2b0e82b0cccb660fbe78039b15f5ccc1a6c6e7cc
[sdk/emulator/qemu.git] / hw / fmopl.c
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
10
11 /*
12         preliminary :
13         Problem :
14         note:
15 */
16
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18  *
19  * This library is free software; you can redistribute it and/or
20  * modify it under the terms of the GNU Lesser General Public
21  * License as published by the Free Software Foundation; either
22  * version 2.1 of the License, or (at your option) any later version.
23  *
24  * This library is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * Lesser General Public License for more details.
28  *
29  * You should have received a copy of the GNU Lesser General Public
30  * License along with this library; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  */
33
34 #define INLINE          __inline
35 #define HAS_YM3812      1
36
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <stdarg.h>
41 #include <math.h>
42 //#include "driver.h"           /* use M.A.M.E. */
43 #include "fmopl.h"
44
45 #ifndef PI
46 #define PI 3.14159265358979323846
47 #endif
48
49 /* -------------------- for debug --------------------- */
50 /* #define OPL_OUTPUT_LOG */
51 #ifdef OPL_OUTPUT_LOG
52 static FILE *opl_dbg_fp = NULL;
53 static FM_OPL *opl_dbg_opl[16];
54 static int opl_dbg_maxchip,opl_dbg_chip;
55 #endif
56
57 /* -------------------- preliminary define section --------------------- */
58 /* attack/decay rate time rate */
59 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
60 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
61
62 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
63
64 #define FREQ_BITS 24                    /* frequency turn          */
65
66 /* counter bits = 20 , octerve 7 */
67 #define FREQ_RATE   (1<<(FREQ_BITS-20))
68 #define TL_BITS    (FREQ_BITS+2)
69
70 /* final output shift , limit minimum and maximum */
71 #define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
72 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
73 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
74
75 /* -------------------- quality selection --------------------- */
76
77 /* sinwave entries */
78 /* used static memory = SIN_ENT * 4 (byte) */
79 #define SIN_ENT 2048
80
81 /* output level entries (envelope,sinwave) */
82 /* envelope counter lower bits */
83 #define ENV_BITS 16
84 /* envelope output entries */
85 #define EG_ENT   4096
86 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
87 /* used static  memory = EG_ENT*4 (byte)                     */
88
89 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
90 #define EG_DED   EG_OFF
91 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
92 #define EG_AED   EG_DST
93 #define EG_AST   0                       /* ATTACK START */
94
95 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
96
97 /* LFO table entries */
98 #define VIB_ENT 512
99 #define VIB_SHIFT (32-9)
100 #define AMS_ENT 512
101 #define AMS_SHIFT (32-9)
102
103 #define VIB_RATE 256
104
105 /* -------------------- local defines , macros --------------------- */
106
107 /* register number to channel number , slot offset */
108 #define SLOT1 0
109 #define SLOT2 1
110
111 /* envelope phase */
112 #define ENV_MOD_RR  0x00
113 #define ENV_MOD_DR  0x01
114 #define ENV_MOD_AR  0x02
115
116 /* -------------------- tables --------------------- */
117 static const int slot_array[32]=
118 {
119          0, 2, 4, 1, 3, 5,-1,-1,
120          6, 8,10, 7, 9,11,-1,-1,
121         12,14,16,13,15,17,-1,-1,
122         -1,-1,-1,-1,-1,-1,-1,-1
123 };
124
125 /* key scale level */
126 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
127 #define DV (EG_STEP/2)
128 static const UINT32 KSL_TABLE[8*16]=
129 {
130         /* OCT 0 */
131          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135         /* OCT 1 */
136          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
138          0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
139          1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
140         /* OCT 2 */
141          0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
142          0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
143          3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
144          4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
145         /* OCT 3 */
146          0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
147          3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
148          6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
149          7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
150         /* OCT 4 */
151          0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
152          6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
153          9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
154         10.875/DV,11.250/DV,11.625/DV,12.000/DV,
155         /* OCT 5 */
156          0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
157          9.000/DV,10.125/DV,10.875/DV,11.625/DV,
158         12.000/DV,12.750/DV,13.125/DV,13.500/DV,
159         13.875/DV,14.250/DV,14.625/DV,15.000/DV,
160         /* OCT 6 */
161          0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
162         12.000/DV,13.125/DV,13.875/DV,14.625/DV,
163         15.000/DV,15.750/DV,16.125/DV,16.500/DV,
164         16.875/DV,17.250/DV,17.625/DV,18.000/DV,
165         /* OCT 7 */
166          0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
167         15.000/DV,16.125/DV,16.875/DV,17.625/DV,
168         18.000/DV,18.750/DV,19.125/DV,19.500/DV,
169         19.875/DV,20.250/DV,20.625/DV,21.000/DV
170 };
171 #undef DV
172
173 /* sustain lebel table (3db per step) */
174 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
175 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
176 static const INT32 SL_TABLE[16]={
177  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
178  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
179 };
180 #undef SC
181
182 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
183 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
184 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
185 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
186 static INT32 *TL_TABLE;
187
188 /* pointers to TL_TABLE with sinwave output offset */
189 static INT32 **SIN_TABLE;
190
191 /* LFO table */
192 static INT32 *AMS_TABLE;
193 static INT32 *VIB_TABLE;
194
195 /* envelope output curve table */
196 /* attack + decay + OFF */
197 static INT32 ENV_CURVE[2*EG_ENT+1];
198
199 /* multiple table */
200 #define ML 2
201 static const UINT32 MUL_TABLE[16]= {
202 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
203    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
204    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
205 };
206 #undef ML
207
208 /* dummy attack / decay rate ( when rate == 0 ) */
209 static INT32 RATE_0[16]=
210 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
211
212 /* -------------------- static state --------------------- */
213
214 /* lock level of common table */
215 static int num_lock = 0;
216
217 /* work table */
218 static void *cur_chip = NULL;   /* current chip point */
219 /* currenct chip state */
220 /* static OPLSAMPLE  *bufL,*bufR; */
221 static OPL_CH *S_CH;
222 static OPL_CH *E_CH;
223 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
224
225 static INT32 outd[1];
226 static INT32 ams;
227 static INT32 vib;
228 INT32  *ams_table;
229 INT32  *vib_table;
230 static INT32 amsIncr;
231 static INT32 vibIncr;
232 static INT32 feedback2;         /* connect for SLOT 2 */
233
234 /* log output level */
235 #define LOG_ERR  3      /* ERROR       */
236 #define LOG_WAR  2      /* WARNING     */
237 #define LOG_INF  1      /* INFORMATION */
238
239 //#define LOG_LEVEL LOG_INF
240 #define LOG_LEVEL       LOG_ERR
241
242 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
243 #define LOG(n,x)
244
245 /* --------------------- subroutines  --------------------- */
246
247 INLINE int Limit( int val, int max, int min ) {
248         if ( val > max )
249                 val = max;
250         else if ( val < min )
251                 val = min;
252
253         return val;
254 }
255
256 /* status set and IRQ handling */
257 INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
258 {
259         /* set status flag */
260         OPL->status |= flag;
261         if(!(OPL->status & 0x80))
262         {
263                 if(OPL->status & OPL->statusmask)
264                 {       /* IRQ on */
265                         OPL->status |= 0x80;
266                         /* callback user interrupt handler (IRQ is OFF to ON) */
267                         if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
268                 }
269         }
270 }
271
272 /* status reset and IRQ handling */
273 INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
274 {
275         /* reset status flag */
276         OPL->status &=~flag;
277         if((OPL->status & 0x80))
278         {
279                 if (!(OPL->status & OPL->statusmask) )
280                 {
281                         OPL->status &= 0x7f;
282                         /* callback user interrupt handler (IRQ is ON to OFF) */
283                         if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
284                 }
285         }
286 }
287
288 /* IRQ mask set */
289 INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
290 {
291         OPL->statusmask = flag;
292         /* IRQ handling check */
293         OPL_STATUS_SET(OPL,0);
294         OPL_STATUS_RESET(OPL,0);
295 }
296
297 /* ----- key on  ----- */
298 INLINE void OPL_KEYON(OPL_SLOT *SLOT)
299 {
300         /* sin wave restart */
301         SLOT->Cnt = 0;
302         /* set attack */
303         SLOT->evm = ENV_MOD_AR;
304         SLOT->evs = SLOT->evsa;
305         SLOT->evc = EG_AST;
306         SLOT->eve = EG_AED;
307 }
308 /* ----- key off ----- */
309 INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
310 {
311         if( SLOT->evm > ENV_MOD_RR)
312         {
313                 /* set envelope counter from envleope output */
314                 SLOT->evm = ENV_MOD_RR;
315                 if( !(SLOT->evc&EG_DST) )
316                         //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
317                         SLOT->evc = EG_DST;
318                 SLOT->eve = EG_DED;
319                 SLOT->evs = SLOT->evsr;
320         }
321 }
322
323 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
324 /* return : envelope output */
325 INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
326 {
327         /* calcrate envelope generator */
328         if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
329         {
330                 switch( SLOT->evm ){
331                 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
332                         /* next DR */
333                         SLOT->evm = ENV_MOD_DR;
334                         SLOT->evc = EG_DST;
335                         SLOT->eve = SLOT->SL;
336                         SLOT->evs = SLOT->evsd;
337                         break;
338                 case ENV_MOD_DR: /* DECAY -> SL or RR */
339                         SLOT->evc = SLOT->SL;
340                         SLOT->eve = EG_DED;
341                         if(SLOT->eg_typ)
342                         {
343                                 SLOT->evs = 0;
344                         }
345                         else
346                         {
347                                 SLOT->evm = ENV_MOD_RR;
348                                 SLOT->evs = SLOT->evsr;
349                         }
350                         break;
351                 case ENV_MOD_RR: /* RR -> OFF */
352                         SLOT->evc = EG_OFF;
353                         SLOT->eve = EG_OFF+1;
354                         SLOT->evs = 0;
355                         break;
356                 }
357         }
358         /* calcrate envelope */
359         return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
360 }
361
362 /* set algorythm connection */
363 static void set_algorythm( OPL_CH *CH)
364 {
365         INT32 *carrier = &outd[0];
366         CH->connect1 = CH->CON ? carrier : &feedback2;
367         CH->connect2 = carrier;
368 }
369
370 /* ---------- frequency counter for operater update ---------- */
371 INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
372 {
373         int ksr;
374
375         /* frequency step counter */
376         SLOT->Incr = CH->fc * SLOT->mul;
377         ksr = CH->kcode >> SLOT->KSR;
378
379         if( SLOT->ksr != ksr )
380         {
381                 SLOT->ksr = ksr;
382                 /* attack , decay rate recalcration */
383                 SLOT->evsa = SLOT->AR[ksr];
384                 SLOT->evsd = SLOT->DR[ksr];
385                 SLOT->evsr = SLOT->RR[ksr];
386         }
387         SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
388 }
389
390 /* set multi,am,vib,EG-TYP,KSR,mul */
391 INLINE void set_mul(FM_OPL *OPL,int slot,int v)
392 {
393         OPL_CH   *CH   = &OPL->P_CH[slot/2];
394         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
395
396         SLOT->mul    = MUL_TABLE[v&0x0f];
397         SLOT->KSR    = (v&0x10) ? 0 : 2;
398         SLOT->eg_typ = (v&0x20)>>5;
399         SLOT->vib    = (v&0x40);
400         SLOT->ams    = (v&0x80);
401         CALC_FCSLOT(CH,SLOT);
402 }
403
404 /* set ksl & tl */
405 INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
406 {
407         OPL_CH   *CH   = &OPL->P_CH[slot/2];
408         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
409         int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
410
411         SLOT->ksl = ksl ? 3-ksl : 31;
412         SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
413
414         if( !(OPL->mode&0x80) )
415         {       /* not CSM latch total level */
416                 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
417         }
418 }
419
420 /* set attack rate & decay rate  */
421 INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
422 {
423         OPL_CH   *CH   = &OPL->P_CH[slot/2];
424         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
425         int ar = v>>4;
426         int dr = v&0x0f;
427
428         SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
429         SLOT->evsa = SLOT->AR[SLOT->ksr];
430         if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
431
432         SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
433         SLOT->evsd = SLOT->DR[SLOT->ksr];
434         if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
435 }
436
437 /* set sustain level & release rate */
438 INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
439 {
440         OPL_CH   *CH   = &OPL->P_CH[slot/2];
441         OPL_SLOT *SLOT = &CH->SLOT[slot&1];
442         int sl = v>>4;
443         int rr = v & 0x0f;
444
445         SLOT->SL = SL_TABLE[sl];
446         if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
447         SLOT->RR = &OPL->DR_TABLE[rr<<2];
448         SLOT->evsr = SLOT->RR[SLOT->ksr];
449         if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
450 }
451
452 /* operator output calcrator */
453 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
454 /* ---------- calcrate one of channel ---------- */
455 INLINE void OPL_CALC_CH( OPL_CH *CH )
456 {
457         UINT32 env_out;
458         OPL_SLOT *SLOT;
459
460         feedback2 = 0;
461         /* SLOT 1 */
462         SLOT = &CH->SLOT[SLOT1];
463         env_out=OPL_CALC_SLOT(SLOT);
464         if( env_out < EG_ENT-1 )
465         {
466                 /* PG */
467                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
468                 else          SLOT->Cnt += SLOT->Incr;
469                 /* connectoion */
470                 if(CH->FB)
471                 {
472                         int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
473                         CH->op1_out[1] = CH->op1_out[0];
474                         *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
475                 }
476                 else
477                 {
478                         *CH->connect1 += OP_OUT(SLOT,env_out,0);
479                 }
480         }else
481         {
482                 CH->op1_out[1] = CH->op1_out[0];
483                 CH->op1_out[0] = 0;
484         }
485         /* SLOT 2 */
486         SLOT = &CH->SLOT[SLOT2];
487         env_out=OPL_CALC_SLOT(SLOT);
488         if( env_out < EG_ENT-1 )
489         {
490                 /* PG */
491                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
492                 else          SLOT->Cnt += SLOT->Incr;
493                 /* connectoion */
494                 outd[0] += OP_OUT(SLOT,env_out, feedback2);
495         }
496 }
497
498 /* ---------- calcrate rythm block ---------- */
499 #define WHITE_NOISE_db 6.0
500 INLINE void OPL_CALC_RH( OPL_CH *CH )
501 {
502         UINT32 env_tam,env_sd,env_top,env_hh;
503         int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
504         INT32 tone8;
505
506         OPL_SLOT *SLOT;
507         int env_out;
508
509         /* BD : same as FM serial mode and output level is large */
510         feedback2 = 0;
511         /* SLOT 1 */
512         SLOT = &CH[6].SLOT[SLOT1];
513         env_out=OPL_CALC_SLOT(SLOT);
514         if( env_out < EG_ENT-1 )
515         {
516                 /* PG */
517                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
518                 else          SLOT->Cnt += SLOT->Incr;
519                 /* connectoion */
520                 if(CH[6].FB)
521                 {
522                         int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
523                         CH[6].op1_out[1] = CH[6].op1_out[0];
524                         feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
525                 }
526                 else
527                 {
528                         feedback2 = OP_OUT(SLOT,env_out,0);
529                 }
530         }else
531         {
532                 feedback2 = 0;
533                 CH[6].op1_out[1] = CH[6].op1_out[0];
534                 CH[6].op1_out[0] = 0;
535         }
536         /* SLOT 2 */
537         SLOT = &CH[6].SLOT[SLOT2];
538         env_out=OPL_CALC_SLOT(SLOT);
539         if( env_out < EG_ENT-1 )
540         {
541                 /* PG */
542                 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
543                 else          SLOT->Cnt += SLOT->Incr;
544                 /* connectoion */
545                 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
546         }
547
548         // SD  (17) = mul14[fnum7] + white noise
549         // TAM (15) = mul15[fnum8]
550         // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
551         // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
552         env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
553         env_tam=OPL_CALC_SLOT(SLOT8_1);
554         env_top=OPL_CALC_SLOT(SLOT8_2);
555         env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
556
557         /* PG */
558         if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
559         else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
560         if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
561         else             SLOT7_2->Cnt += (CH[7].fc*8);
562         if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
563         else             SLOT8_1->Cnt += SLOT8_1->Incr;
564         if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
565         else             SLOT8_2->Cnt += (CH[8].fc*48);
566
567         tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
568
569         /* SD */
570         if( env_sd < EG_ENT-1 )
571                 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
572         /* TAM */
573         if( env_tam < EG_ENT-1 )
574                 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
575         /* TOP-CY */
576         if( env_top < EG_ENT-1 )
577                 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
578         /* HH */
579         if( env_hh  < EG_ENT-1 )
580                 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
581 }
582
583 /* ----------- initialize time tabls ----------- */
584 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
585 {
586         int i;
587         double rate;
588
589         /* make attack rate & decay rate tables */
590         for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
591         for (i = 4;i <= 60;i++){
592                 rate  = OPL->freqbase;                                          /* frequency rate */
593                 if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
594                 rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
595                 rate *= (double)(EG_ENT<<ENV_BITS);
596                 OPL->AR_TABLE[i] = rate / ARRATE;
597                 OPL->DR_TABLE[i] = rate / DRRATE;
598         }
599         for (i = 60;i < 76;i++)
600         {
601                 OPL->AR_TABLE[i] = EG_AED-1;
602                 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
603         }
604 #if 0
605         for (i = 0;i < 64 ;i++){        /* make for overflow area */
606                 LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
607                         ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
608                         ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
609         }
610 #endif
611 }
612
613 /* ---------- generic table initialize ---------- */
614 static int OPLOpenTable( void )
615 {
616         int s,t;
617         double rate;
618         int i,j;
619         double pom;
620
621         /* allocate dynamic tables */
622         if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
623                 return 0;
624         if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
625         {
626                 free(TL_TABLE);
627                 return 0;
628         }
629         if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
630         {
631                 free(TL_TABLE);
632                 free(SIN_TABLE);
633                 return 0;
634         }
635         if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
636         {
637                 free(TL_TABLE);
638                 free(SIN_TABLE);
639                 free(AMS_TABLE);
640                 return 0;
641         }
642         /* make total level table */
643         for (t = 0;t < EG_ENT-1 ;t++){
644                 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
645                 TL_TABLE[       t] =  (int)rate;
646                 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
647 /*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
648         }
649         /* fill volume off area */
650         for ( t = EG_ENT-1; t < TL_MAX ;t++){
651                 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
652         }
653
654         /* make sinwave table (total level offet) */
655         /* degree 0 = degree 180                   = off */
656         SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
657         for (s = 1;s <= SIN_ENT/4;s++){
658                 pom = sin(2*PI*s/SIN_ENT); /* sin     */
659                 pom = 20*log10(1/pom);     /* decibel */
660                 j = pom / EG_STEP;         /* TL_TABLE steps */
661
662         /* degree 0   -  90    , degree 180 -  90 : plus section */
663                 SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
664         /* degree 180 - 270    , degree 360 - 270 : minus section */
665                 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
666 /*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
667         }
668         for (s = 0;s < SIN_ENT;s++)
669         {
670                 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
671                 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
672                 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
673         }
674
675         /* envelope counter -> envelope output table */
676         for (i=0; i<EG_ENT; i++)
677         {
678                 /* ATTACK curve */
679                 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
680                 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
681                 ENV_CURVE[i] = (int)pom;
682                 /* DECAY ,RELEASE curve */
683                 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
684         }
685         /* off */
686         ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
687         /* make LFO ams table */
688         for (i=0; i<AMS_ENT; i++)
689         {
690                 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
691                 AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
692                 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
693         }
694         /* make LFO vibrate table */
695         for (i=0; i<VIB_ENT; i++)
696         {
697                 /* 100cent = 1seminote = 6% ?? */
698                 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
699                 VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
700                 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
701                 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
702         }
703         return 1;
704 }
705
706
707 static void OPLCloseTable( void )
708 {
709         free(TL_TABLE);
710         free(SIN_TABLE);
711         free(AMS_TABLE);
712         free(VIB_TABLE);
713 }
714
715 /* CSM Key Controll */
716 INLINE void CSMKeyControll(OPL_CH *CH)
717 {
718         OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
719         OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
720         /* all key off */
721         OPL_KEYOFF(slot1);
722         OPL_KEYOFF(slot2);
723         /* total level latch */
724         slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725         slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
726         /* key on */
727         CH->op1_out[0] = CH->op1_out[1] = 0;
728         OPL_KEYON(slot1);
729         OPL_KEYON(slot2);
730 }
731
732 /* ---------- opl initialize ---------- */
733 static void OPL_initalize(FM_OPL *OPL)
734 {
735         int fn;
736
737         /* frequency base */
738         OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
739         /* Timer base time */
740         OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
741         /* make time tables */
742         init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
743         /* make fnumber -> increment counter table */
744         for( fn=0 ; fn < 1024 ; fn++ )
745         {
746                 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
747         }
748         /* LFO freq.table */
749         OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
750         OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
751 }
752
753 /* ---------- write a OPL registers ---------- */
754 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
755 {
756         OPL_CH *CH;
757         int slot;
758         int block_fnum;
759
760         switch(r&0xe0)
761         {
762         case 0x00: /* 00-1f:controll */
763                 switch(r&0x1f)
764                 {
765                 case 0x01:
766                         /* wave selector enable */
767                         if(OPL->type&OPL_TYPE_WAVESEL)
768                         {
769                                 OPL->wavesel = v&0x20;
770                                 if(!OPL->wavesel)
771                                 {
772                                         /* preset compatible mode */
773                                         int c;
774                                         for(c=0;c<OPL->max_ch;c++)
775                                         {
776                                                 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
777                                                 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
778                                         }
779                                 }
780                         }
781                         return;
782                 case 0x02:      /* Timer 1 */
783                         OPL->T[0] = (256-v)*4;
784                         break;
785                 case 0x03:      /* Timer 2 */
786                         OPL->T[1] = (256-v)*16;
787                         return;
788                 case 0x04:      /* IRQ clear / mask and Timer enable */
789                         if(v&0x80)
790                         {       /* IRQ flag clear */
791                                 OPL_STATUS_RESET(OPL,0x7f);
792                         }
793                         else
794                         {       /* set IRQ mask ,timer enable*/
795                                 UINT8 st1 = v&1;
796                                 UINT8 st2 = (v>>1)&1;
797                                 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
798                                 OPL_STATUS_RESET(OPL,v&0x78);
799                                 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
800                                 /* timer 2 */
801                                 if(OPL->st[1] != st2)
802                                 {
803                                         double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
804                                         OPL->st[1] = st2;
805                                         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
806                                 }
807                                 /* timer 1 */
808                                 if(OPL->st[0] != st1)
809                                 {
810                                         double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
811                                         OPL->st[0] = st1;
812                                         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
813                                 }
814                         }
815                         return;
816 #if BUILD_Y8950
817                 case 0x06:              /* Key Board OUT */
818                         if(OPL->type&OPL_TYPE_KEYBOARD)
819                         {
820                                 if(OPL->keyboardhandler_w)
821                                         OPL->keyboardhandler_w(OPL->keyboard_param,v);
822                                 else
823                                         LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
824                         }
825                         return;
826                 case 0x07:      /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
827                         if(OPL->type&OPL_TYPE_ADPCM)
828                                 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
829                         return;
830                 case 0x08:      /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
831                         OPL->mode = v;
832                         v&=0x1f;        /* for DELTA-T unit */
833                 case 0x09:              /* START ADD */
834                 case 0x0a:
835                 case 0x0b:              /* STOP ADD  */
836                 case 0x0c:
837                 case 0x0d:              /* PRESCALE   */
838                 case 0x0e:
839                 case 0x0f:              /* ADPCM data */
840                 case 0x10:              /* DELTA-N    */
841                 case 0x11:              /* DELTA-N    */
842                 case 0x12:              /* EG-CTRL    */
843                         if(OPL->type&OPL_TYPE_ADPCM)
844                                 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
845                         return;
846 #if 0
847                 case 0x15:              /* DAC data    */
848                 case 0x16:
849                 case 0x17:              /* SHIFT    */
850                         return;
851                 case 0x18:              /* I/O CTRL (Direction) */
852                         if(OPL->type&OPL_TYPE_IO)
853                                 OPL->portDirection = v&0x0f;
854                         return;
855                 case 0x19:              /* I/O DATA */
856                         if(OPL->type&OPL_TYPE_IO)
857                         {
858                                 OPL->portLatch = v;
859                                 if(OPL->porthandler_w)
860                                         OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
861                         }
862                         return;
863                 case 0x1a:              /* PCM data */
864                         return;
865 #endif
866 #endif
867                 }
868                 break;
869         case 0x20:      /* am,vib,ksr,eg type,mul */
870                 slot = slot_array[r&0x1f];
871                 if(slot == -1) return;
872                 set_mul(OPL,slot,v);
873                 return;
874         case 0x40:
875                 slot = slot_array[r&0x1f];
876                 if(slot == -1) return;
877                 set_ksl_tl(OPL,slot,v);
878                 return;
879         case 0x60:
880                 slot = slot_array[r&0x1f];
881                 if(slot == -1) return;
882                 set_ar_dr(OPL,slot,v);
883                 return;
884         case 0x80:
885                 slot = slot_array[r&0x1f];
886                 if(slot == -1) return;
887                 set_sl_rr(OPL,slot,v);
888                 return;
889         case 0xa0:
890                 switch(r)
891                 {
892                 case 0xbd:
893                         /* amsep,vibdep,r,bd,sd,tom,tc,hh */
894                         {
895                         UINT8 rkey = OPL->rythm^v;
896                         OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
897                         OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
898                         OPL->rythm  = v&0x3f;
899                         if(OPL->rythm&0x20)
900                         {
901 #if 0
902                                 usrintf_showmessage("OPL Rythm mode select");
903 #endif
904                                 /* BD key on/off */
905                                 if(rkey&0x10)
906                                 {
907                                         if(v&0x10)
908                                         {
909                                                 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
910                                                 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
911                                                 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
912                                         }
913                                         else
914                                         {
915                                                 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
916                                                 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
917                                         }
918                                 }
919                                 /* SD key on/off */
920                                 if(rkey&0x08)
921                                 {
922                                         if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
923                                         else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
924                                 }/* TAM key on/off */
925                                 if(rkey&0x04)
926                                 {
927                                         if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
928                                         else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
929                                 }
930                                 /* TOP-CY key on/off */
931                                 if(rkey&0x02)
932                                 {
933                                         if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
934                                         else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
935                                 }
936                                 /* HH key on/off */
937                                 if(rkey&0x01)
938                                 {
939                                         if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
940                                         else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
941                                 }
942                         }
943                         }
944                         return;
945                 }
946                 /* keyon,block,fnum */
947                 if( (r&0x0f) > 8) return;
948                 CH = &OPL->P_CH[r&0x0f];
949                 if(!(r&0x10))
950                 {       /* a0-a8 */
951                         block_fnum  = (CH->block_fnum&0x1f00) | v;
952                 }
953                 else
954                 {       /* b0-b8 */
955                         int keyon = (v>>5)&1;
956                         block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
957                         if(CH->keyon != keyon)
958                         {
959                                 if( (CH->keyon=keyon) )
960                                 {
961                                         CH->op1_out[0] = CH->op1_out[1] = 0;
962                                         OPL_KEYON(&CH->SLOT[SLOT1]);
963                                         OPL_KEYON(&CH->SLOT[SLOT2]);
964                                 }
965                                 else
966                                 {
967                                         OPL_KEYOFF(&CH->SLOT[SLOT1]);
968                                         OPL_KEYOFF(&CH->SLOT[SLOT2]);
969                                 }
970                         }
971                 }
972                 /* update */
973                 if(CH->block_fnum != block_fnum)
974                 {
975                         int blockRv = 7-(block_fnum>>10);
976                         int fnum   = block_fnum&0x3ff;
977                         CH->block_fnum = block_fnum;
978
979                         CH->ksl_base = KSL_TABLE[block_fnum>>6];
980                         CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
981                         CH->kcode = CH->block_fnum>>9;
982                         if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
983                         CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
984                         CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
985                 }
986                 return;
987         case 0xc0:
988                 /* FB,C */
989                 if( (r&0x0f) > 8) return;
990                 CH = &OPL->P_CH[r&0x0f];
991                 {
992                 int feedback = (v>>1)&7;
993                 CH->FB   = feedback ? (8+1) - feedback : 0;
994                 CH->CON = v&1;
995                 set_algorythm(CH);
996                 }
997                 return;
998         case 0xe0: /* wave type */
999                 slot = slot_array[r&0x1f];
1000                 if(slot == -1) return;
1001                 CH = &OPL->P_CH[slot/2];
1002                 if(OPL->wavesel)
1003                 {
1004                         /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1005                         CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1006                 }
1007                 return;
1008         }
1009 }
1010
1011 /* lock/unlock for common table */
1012 static int OPL_LockTable(void)
1013 {
1014         num_lock++;
1015         if(num_lock>1) return 0;
1016         /* first time */
1017         cur_chip = NULL;
1018         /* allocate total level table (128kb space) */
1019         if( !OPLOpenTable() )
1020         {
1021                 num_lock--;
1022                 return -1;
1023         }
1024         return 0;
1025 }
1026
1027 static void OPL_UnLockTable(void)
1028 {
1029         if(num_lock) num_lock--;
1030         if(num_lock) return;
1031         /* last time */
1032         cur_chip = NULL;
1033         OPLCloseTable();
1034 }
1035
1036 #if (BUILD_YM3812 || BUILD_YM3526)
1037 /*******************************************************************************/
1038 /*              YM3812 local section                                                   */
1039 /*******************************************************************************/
1040
1041 /* ---------- update one of chip ----------- */
1042 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1043 {
1044     int i;
1045         int data;
1046         OPLSAMPLE *buf = buffer;
1047         UINT32 amsCnt  = OPL->amsCnt;
1048         UINT32 vibCnt  = OPL->vibCnt;
1049         UINT8 rythm = OPL->rythm&0x20;
1050         OPL_CH *CH,*R_CH;
1051
1052         if( (void *)OPL != cur_chip ){
1053                 cur_chip = (void *)OPL;
1054                 /* channel pointers */
1055                 S_CH = OPL->P_CH;
1056                 E_CH = &S_CH[9];
1057                 /* rythm slot */
1058                 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1059                 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1060                 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1061                 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1062                 /* LFO state */
1063                 amsIncr = OPL->amsIncr;
1064                 vibIncr = OPL->vibIncr;
1065                 ams_table = OPL->ams_table;
1066                 vib_table = OPL->vib_table;
1067         }
1068         R_CH = rythm ? &S_CH[6] : E_CH;
1069     for( i=0; i < length ; i++ )
1070         {
1071                 /*            channel A         channel B         channel C      */
1072                 /* LFO */
1073                 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1074                 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1075                 outd[0] = 0;
1076                 /* FM part */
1077                 for(CH=S_CH ; CH < R_CH ; CH++)
1078                         OPL_CALC_CH(CH);
1079                 /* Rythn part */
1080                 if(rythm)
1081                         OPL_CALC_RH(S_CH);
1082                 /* limit check */
1083                 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1084                 /* store to sound buffer */
1085                 buf[i] = data >> OPL_OUTSB;
1086         }
1087
1088         OPL->amsCnt = amsCnt;
1089         OPL->vibCnt = vibCnt;
1090 #ifdef OPL_OUTPUT_LOG
1091         if(opl_dbg_fp)
1092         {
1093                 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1094                         if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1095                 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1096         }
1097 #endif
1098 }
1099 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1100
1101 #if BUILD_Y8950
1102
1103 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1104 {
1105     int i;
1106         int data;
1107         OPLSAMPLE *buf = buffer;
1108         UINT32 amsCnt  = OPL->amsCnt;
1109         UINT32 vibCnt  = OPL->vibCnt;
1110         UINT8 rythm = OPL->rythm&0x20;
1111         OPL_CH *CH,*R_CH;
1112         YM_DELTAT *DELTAT = OPL->deltat;
1113
1114         /* setup DELTA-T unit */
1115         YM_DELTAT_DECODE_PRESET(DELTAT);
1116
1117         if( (void *)OPL != cur_chip ){
1118                 cur_chip = (void *)OPL;
1119                 /* channel pointers */
1120                 S_CH = OPL->P_CH;
1121                 E_CH = &S_CH[9];
1122                 /* rythm slot */
1123                 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1124                 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1125                 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1126                 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1127                 /* LFO state */
1128                 amsIncr = OPL->amsIncr;
1129                 vibIncr = OPL->vibIncr;
1130                 ams_table = OPL->ams_table;
1131                 vib_table = OPL->vib_table;
1132         }
1133         R_CH = rythm ? &S_CH[6] : E_CH;
1134     for( i=0; i < length ; i++ )
1135         {
1136                 /*            channel A         channel B         channel C      */
1137                 /* LFO */
1138                 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1139                 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1140                 outd[0] = 0;
1141                 /* deltaT ADPCM */
1142                 if( DELTAT->portstate )
1143                         YM_DELTAT_ADPCM_CALC(DELTAT);
1144                 /* FM part */
1145                 for(CH=S_CH ; CH < R_CH ; CH++)
1146                         OPL_CALC_CH(CH);
1147                 /* Rythn part */
1148                 if(rythm)
1149                         OPL_CALC_RH(S_CH);
1150                 /* limit check */
1151                 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1152                 /* store to sound buffer */
1153                 buf[i] = data >> OPL_OUTSB;
1154         }
1155         OPL->amsCnt = amsCnt;
1156         OPL->vibCnt = vibCnt;
1157         /* deltaT START flag */
1158         if( !DELTAT->portstate )
1159                 OPL->status &= 0xfe;
1160 }
1161 #endif
1162
1163 /* ---------- reset one of chip ---------- */
1164 void OPLResetChip(FM_OPL *OPL)
1165 {
1166         int c,s;
1167         int i;
1168
1169         /* reset chip */
1170         OPL->mode   = 0;        /* normal mode */
1171         OPL_STATUS_RESET(OPL,0x7f);
1172         /* reset with register write */
1173         OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1174         OPLWriteReg(OPL,0x02,0); /* Timer1 */
1175         OPLWriteReg(OPL,0x03,0); /* Timer2 */
1176         OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1177         for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1178         /* reset OPerator paramater */
1179         for( c = 0 ; c < OPL->max_ch ; c++ )
1180         {
1181                 OPL_CH *CH = &OPL->P_CH[c];
1182                 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1183                 for(s = 0 ; s < 2 ; s++ )
1184                 {
1185                         /* wave table */
1186                         CH->SLOT[s].wavetable = &SIN_TABLE[0];
1187                         /* CH->SLOT[s].evm = ENV_MOD_RR; */
1188                         CH->SLOT[s].evc = EG_OFF;
1189                         CH->SLOT[s].eve = EG_OFF+1;
1190                         CH->SLOT[s].evs = 0;
1191                 }
1192         }
1193 #if BUILD_Y8950
1194         if(OPL->type&OPL_TYPE_ADPCM)
1195         {
1196                 YM_DELTAT *DELTAT = OPL->deltat;
1197
1198                 DELTAT->freqbase = OPL->freqbase;
1199                 DELTAT->output_pointer = outd;
1200                 DELTAT->portshift = 5;
1201                 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1202                 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1203         }
1204 #endif
1205 }
1206
1207 /* ----------  Create one of vietual YM3812 ----------       */
1208 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1209 FM_OPL *OPLCreate(int type, int clock, int rate)
1210 {
1211         char *ptr;
1212         FM_OPL *OPL;
1213         int state_size;
1214         int max_ch = 9; /* normaly 9 channels */
1215
1216         if( OPL_LockTable() ==-1) return NULL;
1217         /* allocate OPL state space */
1218         state_size  = sizeof(FM_OPL);
1219         state_size += sizeof(OPL_CH)*max_ch;
1220 #if BUILD_Y8950
1221         if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1222 #endif
1223         /* allocate memory block */
1224         ptr = malloc(state_size);
1225         if(ptr==NULL) return NULL;
1226         /* clear */
1227         memset(ptr,0,state_size);
1228         OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1229         OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1230 #if BUILD_Y8950
1231         if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1232 #endif
1233         /* set channel state pointer */
1234         OPL->type  = type;
1235         OPL->clock = clock;
1236         OPL->rate  = rate;
1237         OPL->max_ch = max_ch;
1238         /* init grobal tables */
1239         OPL_initalize(OPL);
1240         /* reset chip */
1241         OPLResetChip(OPL);
1242 #ifdef OPL_OUTPUT_LOG
1243         if(!opl_dbg_fp)
1244         {
1245                 opl_dbg_fp = fopen("opllog.opl","wb");
1246                 opl_dbg_maxchip = 0;
1247         }
1248         if(opl_dbg_fp)
1249         {
1250                 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1251                 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1252                         type,
1253                         clock&0xff,
1254                         (clock/0x100)&0xff,
1255                         (clock/0x10000)&0xff,
1256                         (clock/0x1000000)&0xff);
1257                 opl_dbg_maxchip++;
1258         }
1259 #endif
1260         return OPL;
1261 }
1262
1263 /* ----------  Destroy one of vietual YM3812 ----------       */
1264 void OPLDestroy(FM_OPL *OPL)
1265 {
1266 #ifdef OPL_OUTPUT_LOG
1267         if(opl_dbg_fp)
1268         {
1269                 fclose(opl_dbg_fp);
1270                 opl_dbg_fp = NULL;
1271         }
1272 #endif
1273         OPL_UnLockTable();
1274         free(OPL);
1275 }
1276
1277 /* ----------  Option handlers ----------       */
1278
1279 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1280 {
1281         OPL->TimerHandler   = TimerHandler;
1282         OPL->TimerParam = channelOffset;
1283 }
1284 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1285 {
1286         OPL->IRQHandler     = IRQHandler;
1287         OPL->IRQParam = param;
1288 }
1289 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1290 {
1291         OPL->UpdateHandler = UpdateHandler;
1292         OPL->UpdateParam = param;
1293 }
1294 #if BUILD_Y8950
1295 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1296 {
1297         OPL->porthandler_w = PortHandler_w;
1298         OPL->porthandler_r = PortHandler_r;
1299         OPL->port_param = param;
1300 }
1301
1302 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1303 {
1304         OPL->keyboardhandler_w = KeyboardHandler_w;
1305         OPL->keyboardhandler_r = KeyboardHandler_r;
1306         OPL->keyboard_param = param;
1307 }
1308 #endif
1309 /* ---------- YM3812 I/O interface ---------- */
1310 int OPLWrite(FM_OPL *OPL,int a,int v)
1311 {
1312         if( !(a&1) )
1313         {       /* address port */
1314                 OPL->address = v & 0xff;
1315         }
1316         else
1317         {       /* data port */
1318                 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1319 #ifdef OPL_OUTPUT_LOG
1320         if(opl_dbg_fp)
1321         {
1322                 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1323                         if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1324                 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1325         }
1326 #endif
1327                 OPLWriteReg(OPL,OPL->address,v);
1328         }
1329         return OPL->status>>7;
1330 }
1331
1332 unsigned char OPLRead(FM_OPL *OPL,int a)
1333 {
1334         if( !(a&1) )
1335         {       /* status port */
1336                 return OPL->status & (OPL->statusmask|0x80);
1337         }
1338         /* data port */
1339         switch(OPL->address)
1340         {
1341         case 0x05: /* KeyBoard IN */
1342                 if(OPL->type&OPL_TYPE_KEYBOARD)
1343                 {
1344                         if(OPL->keyboardhandler_r)
1345                                 return OPL->keyboardhandler_r(OPL->keyboard_param);
1346                         else
1347                                 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1348                 }
1349                 return 0;
1350 #if 0
1351         case 0x0f: /* ADPCM-DATA  */
1352                 return 0;
1353 #endif
1354         case 0x19: /* I/O DATA    */
1355                 if(OPL->type&OPL_TYPE_IO)
1356                 {
1357                         if(OPL->porthandler_r)
1358                                 return OPL->porthandler_r(OPL->port_param);
1359                         else
1360                                 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1361                 }
1362                 return 0;
1363         case 0x1a: /* PCM-DATA    */
1364                 return 0;
1365         }
1366         return 0;
1367 }
1368
1369 int OPLTimerOver(FM_OPL *OPL,int c)
1370 {
1371         if( c )
1372         {       /* Timer B */
1373                 OPL_STATUS_SET(OPL,0x20);
1374         }
1375         else
1376         {       /* Timer A */
1377                 OPL_STATUS_SET(OPL,0x40);
1378                 /* CSM mode key,TL controll */
1379                 if( OPL->mode & 0x80 )
1380                 {       /* CSM mode total level latch and auto key on */
1381                         int ch;
1382                         if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1383                         for(ch=0;ch<9;ch++)
1384                                 CSMKeyControll( &OPL->P_CH[ch] );
1385                 }
1386         }
1387         /* reload timer */
1388         if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1389         return OPL->status>>7;
1390 }