-20))
71 #define TL_BITS    (FREQ_BITS+2)
72
73 /* final output shift , limit minimum and maximum */
74 #define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
75 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
76 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
77
78 /* -------------------- quality selection --------------------- */
79
80 /* sinwave entries */
81 /* used static memory = SIN_ENT * 4 (byte) */
82 #define SIN_ENT 2048
83
84 /* output level entries (envelope,sinwave) */
85 /* envelope counter lower bits */
86 #define ENV_BITS 16
87 /* envelope output entries */
88 #define EG_ENT   4096
89 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
90 /* used static  memory = EG_ENT*4 (byte)                     */
91
92 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
93 #define EG_DED   EG_OFF
94 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
95 #define EG_AED   EG_DST
96 #define EG_AST   0                       /* ATTACK START */
97
98 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
99
100 /* LFO table entries */
101 #define VIB_ENT 512
102 #define VIB_SHIFT (32-9)
103 #define AMS_ENT 512
104 #define AMS_SHIFT (32-9)
105
106 #define VIB_RATE 256
107
108 /* -------------------- local defines , macros --------------------- */
109
110 /* register number to channel number , slot offset */
111 #define SLOT1 0
112 #define SLOT2 1
113
114 /* envelope phase */
115 #define ENV_MOD_RR  0x00
116 #define ENV_MOD_DR  0x01
117 #define ENV_MOD_AR  0x02
118
119 /* -------------------- tables --------------------- */
120 static const int slot_array[32]=
121 {
122          0, 2, 4, 1, 3, 5,-1,-1,
123          6, 8,10, 7, 9,11,-1,-1,
124         12,14,16,13,15,17,-1,-1,
125         -1,-1,-1,-1,-1,-1,-1,-1
126 };
127
128 /* key scale level */
129 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
130 #define DV (EG_STEP/2)
131 static const UINT32 KSL_TABLE[8*16]=
132 {
133         /* OCT 0 */
134          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
138         /* OCT 1 */
139          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
140          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141          0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
142          1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
143         /* OCT 2 */
144          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
145          0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
146          3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
147          4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
148         /* OCT 3 */
149          0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
150          3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
151          6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
152          7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
153         /* OCT 4 */
154          0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
155          6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
156          9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
157         10.875/DV,11.250/DV,11.625/DV,12.000/DV,
158         /* OCT 5 */
159          0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
160          9.000/DV,10.125/DV,10.875/DV,11.625/DV,
161         12.000/DV,12.750/DV,13.125/DV,13.500/DV,
162         13.875/DV,14.250/DV,14.625/DV,15.000/DV,
163         /* OCT 6 */
164          0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
165         12.000/DV,13.125/DV,13.875/DV,14.625/DV,
166         15.000/DV,15.750/DV,16.125/DV,16.500/DV,
167         16.875/DV,17.250/DV,17.625/DV,18.000/DV,
168         /* OCT 7 */
169          0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
170         15.000/DV,16.125/DV,16.875/DV,17.625/DV,
171         18.000/DV,18.750/DV,19.125/DV,19.500/DV,
172         19.875/DV,20.250/DV,20.625/DV,21.000/DV
173 };
174 #undef DV
175
176 /* sustain lebel table (3db per step) */
177 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
178 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
179 static const INT32 SL_TABLE[16]={
180  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
181  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
182 };
183 #undef SC
184
185 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
186 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
187 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
188 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
189 static INT32 *TL_TABLE;
190
191 /* pointers to TL_TABLE with sinwave output offset */
192 static INT32 **SIN_TABLE;
193
194 /* LFO table */
195 static INT32 *AMS_TABLE;
196 static INT32 *VIB_TABLE;
197
198 /* envelope output curve table */
199 /* attack + decay + OFF */
200 static INT32 ENV_CURVE[2*EG_ENT+1];
201
202 /* multiple table */
203 #define ML 2
204 static const UINT32 MUL_TABLE[16]= {
205 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
206    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
207    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
208 };
209 #undef ML
210
211 /* dummy attack / decay rate ( when rate == 0 ) */
212 static INT32 RATE_0[16]=
213 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
214
215 /* -------------------- static state --------------------- */
216
217 /* lock level of common table */
218 static int num_lock = 0;
219
220 /* work table */
221 static void *cur_chip = NULL;   /* current chip point */
222 /* currenct chip state */
223 /* static OPLSAMPLE  *bufL,*bufR; */
224 static OPL_CH *S_CH;
225 static OPL_CH *E_CH;
226 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
227
228 static INT32 outd[1];
229 static INT32 ams;
230 static INT32 vib;
231 INT32  *ams_table;
232 INT32  *vib_table;
233 static INT32 amsIncr;
234 static INT32 vibIncr;
235 static INT32 feedback2;         /* connect for SLOT 2 */
236
237 /* log output level */
238 #define LOG_ERR  3      /* ERROR       */
239 #define LOG_WAR  2      /* WARNING     */
240 #define LOG_INF  1      /* INFORMATION */
241
242 //#define LOG_LEVEL LOG_INF
243 #define LOG_LEVEL       LOG_ERR
244
245 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
246 #define LOG(n,x)
247
248 /* --------------------- subroutines  --------------------- */
249
250 INLINE int Limit( int val, int max, int min ) {
251         if ( val > max )
252                 val = max;
253         else if ( val < min )
254                 val = min;
255
256         return val;
257 }
258
259 /* status set and IRQ handling */
260 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
261 {
262         /* set status flag */
263         OPL->status |= flag;
264         if(!(OPL->status & 0x80))
265         {
266                 if(OPL->status & OPL->statusmask)
267                 {       /* IRQ on */
268                         OPL->status |= 0x80;
269                         /* callback user interrupt handler (IRQ is OFF to ON) */
270                         if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
271                 }
272         }
273 }
274
275 /* status reset and IRQ handling */
276 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
277 {
278         /* reset status flag */
279         OPL->status &=~flag;
280         if((OPL->status & 0x80))
281         {
282                 if (!(OPL->status & OPL->statusmask) )
283                 {
284                         OPL->status &= 0x7f;
285                         /* callback user interrupt handler (IRQ is ON to OFF) */
286                         if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
287                 }
288         }
289 }
290
291 /* IRQ mask set */
292 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
293 {
294         OPL->statusmask = flag;
295         /* IRQ handling check */
296         OPL_STATUS_SET(OPL,0);
297         OPL_STATUS_RESET(OPL,0);
298 }
299
300 /* ----- key on  ----- */
301 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
302 {
303         /* sin wave restart */
304         SLOT->Cnt = 0;
305         /* set attack */
306         SLOT->evm = ENV_MOD_AR;
307         SLOT->evs = SLOT->evsa;
308         SLOT->evc = EG_AST;
309         SLOT->eve = EG_AED;
310 }
311 /* ----- key off ----- */
312 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
313 {
314         if( SLOT->evm > ENV_MOD_RR)
315         {
316                 /* set envelope counter from envleope output */
317                 SLOT->evm = ENV_MOD_RR;
318                 if( !(SLOT->evc&EG_DST) )
319                         //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
320                         SLOT->evc = EG_DST;
321                 SLOT->eve = EG_DED;
322                 SLOT->evs = SLOT->evsr;
323         }
324 }
325
326 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
327 /* return : envelope output */
328 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
329 {
330         /* calcrate envelope generator */
331         if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
332         {
333                 switch( SLOT->evm ){
334                 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
335                         /* next DR */
336                         SLOT->evm = ENV_MOD_DR;
337                         SLOT->evc = EG_DST;
338                         SLOT->eve = SLOT->SL;
339                         SLOT->evs = SLOT->evsd;
340                         break;
341                 case ENV_MOD_DR: /* DECAY -> SL or RR */
342                         SLOT->evc = SLOT->SL;
343                         SLOT->eve = EG_DED;
344                         if(SLOT->eg_typ)
345                         {
346                                 SLOT->evs = 0;
347                         }
348                         else
349                         {
350                                 SLOT->evm = ENV_MOD_RR;
351                                 SLOT->evs = SLOT->evsr;
352                         }
353                         break;
354                 case ENV_MOD_RR: /* RR -> OFF */
355                         SLOT->evc = EG_OFF;
356                         SLOT->eve = EG_OFF+1;
357                         SLOT->evs = 0;
358                         break;
359                 }
360         }
361         /* calcrate envelope */
362         return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
363 }
364
365 /* set algorithm connection */
366 static void set_algorithm( OPL_CH *CH)
367 {
368         INT32 *carrier = &outd[0];
369         CH->connect1 = CH->CON ? carrier : &feedback2;
370         CH->connect2 = carrier;
371 }
372
373 /* ---------- frequency counter for operater update ---------- */
374 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
375 {
376         int ksr;
377
378         /* frequency step counter */
379         SLOT->Incr = CH->fc * SLOT->mul;
380         ksr = CH->kcode >> SLOT->KSR;
381
382         if( SLOT->ksr != ksr )
383         {
384                 SLOT->ksr = ksr;
385                 /* attack , decay rate recalcration */
386                 SLOT->evsa = SLOT->AR[ksr];
387                 SLOT->evsd = SLOT->DR[ksr];
388                 SLOT->evsr = SLOT->RR[ksr];
389         }
390         SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
391 }
392
393 /* set multi,am,vib,EG-TYP,KSR,mul */
394 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
395 {
396         OPL_CH   *CH   = &OPL->P_CH[slot/2];
397         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
398
399         SLOT->mul    = MUL_TABLE[v&0x0f];
400         SLOT->KSR    = (v&0x10) ? 0 : 2;
401         SLOT->eg_typ = (v&0x20)>>5;
402         SLOT->vib    = (v&0x40);
403         SLOT->ams    = (v&0x80);
404         CALC_FCSLOT(CH,SLOT);
405 }
406
407 /* set ksl & tl */
408 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
409 {
410         OPL_CH   *CH   = &OPL->P_CH[slot/2];
411         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
412         int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
413
414         SLOT->ksl = ksl ? 3-ksl : 31;
415         SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
416
417         if( !(OPL->mode&0x80) )
418         {       /* not CSM latch total level */
419                 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
420         }
421 }
422
423 /* set attack rate & decay rate  */
424 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
425 {
426         OPL_CH   *CH   = &OPL->P_CH[slot/2];
427         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
428         int ar = v>>4;
429         int dr = v&0x0f;
430
431         SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
432         SLOT->evsa = SLOT->AR[SLOT->ksr];
433         if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
434
435         SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
436         SLOT->evsd = SLOT->DR[SLOT->ksr];
437         if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
438 }
439
440 /* set sustain level & release rate */
441 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
442 {
443         OPL_CH   *CH   = &OPL->P_CH[slot/2];
444         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
445         int sl = v>>4;
446         int rr = v & 0x0f;
447
448         SLOT->SL = SL_TABLE[sl];
449         if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
450         SLOT->RR = &OPL->DR_TABLE[rr<<2];
451         SLOT->evsr = SLOT->RR[SLOT->ksr];
452         if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
453 }
454
455 /* operator output calcrator */
456 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
457 /* ---------- calcrate one of channel ---------- */
458 INLINE void OPL_CALC_CH( OPL_CH *CH )
459 {
460         UINT32 env_out;
461         OPL_SLOT *SLOT;
462
463         feedback2 = 0;
464         /* SLOT 1 */
465         SLOT = &CH->SLOT[SLOT1];
466         env_out=OPL_CALC_SLOT(SLOT);
467         if( env_out < EG_ENT-1 )
468         {
469                 /* PG */
470                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
471                 else          SLOT->Cnt += SLOT->Incr;
472                 /* connectoion */
473                 if(CH->FB)
474                 {
475                         int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
476                         CH->op1_out[1] = CH->op1_out[0];
477                         *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
478                 }
479                 else
480                 {
481                         *CH->connect1 += OP_OUT(SLOT,env_out,0);
482                 }
483         }else
484         {
485                 CH->op1_out[1] = CH->op1_out[0];
486                 CH->op1_out[0] = 0;
487         }
488         /* SLOT 2 */
489         SLOT = &CH->SLOT[SLOT2];
490         env_out=OPL_CALC_SLOT(SLOT);
491         if( env_out < EG_ENT-1 )
492         {
493                 /* PG */
494                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
495                 else          SLOT->Cnt += SLOT->Incr;
496                 /* connectoion */
497                 outd[0] += OP_OUT(SLOT,env_out, feedback2);
498         }
499 }
500
501 /* ---------- calcrate rhythm block ---------- */
502 #define WHITE_NOISE_db 6.0
503 INLINE void OPL_CALC_RH( OPL_CH *CH )
504 {
505         UINT32 env_tam,env_sd,env_top,env_hh;
506         int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
507         INT32 tone8;
508
509         OPL_SLOT *SLOT;
510         int env_out;
511
512         /* BD : same as FM serial mode and output level is large */
513         feedback2 = 0;
514         /* SLOT 1 */
515         SLOT = &CH[6].SLOT[SLOT1];
516         env_out=OPL_CALC_SLOT(SLOT);
517         if( env_out < EG_ENT-1 )
518         {
519                 /* PG */
520                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
521                 else          SLOT->Cnt += SLOT->Incr;
522                 /* connectoion */
523                 if(CH[6].FB)
524                 {
525                         int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
526                         CH[6].op1_out[1] = CH[6].op1_out[0];
527                         feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
528                 }
529                 else
530                 {
531                         feedback2 = OP_OUT(SLOT,env_out,0);
532                 }
533         }else
534         {
535                 feedback2 = 0;
536                 CH[6].op1_out[1] = CH[6].op1_out[0];
537                 CH[6].op1_out[0] = 0;
538         }
539         /* SLOT 2 */
540         SLOT = &CH[6].SLOT[SLOT2];
541         env_out=OPL_CALC_SLOT(SLOT);
542         if( env_out < EG_ENT-1 )
543         {
544                 /* PG */
545                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
546                 else          SLOT->Cnt += SLOT->Incr;
547                 /* connectoion */
548                 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
549         }
550
551         // SD  (17) = mul14[fnum7] + white noise
552         // TAM (15) = mul15[fnum8]
553         // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
554         // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
555         env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
556         env_tam=OPL_CALC_SLOT(SLOT8_1);
557         env_top=OPL_CALC_SLOT(SLOT8_2);
558         env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
559
560         /* PG */
561         if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
562         else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
563         if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
564         else             SLOT7_2->Cnt += (CH[7].fc*8);
565         if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
566         else             SLOT8_1->Cnt += SLOT8_1->Incr;
567         if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
568         else             SLOT8_2->Cnt += (CH[8].fc*48);
569
570         tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
571
572         /* SD */
573         if( env_sd < EG_ENT-1 )
574                 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
575         /* TAM */
576         if( env_tam < EG_ENT-1 )
577                 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
578         /* TOP-CY */
579         if( env_top < EG_ENT-1 )
580                 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
581         /* HH */
582         if( env_hh  < EG_ENT-1 )
583                 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
584 }
585
586 /* ----------- initialize time tabls ----------- */
587 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
588 {
589         int i;
590         double rate;
591
592         /* make attack rate & decay rate tables */
593         for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
594         for (i = 4;i <= 60;i++){
595                 rate  = OPL->freqbase;                                          /* frequency rate */
596                 if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
597                 rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
598                 rate *= (double)(EG_ENT<<ENV_BITS);
599                 OPL->AR_TABLE[i] = rate / ARRATE;
600                 OPL->DR_TABLE[i] = rate / DRRATE;
601         }
602         for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
603         {
604                 OPL->AR_TABLE[i] = EG_AED-1;
605                 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
606         }
607 #if 0
608         for (i = 0;i < 64 ;i++){        /* make for overflow area */
609                 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
610                         ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
611                         ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
612         }
613 #endif
614 }
615
616 /* ---------- generic table initialize ---------- */
617 static int OPLOpenTable( void )
618 {
619         int s,t;
620         double rate;
621         int i,j;
622         double pom;
623
624         /* allocate dynamic tables */
625         if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
626                 return 0;
627         if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
628         {
629                 free(TL_TABLE);
630                 return 0;
631         }
632         if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
633         {
634                 free(TL_TABLE);
635                 free(SIN_TABLE);
636                 return 0;
637         }
638         if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
639         {
640                 free(TL_TABLE);
641                 free(SIN_TABLE);
642                 free(AMS_TABLE);
643                 return 0;
644         }
645         /* make total level table */
646         for (t = 0;t < EG_ENT-1 ;t++){
647                 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
648                 TL_TABLE[       t] =  (int)rate;
649                 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
650 /*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
651         }
652         /* fill volume off area */
653         for ( t = EG_ENT-1; t < TL_MAX ;t++){
654                 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
655         }
656
657         /* make sinwave table (total level offet) */
658         /* degree 0 = degree 180                   = off */
659         SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
660         for (s = 1;s <= SIN_ENT/4;s++){
661                 pom = sin(2*PI*s/SIN_ENT); /* sin     */
662                 pom = 20*log10(1/pom);     /* decibel */
663                 j = pom / EG_STEP;         /* TL_TABLE steps */
664
665         /* degree 0   -  90    , degree 180 -  90 : plus section */
666                 SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
667         /* degree 180 - 270    , degree 360 - 270 : minus section */
668                 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
669 /*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
670         }
671         for (s = 0;s < SIN_ENT;s++)
672         {
673                 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
674                 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
675                 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
676         }
677
678         /* envelope counter -> envelope output table */
679         for (i=0; i<EG_ENT; i++)
680         {
681                 /* ATTACK curve */
682                 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
683                 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
684                 ENV_CURVE[i] = (int)pom;
685                 /* DECAY ,RELEASE curve */
686                 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
687         }
688         /* off */
689         ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
690         /* make LFO ams table */
691         for (i=0; i<AMS_ENT; i++)
692         {
693                 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
694                 AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
695                 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
696         }
697         /* make LFO vibrate table */
698         for (i=0; i<VIB_ENT; i++)
699         {
700                 /* 100cent = 1seminote = 6% ?? */
701                 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
702                 VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
703                 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
704                 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
705         }
706         return 1;
707 }
708
709
710 static void OPLCloseTable( void )
711 {
712         free(TL_TABLE);
713         free(SIN_TABLE);
714         free(AMS_TABLE);
715         free(VIB_TABLE);
716 }
717
718 /* CSM Key Control */
719 INLINE void CSMKeyControll(OPL_CH *CH)
720 {
721         OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
722         OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
723         /* all key off */
724         OPL_KEYOFF(slot1);
725         OPL_KEYOFF(slot2);
726         /* total level latch */
727         slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
728         slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
729         /* key on */
730         CH->op1_out[0] = CH->op1_out[1] = 0;
731         OPL_KEYON(slot1);
732         OPL_KEYON(slot2);
733 }
734
735 /* ---------- opl initialize ---------- */
736 static void OPL_initialize(FM_OPL *OPL)
737 {
738         int fn;
739
740         /* frequency base */
741         OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
742         /* Timer base time */
743         OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
744         /* make time tables */
745         init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
746         /* make fnumber -> increment counter table */
747         for( fn=0 ; fn < 1024 ; fn++ )
748         {
749                 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
750         }
751         /* LFO freq.table */
752         OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
753         OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
754 }
755
756 /* ---------- write a OPL registers ---------- */
757 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
758 {
759         OPL_CH *CH;
760         int slot;
761         int block_fnum;
762
763         switch(r&0xe0)
764         {
765         case 0x00: /* 00-1f:control */
766                 switch(r&0x1f)
767                 {
768                 case 0x01:
769                         /* wave selector enable */
770                         if(OPL->type&OPL_TYPE_WAVESEL)
771                         {
772                                 OPL->wavesel = v&0x20;
773                                 if(!OPL->wavesel)
774                                 {
775                                         /* preset compatible mode */
776                                         int c;
777                                         for(c=0;c<OPL->max_ch;c++)
778                                         {
779                                                 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
780                                                 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
781                                         }
782                                 }
783                         }
784                         return;
785                 case 0x02:      /* Timer 1 */
786                         OPL->T[0] = (256-v)*4;
787                         break;
788                 case 0x03:      /* Timer 2 */
789                         OPL->T[1] = (256-v)*16;
790                         return;
791                 case 0x04:      /* IRQ clear / mask and Timer enable */
792                         if(v&0x80)
793                         {       /* IRQ flag clear */
794                                 OPL_STATUS_RESET(OPL,0x7f);
795                         }
796                         else
797                         {       /* set IRQ mask ,timer enable*/
798                                 UINT8 st1 = v&1;
799                                 UINT8 st2 = (v>>1)&1;
800                                 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
801                                 OPL_STATUS_RESET(OPL,v&0x78);
802                                 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
803                                 /* timer 2 */
804                                 if(OPL->st[1] != st2)
805                                 {
806                                         double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
807                                         OPL->st[1] = st2;
808                                         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
809                                 }
810                                 /* timer 1 */
811                                 if(OPL->st[0] != st1)
812                                 {
813                                         double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
814                                         OPL->st[0] = st1;
815                                         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
816                                 }
817                         }
818                         return;
819 #if BUILD_Y8950
820                 case 0x06:              /* Key Board OUT */
821                         if(OPL->type&OPL_TYPE_KEYBOARD)
822                         {
823                                 if(OPL->keyboardhandler_w)
824                                         OPL->keyboardhandler_w(OPL->keyboard_param,v);
825                                 else
826                                         LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
827                         }
828                         return;
829                 case 0x07:      /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
830                         if(OPL->type&OPL_TYPE_ADPCM)
831                                 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
832                         return;
833                 case 0x08:      /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
834                         OPL->mode = v;
835                         v&=0x1f;        /* for DELTA-T unit */
836                 case 0x09:              /* START ADD */
837                 case 0x0a:
838                 case 0x0b:              /* STOP ADD  */
839                 case 0x0c:
840                 case 0x0d:              /* PRESCALE   */
841                 case 0x0e:
842                 case 0x0f:              /* ADPCM data */
843                 case 0x10:              /* DELTA-N    */
844                 case 0x11:              /* DELTA-N    */
845                 case 0x12:              /* EG-CTRL    */
846                         if(OPL->type&OPL_TYPE_ADPCM)
847                                 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
848                         return;
849 #if 0
850                 case 0x15:              /* DAC data    */
851                 case 0x16:
852                 case 0x17:              /* SHIFT    */
853                         return;
854                 case 0x18:              /* I/O CTRL (Direction) */
855                         if(OPL->type&OPL_TYPE_IO)
856                                 OPL->portDirection = v&0x0f;
857                         return;
858                 case 0x19:              /* I/O DATA */
859                         if(OPL->type&OPL_TYPE_IO)
860                         {
861                                 OPL->portLatch = v;
862                                 if(OPL->porthandler_w)
863                                         OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
864                         }
865                         return;
866                 case 0x1a:              /* PCM data */
867                         return;
868 #endif
869 #endif
870                 }
871                 break;
872         case 0x20:      /* am,vib,ksr,eg type,mul */
873                 slot = slot_array[r&0x1f];
874                 if(slot == -1) return;
875                 set_mul(OPL,slot,v);
876                 return;
877         case 0x40:
878                 slot = slot_array[r&0x1f];
879                 if(slot == -1) return;
880                 set_ksl_tl(OPL,slot,v);
881                 return;
882         case 0x60:
883                 slot = slot_array[r&0x1f];
884                 if(slot == -1) return;
885                 set_ar_dr(OPL,slot,v);
886                 return;
887         case 0x80:
888                 slot = slot_array[r&0x1f];
889                 if(slot == -1) return;
890                 set_sl_rr(OPL,slot,v);
891                 return;
892         case 0xa0:
893                 switch(r)
894                 {
895                 case 0xbd:
896                         /* amsep,vibdep,r,bd,sd,tom,tc,hh */
897                         {
898                         UINT8 rkey = OPL->rhythm^v;
899                         OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
900                         OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
901                         OPL->rhythm  = v&0x3f;
902                         if(OPL->rhythm&0x20)
903                         {
904 #if 0
905                                 usrintf_showmessage("OPL Rhythm mode select");
906 #endif
907                                 /* BD key on/off */
908                                 if(rkey&0x10)
909                                 {
910                                         if(v&0x10)
911                                         {
912                                                 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
913                                                 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
914                                                 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
915                                         }
916                                         else
917                                         {
918                                                 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
919                                                 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
920                                         }
921                                 }
922                                 /* SD key on/off */
923                                 if(rkey&0x08)
924                                 {
925                                         if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
926                                         else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
927                                 }/* TAM key on/off */
928                                 if(rkey&0x04)
929                                 {
930                                         if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
931                                         else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
932                                 }
933                                 /* TOP-CY key on/off */
934                                 if(rkey&0x02)
935                                 {
936                                         if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
937                                         else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
938                                 }
939                                 /* HH key on/off */
940                                 if(rkey&0x01)
941                                 {
942                                         if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
943                                         else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
944                                 }
945                         }
946                         }
947                         return;
948                 }
949                 /* keyon,block,fnum */
950                 if( (r&0x0f) > 8) return;
951                 CH = &OPL->P_CH[r&0x0f];
952                 if(!(r&0x10))
953                 {       /* a0-a8 */
954                         block_fnum  = (CH->block_fnum&0x1f00) | v;
955                 }
956                 else
957                 {       /* b0-b8 */
958                         int keyon = (v>>5)&1;
959                         block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
960                         if(CH->keyon != keyon)
961                         {
962                                 if( (CH->keyon=keyon) )
963                                 {
964                                         CH->op1_out[0] = CH->op1_out[1] = 0;
965                                         OPL_KEYON(&CH->SLOT[SLOT1]);
966                                         OPL_KEYON(&CH->SLOT[SLOT2]);
967                                 }
968                                 else
969                                 {
970                                         OPL_KEYOFF(&CH->SLOT[SLOT1]);
971                                         OPL_KEYOFF(&CH->SLOT[SLOT2]);
972                                 }
973                         }
974                 }
975                 /* update */
976                 if(CH->block_fnum != block_fnum)
977                 {
978                         int blockRv = 7-(block_fnum>>10);
979                         int fnum   = block_fnum&0x3ff;
980                         CH->block_fnum = block_fnum;
981
982                         CH->ksl_base = KSL_TABLE[block_fnum>>6];
983                         CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
984                         CH->kcode = CH->block_fnum>>9;
985                         if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
986                         CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
987                         CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
988                 }
989                 return;
990         case 0xc0:
991                 /* FB,C */
992                 if( (r&0x0f) > 8) return;
993                 CH = &OPL->P_CH[r&0x0f];
994                 {
995                 int feedback = (v>>1)&7;
996                 CH->FB   = feedback ? (8+1) - feedback : 0;
997                 CH->CON = v&1;
998                 set_algorithm(CH);
999                 }
1000                 return;
1001         case 0xe0: /* wave type */
1002                 slot = slot_array[r&0x1f];
1003                 if(slot == -1) return;
1004                 CH = &OPL->P_CH[slot/2];
1005                 if(OPL->wavesel)
1006                 {
1007                         /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1008                         CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1009                 }
1010                 return;
1011         }
1012 }
1013
1014 /* lock/unlock for common table */
1015 static int OPL_LockTable(void)
1016 {
1017         num_lock++;
1018         if(num_lock>1) return 0;
1019         /* first time */
1020         cur_chip = NULL;
1021         /* allocate total level table (128kb space) */
1022         if( !OPLOpenTable() )
1023         {
1024                 num_lock--;
1025                 return -1;
1026         }
1027         return 0;
1028 }
1029
1030 static void OPL_UnLockTable(void)
1031 {
1032         if(num_lock) num_lock--;
1033         if(num_lock) return;
1034         /* last time */
1035         cur_chip = NULL;
1036         OPLCloseTable();
1037 }
1038
1039 #if (BUILD_YM3812 || BUILD_YM3526)
1040 /*******************************************************************************/
1041 /*              YM3812 local section                                                   */
1042 /*******************************************************************************/
1043
1044 /* ---------- update one of chip ----------- */
1045 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1046 {
1047     int i;
1048         int data;
1049         OPLSAMPLE *buf = buffer;
1050         UINT32 amsCnt  = OPL->amsCnt;
1051         UINT32 vibCnt  = OPL->vibCnt;
1052         UINT8 rhythm = OPL->rhythm&0x20;
1053         OPL_CH *CH,*R_CH;
1054
1055         if( (void *)OPL != cur_chip ){
1056                 cur_chip = (void *)OPL;
1057                 /* channel pointers */
1058                 S_CH = OPL->P_CH;
1059                 E_CH = &S_CH[9];
1060                 /* rhythm slot */
1061                 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1062                 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1063                 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1064                 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1065                 /* LFO state */
1066                 amsIncr = OPL->amsIncr;
1067                 vibIncr = OPL->vibIncr;
1068                 ams_table = OPL->ams_table;
1069                 vib_table = OPL->vib_table;
1070         }
1071         R_CH = rhythm ? &S_CH[6] : E_CH;
1072     for( i=0; i < length ; i++ )
1073         {
1074                 /*            channel A         channel B         channel C      */
1075                 /* LFO */
1076                 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1077                 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1078                 outd[0] = 0;
1079                 /* FM part */
1080                 for(CH=S_CH ; CH < R_CH ; CH++)
1081                         OPL_CALC_CH(CH);
1082                 /* Rythn part */
1083                 if(rhythm)
1084                         OPL_CALC_RH(S_CH);
1085                 /* limit check */
1086                 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1087                 /* store to sound buffer */
1088                 buf[i] = data >> OPL_OUTSB;
1089         }
1090
1091         OPL->amsCnt = amsCnt;
1092         OPL->vibCnt = vibCnt;
1093 #ifdef OPL_OUTPUT_LOG
1094         if(opl_dbg_fp)
1095         {
1096                 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1097                         if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1098                 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1099         }
1100 #endif
1101 }
1102 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1103
1104 #if BUILD_Y8950
1105
1106 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1107 {
1108     int i;
1109         int data;
1110         OPLSAMPLE *buf = buffer;
1111         UINT32 amsCnt  = OPL->amsCnt;
1112         UINT32 vibCnt  = OPL->vibCnt;
1113         UINT8 rhythm = OPL->rhythm&0x20;
1114         OPL_CH *CH,*R_CH;
1115         YM_DELTAT *DELTAT = OPL->deltat;
1116
1117         /* setup DELTA-T unit */
1118         YM_DELTAT_DECODE_PRESET(DELTAT);
1119
1120         if( (void *)OPL != cur_chip ){
1121                 cur_chip = (void *)OPL;
1122                 /* channel pointers */
1123                 S_CH = OPL->P_CH;
1124                 E_CH = &S_CH[9];
1125                 /* rhythm slot */
1126                 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1127                 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1128                 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1129                 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1130                 /* LFO state */
1131                 amsIncr = OPL->amsIncr;
1132                 vibIncr = OPL->vibIncr;
1133                 ams_table = OPL->ams_table;
1134                 vib_table = OPL->vib_table;
1135         }
1136         R_CH = rhythm ? &S_CH[6] : E_CH;
1137     for( i=0; i < length ; i++ )
1138         {
1139                 /*            channel A         channel B         channel C      */
1140                 /* LFO */
1141                 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1142                 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1143                 outd[0] = 0;
1144                 /* deltaT ADPCM */
1145                 if( DELTAT->portstate )
1146                         YM_DELTAT_ADPCM_CALC(DELTAT);
1147                 /* FM part */
1148                 for(CH=S_CH ; CH < R_CH ; CH++)
1149                         OPL_CALC_CH(CH);
1150                 /* Rythn part */
1151                 if(rhythm)
1152                         OPL_CALC_RH(S_CH);
1153                 /* limit check */
1154                 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1155                 /* store to sound buffer */
1156                 buf[i] = data >> OPL_OUTSB;
1157         }
1158         OPL->amsCnt = amsCnt;
1159         OPL->vibCnt = vibCnt;
1160         /* deltaT START flag */
1161         if( !DELTAT->portstate )
1162                 OPL->status &= 0xfe;
1163 }
1164 #endif
1165
1166 /* ---------- reset one of chip ---------- */
1167 void OPLResetChip(FM_OPL *OPL)
1168 {
1169         int c,s;
1170         int i;
1171
1172         /* reset chip */
1173         OPL->mode   = 0;        /* normal mode */
1174         OPL_STATUS_RESET(OPL,0x7f);
1175         /* reset with register write */
1176         OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1177         OPLWriteReg(OPL,0x02,0); /* Timer1 */
1178         OPLWriteReg(OPL,0x03,0); /* Timer2 */
1179         OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1180         for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1181         /* reset OPerator paramater */
1182         for( c = 0 ; c < OPL->max_ch ; c++ )
1183         {
1184                 OPL_CH *CH = &OPL->P_CH[c];
1185                 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1186                 for(s = 0 ; s < 2 ; s++ )
1187                 {
1188                         /* wave table */
1189                         CH->SLOT[s].wavetable = &SIN_TABLE[0];
1190                         /* CH->SLOT[s].evm = ENV_MOD_RR; */
1191                         CH->SLOT[s].evc = EG_OFF;
1192                         CH->SLOT[s].eve = EG_OFF+1;
1193                         CH->SLOT[s].evs = 0;
1194                 }
1195         }
1196 #if BUILD_Y8950
1197         if(OPL->type&OPL_TYPE_ADPCM)
1198         {
1199                 YM_DELTAT *DELTAT = OPL->deltat;
1200
1201                 DELTAT->freqbase = OPL->freqbase;
1202                 DELTAT->output_pointer = outd;
1203                 DELTAT->portshift = 5;
1204                 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1205                 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1206         }
1207 #endif
1208 }
1209
1210 /* ----------  Create one of vietual YM3812 ----------       */
1211 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1212 FM_OPL *OPLCreate(int type, int clock, int rate)
1213 {
1214         char *ptr;
1215         FM_OPL *OPL;
1216         int state_size;
1217         int max_ch = 9; /* normaly 9 channels */
1218
1219         if( OPL_LockTable() ==-1) return NULL;
1220         /* allocate OPL state space */
1221         state_size  = sizeof(FM_OPL);
1222         state_size += sizeof(OPL_CH)*max_ch;
1223 #if BUILD_Y8950
1224         if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1225 #endif
1226         /* allocate memory block */
1227         ptr = malloc(state_size);
1228         if(ptr==NULL) return NULL;
1229         /* clear */
1230         memset(ptr,0,state_size);
1231         OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1232         OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1233 #if BUILD_Y8950
1234         if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1235 #endif
1236         /* set channel state pointer */
1237         OPL->type  = type;
1238         OPL->clock = clock;
1239         OPL->rate  = rate;
1240         OPL->max_ch = max_ch;
1241         /* init grobal tables */
1242         OPL_initialize(OPL);
1243         /* reset chip */
1244         OPLResetChip(OPL);
1245 #ifdef OPL_OUTPUT_LOG
1246         if(!opl_dbg_fp)
1247         {
1248                 opl_dbg_fp = fopen("opllog.opl","wb");
1249                 opl_dbg_maxchip = 0;
1250         }
1251         if(opl_dbg_fp)
1252         {
1253                 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1254                 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1255                         type,
1256                         clock&0xff,
1257                         (clock/0x100)&0xff,
1258                         (clock/0x10000)&0xff,
1259                         (clock/0x1000000)&0xff);
1260                 opl_dbg_maxchip++;
1261         }
1262 #endif
1263         return OPL;
1264 }
1265
1266 /* ----------  Destroy one of vietual YM3812 ----------       */
1267 void OPLDestroy(FM_OPL *OPL)
1268 {
1269 #ifdef OPL_OUTPUT_LOG
1270         if(opl_dbg_fp)
1271         {
1272                 fclose(opl_dbg_fp);
1273                 opl_dbg_fp = NULL;
1274         }
1275 #endif
1276         OPL_UnLockTable();
1277         free(OPL);
1278 }
1279
1280 /* ----------  Option handlers ----------       */
1281
1282 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1283 {
1284         OPL->TimerHandler   = TimerHandler;
1285         OPL->TimerParam = channelOffset;
1286 }
1287 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1288 {
1289         OPL->IRQHandler     = IRQHandler;
1290         OPL->IRQParam = param;
1291 }
1292 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1293 {
1294         OPL->UpdateHandler = UpdateHandler;
1295         OPL->UpdateParam = param;
1296 }
1297 #if BUILD_Y8950
1298 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1299 {
1300         OPL->porthandler_w = PortHandler_w;
1301         OPL->porthandler_r = PortHandler_r;
1302         OPL->port_param = param;
1303 }
1304
1305 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1306 {
1307         OPL->keyboardhandler_w = KeyboardHandler_w;
1308         OPL->keyboardhandler_r = KeyboardHandler_r;
1309         OPL->keyboard_param = param;
1310 }
1311 #endif
1312 /* ---------- YM3812 I/O interface ---------- */
1313 int OPLWrite(FM_OPL *OPL,int a,int v)
1314 {
1315         if( !(a&1) )
1316         {       /* address port */
1317                 OPL->address = v & 0xff;
1318         }
1319         else
1320         {       /* data port */
1321                 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1322 #ifdef OPL_OUTPUT_LOG
1323         if(opl_dbg_fp)
1324         {
1325                 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1326                         if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1327                 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1328         }
1329 #endif
1330                 OPLWriteReg(OPL,OPL->address,v);
1331         }
1332         return OPL->status>>7;
1333 }
1334
1335 unsigned char OPLRead(FM_OPL *OPL,int a)
1336 {
1337         if( !(a&1) )
1338         {       /* status port */
1339                 return OPL->status & (OPL->statusmask|0x80);
1340         }
1341         /* data port */
1342         switch(OPL->address)
1343         {
1344         case 0x05: /* KeyBoard IN */
1345                 if(OPL->type&OPL_TYPE_KEYBOARD)
1346                 {
1347                         if(OPL->keyboardhandler_r)
1348                                 return OPL->keyboardhandler_r(OPL->keyboard_param);
1349                         else {
1350                                 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1351                         }
1352                 }
1353                 return 0;
1354 #if 0
1355         case 0x0f: /* ADPCM-DATA  */
1356                 return 0;
1357 #endif
1358         case 0x19: /* I/O DATA    */
1359                 if(OPL->type&OPL_TYPE_IO)
1360                 {
1361                         if(OPL->porthandler_r)
1362                                 return OPL->porthandler_r(OPL->port_param);
1363                         else {
1364                                 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1365                         }
1366                 }
1367                 return 0;
1368         case 0x1a: /* PCM-DATA    */
1369                 return 0;
1370         }
1371         return 0;
1372 }
1373
1374 int OPLTimerOver(FM_OPL *OPL,int c)
1375 {
1376         if( c )
1377         {       /* Timer B */
1378                 OPL_STATUS_SET(OPL,0x20);
1379         }
1380         else
1381         {       /* Timer A */
1382                 OPL_STATUS_SET(OPL,0x40);
1383                 /* CSM mode key,TL control */
1384                 if( OPL->mode & 0x80 )
1385                 {       /* CSM mode total level latch and auto key on */
1386                         int ch;
1387                         if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1388                         for(ch=0;ch<9;ch++)
1389                                 CSMKeyControll( &OPL->P_CH[ch] );
1390                 }
1391         }
1392         /* reload timer */
1393         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1394         return OPL->status>>7;
1395 }