1 /* GStreamer ReplayGain analysis
3 * Copyright (C) 2006 Rene Stadler <mail@renestadler.de>
4 * Copyright (C) 2001 David Robinson <David@Robinson.org>
5 * Glen Sawyer <glensawyer@hotmail.com>
7 * rganalysis.c: Analyze raw audio data in accordance with ReplayGain
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1 of
12 * the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 /* Based on code with Copyright (C) 2001 David Robinson
26 * <David@Robinson.org> and Glen Sawyer <glensawyer@hotmail.com>,
27 * which is distributed under the LGPL as part of the vorbisgain
28 * program. The original code also mentions Frank Klemm
29 * (http://www.uni-jena.de/~pfk/mpp/) for having contributed lots of
30 * good code. Specifically, this is based on the file
31 * "gain_analysis.c" from vorbisgain version 0.34.
34 /* Room for future improvement: Mono data is currently in fact copied
35 * to two channels which get processed normally. This means that mono
36 * input data is processed twice.
39 /* Helpful information for understanding this code: The two IIR
40 * filters depend on previous input _and_ previous output samples (up
41 * to the filter's order number of samples). This explains the whole
42 * lot of memcpy'ing done in rg_analysis_analyze and why the context
43 * holds so many buffers.
50 #include "rganalysis.h"
53 #define BUTTER_ORDER 2
54 /* Percentile which is louder than the proposed level: */
55 #define RMS_PERCENTILE 95
56 /* Duration of RMS window in milliseconds: */
57 #define RMS_WINDOW_MSECS 50
58 /* Histogram array elements per dB: */
59 #define STEPS_PER_DB 100
60 /* Histogram upper bound in dB (normal max. values in the wild are
61 * assumed to be around 70, 80 dB): */
63 /* Calibration value: */
64 #define PINK_REF 64.82 /* 298640883795 */
66 #define MAX_ORDER MAX (BUTTER_ORDER, YULE_ORDER)
67 #define MAX_SAMPLE_RATE 48000
68 /* The + 999 has the effect of ceil()ing: */
69 #define MAX_SAMPLE_WINDOW (guint) \
70 ((MAX_SAMPLE_RATE * RMS_WINDOW_MSECS + 999) / 1000)
72 /* Analysis result accumulator. */
76 guint32 histogram[STEPS_PER_DB * MAX_DB];
80 typedef struct _RgAnalysisAcc RgAnalysisAcc;
82 /* Analysis context. */
86 /* Filter buffers for left channel. */
87 gfloat inprebuf_l[MAX_ORDER * 2];
89 gfloat stepbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
91 gfloat outbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
93 /* Filter buffers for right channel. */
94 gfloat inprebuf_r[MAX_ORDER * 2];
96 gfloat stepbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
98 gfloat outbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
101 /* Number of samples to reach duration of the RMS window: */
102 guint window_n_samples;
103 /* Progress of the running window: */
104 guint window_n_samples_done;
105 gdouble window_square_sum;
108 gint sample_rate_index;
114 /* Filter coefficients for the IIR filters that form the equal
115 * loudness filter. XFilter[ctx->sample_rate_index] gives the array
116 * of the X coefficients (A or B) for the configured sample rate. */
119 /* Disable double-to-float warning: */
120 #pragma warning ( disable : 4305 )
123 static const gfloat AYule[9][11] = {
124 {1., -3.84664617118067, 7.81501653005538, -11.34170355132042,
125 13.05504219327545, -12.28759895145294, 9.48293806319790,
126 -5.87257861775999, 2.75465861874613, -0.86984376593551,
128 {1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280,
129 -8.81498681370155, 6.85401540936998, -4.39470996079559,
130 2.19611684890774, -0.75104302451432, 0.13149317958808},
131 {1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713,
132 -1.67148153367602, 1.00595954808547, -0.45953458054983,
133 0.16378164858596, -0.05032077717131, 0.02347897407020},
134 {1., -1.61273165137247, 1.07977492259970, -0.25656257754070,
135 -0.16276719120440, -0.22638893773906, 0.39120800788284,
136 -0.22138138954925, 0.04500235387352, 0.02005851806501,
138 {1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438,
139 0.47854794562326, -0.12453458140019, -0.04067510197014,
140 0.08333755284107, -0.04237348025746, 0.02977207319925},
141 {1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124,
142 -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683,
143 0.05784820375801, 0.03222754072173},
144 {1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858,
145 0.45054734505008, -0.33032403314006, 0.06739368333110,
146 -0.04784254229033, 0.01639907836189, 0.01807364323573},
147 {1., -0.51035327095184, -0.31863563325245, -0.20256413484477,
148 0.14728154134330, 0.38952639978999, -0.23313271880868,
149 -0.05246019024463, -0.02505961724053, 0.02442357316099,
151 {1., -0.25049871956020, -0.43193942311114, -0.03424681017675,
152 -0.04678328784242, 0.26408300200955, 0.15113130533216,
153 -0.17556493366449, -0.18823009262115, 0.05477720428674,
157 static const gfloat BYule[9][11] = {
158 {0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959,
159 -0.01655260341619, 0.02161526843274, -0.02074045215285,
160 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916},
161 {0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469,
162 -0.00834990904936, 0.02245293253339, -0.02596338512915,
163 0.01624864962975, -0.00240879051584, 0.00674613682247,
165 {0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798,
166 -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049,
167 -0.01390589421898, 0.00651420667831, -0.00881362733839},
168 {0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664,
169 -0.00915702933434, -0.02364141202522, -0.00584456039913,
170 0.06276101321749, -0.00000828086748, 0.00205861885564,
172 {0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203,
173 -0.07834489609479, -0.00469977914380, -0.00589500224440,
174 0.05724228140351, 0.00832043980773, -0.01635381384540,
176 {0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551,
177 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251,
178 -0.01863887810927, -0.03193428438915, 0.00541907748707},
179 {0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672,
180 -0.18901604199609, 0.30931782841830, -0.27562961986224,
181 0.00647310677246, 0.08647503780351, -0.03788984554840,
183 {0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522,
184 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333,
185 0.06920467763959, -0.03721611395801, -0.00749618797172},
186 {0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415,
187 -0.10214864179676, 0.14590772289388, -0.02459864859345,
188 -0.11202315195388, -0.04060034127000, 0.04788665548180,
192 static const gfloat AButter[9][3] = {
193 {1., -1.97223372919527, 0.97261396931306},
194 {1., -1.96977855582618, 0.97022847566350},
195 {1., -1.95835380975398, 0.95920349965459},
196 {1., -1.95002759149878, 0.95124613669835},
197 {1., -1.94561023566527, 0.94705070426118},
198 {1., -1.92783286977036, 0.93034775234268},
199 {1., -1.91858953033784, 0.92177618768381},
200 {1., -1.91542108074780, 0.91885558323625},
201 {1., -1.88903307939452, 0.89487434461664}
204 static const gfloat BButter[9][3] = {
205 {0.98621192462708, -1.97242384925416, 0.98621192462708},
206 {0.98500175787242, -1.97000351574484, 0.98500175787242},
207 {0.97938932735214, -1.95877865470428, 0.97938932735214},
208 {0.97531843204928, -1.95063686409857, 0.97531843204928},
209 {0.97316523498161, -1.94633046996323, 0.97316523498161},
210 {0.96454515552826, -1.92909031105652, 0.96454515552826},
211 {0.96009142950541, -1.92018285901082, 0.96009142950541},
212 {0.95856916599601, -1.91713833199203, 0.95856916599601},
213 {0.94597685600279, -1.89195371200558, 0.94597685600279}
217 #pragma warning ( default : 4305 )
220 /* Filter functions. These access elements with negative indices of
221 * the input and output arrays (up to the filter's order). */
223 /* For much better performance, the function below has been
224 * implemented by unrolling the inner loop for our two use cases. */
228 * apply_filter (const gfloat * input, gfloat * output, guint n_samples,
229 * const gfloat * a, const gfloat * b, guint order)
234 * for (i = 0; i < n_samples; i++) {
235 * y = input[i] * b[0];
236 * for (k = 1; k <= order; k++)
237 * y += input[i - k] * b[k] - output[i - k] * a[k];
244 yule_filter (const gfloat * input, gfloat * output,
245 const gfloat * a, const gfloat * b)
247 output[0] = input[0] * b[0]
248 + input[-1] * b[1] - output[-1] * a[1]
249 + input[-2] * b[2] - output[-2] * a[2]
250 + input[-3] * b[3] - output[-3] * a[3]
251 + input[-4] * b[4] - output[-4] * a[4]
252 + input[-5] * b[5] - output[-5] * a[5]
253 + input[-6] * b[6] - output[-6] * a[6]
254 + input[-7] * b[7] - output[-7] * a[7]
255 + input[-8] * b[8] - output[-8] * a[8]
256 + input[-9] * b[9] - output[-9] * a[9]
257 + input[-10] * b[10] - output[-10] * a[10];
261 butter_filter (const gfloat * input, gfloat * output,
262 const gfloat * a, const gfloat * b)
264 output[0] = input[0] * b[0]
265 + input[-1] * b[1] - output[-1] * a[1]
266 + input[-2] * b[2] - output[-2] * a[2];
269 /* Because butter_filter and yule_filter are inlined, this function is
270 * a bit blown-up (code-size wise), but not inlining gives a ca. 40%
271 * performance penalty. */
274 apply_filters (const RgAnalysisCtx * ctx, const gfloat * input_l,
275 const gfloat * input_r, guint n_samples)
277 const gfloat *ayule = AYule[ctx->sample_rate_index];
278 const gfloat *byule = BYule[ctx->sample_rate_index];
279 const gfloat *abutter = AButter[ctx->sample_rate_index];
280 const gfloat *bbutter = BButter[ctx->sample_rate_index];
281 gint pos = ctx->window_n_samples_done;
284 for (i = 0; i < n_samples; i++, pos++) {
285 yule_filter (input_l + i, ctx->step_l + pos, ayule, byule);
286 butter_filter (ctx->step_l + pos, ctx->out_l + pos, abutter, bbutter);
288 yule_filter (input_r + i, ctx->step_r + pos, ayule, byule);
289 butter_filter (ctx->step_r + pos, ctx->out_r + pos, abutter, bbutter);
293 /* Clear filter buffer state and current RMS window. */
296 reset_filters (RgAnalysisCtx * ctx)
300 for (i = 0; i < MAX_ORDER; i++) {
302 ctx->inprebuf_l[i] = 0.;
303 ctx->stepbuf_l[i] = 0.;
304 ctx->outbuf_l[i] = 0.;
306 ctx->inprebuf_r[i] = 0.;
307 ctx->stepbuf_r[i] = 0.;
308 ctx->outbuf_r[i] = 0.;
311 ctx->window_square_sum = 0.;
312 ctx->window_n_samples_done = 0;
315 /* Accumulator functions. */
317 /* Add two accumulators in-place. The sum is defined as the result of
318 * the vector sum of the histogram array and the maximum value of the
319 * peak field. Thus "adding" the accumulators for all tracks yields
320 * the correct result for obtaining the album gain and peak. */
323 accumulator_add (RgAnalysisAcc * acc, const RgAnalysisAcc * acc_other)
327 for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
328 acc->histogram[i] += acc_other->histogram[i];
330 acc->peak = MAX (acc->peak, acc_other->peak);
333 /* Reset an accumulator to zero. */
336 accumulator_clear (RgAnalysisAcc * acc)
338 memset (acc->histogram, 0, sizeof (acc->histogram));
342 /* Obtain final analysis result from an accumulator. Returns TRUE on
343 * success, FALSE on error (if accumulator is still zero). */
346 accumulator_result (const RgAnalysisAcc * acc, gdouble * result_gain,
347 gdouble * result_peak)
353 for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
354 sum += acc->histogram[i];
357 /* All entries are 0: We got less than 50ms of data. */
360 upper = (guint32) ceil (sum * (1. - (gdouble) (RMS_PERCENTILE / 100.)));
362 for (i = G_N_ELEMENTS (acc->histogram); i--;) {
363 if (upper <= acc->histogram[i])
365 upper -= acc->histogram[i];
368 if (result_peak != NULL)
369 *result_peak = acc->peak;
370 if (result_gain != NULL)
371 *result_gain = PINK_REF - (gdouble) i / STEPS_PER_DB;
376 /* Functions that operate on contexts, for external usage. */
378 /* Create a new context. Before it can be used, a sample rate must be
379 * configured using rg_analysis_set_sample_rate. */
382 rg_analysis_new (void)
386 ctx = g_new (RgAnalysisCtx, 1);
388 ctx->inpre_l = ctx->inprebuf_l + MAX_ORDER;
389 ctx->step_l = ctx->stepbuf_l + MAX_ORDER;
390 ctx->out_l = ctx->outbuf_l + MAX_ORDER;
392 ctx->inpre_r = ctx->inprebuf_r + MAX_ORDER;
393 ctx->step_r = ctx->stepbuf_r + MAX_ORDER;
394 ctx->out_r = ctx->outbuf_r + MAX_ORDER;
396 ctx->sample_rate = 0;
398 accumulator_clear (&ctx->track);
399 accumulator_clear (&ctx->album);
404 /* Adapt to given sample rate. Does nothing if already the current
405 * rate (returns TRUE then). Returns FALSE only if given sample rate
406 * is not supported. If the configured rate changes, the last
407 * unprocessed incomplete 50ms chunk of data is dropped because the
408 * filters are reset. */
411 rg_analysis_set_sample_rate (RgAnalysisCtx * ctx, gint sample_rate)
413 g_return_val_if_fail (ctx != NULL, FALSE);
415 if (ctx->sample_rate == sample_rate)
418 switch (sample_rate) {
420 ctx->sample_rate_index = 0;
423 ctx->sample_rate_index = 1;
426 ctx->sample_rate_index = 2;
429 ctx->sample_rate_index = 3;
432 ctx->sample_rate_index = 4;
435 ctx->sample_rate_index = 5;
438 ctx->sample_rate_index = 6;
441 ctx->sample_rate_index = 7;
444 ctx->sample_rate_index = 8;
450 ctx->sample_rate = sample_rate;
451 /* The + 999 has the effect of ceil()ing: */
452 ctx->window_n_samples = (guint) ((sample_rate * RMS_WINDOW_MSECS + 999)
461 rg_analysis_destroy (RgAnalysisCtx * ctx)
466 /* Entry points for analyzing sample data in common raw data formats.
467 * The stereo format functions expect interleaved frames. It is
468 * possible to pass data in different formats for the same context,
469 * there are no restrictions. All functions have the same signature;
470 * the depth argument for the float functions is not variable and must
471 * be given the value 32. */
474 rg_analysis_analyze_mono_float (RgAnalysisCtx * ctx, gconstpointer data,
475 gsize size, guint depth)
477 gfloat conv_samples[512];
478 const gfloat *samples = (gfloat *) data;
479 guint n_samples = size / sizeof (gfloat);
482 g_return_if_fail (depth == 32);
483 g_return_if_fail (size % sizeof (gfloat) == 0);
486 gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
489 memcpy (conv_samples, samples, n * sizeof (gfloat));
490 for (i = 0; i < n; i++) {
491 ctx->track.peak = MAX (ctx->track.peak, fabs (conv_samples[i]));
492 conv_samples[i] *= 32768.;
495 rg_analysis_analyze (ctx, conv_samples, NULL, n);
500 rg_analysis_analyze_stereo_float (RgAnalysisCtx * ctx, gconstpointer data,
501 gsize size, guint depth)
503 gfloat conv_samples_l[256];
504 gfloat conv_samples_r[256];
505 const gfloat *samples = (gfloat *) data;
506 guint n_frames = size / (sizeof (gfloat) * 2);
509 g_return_if_fail (depth == 32);
510 g_return_if_fail (size % (sizeof (gfloat) * 2) == 0);
513 gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
516 for (i = 0; i < n; i++) {
519 old_sample = samples[2 * i];
520 ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
521 conv_samples_l[i] = old_sample * 32768.;
523 old_sample = samples[2 * i + 1];
524 ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
525 conv_samples_r[i] = old_sample * 32768.;
528 rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
533 rg_analysis_analyze_mono_int16 (RgAnalysisCtx * ctx, gconstpointer data,
534 gsize size, guint depth)
536 gfloat conv_samples[512];
537 gint32 peak_sample = 0;
538 const gint16 *samples = (gint16 *) data;
539 guint n_samples = size / sizeof (gint16);
540 gint shift = sizeof (gint16) * 8 - depth;
543 g_return_if_fail (depth <= (sizeof (gint16) * 8));
544 g_return_if_fail (size % sizeof (gint16) == 0);
547 gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
550 for (i = 0; i < n; i++) {
551 gint16 old_sample = samples[i] << shift;
553 peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
554 conv_samples[i] = (gfloat) old_sample;
557 rg_analysis_analyze (ctx, conv_samples, NULL, n);
559 ctx->track.peak = MAX (ctx->track.peak,
560 (gdouble) peak_sample / ((gdouble) (1u << 15)));
564 rg_analysis_analyze_stereo_int16 (RgAnalysisCtx * ctx, gconstpointer data,
565 gsize size, guint depth)
567 gfloat conv_samples_l[256];
568 gfloat conv_samples_r[256];
569 gint32 peak_sample = 0;
570 const gint16 *samples = (gint16 *) data;
571 guint n_frames = size / (sizeof (gint16) * 2);
572 gint shift = sizeof (gint16) * 8 - depth;
575 g_return_if_fail (depth <= (sizeof (gint16) * 8));
576 g_return_if_fail (size % (sizeof (gint16) * 2) == 0);
579 gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
582 for (i = 0; i < n; i++) {
585 old_sample = samples[2 * i] << shift;
586 peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
587 conv_samples_l[i] = (gfloat) old_sample;
589 old_sample = samples[2 * i + 1] << shift;
590 peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
591 conv_samples_r[i] = (gfloat) old_sample;
594 rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
596 ctx->track.peak = MAX (ctx->track.peak,
597 (gdouble) peak_sample / ((gdouble) (1u << 15)));
600 /* Analyze the given chunk of samples. The sample data is given in
601 * floating point format but should be scaled such that the values
602 * +/-32768.0 correspond to the -0dBFS reference amplitude.
604 * samples_l: Buffer with sample data for the left channel or of the
607 * samples_r: Buffer with sample data for the right channel or NULL
610 * n_samples: Number of samples passed in each buffer.
614 rg_analysis_analyze (RgAnalysisCtx * ctx, const gfloat * samples_l,
615 const gfloat * samples_r, guint n_samples)
617 const gfloat *input_l, *input_r;
618 guint n_samples_done;
621 g_return_if_fail (ctx != NULL);
622 g_return_if_fail (samples_l != NULL);
623 g_return_if_fail (ctx->sample_rate != 0);
628 if (samples_r == NULL)
630 samples_r = samples_l;
632 memcpy (ctx->inpre_l, samples_l,
633 MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
634 memcpy (ctx->inpre_r, samples_r,
635 MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
638 while (n_samples_done < n_samples) {
639 /* Limit number of samples to be processed in this iteration to
640 * the number needed to complete the next window: */
641 guint n_samples_current = MIN (n_samples - n_samples_done,
642 ctx->window_n_samples - ctx->window_n_samples_done);
644 if (n_samples_done < MAX_ORDER) {
645 input_l = ctx->inpre_l + n_samples_done;
646 input_r = ctx->inpre_r + n_samples_done;
647 n_samples_current = MIN (n_samples_current, MAX_ORDER - n_samples_done);
649 input_l = samples_l + n_samples_done;
650 input_r = samples_r + n_samples_done;
653 apply_filters (ctx, input_l, input_r, n_samples_current);
655 /* Update the square sum. */
656 for (i = 0; i < n_samples_current; i++)
657 ctx->window_square_sum += ctx->out_l[ctx->window_n_samples_done + i]
658 * ctx->out_l[ctx->window_n_samples_done + i]
659 + ctx->out_r[ctx->window_n_samples_done + i]
660 * ctx->out_r[ctx->window_n_samples_done + i];
662 ctx->window_n_samples_done += n_samples_current;
664 g_return_if_fail (ctx->window_n_samples_done <= ctx->window_n_samples);
666 if (ctx->window_n_samples_done == ctx->window_n_samples) {
667 /* Get the Root Mean Square (RMS) for this set of samples. */
668 gdouble val = STEPS_PER_DB * 10. * log10 (ctx->window_square_sum /
669 ctx->window_n_samples * 0.5 + 1.e-37);
670 gint ival = CLAMP ((gint) val, 0,
671 (gint) G_N_ELEMENTS (ctx->track.histogram) - 1);
673 ctx->track.histogram[ival]++;
674 ctx->window_square_sum = 0.;
675 ctx->window_n_samples_done = 0;
677 /* No need for memmove here, the areas never overlap: Even for
678 * the smallest sample rate, the number of samples needed for
679 * the window is greater than MAX_ORDER. */
681 memcpy (ctx->stepbuf_l, ctx->stepbuf_l + ctx->window_n_samples,
682 MAX_ORDER * sizeof (gfloat));
683 memcpy (ctx->outbuf_l, ctx->outbuf_l + ctx->window_n_samples,
684 MAX_ORDER * sizeof (gfloat));
686 memcpy (ctx->stepbuf_r, ctx->stepbuf_r + ctx->window_n_samples,
687 MAX_ORDER * sizeof (gfloat));
688 memcpy (ctx->outbuf_r, ctx->outbuf_r + ctx->window_n_samples,
689 MAX_ORDER * sizeof (gfloat));
692 n_samples_done += n_samples_current;
695 if (n_samples >= MAX_ORDER) {
697 memcpy (ctx->inprebuf_l, samples_l + n_samples - MAX_ORDER,
698 MAX_ORDER * sizeof (gfloat));
700 memcpy (ctx->inprebuf_r, samples_r + n_samples - MAX_ORDER,
701 MAX_ORDER * sizeof (gfloat));
705 memmove (ctx->inprebuf_l, ctx->inprebuf_l + n_samples,
706 (MAX_ORDER - n_samples) * sizeof (gfloat));
707 memcpy (ctx->inprebuf_l + MAX_ORDER - n_samples, samples_l,
708 n_samples * sizeof (gfloat));
710 memmove (ctx->inprebuf_r, ctx->inprebuf_r + n_samples,
711 (MAX_ORDER - n_samples) * sizeof (gfloat));
712 memcpy (ctx->inprebuf_r + MAX_ORDER - n_samples, samples_r,
713 n_samples * sizeof (gfloat));
718 /* Obtain track gain and peak. Returns TRUE on success. Can fail if
719 * not enough samples have been processed. Updates album accumulator.
720 * Resets track accumulator. */
723 rg_analysis_track_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
727 g_return_val_if_fail (ctx != NULL, FALSE);
729 accumulator_add (&ctx->album, &ctx->track);
730 result = accumulator_result (&ctx->track, gain, peak);
731 accumulator_clear (&ctx->track);
738 /* Obtain album gain and peak. Returns TRUE on success. Can fail if
739 * not enough samples have been processed. Resets album
743 rg_analysis_album_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
747 g_return_val_if_fail (ctx != NULL, FALSE);
749 result = accumulator_result (&ctx->album, gain, peak);
750 accumulator_clear (&ctx->album);
756 rg_analysis_reset_album (RgAnalysisCtx * ctx)
758 accumulator_clear (&ctx->album);
761 /* Reset internal buffers as well as track and album accumulators.
762 * Configured sample rate is kept intact. */
765 rg_analysis_reset (RgAnalysisCtx * ctx)
767 g_return_if_fail (ctx != NULL);
770 accumulator_clear (&ctx->track);
771 accumulator_clear (&ctx->album);