Fix crash in cp_print_value_fields
[external/binutils.git] / gprof / gprof.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
4 @settitle GNU gprof
5 @setchapternewpage odd
6
7 @c man begin INCLUDE
8 @include bfdver.texi
9 @c man end
10
11 @ifnottex
12 @c This is a dir.info fragment to support semi-automated addition of
13 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
14 @dircategory Software development
15 @direntry
16 * gprof: (gprof).                Profiling your program's execution
17 @end direntry
18 @end ifnottex
19
20 @copying
21 This file documents the gprof profiler of the GNU system.
22
23 @c man begin COPYRIGHT
24 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
25
26 Permission is granted to copy, distribute and/or modify this document
27 under the terms of the GNU Free Documentation License, Version 1.3
28 or any later version published by the Free Software Foundation;
29 with no Invariant Sections, with no Front-Cover Texts, and with no
30 Back-Cover Texts.  A copy of the license is included in the
31 section entitled ``GNU Free Documentation License''.
32
33 @c man end
34 @end copying
35
36 @finalout
37 @smallbook
38
39 @titlepage
40 @title GNU gprof
41 @subtitle The @sc{gnu} Profiler
42 @ifset VERSION_PACKAGE
43 @subtitle @value{VERSION_PACKAGE}
44 @end ifset
45 @subtitle Version @value{VERSION}
46 @author Jay Fenlason and Richard Stallman
47
48 @page
49
50 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
51 can use it to determine which parts of a program are taking most of the
52 execution time.  We assume that you know how to write, compile, and
53 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
54 Eric S. Raymond made some minor corrections and additions in 2003.
55
56 @vskip 0pt plus 1filll
57 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
58
59       Permission is granted to copy, distribute and/or modify this document
60       under the terms of the GNU Free Documentation License, Version 1.3
61       or any later version published by the Free Software Foundation;
62       with no Invariant Sections, with no Front-Cover Texts, and with no
63       Back-Cover Texts.  A copy of the license is included in the
64       section entitled ``GNU Free Documentation License''.
65
66 @end titlepage
67 @contents
68
69 @ifnottex
70 @node Top
71 @top Profiling a Program: Where Does It Spend Its Time?
72
73 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
74 can use it to determine which parts of a program are taking most of the
75 execution time.  We assume that you know how to write, compile, and
76 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
77
78 This manual is for @code{gprof}
79 @ifset VERSION_PACKAGE
80 @value{VERSION_PACKAGE}
81 @end ifset
82 version @value{VERSION}.
83
84 This document is distributed under the terms of the GNU Free
85 Documentation License version 1.3.  A copy of the license is included
86 in the section entitled ``GNU Free Documentation License''.
87
88 @menu
89 * Introduction::        What profiling means, and why it is useful.
90
91 * Compiling::           How to compile your program for profiling.
92 * Executing::           Executing your program to generate profile data
93 * Invoking::            How to run @code{gprof}, and its options
94
95 * Output::              Interpreting @code{gprof}'s output
96
97 * Inaccuracy::          Potential problems you should be aware of
98 * How do I?::           Answers to common questions
99 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
100 * Details::             Details of how profiling is done
101 * GNU Free Documentation License::  GNU Free Documentation License
102 @end menu
103 @end ifnottex
104
105 @node Introduction
106 @chapter Introduction to Profiling
107
108 @ifset man
109 @c man title gprof display call graph profile data
110
111 @smallexample
112 @c man begin SYNOPSIS
113 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ACeEfFJnNOpPqQZ][@var{name}] ]
114  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
115  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
116  [ --[no-]annotated-source[=@var{name}] ]
117  [ --[no-]exec-counts[=@var{name}] ]
118  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
119  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ]
120  [ --debug[=@var{level}] ] [ --function-ordering ]
121  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
122  [ --display-unused-functions ] [ --file-format=@var{name} ]
123  [ --file-info ] [ --help ] [ --line ] [ --inline-file-names ]
124  [ --min-count=@var{n} ] [ --no-static ] [ --print-path ]
125  [ --separate-files ] [ --static-call-graph ] [ --sum ]
126  [ --table-length=@var{len} ] [ --traditional ] [ --version ]
127  [ --width=@var{n} ] [ --ignore-non-functions ]
128  [ --demangle[=@var{STYLE}] ] [ --no-demangle ]
129  [--external-symbol-table=name]
130  [ @var{image-file} ] [ @var{profile-file} @dots{} ]
131 @c man end
132 @end smallexample
133
134 @c man begin DESCRIPTION
135 @code{gprof} produces an execution profile of C, Pascal, or Fortran77
136 programs.  The effect of called routines is incorporated in the profile
137 of each caller.  The profile data is taken from the call graph profile file
138 (@file{gmon.out} default) which is created by programs
139 that are compiled with the @samp{-pg} option of
140 @code{cc}, @code{pc}, and @code{f77}.
141 The @samp{-pg} option also links in versions of the library routines
142 that are compiled for profiling.  @code{Gprof} reads the given object
143 file (the default is @code{a.out}) and establishes the relation between
144 its symbol table and the call graph profile from @file{gmon.out}.
145 If more than one profile file is specified, the @code{gprof}
146 output shows the sum of the profile information in the given profile files.
147
148 @code{Gprof} calculates the amount of time spent in each routine.
149 Next, these times are propagated along the edges of the call graph.
150 Cycles are discovered, and calls into a cycle are made to share the time
151 of the cycle.
152
153 @c man end
154
155 @c man begin BUGS
156 The granularity of the sampling is shown, but remains
157 statistical at best.
158 We assume that the time for each execution of a function
159 can be expressed by the total time for the function divided
160 by the number of times the function is called.
161 Thus the time propagated along the call graph arcs to the function's
162 parents is directly proportional to the number of times that
163 arc is traversed.
164
165 Parents that are not themselves profiled will have the time of
166 their profiled children propagated to them, but they will appear
167 to be spontaneously invoked in the call graph listing, and will
168 not have their time propagated further.
169 Similarly, signal catchers, even though profiled, will appear
170 to be spontaneous (although for more obscure reasons).
171 Any profiled children of signal catchers should have their times
172 propagated properly, unless the signal catcher was invoked during
173 the execution of the profiling routine, in which case all is lost.
174
175 The profiled program must call @code{exit}(2)
176 or return normally for the profiling information to be saved
177 in the @file{gmon.out} file.
178 @c man end
179
180 @c man begin FILES
181 @table @code
182 @item @file{a.out}
183 the namelist and text space.
184 @item @file{gmon.out}
185 dynamic call graph and profile.
186 @item @file{gmon.sum}
187 summarized dynamic call graph and profile.
188 @end table
189 @c man end
190
191 @c man begin SEEALSO
192 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
193
194 ``An Execution Profiler for Modular Programs'',
195 by S. Graham, P. Kessler, M. McKusick;
196 Software - Practice and Experience,
197 Vol. 13, pp. 671-685, 1983.
198
199 ``gprof: A Call Graph Execution Profiler'',
200 by S. Graham, P. Kessler, M. McKusick;
201 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
202 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
203 @c man end
204 @end ifset
205
206 Profiling allows you to learn where your program spent its time and which
207 functions called which other functions while it was executing.  This
208 information can show you which pieces of your program are slower than you
209 expected, and might be candidates for rewriting to make your program
210 execute faster.  It can also tell you which functions are being called more
211 or less often than you expected.  This may help you spot bugs that had
212 otherwise been unnoticed.
213
214 Since the profiler uses information collected during the actual execution
215 of your program, it can be used on programs that are too large or too
216 complex to analyze by reading the source.  However, how your program is run
217 will affect the information that shows up in the profile data.  If you
218 don't use some feature of your program while it is being profiled, no
219 profile information will be generated for that feature.
220
221 Profiling has several steps:
222
223 @itemize @bullet
224 @item
225 You must compile and link your program with profiling enabled.
226 @xref{Compiling, ,Compiling a Program for Profiling}.
227
228 @item
229 You must execute your program to generate a profile data file.
230 @xref{Executing, ,Executing the Program}.
231
232 @item
233 You must run @code{gprof} to analyze the profile data.
234 @xref{Invoking, ,@code{gprof} Command Summary}.
235 @end itemize
236
237 The next three chapters explain these steps in greater detail.
238
239 @c man begin DESCRIPTION
240
241 Several forms of output are available from the analysis.
242
243 The @dfn{flat profile} shows how much time your program spent in each function,
244 and how many times that function was called.  If you simply want to know
245 which functions burn most of the cycles, it is stated concisely here.
246 @xref{Flat Profile, ,The Flat Profile}.
247
248 The @dfn{call graph} shows, for each function, which functions called it, which
249 other functions it called, and how many times.  There is also an estimate
250 of how much time was spent in the subroutines of each function.  This can
251 suggest places where you might try to eliminate function calls that use a
252 lot of time.  @xref{Call Graph, ,The Call Graph}.
253
254 The @dfn{annotated source} listing is a copy of the program's
255 source code, labeled with the number of times each line of the
256 program was executed.  @xref{Annotated Source, ,The Annotated Source
257 Listing}.
258 @c man end
259
260 To better understand how profiling works, you may wish to read
261 a description of its implementation.
262 @xref{Implementation, ,Implementation of Profiling}.
263
264 @node Compiling
265 @chapter Compiling a Program for Profiling
266
267 The first step in generating profile information for your program is
268 to compile and link it with profiling enabled.
269
270 To compile a source file for profiling, specify the @samp{-pg} option when
271 you run the compiler.  (This is in addition to the options you normally
272 use.)
273
274 To link the program for profiling, if you use a compiler such as @code{cc}
275 to do the linking, simply specify @samp{-pg} in addition to your usual
276 options.  The same option, @samp{-pg}, alters either compilation or linking
277 to do what is necessary for profiling.  Here are examples:
278
279 @example
280 cc -g -c myprog.c utils.c -pg
281 cc -o myprog myprog.o utils.o -pg
282 @end example
283
284 The @samp{-pg} option also works with a command that both compiles and links:
285
286 @example
287 cc -o myprog myprog.c utils.c -g -pg
288 @end example
289
290 Note: The @samp{-pg} option must be part of your compilation options
291 as well as your link options.  If it is not then no call-graph data
292 will be gathered and when you run @code{gprof} you will get an error
293 message like this:
294
295 @example
296 gprof: gmon.out file is missing call-graph data
297 @end example
298
299 If you add the @samp{-Q} switch to suppress the printing of the call
300 graph data you will still be able to see the time samples:
301
302 @example
303 Flat profile:
304
305 Each sample counts as 0.01 seconds.
306   %   cumulative   self              self     total
307  time   seconds   seconds    calls  Ts/call  Ts/call  name
308  44.12      0.07     0.07                             zazLoop
309  35.29      0.14     0.06                             main
310  20.59      0.17     0.04                             bazMillion
311 @end example
312
313 If you run the linker @code{ld} directly instead of through a compiler
314 such as @code{cc}, you may have to specify a profiling startup file
315 @file{gcrt0.o} as the first input file instead of the usual startup
316 file @file{crt0.o}.  In addition, you would probably want to
317 specify the profiling C library, @file{libc_p.a}, by writing
318 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
319 necessary, but doing this gives you number-of-calls information for
320 standard library functions such as @code{read} and @code{open}.  For
321 example:
322
323 @example
324 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
325 @end example
326
327 If you are running the program on a system which supports shared
328 libraries you may run into problems with the profiling support code in
329 a shared library being called before that library has been fully
330 initialised.  This is usually detected by the program encountering a
331 segmentation fault as soon as it is run.  The solution is to link
332 against a static version of the library containing the profiling
333 support code, which for @code{gcc} users can be done via the
334 @samp{-static} or @samp{-static-libgcc} command-line option.  For
335 example:
336
337 @example
338 gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
339 @end example
340
341 If you compile only some of the modules of the program with @samp{-pg}, you
342 can still profile the program, but you won't get complete information about
343 the modules that were compiled without @samp{-pg}.  The only information
344 you get for the functions in those modules is the total time spent in them;
345 there is no record of how many times they were called, or from where.  This
346 will not affect the flat profile (except that the @code{calls} field for
347 the functions will be blank), but will greatly reduce the usefulness of the
348 call graph.
349
350 If you wish to perform line-by-line profiling you should use the
351 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
352 info pages for more details of how to do this.
353
354 Note, older versions of @code{gcc} produce line-by-line profiling
355 information that works with @code{gprof} rather than @code{gcov} so
356 there is still support for displaying this kind of information in
357 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
358
359 It also worth noting that @code{gcc} implements a
360 @samp{-finstrument-functions} command-line option which will insert
361 calls to special user supplied instrumentation routines at the entry
362 and exit of every function in their program.  This can be used to
363 implement an alternative profiling scheme.
364
365 @node Executing
366 @chapter Executing the Program
367
368 Once the program is compiled for profiling, you must run it in order to
369 generate the information that @code{gprof} needs.  Simply run the program
370 as usual, using the normal arguments, file names, etc.  The program should
371 run normally, producing the same output as usual.  It will, however, run
372 somewhat slower than normal because of the time spent collecting and
373 writing the profile data.
374
375 The way you run the program---the arguments and input that you give
376 it---may have a dramatic effect on what the profile information shows.  The
377 profile data will describe the parts of the program that were activated for
378 the particular input you use.  For example, if the first command you give
379 to your program is to quit, the profile data will show the time used in
380 initialization and in cleanup, but not much else.
381
382 Your program will write the profile data into a file called @file{gmon.out}
383 just before exiting.  If there is already a file called @file{gmon.out},
384 its contents are overwritten.  There is currently no way to tell the
385 program to write the profile data under a different name, but you can rename
386 the file afterwards if you are concerned that it may be overwritten.
387
388 In order to write the @file{gmon.out} file properly, your program must exit
389 normally: by returning from @code{main} or by calling @code{exit}.  Calling
390 the low-level function @code{_exit} does not write the profile data, and
391 neither does abnormal termination due to an unhandled signal.
392
393 The @file{gmon.out} file is written in the program's @emph{current working
394 directory} at the time it exits.  This means that if your program calls
395 @code{chdir}, the @file{gmon.out} file will be left in the last directory
396 your program @code{chdir}'d to.  If you don't have permission to write in
397 this directory, the file is not written, and you will get an error message.
398
399 Older versions of the @sc{gnu} profiling library may also write a file
400 called @file{bb.out}.  This file, if present, contains an human-readable
401 listing of the basic-block execution counts.  Unfortunately, the
402 appearance of a human-readable @file{bb.out} means the basic-block
403 counts didn't get written into @file{gmon.out}.
404 The Perl script @code{bbconv.pl}, included with the @code{gprof}
405 source distribution, will convert a @file{bb.out} file into
406 a format readable by @code{gprof}.  Invoke it like this:
407
408 @smallexample
409 bbconv.pl < bb.out > @var{bh-data}
410 @end smallexample
411
412 This translates the information in @file{bb.out} into a form that
413 @code{gprof} can understand.  But you still need to tell @code{gprof}
414 about the existence of this translated information.  To do that, include
415 @var{bb-data} on the @code{gprof} command line, @emph{along with
416 @file{gmon.out}}, like this:
417
418 @smallexample
419 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
420 @end smallexample
421
422 @node Invoking
423 @chapter @code{gprof} Command Summary
424
425 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
426 to interpret the information in it.  The @code{gprof} program prints a
427 flat profile and a call graph on standard output.  Typically you would
428 redirect the output of @code{gprof} into a file with @samp{>}.
429
430 You run @code{gprof} like this:
431
432 @smallexample
433 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
434 @end smallexample
435
436 @noindent
437 Here square-brackets indicate optional arguments.
438
439 If you omit the executable file name, the file @file{a.out} is used.  If
440 you give no profile data file name, the file @file{gmon.out} is used.  If
441 any file is not in the proper format, or if the profile data file does not
442 appear to belong to the executable file, an error message is printed.
443
444 You can give more than one profile data file by entering all their names
445 after the executable file name; then the statistics in all the data files
446 are summed together.
447
448 The order of these options does not matter.
449
450 @menu
451 * Output Options::      Controlling @code{gprof}'s output style
452 * Analysis Options::    Controlling how @code{gprof} analyzes its data
453 * Miscellaneous Options::
454 * Deprecated Options::  Options you no longer need to use, but which
455                             have been retained for compatibility
456 * Symspecs::            Specifying functions to include or exclude
457 @end menu
458
459 @node Output Options
460 @section Output Options
461
462 @c man begin OPTIONS
463 These options specify which of several output formats
464 @code{gprof} should produce.
465
466 Many of these options take an optional @dfn{symspec} to specify
467 functions to be included or excluded.  These options can be
468 specified multiple times, with different symspecs, to include
469 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
470
471 Specifying any of these options overrides the default (@samp{-p -q}),
472 which prints a flat profile and call graph analysis
473 for all functions.
474
475 @table @code
476
477 @item -A[@var{symspec}]
478 @itemx --annotated-source[=@var{symspec}]
479 The @samp{-A} option causes @code{gprof} to print annotated source code.
480 If @var{symspec} is specified, print output only for matching symbols.
481 @xref{Annotated Source, ,The Annotated Source Listing}.
482
483 @item -b
484 @itemx --brief
485 If the @samp{-b} option is given, @code{gprof} doesn't print the
486 verbose blurbs that try to explain the meaning of all of the fields in
487 the tables.  This is useful if you intend to print out the output, or
488 are tired of seeing the blurbs.
489
490 @item -C[@var{symspec}]
491 @itemx --exec-counts[=@var{symspec}]
492 The @samp{-C} option causes @code{gprof} to
493 print a tally of functions and the number of times each was called.
494 If @var{symspec} is specified, print tally only for matching symbols.
495
496 If the profile data file contains basic-block count records, specifying
497 the @samp{-l} option, along with @samp{-C}, will cause basic-block
498 execution counts to be tallied and displayed.
499
500 @item -i
501 @itemx --file-info
502 The @samp{-i} option causes @code{gprof} to display summary information
503 about the profile data file(s) and then exit.  The number of histogram,
504 call graph, and basic-block count records is displayed.
505
506 @item -I @var{dirs}
507 @itemx --directory-path=@var{dirs}
508 The @samp{-I} option specifies a list of search directories in
509 which to find source files.  Environment variable @var{GPROF_PATH}
510 can also be used to convey this information.
511 Used mostly for annotated source output.
512
513 @item -J[@var{symspec}]
514 @itemx --no-annotated-source[=@var{symspec}]
515 The @samp{-J} option causes @code{gprof} not to
516 print annotated source code.
517 If @var{symspec} is specified, @code{gprof} prints annotated source,
518 but excludes matching symbols.
519
520 @item -L
521 @itemx --print-path
522 Normally, source filenames are printed with the path
523 component suppressed.  The @samp{-L} option causes @code{gprof}
524 to print the full pathname of
525 source filenames, which is determined
526 from symbolic debugging information in the image file
527 and is relative to the directory in which the compiler
528 was invoked.
529
530 @item -p[@var{symspec}]
531 @itemx --flat-profile[=@var{symspec}]
532 The @samp{-p} option causes @code{gprof} to print a flat profile.
533 If @var{symspec} is specified, print flat profile only for matching symbols.
534 @xref{Flat Profile, ,The Flat Profile}.
535
536 @item -P[@var{symspec}]
537 @itemx --no-flat-profile[=@var{symspec}]
538 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
539 If @var{symspec} is specified, @code{gprof} prints a flat profile,
540 but excludes matching symbols.
541
542 @item -q[@var{symspec}]
543 @itemx --graph[=@var{symspec}]
544 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
545 If @var{symspec} is specified, print call graph only for matching symbols
546 and their children.
547 @xref{Call Graph, ,The Call Graph}.
548
549 @item -Q[@var{symspec}]
550 @itemx --no-graph[=@var{symspec}]
551 The @samp{-Q} option causes @code{gprof} to suppress printing the
552 call graph.
553 If @var{symspec} is specified, @code{gprof} prints a call graph,
554 but excludes matching symbols.
555
556 @item -t
557 @itemx --table-length=@var{num}
558 The @samp{-t} option causes the @var{num} most active source lines in
559 each source file to be listed when source annotation is enabled.  The
560 default is 10.
561
562 @item -y
563 @itemx --separate-files
564 This option affects annotated source output only.
565 Normally, @code{gprof} prints annotated source files
566 to standard-output.  If this option is specified,
567 annotated source for a file named @file{path/@var{filename}}
568 is generated in the file @file{@var{filename}-ann}.  If the underlying
569 file system would truncate @file{@var{filename}-ann} so that it
570 overwrites the original @file{@var{filename}}, @code{gprof} generates
571 annotated source in the file @file{@var{filename}.ann} instead (if the
572 original file name has an extension, that extension is @emph{replaced}
573 with @file{.ann}).
574
575 @item -Z[@var{symspec}]
576 @itemx --no-exec-counts[=@var{symspec}]
577 The @samp{-Z} option causes @code{gprof} not to
578 print a tally of functions and the number of times each was called.
579 If @var{symspec} is specified, print tally, but exclude matching symbols.
580
581 @item -r
582 @itemx --function-ordering
583 The @samp{--function-ordering} option causes @code{gprof} to print a
584 suggested function ordering for the program based on profiling data.
585 This option suggests an ordering which may improve paging, tlb and
586 cache behavior for the program on systems which support arbitrary
587 ordering of functions in an executable.
588
589 The exact details of how to force the linker to place functions
590 in a particular order is system dependent and out of the scope of this
591 manual.
592
593 @item -R @var{map_file}
594 @itemx --file-ordering @var{map_file}
595 The @samp{--file-ordering} option causes @code{gprof} to print a
596 suggested .o link line ordering for the program based on profiling data.
597 This option suggests an ordering which may improve paging, tlb and
598 cache behavior for the program on systems which do not support arbitrary
599 ordering of functions in an executable.
600
601 Use of the @samp{-a} argument is highly recommended with this option.
602
603 The @var{map_file} argument is a pathname to a file which provides
604 function name to object file mappings.  The format of the file is similar to
605 the output of the program @code{nm}.
606
607 @smallexample
608 @group
609 c-parse.o:00000000 T yyparse
610 c-parse.o:00000004 C yyerrflag
611 c-lang.o:00000000 T maybe_objc_method_name
612 c-lang.o:00000000 T print_lang_statistics
613 c-lang.o:00000000 T recognize_objc_keyword
614 c-decl.o:00000000 T print_lang_identifier
615 c-decl.o:00000000 T print_lang_type
616 @dots{}
617
618 @end group
619 @end smallexample
620
621 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
622 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
623
624 @item -T
625 @itemx --traditional
626 The @samp{-T} option causes @code{gprof} to print its output in
627 ``traditional'' BSD style.
628
629 @item -w @var{width}
630 @itemx --width=@var{width}
631 Sets width of output lines to @var{width}.
632 Currently only used when printing the function index at the bottom
633 of the call graph.
634
635 @item -x
636 @itemx --all-lines
637 This option affects annotated source output only.
638 By default, only the lines at the beginning of a basic-block
639 are annotated.  If this option is specified, every line in
640 a basic-block is annotated by repeating the annotation for the
641 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
642
643 @item --demangle[=@var{style}]
644 @itemx --no-demangle
645 These options control whether C++ symbol names should be demangled when
646 printing output.  The default is to demangle symbols.  The
647 @code{--no-demangle} option may be used to turn off demangling. Different
648 compilers have different mangling styles.  The optional demangling style
649 argument can be used to choose an appropriate demangling style for your
650 compiler.
651 @end table
652
653 @node Analysis Options
654 @section Analysis Options
655
656 @table @code
657
658 @item -a
659 @itemx --no-static
660 The @samp{-a} option causes @code{gprof} to suppress the printing of
661 statically declared (private) functions.  (These are functions whose
662 names are not listed as global, and which are not visible outside the
663 file/function/block where they were defined.)  Time spent in these
664 functions, calls to/from them, etc., will all be attributed to the
665 function that was loaded directly before it in the executable file.
666 @c This is compatible with Unix @code{gprof}, but a bad idea.
667 This option affects both the flat profile and the call graph.
668
669 @item -c
670 @itemx --static-call-graph
671 The @samp{-c} option causes the call graph of the program to be
672 augmented by a heuristic which examines the text space of the object
673 file and identifies function calls in the binary machine code.
674 Since normal call graph records are only generated when functions are
675 entered, this option identifies children that could have been called,
676 but never were.  Calls to functions that were not compiled with
677 profiling enabled are also identified, but only if symbol table
678 entries are present for them.
679 Calls to dynamic library routines are typically @emph{not} found
680 by this option.
681 Parents or children identified via this heuristic
682 are indicated in the call graph with call counts of @samp{0}.
683
684 @item -D
685 @itemx --ignore-non-functions
686 The @samp{-D} option causes @code{gprof} to ignore symbols which
687 are not known to be functions.  This option will give more accurate
688 profile data on systems where it is supported (Solaris and HPUX for
689 example).
690
691 @item -k @var{from}/@var{to}
692 The @samp{-k} option allows you to delete from the call graph any arcs from
693 symbols matching symspec @var{from} to those matching symspec @var{to}.
694
695 @item -l
696 @itemx --line
697 The @samp{-l} option enables line-by-line profiling, which causes
698 histogram hits to be charged to individual source code lines,
699 instead of functions.  This feature only works with programs compiled
700 by older versions of the @code{gcc} compiler.  Newer versions of
701 @code{gcc} are designed to work with the @code{gcov} tool instead.
702
703 If the program was compiled with basic-block counting enabled,
704 this option will also identify how many times each line of
705 code was executed.
706 While line-by-line profiling can help isolate where in a large function
707 a program is spending its time, it also significantly increases
708 the running time of @code{gprof}, and magnifies statistical
709 inaccuracies.
710 @xref{Sampling Error, ,Statistical Sampling Error}.
711
712 @item --inline-file-names
713 This option causes @code{gprof} to print the source file after each
714 symbol in both the flat profile and the call graph. The full path to the
715 file is printed if used with the @samp{-L} option.
716
717 @item -m @var{num}
718 @itemx --min-count=@var{num}
719 This option affects execution count output only.
720 Symbols that are executed less than @var{num} times are suppressed.
721
722 @item -n@var{symspec}
723 @itemx --time=@var{symspec}
724 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
725 to only propagate times for symbols matching @var{symspec}.
726
727 @item -N@var{symspec}
728 @itemx --no-time=@var{symspec}
729 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
730 not to propagate times for symbols matching @var{symspec}.
731
732 @item -S@var{filename}
733 @itemx --external-symbol-table=@var{filename}
734 The @samp{-S} option causes @code{gprof} to read an external symbol table
735 file, such as @file{/proc/kallsyms}, rather than read the symbol table
736 from the given object file (the default is @code{a.out}). This is useful
737 for profiling kernel modules.
738
739 @item -z
740 @itemx --display-unused-functions
741 If you give the @samp{-z} option, @code{gprof} will mention all
742 functions in the flat profile, even those that were never called, and
743 that had no time spent in them.  This is useful in conjunction with the
744 @samp{-c} option for discovering which routines were never called.
745
746 @end table
747
748 @node Miscellaneous Options
749 @section Miscellaneous Options
750
751 @table @code
752
753 @item -d[@var{num}]
754 @itemx --debug[=@var{num}]
755 The @samp{-d @var{num}} option specifies debugging options.
756 If @var{num} is not specified, enable all debugging.
757 @xref{Debugging, ,Debugging @code{gprof}}.
758
759 @item -h
760 @itemx --help
761 The @samp{-h} option prints command line usage.
762
763 @item -O@var{name}
764 @itemx --file-format=@var{name}
765 Selects the format of the profile data files.  Recognized formats are
766 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
767 @samp{prof} (not yet supported).
768
769 @item -s
770 @itemx --sum
771 The @samp{-s} option causes @code{gprof} to summarize the information
772 in the profile data files it read in, and write out a profile data
773 file called @file{gmon.sum}, which contains all the information from
774 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
775 may be one of the specified input files; the effect of this is to
776 merge the data in the other input files into @file{gmon.sum}.
777
778 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
779 cumulative data in the file @file{gmon.sum}.
780
781 @item -v
782 @itemx --version
783 The @samp{-v} flag causes @code{gprof} to print the current version
784 number, and then exit.
785
786 @end table
787
788 @node Deprecated Options
789 @section Deprecated Options
790
791 These options have been replaced with newer versions that use symspecs.
792
793 @table @code
794
795 @item -e @var{function_name}
796 The @samp{-e @var{function}} option tells @code{gprof} to not print
797 information about the function @var{function_name} (and its
798 children@dots{}) in the call graph.  The function will still be listed
799 as a child of any functions that call it, but its index number will be
800 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
801 given; only one @var{function_name} may be indicated with each @samp{-e}
802 option.
803
804 @item -E @var{function_name}
805 The @code{-E @var{function}} option works like the @code{-e} option, but
806 time spent in the function (and children who were not called from
807 anywhere else), will not be used to compute the percentages-of-time for
808 the call graph.  More than one @samp{-E} option may be given; only one
809 @var{function_name} may be indicated with each @samp{-E} option.
810
811 @item -f @var{function_name}
812 The @samp{-f @var{function}} option causes @code{gprof} to limit the
813 call graph to the function @var{function_name} and its children (and
814 their children@dots{}).  More than one @samp{-f} option may be given;
815 only one @var{function_name} may be indicated with each @samp{-f}
816 option.
817
818 @item -F @var{function_name}
819 The @samp{-F @var{function}} option works like the @code{-f} option, but
820 only time spent in the function and its children (and their
821 children@dots{}) will be used to determine total-time and
822 percentages-of-time for the call graph.  More than one @samp{-F} option
823 may be given; only one @var{function_name} may be indicated with each
824 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
825
826 @end table
827
828 @c man end
829
830 Note that only one function can be specified with each @code{-e},
831 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
832 function, use multiple options.  For example, this command:
833
834 @example
835 gprof -e boring -f foo -f bar myprogram > gprof.output
836 @end example
837
838 @noindent
839 lists in the call graph all functions that were reached from either
840 @code{foo} or @code{bar} and were not reachable from @code{boring}.
841
842 @node Symspecs
843 @section Symspecs
844
845 Many of the output options allow functions to be included or excluded
846 using @dfn{symspecs} (symbol specifications), which observe the
847 following syntax:
848
849 @example
850   filename_containing_a_dot
851 | funcname_not_containing_a_dot
852 | linenumber
853 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
854 @end example
855
856 Here are some sample symspecs:
857
858 @table @samp
859 @item main.c
860 Selects everything in file @file{main.c}---the
861 dot in the string tells @code{gprof} to interpret
862 the string as a filename, rather than as
863 a function name.  To select a file whose
864 name does not contain a dot, a trailing colon
865 should be specified.  For example, @samp{odd:} is
866 interpreted as the file named @file{odd}.
867
868 @item main
869 Selects all functions named @samp{main}.
870
871 Note that there may be multiple instances of the same function name
872 because some of the definitions may be local (i.e., static).  Unless a
873 function name is unique in a program, you must use the colon notation
874 explained below to specify a function from a specific source file.
875
876 Sometimes, function names contain dots.  In such cases, it is necessary
877 to add a leading colon to the name.  For example, @samp{:.mul} selects
878 function @samp{.mul}.
879
880 In some object file formats, symbols have a leading underscore.
881 @code{gprof} will normally not print these underscores.  When you name a
882 symbol in a symspec, you should type it exactly as @code{gprof} prints
883 it in its output.  For example, if the compiler produces a symbol
884 @samp{_main} from your @code{main} function, @code{gprof} still prints
885 it as @samp{main} in its output, so you should use @samp{main} in
886 symspecs.
887
888 @item main.c:main
889 Selects function @samp{main} in file @file{main.c}.
890
891 @item main.c:134
892 Selects line 134 in file @file{main.c}.
893 @end table
894
895 @node Output
896 @chapter Interpreting @code{gprof}'s Output
897
898 @code{gprof} can produce several different output styles, the
899 most important of which are described below.  The simplest output
900 styles (file information, execution count, and function and file ordering)
901 are not described here, but are documented with the respective options
902 that trigger them.
903 @xref{Output Options, ,Output Options}.
904
905 @menu
906 * Flat Profile::        The flat profile shows how much time was spent
907                             executing directly in each function.
908 * Call Graph::          The call graph shows which functions called which
909                             others, and how much time each function used
910                             when its subroutine calls are included.
911 * Line-by-line::        @code{gprof} can analyze individual source code lines
912 * Annotated Source::    The annotated source listing displays source code
913                             labeled with execution counts
914 @end menu
915
916
917 @node Flat Profile
918 @section The Flat Profile
919 @cindex flat profile
920
921 The @dfn{flat profile} shows the total amount of time your program
922 spent executing each function.  Unless the @samp{-z} option is given,
923 functions with no apparent time spent in them, and no apparent calls
924 to them, are not mentioned.  Note that if a function was not compiled
925 for profiling, and didn't run long enough to show up on the program
926 counter histogram, it will be indistinguishable from a function that
927 was never called.
928
929 This is part of a flat profile for a small program:
930
931 @smallexample
932 @group
933 Flat profile:
934
935 Each sample counts as 0.01 seconds.
936   %   cumulative   self              self     total
937  time   seconds   seconds    calls  ms/call  ms/call  name
938  33.34      0.02     0.02     7208     0.00     0.00  open
939  16.67      0.03     0.01      244     0.04     0.12  offtime
940  16.67      0.04     0.01        8     1.25     1.25  memccpy
941  16.67      0.05     0.01        7     1.43     1.43  write
942  16.67      0.06     0.01                             mcount
943   0.00      0.06     0.00      236     0.00     0.00  tzset
944   0.00      0.06     0.00      192     0.00     0.00  tolower
945   0.00      0.06     0.00       47     0.00     0.00  strlen
946   0.00      0.06     0.00       45     0.00     0.00  strchr
947   0.00      0.06     0.00        1     0.00    50.00  main
948   0.00      0.06     0.00        1     0.00     0.00  memcpy
949   0.00      0.06     0.00        1     0.00    10.11  print
950   0.00      0.06     0.00        1     0.00     0.00  profil
951   0.00      0.06     0.00        1     0.00    50.00  report
952 @dots{}
953 @end group
954 @end smallexample
955
956 @noindent
957 The functions are sorted first by decreasing run-time spent in them,
958 then by decreasing number of calls, then alphabetically by name.  The
959 functions @samp{mcount} and @samp{profil} are part of the profiling
960 apparatus and appear in every flat profile; their time gives a measure of
961 the amount of overhead due to profiling.
962
963 Just before the column headers, a statement appears indicating
964 how much time each sample counted as.
965 This @dfn{sampling period} estimates the margin of error in each of the time
966 figures.  A time figure that is not much larger than this is not
967 reliable.  In this example, each sample counted as 0.01 seconds,
968 suggesting a 100 Hz sampling rate.
969 The program's total execution time was 0.06
970 seconds, as indicated by the @samp{cumulative seconds} field.  Since
971 each sample counted for 0.01 seconds, this means only six samples
972 were taken during the run.  Two of the samples occurred while the
973 program was in the @samp{open} function, as indicated by the
974 @samp{self seconds} field.  Each of the other four samples
975 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
976 and @samp{mcount}.
977 Since only six samples were taken, none of these values can
978 be regarded as particularly reliable.
979 In another run,
980 the @samp{self seconds} field for
981 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
982 @xref{Sampling Error, ,Statistical Sampling Error},
983 for a complete discussion.
984
985 The remaining functions in the listing (those whose
986 @samp{self seconds} field is @samp{0.00}) didn't appear
987 in the histogram samples at all.  However, the call graph
988 indicated that they were called, so therefore they are listed,
989 sorted in decreasing order by the @samp{calls} field.
990 Clearly some time was spent executing these functions,
991 but the paucity of histogram samples prevents any
992 determination of how much time each took.
993
994 Here is what the fields in each line mean:
995
996 @table @code
997 @item % time
998 This is the percentage of the total execution time your program spent
999 in this function.  These should all add up to 100%.
1000
1001 @item cumulative seconds
1002 This is the cumulative total number of seconds the computer spent
1003 executing this functions, plus the time spent in all the functions
1004 above this one in this table.
1005
1006 @item self seconds
1007 This is the number of seconds accounted for by this function alone.
1008 The flat profile listing is sorted first by this number.
1009
1010 @item calls
1011 This is the total number of times the function was called.  If the
1012 function was never called, or the number of times it was called cannot
1013 be determined (probably because the function was not compiled with
1014 profiling enabled), the @dfn{calls} field is blank.
1015
1016 @item self ms/call
1017 This represents the average number of milliseconds spent in this
1018 function per call, if this function is profiled.  Otherwise, this field
1019 is blank for this function.
1020
1021 @item total ms/call
1022 This represents the average number of milliseconds spent in this
1023 function and its descendants per call, if this function is profiled.
1024 Otherwise, this field is blank for this function.
1025 This is the only field in the flat profile that uses call graph analysis.
1026
1027 @item name
1028 This is the name of the function.   The flat profile is sorted by this
1029 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1030 fields are sorted.
1031 @end table
1032
1033 @node Call Graph
1034 @section The Call Graph
1035 @cindex call graph
1036
1037 The @dfn{call graph} shows how much time was spent in each function
1038 and its children.  From this information, you can find functions that,
1039 while they themselves may not have used much time, called other
1040 functions that did use unusual amounts of time.
1041
1042 Here is a sample call from a small program.  This call came from the
1043 same @code{gprof} run as the flat profile example in the previous
1044 section.
1045
1046 @smallexample
1047 @group
1048 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1049
1050 index % time    self  children    called     name
1051                                                  <spontaneous>
1052 [1]    100.0    0.00    0.05                 start [1]
1053                 0.00    0.05       1/1           main [2]
1054                 0.00    0.00       1/2           on_exit [28]
1055                 0.00    0.00       1/1           exit [59]
1056 -----------------------------------------------
1057                 0.00    0.05       1/1           start [1]
1058 [2]    100.0    0.00    0.05       1         main [2]
1059                 0.00    0.05       1/1           report [3]
1060 -----------------------------------------------
1061                 0.00    0.05       1/1           main [2]
1062 [3]    100.0    0.00    0.05       1         report [3]
1063                 0.00    0.03       8/8           timelocal [6]
1064                 0.00    0.01       1/1           print [9]
1065                 0.00    0.01       9/9           fgets [12]
1066                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1067                 0.00    0.00       8/8           lookup [20]
1068                 0.00    0.00       1/1           fopen [21]
1069                 0.00    0.00       8/8           chewtime [24]
1070                 0.00    0.00       8/16          skipspace [44]
1071 -----------------------------------------------
1072 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1073                 0.01        0.02     244+260         offtime <cycle 2> [7]
1074                 0.00        0.00     236+1           tzset <cycle 2> [26]
1075 -----------------------------------------------
1076 @end group
1077 @end smallexample
1078
1079 The lines full of dashes divide this table into @dfn{entries}, one for each
1080 function.  Each entry has one or more lines.
1081
1082 In each entry, the primary line is the one that starts with an index number
1083 in square brackets.  The end of this line says which function the entry is
1084 for.  The preceding lines in the entry describe the callers of this
1085 function and the following lines describe its subroutines (also called
1086 @dfn{children} when we speak of the call graph).
1087
1088 The entries are sorted by time spent in the function and its subroutines.
1089
1090 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The
1091 Flat Profile}) is never mentioned in the call graph.
1092
1093 @menu
1094 * Primary::       Details of the primary line's contents.
1095 * Callers::       Details of caller-lines' contents.
1096 * Subroutines::   Details of subroutine-lines' contents.
1097 * Cycles::        When there are cycles of recursion,
1098                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1099 @end menu
1100
1101 @node Primary
1102 @subsection The Primary Line
1103
1104 The @dfn{primary line} in a call graph entry is the line that
1105 describes the function which the entry is about and gives the overall
1106 statistics for this function.
1107
1108 For reference, we repeat the primary line from the entry for function
1109 @code{report} in our main example, together with the heading line that
1110 shows the names of the fields:
1111
1112 @smallexample
1113 @group
1114 index  % time    self  children called     name
1115 @dots{}
1116 [3]    100.0    0.00    0.05       1         report [3]
1117 @end group
1118 @end smallexample
1119
1120 Here is what the fields in the primary line mean:
1121
1122 @table @code
1123 @item index
1124 Entries are numbered with consecutive integers.  Each function
1125 therefore has an index number, which appears at the beginning of its
1126 primary line.
1127
1128 Each cross-reference to a function, as a caller or subroutine of
1129 another, gives its index number as well as its name.  The index number
1130 guides you if you wish to look for the entry for that function.
1131
1132 @item % time
1133 This is the percentage of the total time that was spent in this
1134 function, including time spent in subroutines called from this
1135 function.
1136
1137 The time spent in this function is counted again for the callers of
1138 this function.  Therefore, adding up these percentages is meaningless.
1139
1140 @item self
1141 This is the total amount of time spent in this function.  This
1142 should be identical to the number printed in the @code{seconds} field
1143 for this function in the flat profile.
1144
1145 @item children
1146 This is the total amount of time spent in the subroutine calls made by
1147 this function.  This should be equal to the sum of all the @code{self}
1148 and @code{children} entries of the children listed directly below this
1149 function.
1150
1151 @item called
1152 This is the number of times the function was called.
1153
1154 If the function called itself recursively, there are two numbers,
1155 separated by a @samp{+}.  The first number counts non-recursive calls,
1156 and the second counts recursive calls.
1157
1158 In the example above, the function @code{report} was called once from
1159 @code{main}.
1160
1161 @item name
1162 This is the name of the current function.  The index number is
1163 repeated after it.
1164
1165 If the function is part of a cycle of recursion, the cycle number is
1166 printed between the function's name and the index number
1167 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1168 For example, if function @code{gnurr} is part of
1169 cycle number one, and has index number twelve, its primary line would
1170 be end like this:
1171
1172 @example
1173 gnurr <cycle 1> [12]
1174 @end example
1175 @end table
1176
1177 @node Callers
1178 @subsection Lines for a Function's Callers
1179
1180 A function's entry has a line for each function it was called by.
1181 These lines' fields correspond to the fields of the primary line, but
1182 their meanings are different because of the difference in context.
1183
1184 For reference, we repeat two lines from the entry for the function
1185 @code{report}, the primary line and one caller-line preceding it, together
1186 with the heading line that shows the names of the fields:
1187
1188 @smallexample
1189 index  % time    self  children called     name
1190 @dots{}
1191                 0.00    0.05       1/1           main [2]
1192 [3]    100.0    0.00    0.05       1         report [3]
1193 @end smallexample
1194
1195 Here are the meanings of the fields in the caller-line for @code{report}
1196 called from @code{main}:
1197
1198 @table @code
1199 @item self
1200 An estimate of the amount of time spent in @code{report} itself when it was
1201 called from @code{main}.
1202
1203 @item children
1204 An estimate of the amount of time spent in subroutines of @code{report}
1205 when @code{report} was called from @code{main}.
1206
1207 The sum of the @code{self} and @code{children} fields is an estimate
1208 of the amount of time spent within calls to @code{report} from @code{main}.
1209
1210 @item called
1211 Two numbers: the number of times @code{report} was called from @code{main},
1212 followed by the total number of non-recursive calls to @code{report} from
1213 all its callers.
1214
1215 @item name and index number
1216 The name of the caller of @code{report} to which this line applies,
1217 followed by the caller's index number.
1218
1219 Not all functions have entries in the call graph; some
1220 options to @code{gprof} request the omission of certain functions.
1221 When a caller has no entry of its own, it still has caller-lines
1222 in the entries of the functions it calls.
1223
1224 If the caller is part of a recursion cycle, the cycle number is
1225 printed between the name and the index number.
1226 @end table
1227
1228 If the identity of the callers of a function cannot be determined, a
1229 dummy caller-line is printed which has @samp{<spontaneous>} as the
1230 ``caller's name'' and all other fields blank.  This can happen for
1231 signal handlers.
1232 @c What if some calls have determinable callers' names but not all?
1233 @c FIXME - still relevant?
1234
1235 @node Subroutines
1236 @subsection Lines for a Function's Subroutines
1237
1238 A function's entry has a line for each of its subroutines---in other
1239 words, a line for each other function that it called.  These lines'
1240 fields correspond to the fields of the primary line, but their meanings
1241 are different because of the difference in context.
1242
1243 For reference, we repeat two lines from the entry for the function
1244 @code{main}, the primary line and a line for a subroutine, together
1245 with the heading line that shows the names of the fields:
1246
1247 @smallexample
1248 index  % time    self  children called     name
1249 @dots{}
1250 [2]    100.0    0.00    0.05       1         main [2]
1251                 0.00    0.05       1/1           report [3]
1252 @end smallexample
1253
1254 Here are the meanings of the fields in the subroutine-line for @code{main}
1255 calling @code{report}:
1256
1257 @table @code
1258 @item self
1259 An estimate of the amount of time spent directly within @code{report}
1260 when @code{report} was called from @code{main}.
1261
1262 @item children
1263 An estimate of the amount of time spent in subroutines of @code{report}
1264 when @code{report} was called from @code{main}.
1265
1266 The sum of the @code{self} and @code{children} fields is an estimate
1267 of the total time spent in calls to @code{report} from @code{main}.
1268
1269 @item called
1270 Two numbers, the number of calls to @code{report} from @code{main}
1271 followed by the total number of non-recursive calls to @code{report}.
1272 This ratio is used to determine how much of @code{report}'s @code{self}
1273 and @code{children} time gets credited to @code{main}.
1274 @xref{Assumptions, ,Estimating @code{children} Times}.
1275
1276 @item name
1277 The name of the subroutine of @code{main} to which this line applies,
1278 followed by the subroutine's index number.
1279
1280 If the caller is part of a recursion cycle, the cycle number is
1281 printed between the name and the index number.
1282 @end table
1283
1284 @node Cycles
1285 @subsection How Mutually Recursive Functions Are Described
1286 @cindex cycle
1287 @cindex recursion cycle
1288
1289 The graph may be complicated by the presence of @dfn{cycles of
1290 recursion} in the call graph.  A cycle exists if a function calls
1291 another function that (directly or indirectly) calls (or appears to
1292 call) the original function.  For example: if @code{a} calls @code{b},
1293 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1294
1295 Whenever there are call paths both ways between a pair of functions, they
1296 belong to the same cycle.  If @code{a} and @code{b} call each other and
1297 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1298 even if @code{b} only calls @code{a} if it was not called from @code{a},
1299 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1300 considered a cycle.
1301
1302 The cycles are numbered with consecutive integers.  When a function
1303 belongs to a cycle, each time the function name appears in the call graph
1304 it is followed by @samp{<cycle @var{number}>}.
1305
1306 The reason cycles matter is that they make the time values in the call
1307 graph paradoxical.  The ``time spent in children'' of @code{a} should
1308 include the time spent in its subroutine @code{b} and in @code{b}'s
1309 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1310 @code{a}'s time should be included in the children of @code{a}, when
1311 @code{a} is indirectly recursive?
1312
1313 The way @code{gprof} resolves this paradox is by creating a single entry
1314 for the cycle as a whole.  The primary line of this entry describes the
1315 total time spent directly in the functions of the cycle.  The
1316 ``subroutines'' of the cycle are the individual functions of the cycle, and
1317 all other functions that were called directly by them.  The ``callers'' of
1318 the cycle are the functions, outside the cycle, that called functions in
1319 the cycle.
1320
1321 Here is an example portion of a call graph which shows a cycle containing
1322 functions @code{a} and @code{b}.  The cycle was entered by a call to
1323 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1324
1325 @smallexample
1326 index  % time    self  children called     name
1327 ----------------------------------------
1328                  1.77        0    1/1        main [2]
1329 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1330                  1.02        0    3          b <cycle 1> [4]
1331                  0.75        0    2          a <cycle 1> [5]
1332 ----------------------------------------
1333                                   3          a <cycle 1> [5]
1334 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1335                                   2          a <cycle 1> [5]
1336                     0        0    3/6        c [6]
1337 ----------------------------------------
1338                  1.77        0    1/1        main [2]
1339                                   2          b <cycle 1> [4]
1340 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1341                                   3          b <cycle 1> [4]
1342                     0        0    3/6        c [6]
1343 ----------------------------------------
1344 @end smallexample
1345
1346 @noindent
1347 (The entire call graph for this program contains in addition an entry for
1348 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1349 @code{a} and @code{b}.)
1350
1351 @smallexample
1352 index  % time    self  children called     name
1353                                              <spontaneous>
1354 [1]    100.00       0     1.93    0      start [1]
1355                  0.16     1.77    1/1        main [2]
1356 ----------------------------------------
1357                  0.16     1.77    1/1        start [1]
1358 [2]    100.00    0.16     1.77    1      main [2]
1359                  1.77        0    1/1        a <cycle 1> [5]
1360 ----------------------------------------
1361                  1.77        0    1/1        main [2]
1362 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1363                  1.02        0    3          b <cycle 1> [4]
1364                  0.75        0    2          a <cycle 1> [5]
1365                     0        0    6/6        c [6]
1366 ----------------------------------------
1367                                   3          a <cycle 1> [5]
1368 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1369                                   2          a <cycle 1> [5]
1370                     0        0    3/6        c [6]
1371 ----------------------------------------
1372                  1.77        0    1/1        main [2]
1373                                   2          b <cycle 1> [4]
1374 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1375                                   3          b <cycle 1> [4]
1376                     0        0    3/6        c [6]
1377 ----------------------------------------
1378                     0        0    3/6        b <cycle 1> [4]
1379                     0        0    3/6        a <cycle 1> [5]
1380 [6]      0.00       0        0    6      c [6]
1381 ----------------------------------------
1382 @end smallexample
1383
1384 The @code{self} field of the cycle's primary line is the total time
1385 spent in all the functions of the cycle.  It equals the sum of the
1386 @code{self} fields for the individual functions in the cycle, found
1387 in the entry in the subroutine lines for these functions.
1388
1389 The @code{children} fields of the cycle's primary line and subroutine lines
1390 count only subroutines outside the cycle.  Even though @code{a} calls
1391 @code{b}, the time spent in those calls to @code{b} is not counted in
1392 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1393 what to do when the time in those calls to @code{b} includes indirect
1394 recursive calls back to @code{a}.
1395
1396 The @code{children} field of a caller-line in the cycle's entry estimates
1397 the amount of time spent @emph{in the whole cycle}, and its other
1398 subroutines, on the times when that caller called a function in the cycle.
1399
1400 The @code{called} field in the primary line for the cycle has two numbers:
1401 first, the number of times functions in the cycle were called by functions
1402 outside the cycle; second, the number of times they were called by
1403 functions in the cycle (including times when a function in the cycle calls
1404 itself).  This is a generalization of the usual split into non-recursive and
1405 recursive calls.
1406
1407 The @code{called} field of a subroutine-line for a cycle member in the
1408 cycle's entry says how many time that function was called from functions in
1409 the cycle.  The total of all these is the second number in the primary line's
1410 @code{called} field.
1411
1412 In the individual entry for a function in a cycle, the other functions in
1413 the same cycle can appear as subroutines and as callers.  These lines show
1414 how many times each function in the cycle called or was called from each other
1415 function in the cycle.  The @code{self} and @code{children} fields in these
1416 lines are blank because of the difficulty of defining meanings for them
1417 when recursion is going on.
1418
1419 @node Line-by-line
1420 @section Line-by-line Profiling
1421
1422 @code{gprof}'s @samp{-l} option causes the program to perform
1423 @dfn{line-by-line} profiling.  In this mode, histogram
1424 samples are assigned not to functions, but to individual
1425 lines of source code.  This only works with programs compiled with
1426 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1427 use a different program - @code{gcov} - to display line-by-line
1428 profiling information.
1429
1430 With the older versions of @code{gcc} the program usually has to be
1431 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1432 to generate debugging symbols for tracking source code lines.
1433 Note, in much older versions of @code{gcc} the program had to be
1434 compiled with the @samp{-a} command-line option as well.
1435
1436 The flat profile is the most useful output table
1437 in line-by-line mode.
1438 The call graph isn't as useful as normal, since
1439 the current version of @code{gprof} does not propagate
1440 call graph arcs from source code lines to the enclosing function.
1441 The call graph does, however, show each line of code
1442 that called each function, along with a count.
1443
1444 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1445 Note that @code{ct_init} accounted for four histogram hits, and
1446 13327 calls to @code{init_block}.
1447
1448 @smallexample
1449 Flat profile:
1450
1451 Each sample counts as 0.01 seconds.
1452   %   cumulative   self              self     total
1453  time   seconds   seconds    calls  us/call  us/call  name
1454  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1455
1456
1457                      Call graph (explanation follows)
1458
1459
1460 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1461
1462 index % time    self  children    called     name
1463
1464                 0.00    0.00       1/13496       name_too_long
1465                 0.00    0.00      40/13496       deflate
1466                 0.00    0.00     128/13496       deflate_fast
1467                 0.00    0.00   13327/13496       ct_init
1468 [7]      0.0    0.00    0.00   13496         init_block
1469
1470 @end smallexample
1471
1472 Now let's look at some of @code{gprof}'s output from the same program run,
1473 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1474 four histogram hits are broken down into four lines of source code---one hit
1475 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1476 note how
1477 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1478 into one call from line 396, 3071 calls from line 384, 3730 calls
1479 from line 385, and 6525 calls from 387.
1480
1481 @smallexample
1482 Flat profile:
1483
1484 Each sample counts as 0.01 seconds.
1485   %   cumulative   self
1486  time   seconds   seconds    calls  name
1487   7.69      0.10     0.01           ct_init (trees.c:349)
1488   7.69      0.11     0.01           ct_init (trees.c:351)
1489   7.69      0.12     0.01           ct_init (trees.c:382)
1490   7.69      0.13     0.01           ct_init (trees.c:385)
1491
1492
1493                      Call graph (explanation follows)
1494
1495
1496 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1497
1498   % time    self  children    called     name
1499
1500             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1501             0.00    0.00       1/13496       deflate (deflate.c:763)
1502             0.00    0.00       1/13496       ct_init (trees.c:396)
1503             0.00    0.00       2/13496       deflate (deflate.c:727)
1504             0.00    0.00       4/13496       deflate (deflate.c:686)
1505             0.00    0.00       5/13496       deflate (deflate.c:675)
1506             0.00    0.00      12/13496       deflate (deflate.c:679)
1507             0.00    0.00      16/13496       deflate (deflate.c:730)
1508             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1509             0.00    0.00    3071/13496       ct_init (trees.c:384)
1510             0.00    0.00    3730/13496       ct_init (trees.c:385)
1511             0.00    0.00    6525/13496       ct_init (trees.c:387)
1512 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1513
1514 @end smallexample
1515
1516
1517 @node Annotated Source
1518 @section The Annotated Source Listing
1519
1520 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1521 which lists the program's source code, each function labeled with the
1522 number of times it was called.  You may also need to specify the
1523 @samp{-I} option, if @code{gprof} can't find the source code files.
1524
1525 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1526 -pg -a} augments your program with basic-block counting code, in
1527 addition to function counting code.  This enables @code{gprof} to
1528 determine how many times each line of code was executed.  With newer
1529 versions of @code{gcc} support for displaying basic-block counts is
1530 provided by the @code{gcov} program.
1531
1532 For example, consider the following function, taken from gzip,
1533 with line numbers added:
1534
1535 @smallexample
1536  1 ulg updcrc(s, n)
1537  2     uch *s;
1538  3     unsigned n;
1539  4 @{
1540  5     register ulg c;
1541  6
1542  7     static ulg crc = (ulg)0xffffffffL;
1543  8
1544  9     if (s == NULL) @{
1545 10         c = 0xffffffffL;
1546 11     @} else @{
1547 12         c = crc;
1548 13         if (n) do @{
1549 14             c = crc_32_tab[...];
1550 15         @} while (--n);
1551 16     @}
1552 17     crc = c;
1553 18     return c ^ 0xffffffffL;
1554 19 @}
1555
1556 @end smallexample
1557
1558 @code{updcrc} has at least five basic-blocks.
1559 One is the function itself.  The
1560 @code{if} statement on line 9 generates two more basic-blocks, one
1561 for each branch of the @code{if}.  A fourth basic-block results from
1562 the @code{if} on line 13, and the contents of the @code{do} loop form
1563 the fifth basic-block.  The compiler may also generate additional
1564 basic-blocks to handle various special cases.
1565
1566 A program augmented for basic-block counting can be analyzed with
1567 @samp{gprof -l -A}.
1568 The @samp{-x} option is also helpful,
1569 to ensure that each line of code is labeled at least once.
1570 Here is @code{updcrc}'s
1571 annotated source listing for a sample @code{gzip} run:
1572
1573 @smallexample
1574                 ulg updcrc(s, n)
1575                     uch *s;
1576                     unsigned n;
1577             2 ->@{
1578                     register ulg c;
1579
1580                     static ulg crc = (ulg)0xffffffffL;
1581
1582             2 ->    if (s == NULL) @{
1583             1 ->        c = 0xffffffffL;
1584             1 ->    @} else @{
1585             1 ->        c = crc;
1586             1 ->        if (n) do @{
1587         26312 ->            c = crc_32_tab[...];
1588 26312,1,26311 ->        @} while (--n);
1589                     @}
1590             2 ->    crc = c;
1591             2 ->    return c ^ 0xffffffffL;
1592             2 ->@}
1593 @end smallexample
1594
1595 In this example, the function was called twice, passing once through
1596 each branch of the @code{if} statement.  The body of the @code{do}
1597 loop was executed a total of 26312 times.  Note how the @code{while}
1598 statement is annotated.  It began execution 26312 times, once for
1599 each iteration through the loop.  One of those times (the last time)
1600 it exited, while it branched back to the beginning of the loop 26311 times.
1601
1602 @node Inaccuracy
1603 @chapter Inaccuracy of @code{gprof} Output
1604
1605 @menu
1606 * Sampling Error::      Statistical margins of error
1607 * Assumptions::         Estimating children times
1608 @end menu
1609
1610 @node Sampling Error
1611 @section Statistical Sampling Error
1612
1613 The run-time figures that @code{gprof} gives you are based on a sampling
1614 process, so they are subject to statistical inaccuracy.  If a function runs
1615 only a small amount of time, so that on the average the sampling process
1616 ought to catch that function in the act only once, there is a pretty good
1617 chance it will actually find that function zero times, or twice.
1618
1619 By contrast, the number-of-calls and basic-block figures are derived
1620 by counting, not sampling.  They are completely accurate and will not
1621 vary from run to run if your program is deterministic and single
1622 threaded.  In multi-threaded applications, or single threaded
1623 applications that link with multi-threaded libraries, the counts are
1624 only deterministic if the counting function is thread-safe.  (Note:
1625 beware that the mcount counting function in glibc is @emph{not}
1626 thread-safe).  @xref{Implementation, ,Implementation of Profiling}.
1627
1628 The @dfn{sampling period} that is printed at the beginning of the flat
1629 profile says how often samples are taken.  The rule of thumb is that a
1630 run-time figure is accurate if it is considerably bigger than the sampling
1631 period.
1632
1633 The actual amount of error can be predicted.
1634 For @var{n} samples, the @emph{expected} error
1635 is the square-root of @var{n}.  For example,
1636 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1637 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1638 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1639 or ten percent of the observed value.
1640 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1641 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1642 the expected error in @code{bar}'s run-time is 1 second,
1643 or one percent of the observed value.
1644 It is likely to
1645 vary this much @emph{on the average} from one profiling run to the next.
1646 (@emph{Sometimes} it will vary more.)
1647
1648 This does not mean that a small run-time figure is devoid of information.
1649 If the program's @emph{total} run-time is large, a small run-time for one
1650 function does tell you that that function used an insignificant fraction of
1651 the whole program's time.  Usually this means it is not worth optimizing.
1652
1653 One way to get more accuracy is to give your program more (but similar)
1654 input data so it will take longer.  Another way is to combine the data from
1655 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1656
1657 @enumerate
1658 @item
1659 Run your program once.
1660
1661 @item
1662 Issue the command @samp{mv gmon.out gmon.sum}.
1663
1664 @item
1665 Run your program again, the same as before.
1666
1667 @item
1668 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1669
1670 @example
1671 gprof -s @var{executable-file} gmon.out gmon.sum
1672 @end example
1673
1674 @item
1675 Repeat the last two steps as often as you wish.
1676
1677 @item
1678 Analyze the cumulative data using this command:
1679
1680 @example
1681 gprof @var{executable-file} gmon.sum > @var{output-file}
1682 @end example
1683 @end enumerate
1684
1685 @node Assumptions
1686 @section Estimating @code{children} Times
1687
1688 Some of the figures in the call graph are estimates---for example, the
1689 @code{children} time values and all the time figures in caller and
1690 subroutine lines.
1691
1692 There is no direct information about these measurements in the profile
1693 data itself.  Instead, @code{gprof} estimates them by making an assumption
1694 about your program that might or might not be true.
1695
1696 The assumption made is that the average time spent in each call to any
1697 function @code{foo} is not correlated with who called @code{foo}.  If
1698 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1699 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1700 @code{children} time, by assumption.
1701
1702 This assumption is usually true enough, but for some programs it is far
1703 from true.  Suppose that @code{foo} returns very quickly when its argument
1704 is zero; suppose that @code{a} always passes zero as an argument, while
1705 other callers of @code{foo} pass other arguments.  In this program, all the
1706 time spent in @code{foo} is in the calls from callers other than @code{a}.
1707 But @code{gprof} has no way of knowing this; it will blindly and
1708 incorrectly charge 2 seconds of time in @code{foo} to the children of
1709 @code{a}.
1710
1711 @c FIXME - has this been fixed?
1712 We hope some day to put more complete data into @file{gmon.out}, so that
1713 this assumption is no longer needed, if we can figure out how.  For the
1714 novice, the estimated figures are usually more useful than misleading.
1715
1716 @node How do I?
1717 @chapter Answers to Common Questions
1718
1719 @table @asis
1720 @item How can I get more exact information about hot spots in my program?
1721
1722 Looking at the per-line call counts only tells part of the story.
1723 Because @code{gprof} can only report call times and counts by function,
1724 the best way to get finer-grained information on where the program
1725 is spending its time is to re-factor large functions into sequences
1726 of calls to smaller ones.  Beware however that this can introduce
1727 artificial hot spots since compiling with @samp{-pg} adds a significant
1728 overhead to function calls.  An alternative solution is to use a
1729 non-intrusive profiler, e.g.@: oprofile.
1730
1731 @item How do I find which lines in my program were executed the most times?
1732
1733 Use the @code{gcov} program.
1734
1735 @item How do I find which lines in my program called a particular function?
1736
1737 Use @samp{gprof -l} and lookup the function in the call graph.
1738 The callers will be broken down by function and line number.
1739
1740 @item How do I analyze a program that runs for less than a second?
1741
1742 Try using a shell script like this one:
1743
1744 @example
1745 for i in `seq 1 100`; do
1746   fastprog
1747   mv gmon.out gmon.out.$i
1748 done
1749
1750 gprof -s fastprog gmon.out.*
1751
1752 gprof fastprog gmon.sum
1753 @end example
1754
1755 If your program is completely deterministic, all the call counts
1756 will be simple multiples of 100 (i.e., a function called once in
1757 each run will appear with a call count of 100).
1758
1759 @end table
1760
1761 @node Incompatibilities
1762 @chapter Incompatibilities with Unix @code{gprof}
1763
1764 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1765 file @file{gmon.out}, and provide essentially the same information.  But
1766 there are a few differences.
1767
1768 @itemize @bullet
1769 @item
1770 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1771 for basic-block execution counts and non-realtime histograms.  A magic
1772 cookie and version number allows @code{gprof} to easily identify
1773 new style files.  Old BSD-style files can still be read.
1774 @xref{File Format, ,Profiling Data File Format}.
1775
1776 @item
1777 For a recursive function, Unix @code{gprof} lists the function as a
1778 parent and as a child, with a @code{calls} field that lists the number
1779 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1780 the number of recursive calls in the primary line.
1781
1782 @item
1783 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1784 @code{gprof} still lists it as a subroutine of functions that call it.
1785
1786 @item
1787 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1788 in the form @samp{from/to}, instead of @samp{from to}.
1789
1790 @item
1791 In the annotated source listing,
1792 if there are multiple basic blocks on the same line,
1793 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1794
1795 @ignore - it does this now
1796 @item
1797 The function names printed in @sc{gnu} @code{gprof} output do not include
1798 the leading underscores that are added internally to the front of all
1799 C identifiers on many operating systems.
1800 @end ignore
1801
1802 @item
1803 The blurbs, field widths, and output formats are different.  @sc{gnu}
1804 @code{gprof} prints blurbs after the tables, so that you can see the
1805 tables without skipping the blurbs.
1806 @end itemize
1807
1808 @node Details
1809 @chapter Details of Profiling
1810
1811 @menu
1812 * Implementation::      How a program collects profiling information
1813 * File Format::         Format of @samp{gmon.out} files
1814 * Internals::           @code{gprof}'s internal operation
1815 * Debugging::           Using @code{gprof}'s @samp{-d} option
1816 @end menu
1817
1818 @node Implementation
1819 @section Implementation of Profiling
1820
1821 Profiling works by changing how every function in your program is compiled
1822 so that when it is called, it will stash away some information about where
1823 it was called from.  From this, the profiler can figure out what function
1824 called it, and can count how many times it was called.  This change is made
1825 by the compiler when your program is compiled with the @samp{-pg} option,
1826 which causes every function to call @code{mcount}
1827 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1828 as one of its first operations.
1829
1830 The @code{mcount} routine, included in the profiling library,
1831 is responsible for recording in an in-memory call graph table
1832 both its parent routine (the child) and its parent's parent.  This is
1833 typically done by examining the stack frame to find both
1834 the address of the child, and the return address in the original parent.
1835 Since this is a very machine-dependent operation, @code{mcount}
1836 itself is typically a short assembly-language stub routine
1837 that extracts the required
1838 information, and then calls @code{__mcount_internal}
1839 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1840 @code{__mcount_internal} is responsible for maintaining
1841 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1842 and the number of times each of these call arcs was traversed.
1843
1844 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1845 which allows a generic @code{mcount} function to extract the
1846 required information from the stack frame.  However, on some
1847 architectures, most notably the SPARC, using this builtin can be
1848 very computationally expensive, and an assembly language version
1849 of @code{mcount} is used for performance reasons.
1850
1851 Number-of-calls information for library routines is collected by using a
1852 special version of the C library.  The programs in it are the same as in
1853 the usual C library, but they were compiled with @samp{-pg}.  If you
1854 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1855 profiling version of the library.
1856
1857 Profiling also involves watching your program as it runs, and keeping a
1858 histogram of where the program counter happens to be every now and then.
1859 Typically the program counter is looked at around 100 times per second of
1860 run time, but the exact frequency may vary from system to system.
1861
1862 This is done is one of two ways.  Most UNIX-like operating systems
1863 provide a @code{profil()} system call, which registers a memory
1864 array with the kernel, along with a scale
1865 factor that determines how the program's address space maps
1866 into the array.
1867 Typical scaling values cause every 2 to 8 bytes of address space
1868 to map into a single array slot.
1869 On every tick of the system clock
1870 (assuming the profiled program is running), the value of the
1871 program counter is examined and the corresponding slot in
1872 the memory array is incremented.  Since this is done in the kernel,
1873 which had to interrupt the process anyway to handle the clock
1874 interrupt, very little additional system overhead is required.
1875
1876 However, some operating systems, most notably Linux 2.0 (and earlier),
1877 do not provide a @code{profil()} system call.  On such a system,
1878 arrangements are made for the kernel to periodically deliver
1879 a signal to the process (typically via @code{setitimer()}),
1880 which then performs the same operation of examining the
1881 program counter and incrementing a slot in the memory array.
1882 Since this method requires a signal to be delivered to
1883 user space every time a sample is taken, it uses considerably
1884 more overhead than kernel-based profiling.  Also, due to the
1885 added delay required to deliver the signal, this method is
1886 less accurate as well.
1887
1888 A special startup routine allocates memory for the histogram and
1889 either calls @code{profil()} or sets up
1890 a clock signal handler.
1891 This routine (@code{monstartup}) can be invoked in several ways.
1892 On Linux systems, a special profiling startup file @code{gcrt0.o},
1893 which invokes @code{monstartup} before @code{main},
1894 is used instead of the default @code{crt0.o}.
1895 Use of this special startup file is one of the effects
1896 of using @samp{gcc @dots{} -pg} to link.
1897 On SPARC systems, no special startup files are used.
1898 Rather, the @code{mcount} routine, when it is invoked for
1899 the first time (typically when @code{main} is called),
1900 calls @code{monstartup}.
1901
1902 If the compiler's @samp{-a} option was used, basic-block counting
1903 is also enabled.  Each object file is then compiled with a static array
1904 of counts, initially zero.
1905 In the executable code, every time a new basic-block begins
1906 (i.e., when an @code{if} statement appears), an extra instruction
1907 is inserted to increment the corresponding count in the array.
1908 At compile time, a paired array was constructed that recorded
1909 the starting address of each basic-block.  Taken together,
1910 the two arrays record the starting address of every basic-block,
1911 along with the number of times it was executed.
1912
1913 The profiling library also includes a function (@code{mcleanup}) which is
1914 typically registered using @code{atexit()} to be called as the
1915 program exits, and is responsible for writing the file @file{gmon.out}.
1916 Profiling is turned off, various headers are output, and the histogram
1917 is written, followed by the call-graph arcs and the basic-block counts.
1918
1919 The output from @code{gprof} gives no indication of parts of your program that
1920 are limited by I/O or swapping bandwidth.  This is because samples of the
1921 program counter are taken at fixed intervals of the program's run time.
1922 Therefore, the
1923 time measurements in @code{gprof} output say nothing about time that your
1924 program was not running.  For example, a part of the program that creates
1925 so much data that it cannot all fit in physical memory at once may run very
1926 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1927 the other hand, sampling by run time has the advantage that the amount of
1928 load due to other users won't directly affect the output you get.
1929
1930 @node File Format
1931 @section Profiling Data File Format
1932
1933 The old BSD-derived file format used for profile data does not contain a
1934 magic cookie that allows to check whether a data file really is a
1935 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1936 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1937 uses a new file format that provides these features.  For backward
1938 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1939 format, but not all features are supported with it.  For example,
1940 basic-block execution counts cannot be accommodated by the old file
1941 format.
1942
1943 The new file format is defined in header file @file{gmon_out.h}.  It
1944 consists of a header containing the magic cookie and a version number,
1945 as well as some spare bytes available for future extensions.  All data
1946 in a profile data file is in the native format of the target for which
1947 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1948 to the byte-order in use.
1949
1950 In the new file format, the header is followed by a sequence of
1951 records.  Currently, there are three different record types: histogram
1952 records, call-graph arc records, and basic-block execution count
1953 records.  Each file can contain any number of each record type.  When
1954 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1955 compatible with each other and compute the union of all records.  For
1956 example, for basic-block execution counts, the union is simply the sum
1957 of all execution counts for each basic-block.
1958
1959 @subsection Histogram Records
1960
1961 Histogram records consist of a header that is followed by an array of
1962 bins.  The header contains the text-segment range that the histogram
1963 spans, the size of the histogram in bytes (unlike in the old BSD
1964 format, this does not include the size of the header), the rate of the
1965 profiling clock, and the physical dimension that the bin counts
1966 represent after being scaled by the profiling clock rate.  The
1967 physical dimension is specified in two parts: a long name of up to 15
1968 characters and a single character abbreviation.  For example, a
1969 histogram representing real-time would specify the long name as
1970 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1971 architectures that support performance monitor hardware (which,
1972 fortunately, is becoming increasingly common).  For example, under DEC
1973 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1974 say, instruction cache misses.  In this case, the dimension in the
1975 histogram header could be set to ``i-cache misses'' and the abbreviation
1976 could be set to ``1'' (because it is simply a count, not a physical
1977 dimension).  Also, the profiling rate would have to be set to 1 in
1978 this case.
1979
1980 Histogram bins are 16-bit numbers and each bin represent an equal
1981 amount of text-space.  For example, if the text-segment is one
1982 thousand bytes long and if there are ten bins in the histogram, each
1983 bin represents one hundred bytes.
1984
1985
1986 @subsection Call-Graph Records
1987
1988 Call-graph records have a format that is identical to the one used in
1989 the BSD-derived file format.  It consists of an arc in the call graph
1990 and a count indicating the number of times the arc was traversed
1991 during program execution.  Arcs are specified by a pair of addresses:
1992 the first must be within caller's function and the second must be
1993 within the callee's function.  When performing profiling at the
1994 function level, these addresses can point anywhere within the
1995 respective function.  However, when profiling at the line-level, it is
1996 better if the addresses are as close to the call-site/entry-point as
1997 possible.  This will ensure that the line-level call-graph is able to
1998 identify exactly which line of source code performed calls to a
1999 function.
2000
2001 @subsection Basic-Block Execution Count Records
2002
2003 Basic-block execution count records consist of a header followed by a
2004 sequence of address/count pairs.  The header simply specifies the
2005 length of the sequence.  In an address/count pair, the address
2006 identifies a basic-block and the count specifies the number of times
2007 that basic-block was executed.  Any address within the basic-address can
2008 be used.
2009
2010 @node Internals
2011 @section @code{gprof}'s Internal Operation
2012
2013 Like most programs, @code{gprof} begins by processing its options.
2014 During this stage, it may building its symspec list
2015 (@code{sym_ids.c:@-sym_id_add}), if
2016 options are specified which use symspecs.
2017 @code{gprof} maintains a single linked list of symspecs,
2018 which will eventually get turned into 12 symbol tables,
2019 organized into six include/exclude pairs---one
2020 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
2021 the call graph arcs (INCL_ARCS/EXCL_ARCS),
2022 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
2023 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
2024 the annotated source listing (INCL_ANNO/EXCL_ANNO),
2025 and the execution count listing (INCL_EXEC/EXCL_EXEC).
2026
2027 After option processing, @code{gprof} finishes
2028 building the symspec list by adding all the symspecs in
2029 @code{default_excluded_list} to the exclude lists
2030 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2031 EXCL_FLAT as well.
2032 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2033
2034 Next, the BFD library is called to open the object file,
2035 verify that it is an object file,
2036 and read its symbol table (@code{core.c:@-core_init}),
2037 using @code{bfd_canonicalize_symtab} after mallocing
2038 an appropriately sized array of symbols.  At this point,
2039 function mappings are read (if the @samp{--file-ordering} option
2040 has been specified), and the core text space is read into
2041 memory (if the @samp{-c} option was given).
2042
2043 @code{gprof}'s own symbol table, an array of Sym structures,
2044 is now built.
2045 This is done in one of two ways, by one of two routines, depending
2046 on whether line-by-line profiling (@samp{-l} option) has been
2047 enabled.
2048 For normal profiling, the BFD canonical symbol table is scanned.
2049 For line-by-line profiling, every
2050 text space address is examined, and a new symbol table entry
2051 gets created every time the line number changes.
2052 In either case, two passes are made through the symbol
2053 table---one to count the size of the symbol table required,
2054 and the other to actually read the symbols.  In between the
2055 two passes, a single array of type @code{Sym} is created of
2056 the appropriate length.
2057 Finally, @code{symtab.c:@-symtab_finalize}
2058 is called to sort the symbol table and remove duplicate entries
2059 (entries with the same memory address).
2060
2061 The symbol table must be a contiguous array for two reasons.
2062 First, the @code{qsort} library function (which sorts an array)
2063 will be used to sort the symbol table.
2064 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2065 which finds symbols
2066 based on memory address, uses a binary search algorithm
2067 which requires the symbol table to be a sorted array.
2068 Function symbols are indicated with an @code{is_func} flag.
2069 Line number symbols have no special flags set.
2070 Additionally, a symbol can have an @code{is_static} flag
2071 to indicate that it is a local symbol.
2072
2073 With the symbol table read, the symspecs can now be translated
2074 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2075 symspec can match multiple symbols.
2076 An array of symbol tables
2077 (@code{syms}) is created, each entry of which is a symbol table
2078 of Syms to be included or excluded from a particular listing.
2079 The master symbol table and the symspecs are examined by nested
2080 loops, and every symbol that matches a symspec is inserted
2081 into the appropriate syms table.  This is done twice, once to
2082 count the size of each required symbol table, and again to build
2083 the tables, which have been malloced between passes.
2084 From now on, to determine whether a symbol is on an include
2085 or exclude symspec list, @code{gprof} simply uses its
2086 standard symbol lookup routine on the appropriate table
2087 in the @code{syms} array.
2088
2089 Now the profile data file(s) themselves are read
2090 (@code{gmon_io.c:@-gmon_out_read}),
2091 first by checking for a new-style @samp{gmon.out} header,
2092 then assuming this is an old-style BSD @samp{gmon.out}
2093 if the magic number test failed.
2094
2095 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2096 For the first histogram record, allocate a memory array to hold
2097 all the bins, and read them in.
2098 When multiple profile data files (or files with multiple histogram
2099 records) are read, the memory ranges of each pair of histogram records
2100 must be either equal, or non-overlapping.  For each pair of histogram
2101 records, the resolution (memory region size divided by the number of
2102 bins) must be the same.  The time unit must be the same for all
2103 histogram records. If the above containts are met, all histograms
2104 for the same memory range are merged.
2105
2106 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2107 the parent and child addresses
2108 are matched to symbol table entries, and a call graph arc is
2109 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2110 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2111 a linked list is maintained of the parent's child arcs, and of the child's
2112 parent arcs.
2113 Both the child's call count and the arc's call count are
2114 incremented by the record's call count.
2115
2116 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2117 but only if line-by-line profiling has been selected.
2118 Each basic-block address is matched to a corresponding line
2119 symbol in the symbol table, and an entry made in the symbol's
2120 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2121 records are present for the same address, the call counts
2122 are cumulative.
2123
2124 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2125
2126 If histograms were present in the data files, assign them to symbols
2127 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2128 bins and assigning them to symbols.  Since the symbol table
2129 is sorted in order of ascending memory addresses, we can
2130 simple follow along in the symbol table as we make our pass
2131 over the sample bins.
2132 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2133 Depending on the histogram
2134 scale factor, a sample bin may span multiple symbols,
2135 in which case a fraction of the sample count is allocated
2136 to each symbol, proportional to the degree of overlap.
2137 This effect is rare for normal profiling, but overlaps
2138 are more common during line-by-line profiling, and can
2139 cause each of two adjacent lines to be credited with half
2140 a hit, for example.
2141
2142 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2143 First, if @samp{-c} was specified, a machine-dependent
2144 routine (@code{find_call}) scans through each symbol's machine code,
2145 looking for subroutine call instructions, and adding them
2146 to the call graph with a zero call count.
2147 A topological sort is performed by depth-first numbering
2148 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2149 children are always numbered less than their parents,
2150 then making a array of pointers into the symbol table and sorting it into
2151 numerical order, which is reverse topological
2152 order (children appear before parents).
2153 Cycles are also detected at this point, all members
2154 of which are assigned the same topological number.
2155 Two passes are now made through this sorted array of symbol pointers.
2156 The first pass, from end to beginning (parents to children),
2157 computes the fraction of child time to propagate to each parent
2158 and a print flag.
2159 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2160 with a parent's include or exclude (print or no print) property
2161 being propagated to its children, unless they themselves explicitly appear
2162 in INCL_GRAPH or EXCL_GRAPH.
2163 A second pass, from beginning to end (children to parents) actually
2164 propagates the timings along the call graph, subject
2165 to a check against INCL_TIME/EXCL_TIME.
2166 With the print flag, fractions, and timings now stored in the symbol
2167 structures, the topological sort array is now discarded, and a
2168 new array of pointers is assembled, this time sorted by propagated time.
2169
2170 Finally, print the various outputs the user requested, which is now fairly
2171 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2172 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2173 already computed.  The annotated source listing
2174 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2175 information, if present, to label each line of code with call counts,
2176 otherwise only the function call counts are presented.
2177
2178 The function ordering code is marginally well documented
2179 in the source code itself (@code{cg_print.c}).  Basically,
2180 the functions with the most use and the most parents are
2181 placed first, followed by other functions with the most use,
2182 followed by lower use functions, followed by unused functions
2183 at the end.
2184
2185 @node Debugging
2186 @section Debugging @code{gprof}
2187
2188 If @code{gprof} was compiled with debugging enabled,
2189 the @samp{-d} option triggers debugging output
2190 (to stdout) which can be helpful in understanding its operation.
2191 The debugging number specified is interpreted as a sum of the following
2192 options:
2193
2194 @table @asis
2195 @item 2 - Topological sort
2196 Monitor depth-first numbering of symbols during call graph analysis
2197 @item 4 - Cycles
2198 Shows symbols as they are identified as cycle heads
2199 @item 16 - Tallying
2200 As the call graph arcs are read, show each arc and how
2201 the total calls to each function are tallied
2202 @item 32 - Call graph arc sorting
2203 Details sorting individual parents/children within each call graph entry
2204 @item 64 - Reading histogram and call graph records
2205 Shows address ranges of histograms as they are read, and each
2206 call graph arc
2207 @item 128 - Symbol table
2208 Reading, classifying, and sorting the symbol table from the object file.
2209 For line-by-line profiling (@samp{-l} option), also shows line numbers
2210 being assigned to memory addresses.
2211 @item 256 - Static call graph
2212 Trace operation of @samp{-c} option
2213 @item 512 - Symbol table and arc table lookups
2214 Detail operation of lookup routines
2215 @item 1024 - Call graph propagation
2216 Shows how function times are propagated along the call graph
2217 @item 2048 - Basic-blocks
2218 Shows basic-block records as they are read from profile data
2219 (only meaningful with @samp{-l} option)
2220 @item 4096 - Symspecs
2221 Shows symspec-to-symbol pattern matching operation
2222 @item 8192 - Annotate source
2223 Tracks operation of @samp{-A} option
2224 @end table
2225
2226 @node GNU Free Documentation License
2227 @appendix GNU Free Documentation License
2228 @include fdl.texi
2229
2230 @bye
2231
2232 NEEDS AN INDEX
2233
2234 -T - "traditional BSD style": How is it different?  Should the
2235 differences be documented?
2236
2237 example flat file adds up to 100.01%...
2238
2239 note: time estimates now only go out to one decimal place (0.0), where
2240 they used to extend two (78.67).