Add missing end itemize.
[external/binutils.git] / gprof / gprof.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @settitle GNU gprof
4 @setchapternewpage odd
5
6 @ifinfo
7 @c This is a dir.info fragment to support semi-automated addition of
8 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
9 @format
10 START-INFO-DIR-ENTRY
11 * gprof: (gprof).                Profiling your program's execution
12 END-INFO-DIR-ENTRY
13 @end format
14 @end ifinfo
15
16 @ifinfo
17 This file documents the gprof profiler of the GNU system.
18
19 Copyright (C) 1988, 1992 Free Software Foundation, Inc.
20
21 Permission is granted to make and distribute verbatim copies of
22 this manual provided the copyright notice and this permission notice
23 are preserved on all copies.
24
25 @ignore
26 Permission is granted to process this file through Tex and print the
27 results, provided the printed document carries copying permission
28 notice identical to this one except for the removal of this paragraph
29 (this paragraph not being relevant to the printed manual).
30
31 @end ignore
32 Permission is granted to copy and distribute modified versions of this
33 manual under the conditions for verbatim copying, provided that the entire
34 resulting derived work is distributed under the terms of a permission
35 notice identical to this one.
36
37 Permission is granted to copy and distribute translations of this manual
38 into another language, under the above conditions for modified versions.
39 @end ifinfo
40
41 @finalout
42 @smallbook
43
44 @titlepage
45 @title GNU gprof
46 @subtitle The @sc{gnu} Profiler 
47 @author Jay Fenlason and Richard Stallman
48
49 @page
50
51 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
52 can use it to determine which parts of a program are taking most of the
53 execution time.  We assume that you know how to write, compile, and
54 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
55
56 This manual was edited January 1993 by Jeffrey Osier.
57
58 @vskip 0pt plus 1filll
59 Copyright @copyright{} 1988, 1992 Free Software Foundation, Inc.
60
61 Permission is granted to make and distribute verbatim copies of
62 this manual provided the copyright notice and this permission notice
63 are preserved on all copies.
64
65 @ignore
66 Permission is granted to process this file through TeX and print the
67 results, provided the printed document carries copying permission
68 notice identical to this one except for the removal of this paragraph
69 (this paragraph not being relevant to the printed manual).
70
71 @end ignore
72 Permission is granted to copy and distribute modified versions of this
73 manual under the conditions for verbatim copying, provided that the entire
74 resulting derived work is distributed under the terms of a permission
75 notice identical to this one.
76
77 Permission is granted to copy and distribute translations of this manual
78 into another language, under the same conditions as for modified versions.
79
80 @end titlepage
81
82 @ifinfo
83 @node Top
84 @top Profiling a Program: Where Does It Spend Its Time?
85
86 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
87 can use it to determine which parts of a program are taking most of the
88 execution time.  We assume that you know how to write, compile, and
89 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
90
91 This manual was updated January 1993.
92
93 @menu
94 * Why::                 What profiling means, and why it is useful.
95 * Compiling::           How to compile your program for profiling.
96 * Executing::           How to execute your program to generate the
97                             profile data file @file{gmon.out}.
98 * Invoking::            How to run @code{gprof}, and how to specify
99                             options for it.
100
101 * Flat Profile::        The flat profile shows how much time was spent
102                             executing directly in each function.
103 * Call Graph::          The call graph shows which functions called which
104                             others, and how much time each function used
105                             when its subroutine calls are included.
106
107 * Implementation::      How the profile data is recorded and written.
108 * Sampling Error::      Statistical margins of error.
109                             How to accumulate data from several runs
110                             to make it more accurate.
111
112 * Assumptions::         Some of @code{gprof}'s measurements are based
113                             on assumptions about your program
114                             that could be very wrong.
115
116 * Incompatibilities::   (between GNU @code{gprof} and Unix @code{gprof}.)
117 @end menu
118 @end ifinfo
119
120 @node Why
121 @chapter Why Profile
122
123 Profiling allows you to learn where your program spent its time and which
124 functions called which other functions while it was executing.  This
125 information can show you which pieces of your program are slower than you
126 expected, and might be candidates for rewriting to make your program
127 execute faster.  It can also tell you which functions are being called more
128 or less often than you expected.  This may help you spot bugs that had
129 otherwise been unnoticed.
130
131 Since the profiler uses information collected during the actual execution
132 of your program, it can be used on programs that are too large or too
133 complex to analyze by reading the source.  However, how your program is run
134 will affect the information that shows up in the profile data.  If you
135 don't use some feature of your program while it is being profiled, no
136 profile information will be generated for that feature.
137
138 Profiling has several steps:
139
140 @itemize @bullet
141 @item
142 You must compile and link your program with profiling enabled.
143 @xref{Compiling}.
144
145 @item
146 You must execute your program to generate a profile data file.
147 @xref{Executing}.
148
149 @item
150 You must run @code{gprof} to analyze the profile data.
151 @xref{Invoking}.
152 @end itemize
153
154 The next three chapters explain these steps in greater detail.
155
156 The result of the analysis is a file containing two tables, the
157 @dfn{flat profile} and the @dfn{call graph} (plus blurbs which briefly
158 explain the contents of these tables).
159
160 The flat profile shows how much time your program spent in each function,
161 and how many times that function was called.  If you simply want to know
162 which functions burn most of the cycles, it is stated concisely here.
163 @xref{Flat Profile}.
164
165 The call graph shows, for each function, which functions called it, which
166 other functions it called, and how many times.  There is also an estimate
167 of how much time was spent in the subroutines of each function.  This can
168 suggest places where you might try to eliminate function calls that use a
169 lot of time.  @xref{Call Graph}.
170
171 @node Compiling
172 @chapter Compiling a Program for Profiling
173
174 The first step in generating profile information for your program is
175 to compile and link it with profiling enabled.
176
177 To compile a source file for profiling, specify the @samp{-pg} option when
178 you run the compiler.  (This is in addition to the options you normally
179 use.)
180
181 To link the program for profiling, if you use a compiler such as @code{cc}
182 to do the linking, simply specify @samp{-pg} in addition to your usual
183 options.  The same option, @samp{-pg}, alters either compilation or linking
184 to do what is necessary for profiling.  Here are examples:
185
186 @example
187 cc -g -c myprog.c utils.c -pg
188 cc -o myprog myprog.o utils.o -pg
189 @end example
190
191 The @samp{-pg} option also works with a command that both compiles and links:
192
193 @example
194 cc -o myprog myprog.c utils.c -g -pg
195 @end example
196
197 If you run the linker @code{ld} directly instead of through a compiler
198 such as @code{cc}, you must specify the profiling startup file
199 @file{/lib/gcrt0.o} as the first input file instead of the usual startup
200 file @file{/lib/crt0.o}.  In addition, you would probably want to
201 specify the profiling C library, @file{/usr/lib/libc_p.a}, by writing
202 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
203 necessary, but doing this gives you number-of-calls information for
204 standard library functions such as @code{read} and @code{open}.  For
205 example:
206
207 @example
208 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
209 @end example
210
211 If you compile only some of the modules of the program with @samp{-pg}, you
212 can still profile the program, but you won't get complete information about
213 the modules that were compiled without @samp{-pg}.  The only information
214 you get for the functions in those modules is the total time spent in them;
215 there is no record of how many times they were called, or from where.  This
216 will not affect the flat profile (except that the @code{calls} field for
217 the functions will be blank), but will greatly reduce the usefulness of the
218 call graph.
219
220 @node Executing
221 @chapter Executing the Program to Generate Profile Data
222
223 Once the program is compiled for profiling, you must run it in order to
224 generate the information that @code{gprof} needs.  Simply run the program
225 as usual, using the normal arguments, file names, etc.  The program should
226 run normally, producing the same output as usual.  It will, however, run
227 somewhat slower than normal because of the time spent collecting and the
228 writing the profile data.
229
230 The way you run the program---the arguments and input that you give
231 it---may have a dramatic effect on what the profile information shows.  The
232 profile data will describe the parts of the program that were activated for
233 the particular input you use.  For example, if the first command you give
234 to your program is to quit, the profile data will show the time used in
235 initialization and in cleanup, but not much else.
236
237 You program will write the profile data into a file called @file{gmon.out}
238 just before exiting.  If there is already a file called @file{gmon.out},
239 its contents are overwritten.  There is currently no way to tell the
240 program to write the profile data under a different name, but you can rename
241 the file afterward if you are concerned that it may be overwritten.
242
243 In order to write the @file{gmon.out} file properly, your program must exit
244 normally: by returning from @code{main} or by calling @code{exit}.  Calling
245 the low-level function @code{_exit} does not write the profile data, and
246 neither does abnormal termination due to an unhandled signal.
247
248 The @file{gmon.out} file is written in the program's @emph{current working
249 directory} at the time it exits.  This means that if your program calls
250 @code{chdir}, the @file{gmon.out} file will be left in the last directory
251 your program @code{chdir}'d to.  If you don't have permission to write in
252 this directory, the file is not written.  You may get a confusing error
253 message if this happens.  (We have not yet replaced the part of Unix
254 responsible for this; when we do, we will make the error message
255 comprehensible.)
256
257 @node Invoking
258 @chapter @code{gprof} Command Summary
259
260 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
261 to interpret the information in it.  The @code{gprof} program prints a
262 flat profile and a call graph on standard output.  Typically you would
263 redirect the output of @code{gprof} into a file with @samp{>}.
264
265 You run @code{gprof} like this:
266
267 @smallexample
268 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
269 @end smallexample
270
271 @noindent
272 Here square-brackets indicate optional arguments.
273
274 If you omit the executable file name, the file @file{a.out} is used.  If
275 you give no profile data file name, the file @file{gmon.out} is used.  If
276 any file is not in the proper format, or if the profile data file does not
277 appear to belong to the executable file, an error message is printed.
278
279 You can give more than one profile data file by entering all their names
280 after the executable file name; then the statistics in all the data files
281 are summed together.
282
283 The following options may be used to selectively include or exclude
284 functions in the output:
285
286 @table @code
287 @item -a
288 The @samp{-a} option causes @code{gprof} to suppress the printing of
289 statically declared (private) functions.  (These are functions whose
290 names are not listed as global, and which are not visible outside the
291 file/function/block where they were defined.)  Time spent in these
292 functions, calls to/from them, etc, will all be attributed to the
293 function that was loaded directly before it in the executable file.
294 @c This is compatible with Unix @code{gprof}, but a bad idea.  
295 This option affects both the flat profile and the call graph.
296
297 @item -D
298 The @samp{-D} option causes @code{gprof} to ignore symbols which
299 are not known to be functions.  This option will give more accurate
300 profile data on systems where it is supported (Solaris and HPUX for
301 example).
302
303 @item -e @var{function_name}
304 The @samp{-e @var{function}} option tells @code{gprof} to not print
305 information about the function @var{function_name} (and its
306 children@dots{}) in the call graph.  The function will still be listed
307 as a child of any functions that call it, but its index number will be
308 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
309 given; only one @var{function_name} may be indicated with each @samp{-e}
310 option. 
311
312 @item -E @var{function_name}
313 The @code{-E @var{function}} option works like the @code{-e} option, but
314 time spent in the function (and children who were not called from
315 anywhere else), will not be used to compute the percentages-of-time for
316 the call graph.  More than one @samp{-E} option may be given; only one
317 @var{function_name} may be indicated with each @samp{-E} option.
318
319 @item -f @var{function_name}
320 The @samp{-f @var{function}} option causes @code{gprof} to limit the
321 call graph to the function @var{function_name} and its children (and
322 their children@dots{}).  More than one @samp{-f} option may be given;
323 only one @var{function_name} may be indicated with each @samp{-f}
324 option.  
325
326 @item -F @var{function_name}
327 The @samp{-F @var{function}} option works like the @code{-f} option, but
328 only time spent in the function and its children (and their
329 children@dots{}) will be used to determine total-time and
330 percentages-of-time for the call graph.  More than one @samp{-F} option
331 may be given; only one @var{function_name} may be indicated with each
332 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
333
334 @item -k @var{from@dots{}} @var{to@dots{}}
335 The @samp{-k} option allows you to delete from the profile any arcs from
336 routine @var{from} to routine @var{to}.
337
338 @item -v
339 The @samp{-v} flag causes @code{gprof} to print the current version
340 number, and then exit.
341
342 @item -z
343 If you give the @samp{-z} option, @code{gprof} will mention all
344 functions in the flat profile, even those that were never called, and
345 that had no time spent in them.  This is useful in conjunction with the
346 @samp{-c} option for discovering which routines were never called.
347 @end table
348
349 The order of these options does not matter.
350
351 Note that only one function can be specified with each @code{-e},
352 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
353 function, use multiple options.  For example, this command:
354
355 @example
356 gprof -e boring -f foo -f bar myprogram > gprof.output
357 @end example
358
359 @noindent
360 lists in the call graph all functions that were reached from either
361 @code{foo} or @code{bar} and were not reachable from @code{boring}.
362
363 There are a few other useful @code{gprof} options:
364
365 @table @code
366 @item -b
367 If the @samp{-b} option is given, @code{gprof} doesn't print the
368 verbose blurbs that try to explain the meaning of all of the fields in
369 the tables.  This is useful if you intend to print out the output, or
370 are tired of seeing the blurbs.
371
372 @item -c
373 The @samp{-c} option causes the static call-graph of the program to be
374 discovered by a heuristic which examines the text space of the object
375 file.  Static-only parents or children are indicated with call counts of
376 @samp{0}.
377
378 @item -d @var{num}
379 The @samp{-d @var{num}} option specifies debugging options.
380 @c @xref{debugging}.
381
382 @item -s
383 The @samp{-s} option causes @code{gprof} to summarize the information
384 in the profile data files it read in, and write out a profile data
385 file called @file{gmon.sum}, which contains all the information from
386 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
387 may be one of the specified input files; the effect of this is to
388 merge the data in the other input files into @file{gmon.sum}.
389 @xref{Sampling Error}.
390
391 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
392 cumulative data in the file @file{gmon.sum}.
393
394 @item -T
395 The @samp{-T} option causes @code{gprof} to print its output in
396 ``traditional'' BSD style.
397
398 @item --function-ordering
399 The @samp{--function-ordering} option causes @code{gprof} to print a
400 suggested function ordering for the program based on profiling data.
401 This option suggests an ordering which may improve paging, tlb and
402 cache behavior for the program on systems which support arbitrary
403 ordering of functions in an executable.
404
405 The exact details of how to force the linker to place functions
406 in a particular order is system dependent and out of the scope of this
407 manual.
408
409 @item --file-ordering @var{map_file}
410 The @samp{--file-ordering} option causes @code{gprof} to print a
411 suggested .o link line ordering for the program based on profiling data.
412 This option suggests an ordering which may improve paging, tlb and
413 cache behavior for the program on systems which do not support arbitrary
414 ordering of functions in an executable.
415
416 Use of the @samp{-a} argument is highly recommended with this option.
417
418 The @var{map_file} argument is a pathname to a file which provides
419 function name to object file mappings.  The format of the file is similar to
420 the output of the program @code{nm}.
421
422 @smallexample
423 @group
424 c-parse.o:00000000 T yyparse
425 c-parse.o:00000004 C yyerrflag
426 c-lang.o:00000000 T maybe_objc_method_name
427 c-lang.o:00000000 T print_lang_statistics
428 c-lang.o:00000000 T recognize_objc_keyword
429 c-decl.o:00000000 T print_lang_identifier
430 c-decl.o:00000000 T print_lang_type
431 @dots{}
432
433 @end group
434 @end smallexample
435
436 GNU @code{nm} @samp{--extern-only} @samp{--defined-only} @samp{-v} @samp{--print-file-name} can be used to create @var{map_file}.
437 @end table
438
439 @node Flat Profile
440 @chapter How to Understand the Flat Profile
441 @cindex flat profile
442
443 The @dfn{flat profile} shows the total amount of time your program
444 spent executing each function.  Unless the @samp{-z} option is given,
445 functions with no apparent time spent in them, and no apparent calls
446 to them, are not mentioned.  Note that if a function was not compiled
447 for profiling, and didn't run long enough to show up on the program
448 counter histogram, it will be indistinguishable from a function that
449 was never called.
450
451 This is part of a flat profile for a small program:
452
453 @smallexample
454 @group
455 Flat profile:
456
457 Each sample counts as 0.01 seconds.
458   %   cumulative   self              self     total           
459  time   seconds   seconds    calls  ms/call  ms/call  name    
460  33.34      0.02     0.02     7208     0.00     0.00  open
461  16.67      0.03     0.01      244     0.04     0.12  offtime
462  16.67      0.04     0.01        8     1.25     1.25  memccpy
463  16.67      0.05     0.01        7     1.43     1.43  write
464  16.67      0.06     0.01                             mcount
465   0.00      0.06     0.00      236     0.00     0.00  tzset
466   0.00      0.06     0.00      192     0.00     0.00  tolower
467   0.00      0.06     0.00       47     0.00     0.00  strlen
468   0.00      0.06     0.00       45     0.00     0.00  strchr
469   0.00      0.06     0.00        1     0.00    50.00  main
470   0.00      0.06     0.00        1     0.00     0.00  memcpy
471   0.00      0.06     0.00        1     0.00    10.11  print
472   0.00      0.06     0.00        1     0.00     0.00  profil
473   0.00      0.06     0.00        1     0.00    50.00  report
474 @dots{}
475 @end group
476 @end smallexample
477
478 @noindent
479 The functions are sorted by decreasing run-time spent in them.  The
480 functions @samp{mcount} and @samp{profil} are part of the profiling
481 aparatus and appear in every flat profile; their time gives a measure of
482 the amount of overhead due to profiling.
483
484 The sampling period estimates the margin of error in each of the time
485 figures.  A time figure that is not much larger than this is not
486 reliable.  In this example, the @samp{self seconds} field for
487 @samp{mcount} might well be @samp{0} or @samp{0.04} in another run.
488 @xref{Sampling Error}, for a complete discussion.
489
490 Here is what the fields in each line mean:
491
492 @table @code
493 @item % time
494 This is the percentage of the total execution time your program spent
495 in this function.  These should all add up to 100%.
496
497 @item cumulative seconds
498 This is the cumulative total number of seconds the computer spent
499 executing this functions, plus the time spent in all the functions
500 above this one in this table.
501
502 @item self seconds
503 This is the number of seconds accounted for by this function alone.
504 The flat profile listing is sorted first by this number.
505
506 @item calls
507 This is the total number of times the function was called.  If the
508 function was never called, or the number of times it was called cannot
509 be determined (probably because the function was not compiled with
510 profiling enabled), the @dfn{calls} field is blank.
511
512 @item self ms/call
513 This represents the average number of milliseconds spent in this
514 function per call, if this function is profiled.  Otherwise, this field
515 is blank for this function.
516
517 @item total ms/call
518 This represents the average number of milliseconds spent in this
519 function and its descendants per call, if this function is profiled.
520 Otherwise, this field is blank for this function.
521
522 @item name
523 This is the name of the function.   The flat profile is sorted by this
524 field alphabetically after the @dfn{self seconds} field is sorted.
525 @end table
526
527 @node Call Graph
528 @chapter How to Read the Call Graph
529 @cindex call graph
530
531 The @dfn{call graph} shows how much time was spent in each function
532 and its children.  From this information, you can find functions that,
533 while they themselves may not have used much time, called other
534 functions that did use unusual amounts of time.
535
536 Here is a sample call from a small program.  This call came from the
537 same @code{gprof} run as the flat profile example in the previous
538 chapter.
539
540 @smallexample
541 @group
542 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
543
544 index % time    self  children    called     name
545                                                  <spontaneous>
546 [1]    100.0    0.00    0.05                 start [1]
547                 0.00    0.05       1/1           main [2]
548                 0.00    0.00       1/2           on_exit [28]
549                 0.00    0.00       1/1           exit [59]
550 -----------------------------------------------
551                 0.00    0.05       1/1           start [1]
552 [2]    100.0    0.00    0.05       1         main [2]
553                 0.00    0.05       1/1           report [3]
554 -----------------------------------------------
555                 0.00    0.05       1/1           main [2]
556 [3]    100.0    0.00    0.05       1         report [3]
557                 0.00    0.03       8/8           timelocal [6]
558                 0.00    0.01       1/1           print [9]
559                 0.00    0.01       9/9           fgets [12]
560                 0.00    0.00      12/34          strncmp <cycle 1> [40]
561                 0.00    0.00       8/8           lookup [20]
562                 0.00    0.00       1/1           fopen [21]
563                 0.00    0.00       8/8           chewtime [24]
564                 0.00    0.00       8/16          skipspace [44]
565 -----------------------------------------------
566 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole>   [4]
567                 0.01        0.02     244+260         offtime <cycle 2> [7]
568                 0.00        0.00     236+1           tzset <cycle 2> [26]
569 -----------------------------------------------
570 @end group
571 @end smallexample
572
573 The lines full of dashes divide this table into @dfn{entries}, one for each
574 function.  Each entry has one or more lines.
575
576 In each entry, the primary line is the one that starts with an index number
577 in square brackets.  The end of this line says which function the entry is
578 for.  The preceding lines in the entry describe the callers of this
579 function and the following lines describe its subroutines (also called
580 @dfn{children} when we speak of the call graph).
581
582 The entries are sorted by time spent in the function and its subroutines.
583
584 The internal profiling function @code{mcount} (@pxref{Flat Profile})
585 is never mentioned in the call graph.
586
587 @menu
588 * Primary::       Details of the primary line's contents.
589 * Callers::       Details of caller-lines' contents.
590 * Subroutines::   Details of subroutine-lines' contents.
591 * Cycles::        When there are cycles of recursion,
592                    such as @code{a} calls @code{b} calls @code{a}@dots{}
593 @end menu
594
595 @node Primary
596 @section The Primary Line
597
598 The @dfn{primary line} in a call graph entry is the line that
599 describes the function which the entry is about and gives the overall
600 statistics for this function.
601
602 For reference, we repeat the primary line from the entry for function
603 @code{report} in our main example, together with the heading line that
604 shows the names of the fields:
605
606 @smallexample
607 @group
608 index  % time    self  children called     name
609 @dots{}
610 [3]    100.0    0.00    0.05       1         report [3]
611 @end group
612 @end smallexample
613
614 Here is what the fields in the primary line mean:
615
616 @table @code
617 @item index
618 Entries are numbered with consecutive integers.  Each function
619 therefore has an index number, which appears at the beginning of its
620 primary line.
621
622 Each cross-reference to a function, as a caller or subroutine of
623 another, gives its index number as well as its name.  The index number
624 guides you if you wish to look for the entry for that function.
625
626 @item % time
627 This is the percentage of the total time that was spent in this
628 function, including time spent in subroutines called from this
629 function.
630
631 The time spent in this function is counted again for the callers of
632 this function.  Therefore, adding up these percentages is meaningless.
633
634 @item self
635 This is the total amount of time spent in this function.  This
636 should be identical to the number printed in the @code{seconds} field
637 for this function in the flat profile.
638
639 @item children
640 This is the total amount of time spent in the subroutine calls made by
641 this function.  This should be equal to the sum of all the @code{self}
642 and @code{children} entries of the children listed directly below this
643 function.
644
645 @item called
646 This is the number of times the function was called.
647
648 If the function called itself recursively, there are two numbers,
649 separated by a @samp{+}.  The first number counts non-recursive calls,
650 and the second counts recursive calls.
651
652 In the example above, the function @code{report} was called once from
653 @code{main}.
654
655 @item name
656 This is the name of the current function.  The index number is
657 repeated after it.
658
659 If the function is part of a cycle of recursion, the cycle number is
660 printed between the function's name and the index number
661 (@pxref{Cycles}).  For example, if function @code{gnurr} is part of
662 cycle number one, and has index number twelve, its primary line would
663 be end like this:
664
665 @example
666 gnurr <cycle 1> [12]
667 @end example
668 @end table
669
670 @node Callers, Subroutines, Primary, Call Graph
671 @section Lines for a Function's Callers
672
673 A function's entry has a line for each function it was called by.
674 These lines' fields correspond to the fields of the primary line, but
675 their meanings are different because of the difference in context.
676
677 For reference, we repeat two lines from the entry for the function
678 @code{report}, the primary line and one caller-line preceding it, together
679 with the heading line that shows the names of the fields:
680
681 @smallexample
682 index  % time    self  children called     name
683 @dots{}
684                 0.00    0.05       1/1           main [2]
685 [3]    100.0    0.00    0.05       1         report [3]
686 @end smallexample
687
688 Here are the meanings of the fields in the caller-line for @code{report}
689 called from @code{main}:
690
691 @table @code
692 @item self
693 An estimate of the amount of time spent in @code{report} itself when it was
694 called from @code{main}.
695
696 @item children
697 An estimate of the amount of time spent in subroutines of @code{report}
698 when @code{report} was called from @code{main}.
699
700 The sum of the @code{self} and @code{children} fields is an estimate
701 of the amount of time spent within calls to @code{report} from @code{main}.
702
703 @item called
704 Two numbers: the number of times @code{report} was called from @code{main},
705 followed by the total number of nonrecursive calls to @code{report} from
706 all its callers.
707
708 @item name and index number
709 The name of the caller of @code{report} to which this line applies,
710 followed by the caller's index number.
711
712 Not all functions have entries in the call graph; some
713 options to @code{gprof} request the omission of certain functions.
714 When a caller has no entry of its own, it still has caller-lines
715 in the entries of the functions it calls.
716
717 If the caller is part of a recursion cycle, the cycle number is
718 printed between the name and the index number.
719 @end table
720
721 If the identity of the callers of a function cannot be determined, a
722 dummy caller-line is printed which has @samp{<spontaneous>} as the
723 ``caller's name'' and all other fields blank.  This can happen for
724 signal handlers.
725 @c What if some calls have determinable callers' names but not all?
726 @c FIXME - still relevant?
727
728 @node Subroutines, Cycles, Callers, Call Graph
729 @section Lines for a Function's Subroutines
730
731 A function's entry has a line for each of its subroutines---in other
732 words, a line for each other function that it called.  These lines'
733 fields correspond to the fields of the primary line, but their meanings
734 are different because of the difference in context.
735
736 For reference, we repeat two lines from the entry for the function
737 @code{main}, the primary line and a line for a subroutine, together
738 with the heading line that shows the names of the fields:
739
740 @smallexample
741 index  % time    self  children called     name
742 @dots{}
743 [2]    100.0    0.00    0.05       1         main [2]
744                 0.00    0.05       1/1           report [3]
745 @end smallexample
746
747 Here are the meanings of the fields in the subroutine-line for @code{main}
748 calling @code{report}:
749
750 @table @code
751 @item self
752 An estimate of the amount of time spent directly within @code{report}
753 when @code{report} was called from @code{main}.
754
755 @item children
756 An estimate of the amount of time spent in subroutines of @code{report}
757 when @code{report} was called from @code{main}.
758
759 The sum of the @code{self} and @code{children} fields is an estimate
760 of the total time spent in calls to @code{report} from @code{main}.
761
762 @item called
763 Two numbers, the number of calls to @code{report} from @code{main}
764 followed by the total number of nonrecursive calls to @code{report}.
765
766 @item name
767 The name of the subroutine of @code{main} to which this line applies,
768 followed by the subroutine's index number.
769
770 If the caller is part of a recursion cycle, the cycle number is
771 printed between the name and the index number.
772 @end table
773
774 @node Cycles,, Subroutines, Call Graph
775 @section How Mutually Recursive Functions Are Described
776 @cindex cycle
777 @cindex recursion cycle
778
779 The graph may be complicated by the presence of @dfn{cycles of
780 recursion} in the call graph.  A cycle exists if a function calls
781 another function that (directly or indirectly) calls (or appears to
782 call) the original function.  For example: if @code{a} calls @code{b},
783 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
784
785 Whenever there are call-paths both ways between a pair of functions, they
786 belong to the same cycle.  If @code{a} and @code{b} call each other and
787 @code{b} and @code{c} call each other, all three make one cycle.  Note that
788 even if @code{b} only calls @code{a} if it was not called from @code{a},
789 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
790 considered a cycle.
791
792 The cycles are numbered with consecutive integers.  When a function
793 belongs to a cycle, each time the function name appears in the call graph
794 it is followed by @samp{<cycle @var{number}>}.
795
796 The reason cycles matter is that they make the time values in the call
797 graph paradoxical.  The ``time spent in children'' of @code{a} should
798 include the time spent in its subroutine @code{b} and in @code{b}'s
799 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
800 @code{a}'s time should be included in the children of @code{a}, when
801 @code{a} is indirectly recursive?
802
803 The way @code{gprof} resolves this paradox is by creating a single entry
804 for the cycle as a whole.  The primary line of this entry describes the
805 total time spent directly in the functions of the cycle.  The
806 ``subroutines'' of the cycle are the individual functions of the cycle, and
807 all other functions that were called directly by them.  The ``callers'' of
808 the cycle are the functions, outside the cycle, that called functions in
809 the cycle.
810
811 Here is an example portion of a call graph which shows a cycle containing
812 functions @code{a} and @code{b}.  The cycle was entered by a call to
813 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
814
815 @smallexample
816 index  % time    self  children called     name
817 ----------------------------------------
818                  1.77        0    1/1        main [2]
819 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
820                  1.02        0    3          b <cycle 1> [4]
821                  0.75        0    2          a <cycle 1> [5]
822 ----------------------------------------
823                                   3          a <cycle 1> [5]
824 [4]     52.85    1.02        0    0      b <cycle 1> [4]
825                                   2          a <cycle 1> [5]
826                     0        0    3/6        c [6]
827 ----------------------------------------
828                  1.77        0    1/1        main [2]
829                                   2          b <cycle 1> [4]
830 [5]     38.86    0.75        0    1      a <cycle 1> [5]
831                                   3          b <cycle 1> [4]
832                     0        0    3/6        c [6]
833 ----------------------------------------
834 @end smallexample
835
836 @noindent
837 (The entire call graph for this program contains in addition an entry for
838 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
839 @code{a} and @code{b}.)
840
841 @smallexample
842 index  % time    self  children called     name
843                                              <spontaneous>
844 [1]    100.00       0     1.93    0      start [1]
845                  0.16     1.77    1/1        main [2]
846 ----------------------------------------
847                  0.16     1.77    1/1        start [1]
848 [2]    100.00    0.16     1.77    1      main [2]
849                  1.77        0    1/1        a <cycle 1> [5]
850 ----------------------------------------
851                  1.77        0    1/1        main [2]
852 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
853                  1.02        0    3          b <cycle 1> [4]
854                  0.75        0    2          a <cycle 1> [5]
855                     0        0    6/6        c [6]
856 ----------------------------------------
857                                   3          a <cycle 1> [5]
858 [4]     52.85    1.02        0    0      b <cycle 1> [4]
859                                   2          a <cycle 1> [5]
860                     0        0    3/6        c [6]
861 ----------------------------------------
862                  1.77        0    1/1        main [2]
863                                   2          b <cycle 1> [4]
864 [5]     38.86    0.75        0    1      a <cycle 1> [5]
865                                   3          b <cycle 1> [4]
866                     0        0    3/6        c [6]
867 ----------------------------------------
868                     0        0    3/6        b <cycle 1> [4]
869                     0        0    3/6        a <cycle 1> [5]
870 [6]      0.00       0        0    6      c [6]
871 ----------------------------------------
872 @end smallexample
873
874 The @code{self} field of the cycle's primary line is the total time
875 spent in all the functions of the cycle.  It equals the sum of the
876 @code{self} fields for the individual functions in the cycle, found
877 in the entry in the subroutine lines for these functions.
878
879 The @code{children} fields of the cycle's primary line and subroutine lines
880 count only subroutines outside the cycle.  Even though @code{a} calls
881 @code{b}, the time spent in those calls to @code{b} is not counted in
882 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
883 what to do when the time in those calls to @code{b} includes indirect
884 recursive calls back to @code{a}.
885
886 The @code{children} field of a caller-line in the cycle's entry estimates
887 the amount of time spent @emph{in the whole cycle}, and its other
888 subroutines, on the times when that caller called a function in the cycle.
889
890 The @code{calls} field in the primary line for the cycle has two numbers:
891 first, the number of times functions in the cycle were called by functions
892 outside the cycle; second, the number of times they were called by
893 functions in the cycle (including times when a function in the cycle calls
894 itself).  This is a generalization of the usual split into nonrecursive and
895 recursive calls.
896
897 The @code{calls} field of a subroutine-line for a cycle member in the
898 cycle's entry says how many time that function was called from functions in
899 the cycle.  The total of all these is the second number in the primary line's
900 @code{calls} field.
901
902 In the individual entry for a function in a cycle, the other functions in
903 the same cycle can appear as subroutines and as callers.  These lines show
904 how many times each function in the cycle called or was called from each other
905 function in the cycle.  The @code{self} and @code{children} fields in these
906 lines are blank because of the difficulty of defining meanings for them
907 when recursion is going on.
908
909 @node Implementation, Sampling Error, Call Graph, Top
910 @chapter Implementation of Profiling
911
912 Profiling works by changing how every function in your program is compiled
913 so that when it is called, it will stash away some information about where
914 it was called from.  From this, the profiler can figure out what function
915 called it, and can count how many times it was called.  This change is made
916 by the compiler when your program is compiled with the @samp{-pg} option.
917
918 Profiling also involves watching your program as it runs, and keeping a
919 histogram of where the program counter happens to be every now and then.
920 Typically the program counter is looked at around 100 times per second of
921 run time, but the exact frequency may vary from system to system.
922
923 A special startup routine allocates memory for the histogram and sets up
924 a clock signal handler to make entries in it.  Use of this special
925 startup routine is one of the effects of using @samp{gcc @dots{} -pg} to
926 link.  The startup file also includes an @samp{exit} function which is
927 responsible for writing the file @file{gmon.out}.
928
929 Number-of-calls information for library routines is collected by using a
930 special version of the C library.  The programs in it are the same as in
931 the usual C library, but they were compiled with @samp{-pg}.  If you
932 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
933 profiling version of the library.
934
935 The output from @code{gprof} gives no indication of parts of your program that
936 are limited by I/O or swapping bandwidth.  This is because samples of the
937 program counter are taken at fixed intervals of run time.  Therefore, the
938 time measurements in @code{gprof} output say nothing about time that your
939 program was not running.  For example, a part of the program that creates
940 so much data that it cannot all fit in physical memory at once may run very
941 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
942 the other hand, sampling by run time has the advantage that the amount of
943 load due to other users won't directly affect the output you get.
944
945 @node Sampling Error, Assumptions, Implementation, Top
946 @chapter Statistical Inaccuracy of @code{gprof} Output
947
948 The run-time figures that @code{gprof} gives you are based on a sampling
949 process, so they are subject to statistical inaccuracy.  If a function runs
950 only a small amount of time, so that on the average the sampling process
951 ought to catch that function in the act only once, there is a pretty good
952 chance it will actually find that function zero times, or twice.
953
954 By contrast, the number-of-calls figures are derived by counting, not
955 sampling.  They are completely accurate and will not vary from run to run
956 if your program is deterministic.
957
958 The @dfn{sampling period} that is printed at the beginning of the flat
959 profile says how often samples are taken.  The rule of thumb is that a
960 run-time figure is accurate if it is considerably bigger than the sampling
961 period.
962
963 The actual amount of error is usually more than one sampling period.  In
964 fact, if a value is @var{n} times the sampling period, the @emph{expected}
965 error in it is the square-root of @var{n} sampling periods.  If the
966 sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second, the
967 expected error in @code{foo}'s run-time is 0.1 seconds.  It is likely to
968 vary this much @emph{on the average} from one profiling run to the next.
969 (@emph{Sometimes} it will vary more.)
970
971 This does not mean that a small run-time figure is devoid of information.
972 If the program's @emph{total} run-time is large, a small run-time for one
973 function does tell you that that function used an insignificant fraction of
974 the whole program's time.  Usually this means it is not worth optimizing.
975
976 One way to get more accuracy is to give your program more (but similar)
977 input data so it will take longer.  Another way is to combine the data from
978 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
979
980 @enumerate
981 @item
982 Run your program once.
983
984 @item
985 Issue the command @samp{mv gmon.out gmon.sum}.
986
987 @item
988 Run your program again, the same as before.
989
990 @item
991 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
992
993 @example
994 gprof -s @var{executable-file} gmon.out gmon.sum
995 @end example
996
997 @item
998 Repeat the last two steps as often as you wish.
999
1000 @item
1001 Analyze the cumulative data using this command:
1002
1003 @example
1004 gprof @var{executable-file} gmon.sum > @var{output-file}
1005 @end example
1006 @end enumerate
1007
1008 @node Assumptions, Incompatibilities, Sampling Error, Top
1009 @chapter Estimating @code{children} Times Uses an Assumption
1010
1011 Some of the figures in the call graph are estimates---for example, the
1012 @code{children} time values and all the the time figures in caller and
1013 subroutine lines.
1014
1015 There is no direct information about these measurements in the profile
1016 data itself.  Instead, @code{gprof} estimates them by making an assumption
1017 about your program that might or might not be true.
1018
1019 The assumption made is that the average time spent in each call to any
1020 function @code{foo} is not correlated with who called @code{foo}.  If
1021 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1022 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1023 @code{children} time, by assumption.
1024
1025 This assumption is usually true enough, but for some programs it is far
1026 from true.  Suppose that @code{foo} returns very quickly when its argument
1027 is zero; suppose that @code{a} always passes zero as an argument, while
1028 other callers of @code{foo} pass other arguments.  In this program, all the
1029 time spent in @code{foo} is in the calls from callers other than @code{a}.
1030 But @code{gprof} has no way of knowing this; it will blindly and
1031 incorrectly charge 2 seconds of time in @code{foo} to the children of
1032 @code{a}.
1033
1034 @c FIXME - has this been fixed?
1035 We hope some day to put more complete data into @file{gmon.out}, so that
1036 this assumption is no longer needed, if we can figure out how.  For the
1037 nonce, the estimated figures are usually more useful than misleading.
1038
1039 @node Incompatibilities, , Assumptions, Top
1040 @chapter Incompatibilities with Unix @code{gprof}
1041
1042 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1043 file @file{gmon.out}, and provide essentially the same information.  But
1044 there are a few differences.
1045
1046 @itemize @bullet
1047 @item
1048 For a recursive function, Unix @code{gprof} lists the function as a
1049 parent and as a child, with a @code{calls} field that lists the number
1050 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1051 the number of recursive calls in the primary line.
1052
1053 @item
1054 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1055 @code{gprof} still lists it as a subroutine of functions that call it.
1056
1057 @ignore - it does this now
1058 @item
1059 The function names printed in @sc{gnu} @code{gprof} output do not include
1060 the leading underscores that are added internally to the front of all
1061 C identifiers on many operating systems.
1062 @end ignore
1063
1064 @item
1065 The blurbs, field widths, and output formats are different.  @sc{gnu}
1066 @code{gprof} prints blurbs after the tables, so that you can see the
1067 tables without skipping the blurbs.
1068 @end itemize
1069
1070 @contents
1071 @bye
1072
1073 NEEDS AN INDEX
1074
1075 Still relevant?
1076    The @file{gmon.out} file is written in the program's @emph{current working
1077    directory} at the time it exits.  This means that if your program calls
1078    @code{chdir}, the @file{gmon.out} file will be left in the last directory
1079    your program @code{chdir}'d to.  If you don't have permission to write in
1080    this directory, the file is not written.  You may get a confusing error
1081    message if this happens.  (We have not yet replaced the part of Unix
1082    responsible for this; when we do, we will make the error message
1083    comprehensible.)
1084
1085 -k from to...?
1086
1087 -d debugging...?  should this be documented?
1088
1089 -T - "traditional BSD style": How is it different?  Should the
1090 differences be documented?
1091
1092 what is this about?  (and to think, I *wrote* it...)
1093    @item -c
1094    The @samp{-c} option causes the static call-graph of the program to be
1095    discovered by a heuristic which examines the text space of the object
1096    file.  Static-only parents or children are indicated with call counts of
1097    @samp{0}.
1098
1099 example flat file adds up to 100.01%...
1100
1101 note: time estimates now only go out to one decimal place (0.0), where
1102 they used to extend two (78.67).