3 * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Library General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Library General Public License for more details.
15 * You should have received a copy of the GNU Library General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
22 * Chebyshev type 1 filter design based on
23 * "The Scientist and Engineer's Guide to DSP", Chapter 20.
24 * http://www.dspguide.com/
26 * For type 2 and Chebyshev filters in general read
27 * http://en.wikipedia.org/wiki/Chebyshev_filter
32 * SECTION:element-audiocheblimit
34 * Attenuates all frequencies above the cutoff frequency (low-pass) or all frequencies below the
35 * cutoff frequency (high-pass). The number of poles and the ripple parameter control the rolloff.
37 * This element has the advantage over the windowed sinc lowpass and highpass filter that it is
38 * much faster and produces almost as good results. It's only disadvantages are the highly
39 * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
41 * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
42 * some frequencies in the passband will be amplified by that value. A higher ripple value will allow
45 * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
46 * be at most this value. A lower ripple value will allow a faster rolloff.
48 * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
51 * Be warned that a too large number of poles can produce noise. The most poles are possible with
52 * a cutoff frequency at a quarter of the sampling rate.
56 * <title>Example launch line</title>
58 * gst-launch audiotestsrc freq=1500 ! audioconvert ! audiocheblimit mode=low-pass cutoff=1000 poles=4 ! audioconvert ! alsasink
59 * gst-launch filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiocheblimit mode=high-pass cutoff=400 ripple=0.2 ! audioconvert ! alsasink
60 * gst-launch audiotestsrc wave=white-noise ! audioconvert ! audiocheblimit mode=low-pass cutoff=800 type=2 ! audioconvert ! alsasink
72 #include <gst/base/gstbasetransform.h>
73 #include <gst/audio/audio.h>
74 #include <gst/audio/gstaudiofilter.h>
78 #include "math_compat.h"
80 #include "audiocheblimit.h"
82 #include "gst/glib-compat-private.h"
84 #define GST_CAT_DEFAULT gst_audio_cheb_limit_debug
85 GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
97 #define gst_audio_cheb_limit_parent_class parent_class
98 G_DEFINE_TYPE (GstAudioChebLimit,
99 gst_audio_cheb_limit, GST_TYPE_AUDIO_FX_BASE_IIR_FILTER);
101 static void gst_audio_cheb_limit_set_property (GObject * object,
102 guint prop_id, const GValue * value, GParamSpec * pspec);
103 static void gst_audio_cheb_limit_get_property (GObject * object,
104 guint prop_id, GValue * value, GParamSpec * pspec);
105 static void gst_audio_cheb_limit_finalize (GObject * object);
107 static gboolean gst_audio_cheb_limit_setup (GstAudioFilter * filter,
108 const GstAudioInfo * info);
116 #define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE (gst_audio_cheb_limit_mode_get_type ())
118 gst_audio_cheb_limit_mode_get_type (void)
120 static GType gtype = 0;
123 static const GEnumValue values[] = {
124 {MODE_LOW_PASS, "Low pass (default)",
126 {MODE_HIGH_PASS, "High pass",
131 gtype = g_enum_register_static ("GstAudioChebLimitMode", values);
136 /* GObject vmethod implementations */
139 gst_audio_cheb_limit_class_init (GstAudioChebLimitClass * klass)
141 GObjectClass *gobject_class = (GObjectClass *) klass;
142 GstElementClass *gstelement_class = (GstElementClass *) klass;
143 GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass;
145 GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_limit_debug, "audiocheblimit", 0,
146 "audiocheblimit element");
148 gobject_class->set_property = gst_audio_cheb_limit_set_property;
149 gobject_class->get_property = gst_audio_cheb_limit_get_property;
150 gobject_class->finalize = gst_audio_cheb_limit_finalize;
152 g_object_class_install_property (gobject_class, PROP_MODE,
153 g_param_spec_enum ("mode", "Mode",
154 "Low pass or high pass mode",
155 GST_TYPE_AUDIO_CHEBYSHEV_FREQ_LIMIT_MODE, MODE_LOW_PASS,
156 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
157 g_object_class_install_property (gobject_class, PROP_TYPE,
158 g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1,
159 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
161 /* FIXME: Don't use the complete possible range but restrict the upper boundary
162 * so automatically generated UIs can use a slider without */
163 g_object_class_install_property (gobject_class, PROP_CUTOFF,
164 g_param_spec_float ("cutoff", "Cutoff", "Cut off frequency (Hz)", 0.0,
166 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
167 g_object_class_install_property (gobject_class, PROP_RIPPLE,
168 g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0,
170 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
172 /* FIXME: What to do about this upper boundary? With a cutoff frequency of
173 * rate/4 32 poles are completely possible, with a cutoff frequency very low
174 * or very high 16 poles already produces only noise */
175 g_object_class_install_property (gobject_class, PROP_POLES,
176 g_param_spec_int ("poles", "Poles",
177 "Number of poles to use, will be rounded up to the next even number",
179 G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
181 gst_element_class_set_details_simple (gstelement_class,
182 "Low pass & high pass filter",
183 "Filter/Effect/Audio",
184 "Chebyshev low pass and high pass filter",
185 "Sebastian Dröge <sebastian.droege@collabora.co.uk>");
187 filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_limit_setup);
191 gst_audio_cheb_limit_init (GstAudioChebLimit * filter)
193 filter->cutoff = 0.0;
194 filter->mode = MODE_LOW_PASS;
197 filter->ripple = 0.25;
199 g_mutex_init (&filter->lock);
203 generate_biquad_coefficients (GstAudioChebLimit * filter,
204 gint p, gdouble * b0, gdouble * b1, gdouble * b2,
205 gdouble * a1, gdouble * a2)
207 gint np = filter->poles;
208 gdouble ripple = filter->ripple;
210 /* pole location in s-plane */
213 /* zero location in s-plane */
216 /* transfer function coefficients for the z-plane */
217 gdouble x0, x1, x2, y1, y2;
218 gint type = filter->type;
220 /* Calculate pole location for lowpass at frequency 1 */
222 gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
228 /* If we allow ripple, move the pole from the unit
229 * circle to an ellipse and keep cutoff at frequency 1 */
230 if (ripple > 0 && type == 1) {
233 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
235 vx = (1.0 / np) * asinh (1.0 / es);
238 } else if (type == 2) {
241 es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
242 vx = (1.0 / np) * asinh (es);
247 /* Calculate inverse of the pole location to convert from
248 * type I to type II */
250 gdouble mag2 = rp * rp + ip * ip;
256 /* Calculate zero location for frequency 1 on the
257 * unit circle for type 2 */
259 gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
267 /* Convert from s-domain to z-domain by
268 * using the bilinear Z-transform, i.e.
269 * substitute s by (2/t)*((z-1)/(z+1))
270 * with t = 2 * tan(0.5).
276 m = rp * rp + ip * ip;
277 d = 4.0 - 4.0 * rp * t + m * t * t;
282 y1 = (8.0 - 2.0 * m * t * t) / d;
283 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
288 m = rp * rp + ip * ip;
289 d = 4.0 - 4.0 * rp * t + m * t * t;
291 x0 = (t * t * iz * iz + 4.0) / d;
292 x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
294 y1 = (8.0 - 2.0 * m * t * t) / d;
295 y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
298 /* Convert from lowpass at frequency 1 to either lowpass
301 * For lowpass substitute z^(-1) with:
308 * k = sin((1-w)/2) / sin((1+w)/2)
310 * For highpass substitute z^(-1) with:
318 * k = -cos((1+w)/2) / cos((1-w)/2)
324 2.0 * G_PI * (filter->cutoff / GST_AUDIO_FILTER_RATE (filter));
326 if (filter->mode == MODE_LOW_PASS)
327 k = sin ((1.0 - omega) / 2.0) / sin ((1.0 + omega) / 2.0);
329 k = -cos ((omega + 1.0) / 2.0) / cos ((omega - 1.0) / 2.0);
331 d = 1.0 + y1 * k - y2 * k * k;
332 *b0 = (x0 + k * (-x1 + k * x2)) / d;
333 *b1 = (x1 + k * k * x1 - 2.0 * k * (x0 + x2)) / d;
334 *b2 = (x0 * k * k - x1 * k + x2) / d;
335 *a1 = (2.0 * k + y1 + y1 * k * k - 2.0 * y2 * k) / d;
336 *a2 = (-k * k - y1 * k + y2) / d;
338 if (filter->mode == MODE_HIGH_PASS) {
346 generate_coefficients (GstAudioChebLimit * filter)
348 if (GST_AUDIO_FILTER_RATE (filter) == 0) {
349 gdouble *a = g_new0 (gdouble, 1);
350 gdouble *b = g_new0 (gdouble, 1);
354 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
355 (filter), a, 1, b, 1);
357 GST_LOG_OBJECT (filter, "rate was not set yet");
361 if (filter->cutoff >= GST_AUDIO_FILTER_RATE (filter) / 2.0) {
362 gdouble *a = g_new0 (gdouble, 1);
363 gdouble *b = g_new0 (gdouble, 1);
366 b[0] = (filter->mode == MODE_LOW_PASS) ? 1.0 : 0.0;
367 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
368 (filter), a, 1, b, 1);
369 GST_LOG_OBJECT (filter, "cutoff was higher than nyquist frequency");
371 } else if (filter->cutoff <= 0.0) {
372 gdouble *a = g_new0 (gdouble, 1);
373 gdouble *b = g_new0 (gdouble, 1);
376 b[0] = (filter->mode == MODE_LOW_PASS) ? 0.0 : 1.0;
377 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
378 (filter), a, 1, b, 1);
379 GST_LOG_OBJECT (filter, "cutoff is lower than zero");
383 /* Calculate coefficients for the chebyshev filter */
385 gint np = filter->poles;
389 a = g_new0 (gdouble, np + 3);
390 b = g_new0 (gdouble, np + 3);
392 /* Calculate transfer function coefficients */
396 for (p = 1; p <= np / 2; p++) {
397 gdouble b0, b1, b2, a1, a2;
398 gdouble *ta = g_new0 (gdouble, np + 3);
399 gdouble *tb = g_new0 (gdouble, np + 3);
401 generate_biquad_coefficients (filter, p, &b0, &b1, &b2, &a1, &a2);
403 memcpy (ta, a, sizeof (gdouble) * (np + 3));
404 memcpy (tb, b, sizeof (gdouble) * (np + 3));
406 /* add the new coefficients for the new two poles
407 * to the cascade by multiplication of the transfer
409 for (i = 2; i < np + 3; i++) {
410 b[i] = b0 * tb[i] + b1 * tb[i - 1] + b2 * tb[i - 2];
411 a[i] = ta[i] - a1 * ta[i - 1] - a2 * ta[i - 2];
417 /* Move coefficients to the beginning of the array to move from
418 * the transfer function's coefficients to the difference
419 * equation's coefficients */
420 for (i = 0; i <= np; i++) {
425 /* Normalize to unity gain at frequency 0 for lowpass
426 * and frequency 0.5 for highpass */
430 if (filter->mode == MODE_LOW_PASS)
432 gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
436 gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
439 for (i = 0; i <= np; i++) {
444 gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
445 (filter), a, np + 1, b, np + 1);
447 GST_LOG_OBJECT (filter,
448 "Generated IIR coefficients for the Chebyshev filter");
449 GST_LOG_OBJECT (filter,
450 "mode: %s, type: %d, poles: %d, cutoff: %.2f Hz, ripple: %.2f dB",
451 (filter->mode == MODE_LOW_PASS) ? "low-pass" : "high-pass",
452 filter->type, filter->poles, filter->cutoff, filter->ripple);
453 GST_LOG_OBJECT (filter, "%.2f dB gain @ 0 Hz",
454 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
457 #ifndef GST_DISABLE_GST_DEBUG
460 2.0 * G_PI * (filter->cutoff / GST_AUDIO_FILTER_RATE (filter));
461 gdouble zr = cos (wc), zi = sin (wc);
463 GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
464 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
465 b, np + 1, zr, zi)), (int) filter->cutoff);
469 GST_LOG_OBJECT (filter, "%.2f dB gain @ %d Hz",
470 20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
471 np + 1, -1.0, 0.0)), GST_AUDIO_FILTER_RATE (filter) / 2);
476 gst_audio_cheb_limit_finalize (GObject * object)
478 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
480 g_mutex_clear (&filter->lock);
482 G_OBJECT_CLASS (parent_class)->finalize (object);
486 gst_audio_cheb_limit_set_property (GObject * object, guint prop_id,
487 const GValue * value, GParamSpec * pspec)
489 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
493 g_mutex_lock (&filter->lock);
494 filter->mode = g_value_get_enum (value);
495 generate_coefficients (filter);
496 g_mutex_unlock (&filter->lock);
499 g_mutex_lock (&filter->lock);
500 filter->type = g_value_get_int (value);
501 generate_coefficients (filter);
502 g_mutex_unlock (&filter->lock);
505 g_mutex_lock (&filter->lock);
506 filter->cutoff = g_value_get_float (value);
507 generate_coefficients (filter);
508 g_mutex_unlock (&filter->lock);
511 g_mutex_lock (&filter->lock);
512 filter->ripple = g_value_get_float (value);
513 generate_coefficients (filter);
514 g_mutex_unlock (&filter->lock);
517 g_mutex_lock (&filter->lock);
518 filter->poles = GST_ROUND_UP_2 (g_value_get_int (value));
519 generate_coefficients (filter);
520 g_mutex_unlock (&filter->lock);
523 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
529 gst_audio_cheb_limit_get_property (GObject * object, guint prop_id,
530 GValue * value, GParamSpec * pspec)
532 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (object);
536 g_value_set_enum (value, filter->mode);
539 g_value_set_int (value, filter->type);
542 g_value_set_float (value, filter->cutoff);
545 g_value_set_float (value, filter->ripple);
548 g_value_set_int (value, filter->poles);
551 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
556 /* GstAudioFilter vmethod implementations */
559 gst_audio_cheb_limit_setup (GstAudioFilter * base, const GstAudioInfo * info)
561 GstAudioChebLimit *filter = GST_AUDIO_CHEB_LIMIT (base);
563 generate_coefficients (filter);
565 return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, info);