3 * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Library General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Library General Public License for more details.
15 * You should have received a copy of the GNU Library General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
22 * Chebyshev type 1 filter design based on
23 * "The Scientist and Engineer's Guide to DSP", Chapter 20.
24 * http://www.dspguide.com/
26 * For type 2 and Chebyshev filters in general read
27 * http://en.wikipedia.org/wiki/Chebyshev_filter
32 * SECTION:element-audiocheblimit
34 * Attenuates all frequencies above the cutoff frequency (low-pass) or all frequencies below the
35 * cutoff frequency (high-pass). The number of poles and the ripple parameter control the rolloff.
37 * This element has the advantage over the windowed sinc lowpass and highpass filter that it is
38 * much faster and produces almost as good results. It's only disadvantages are the highly
39 * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
41 * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
42 * some frequencies in the passband will be amplified by that value. A higher ripple value will allow
45 * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
46 * be at most this value. A lower ripple value will allow a faster rolloff.
48 * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
51 * Be warned that a too large number of poles can produce noise. The most poles are possible with
52 * a cutoff frequency at a quarter of the sampling rate.
56 * <title>Example launch line</title>
58 * gst-launch audiotestsrc freq=1500 ! audioconvert ! audiocheblimit mode=low-pass cutoff=1000 poles=4 ! audioconvert ! alsasink
59 * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiocheblimit mode=high-pass cutoff=400 ripple=0.2 ! audioconvert ! alsasink
60 * gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiocheblimit mode=low-pass cutoff=800 type=2 ! audioconvert ! alsasink
72 #include <gst/base/gstbasetransform.h>
73 #include <gst/audio/audio.h>
74 #include <gst/audio/gstaudiofilter.h>
78 #include "math_compat.h"
80 #include "audiocheblimit.h"
82 #define GST_CAT_DEFAULT gst_audio_cheb_limit_debug
83 GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
95 #define gst_audio_cheb_limit_parent_class parent_class
96 G_DEFINE_TYPE (GstAudioChebLimit,
97 gst_audio_cheb_limit, GST_TYPE_AUDIO_FX_BASE_IIR_FILTER);
99 static void gst_audio_cheb_limit_set_property (GObject * object,
100 guint prop_id, const GValue * value, GParamSpec * pspec);
101 static void gst_audio_cheb_limit_get_property (GObject * object,
102 guint prop_id, GValue * value, GParamSpec * pspec);
103 static void gst_audio_cheb_limit_finalize (GObject * object);
105 static gboolean gst_audio_cheb_limit_setup (GstAudioFilter * filter,
106 const GstAudioInfo * info);
114 #define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE (gst_audio_cheb_limit_mode_get_type ())
116 gst_audio_cheb_limit_mode_get_type (void)
118 static GType gtype = 0;
121 static const GEnumValue values[] = {
122 {MODE_LOW_PASS, "Low pass (default)",
124 {MODE_HIGH_PASS, "High pass",
129 gtype = g_enum_register_static ("GstAudioChebLimitMode", values);
134 /* GObject vmethod implementations */
137 gst_audio_cheb_limit_class_init (GstAudioChebLimitClass * klass)
139 GObjectClass *gobject_class = (GObjectClass *) klass;
140 GstElementClass *gstelement_class = (GstElementClass *) klass;
141 GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass;
143 GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_limit_debug, "audiocheblimit", 0,
144 "audiocheblimit element");
146 gobject_class->set_property = gst_audio_cheb_limit_set_property;
147 gobject_class->get_property = gst_audio_cheb_limit_get_property;
148 gobject_class->finalize = gst_audio_cheb_limit_finalize;
150 g_object_class_install_property (gobject_class, PROP_MODE,
151 g_param_spec_enum ("mode", "Mode",
152 "Low pass or high pass mode",
153 GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE, MODE_LOW_PASS,
154 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
155 g_object_class_install_property (gobject_class, PROP_TYPE,
156 g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1,
157 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
159 /* FIXME: Don't use the complete possible range but restrict the upper boundary
160 * so automatically generated UIs can use a slider without */
161 g_object_class_install_property (gobject_class, PROP_CUTOFF,
162 g_param_spec_float ("cutoff", "Cutoff", "Cut off frequency (Hz)", 0.0,
164 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
165 g_object_class_install_property (gobject_class, PROP_RIPPLE,
166 g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0,
168 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
170 /* FIXME: What to do about this upper boundary? With a cutoff frequency of
171 * rate/4 32 poles are completely possible, with a cutoff frequency very low
172 * or very high 16 poles already produces only noise */
173 g_object_class_install_property (gobject_class, PROP_POLES,
174 g_param_spec_int ("poles", "Poles",
175 "Number of poles to use, will be rounded up to the next even number",
177 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
179 gst_element_class_set_details_simple (gstelement_class,
180 "Low pass & high pass filter",
181 "Filter/Effect/Audio",
182 "Chebyshev low pass and high pass filter",
183 "Sebastian Dröge <sebastian.droege@collabora.co.uk>");
185 filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_limit_setup);
189 gst_audio_cheb_limit_init (GstAudioChebLimit * filter)
191 filter->cutoff = 0.0;
192 filter->mode = MODE_LOW_PASS;
195 filter->ripple = 0.25;
197 filter->lock = g_mutex_new ();
201 generate_biquad_coefficients (GstAudioChebLimit * filter,
202 gint p, gdouble * a0, gdouble * a1, gdouble * a2,
203 gdouble * b1, gdouble * b2)
205 gint np = filter->poles;
206 gdouble ripple = filter->ripple;
208 /* pole location in s-plane */
211 /* zero location in s-plane */
214 /* transfer function coefficients for the z-plane */
215 gdouble x0, x1, x2, y1, y2;
216 gint type = filter->type;
218 /* Calculate pole location for lowpass at frequency 1 */
220 gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
226 /* If we allow ripple, move the pole from the unit
227 * circle to an ellipse and keep cutoff at frequency 1 */
228 if (ripple > 0 && type == 1) {
231 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
233 vx = (1.0 / np) * asinh (1.0 / es);
236 } else if (type == 2) {
239 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
240 vx = (1.0 / np) * asinh (es);
245 /* Calculate inverse of the pole location to convert from
246 * type I to type II */
248 gdouble mag2 = rp * rp + ip * ip;
254 /* Calculate zero location for frequency 1 on the
255 * unit circle for type 2 */
257 gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
265 /* Convert from s-domain to z-domain by
266 * using the bilinear Z-transform, i.e.
267 * substitute s by (2/t)*((z-1)/(z+1))
268 * with t = 2 * tan(0.5).
274 m = rp * rp + ip * ip;
275 d = 4.0 - 4.0 * rp * t + m * t * t;
280 y1 = (8.0 - 2.0 * m * t * t) / d;
281 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
286 m = rp * rp + ip * ip;
287 d = 4.0 - 4.0 * rp * t + m * t * t;
289 x0 = (t * t * iz * iz + 4.0) / d;
290 x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
292 y1 = (8.0 - 2.0 * m * t * t) / d;
293 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
296 /* Convert from lowpass at frequency 1 to either lowpass
299 * For lowpass substitute z^(-1) with:
306 * k = sin((1-w)/2) / sin((1+w)/2)
308 * For highpass substitute z^(-1) with:
316 * k = -cos((1+w)/2) / cos((1-w)/2)
322 2.0 * G_PI * (filter->cutoff / GST_AUDIO_FILTER_RATE (filter));
324 if (filter->mode == MODE_LOW_PASS)
325 k = sin ((1.0 - omega) / 2.0) / sin ((1.0 + omega) / 2.0);
327 k = -cos ((omega + 1.0) / 2.0) / cos ((omega - 1.0) / 2.0);
329 d = 1.0 + y1 * k - y2 * k * k;
330 *a0 = (x0 + k * (-x1 + k * x2)) / d;
331 *a1 = (x1 + k * k * x1 - 2.0 * k * (x0 + x2)) / d;
332 *a2 = (x0 * k * k - x1 * k + x2) / d;
333 *b1 = (2.0 * k + y1 + y1 * k * k - 2.0 * y2 * k) / d;
334 *b2 = (-k * k - y1 * k + y2) / d;
336 if (filter->mode == MODE_HIGH_PASS) {
344 generate_coefficients (GstAudioChebLimit * filter)
346 if (GST_AUDIO_FILTER_RATE (filter) == 0) {
347 gdouble *a = g_new0 (gdouble, 1);
350 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
351 (filter), a, 1, NULL, 0);
353 GST_LOG_OBJECT (filter, "rate was not set yet");
357 if (filter->cutoff >= GST_AUDIO_FILTER_RATE (filter) / 2.0) {
358 gdouble *a = g_new0 (gdouble, 1);
360 a[0] = (filter->mode == MODE_LOW_PASS) ? 1.0 : 0.0;
361 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
362 (filter), a, 1, NULL, 0);
363 GST_LOG_OBJECT (filter, "cutoff was higher than nyquist frequency");
365 } else if (filter->cutoff <= 0.0) {
366 gdouble *a = g_new0 (gdouble, 1);
368 a[0] = (filter->mode == MODE_LOW_PASS) ? 0.0 : 1.0;
369 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
370 (filter), a, 1, NULL, 0);
371 GST_LOG_OBJECT (filter, "cutoff is lower than zero");
375 /* Calculate coefficients for the chebyshev filter */
377 gint np = filter->poles;
381 a = g_new0 (gdouble, np + 3);
382 b = g_new0 (gdouble, np + 3);
384 /* Calculate transfer function coefficients */
388 for (p = 1; p <= np / 2; p++) {
389 gdouble a0, a1, a2, b1, b2;
390 gdouble *ta = g_new0 (gdouble, np + 3);
391 gdouble *tb = g_new0 (gdouble, np + 3);
393 generate_biquad_coefficients (filter, p, &a0, &a1, &a2, &b1, &b2);
395 memcpy (ta, a, sizeof (gdouble) * (np + 3));
396 memcpy (tb, b, sizeof (gdouble) * (np + 3));
398 /* add the new coefficients for the new two poles
399 * to the cascade by multiplication of the transfer
401 for (i = 2; i < np + 3; i++) {
402 a[i] = a0 * ta[i] + a1 * ta[i - 1] + a2 * ta[i - 2];
403 b[i] = tb[i] - b1 * tb[i - 1] - b2 * tb[i - 2];
409 /* Move coefficients to the beginning of the array
410 * and multiply the b coefficients with -1 to move from
411 * the transfer function's coefficients to the difference
412 * equation's coefficients */
414 for (i = 0; i <= np; i++) {
419 /* Normalize to unity gain at frequency 0 for lowpass
420 * and frequency 0.5 for highpass */
424 if (filter->mode == MODE_LOW_PASS)
426 gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
430 gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
433 for (i = 0; i <= np; i++) {
438 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
439 (filter), a, np + 1, b, np + 1);
441 GST_LOG_OBJECT (filter,
442 "Generated IIR coefficients for the Chebyshev filter");
443 GST_LOG_OBJECT (filter,
444 "mode: %s, type: %d, poles: %d, cutoff: %.2f Hz, ripple: %.2f dB",
445 (filter->mode == MODE_LOW_PASS) ? "low-pass" : "high-pass",
446 filter->type, filter->poles, filter->cutoff, filter->ripple);
447 GST_LOG_OBJECT (filter, "%.2f dB gain @ 0 Hz",
448 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
451 #ifndef GST_DISABLE_GST_DEBUG
454 2.0 * G_PI * (filter->cutoff / GST_AUDIO_FILTER_RATE (filter));
455 gdouble zr = cos (wc), zi = sin (wc);
457 GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
458 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
459 b, np + 1, zr, zi)), (int) filter->cutoff);
463 GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
464 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
465 np + 1, -1.0, 0.0)), GST_AUDIO_FILTER_RATE (filter) / 2);
470 gst_audio_cheb_limit_finalize (GObject * object)
472 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
474 g_mutex_free (filter->lock);
477 G_OBJECT_CLASS (parent_class)->finalize (object);
481 gst_audio_cheb_limit_set_property (GObject * object, guint prop_id,
482 const GValue * value, GParamSpec * pspec)
484 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
488 g_mutex_lock (filter->lock);
489 filter->mode = g_value_get_enum (value);
490 generate_coefficients (filter);
491 g_mutex_unlock (filter->lock);
494 g_mutex_lock (filter->lock);
495 filter->type = g_value_get_int (value);
496 generate_coefficients (filter);
497 g_mutex_unlock (filter->lock);
500 g_mutex_lock (filter->lock);
501 filter->cutoff = g_value_get_float (value);
502 generate_coefficients (filter);
503 g_mutex_unlock (filter->lock);
506 g_mutex_lock (filter->lock);
507 filter->ripple = g_value_get_float (value);
508 generate_coefficients (filter);
509 g_mutex_unlock (filter->lock);
512 g_mutex_lock (filter->lock);
513 filter->poles = GST_ROUND_UP_2 (g_value_get_int (value));
514 generate_coefficients (filter);
515 g_mutex_unlock (filter->lock);
518 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
524 gst_audio_cheb_limit_get_property (GObject * object, guint prop_id,
525 GValue * value, GParamSpec * pspec)
527 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
531 g_value_set_enum (value, filter->mode);
534 g_value_set_int (value, filter->type);
537 g_value_set_float (value, filter->cutoff);
540 g_value_set_float (value, filter->ripple);
543 g_value_set_int (value, filter->poles);
546 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
551 /* GstAudioFilter vmethod implementations */
554 gst_audio_cheb_limit_setup (GstAudioFilter * base, const GstAudioInfo * info)
556 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (base);
558 generate_coefficients (filter);
560 return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, info);