* configure, Makefile.in, aclocal.m4: Rebuild with new libtool.
[platform/upstream/binutils.git] / gprof / gprof.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @settitle GNU gprof
4 @setchapternewpage odd
5
6 @ifinfo
7 @c This is a dir.info fragment to support semi-automated addition of
8 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
9 @format
10 START-INFO-DIR-ENTRY
11 * gprof: (gprof).                Profiling your program's execution
12 END-INFO-DIR-ENTRY
13 @end format
14 @end ifinfo
15
16 @ifinfo
17 This file documents the gprof profiler of the GNU system.
18
19 Copyright (C) 1988, 1992, 1997, 1998 Free Software Foundation, Inc.
20
21 Permission is granted to make and distribute verbatim copies of
22 this manual provided the copyright notice and this permission notice
23 are preserved on all copies.
24
25 @ignore
26 Permission is granted to process this file through Tex and print the
27 results, provided the printed document carries copying permission
28 notice identical to this one except for the removal of this paragraph
29 (this paragraph not being relevant to the printed manual).
30
31 @end ignore
32 Permission is granted to copy and distribute modified versions of this
33 manual under the conditions for verbatim copying, provided that the entire
34 resulting derived work is distributed under the terms of a permission
35 notice identical to this one.
36
37 Permission is granted to copy and distribute translations of this manual
38 into another language, under the above conditions for modified versions.
39 @end ifinfo
40
41 @finalout
42 @smallbook
43
44 @titlepage
45 @title GNU gprof
46 @subtitle The @sc{gnu} Profiler 
47 @author Jay Fenlason and Richard Stallman
48
49 @page
50
51 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
52 can use it to determine which parts of a program are taking most of the
53 execution time.  We assume that you know how to write, compile, and
54 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
55
56 This manual was edited January 1993 by Jeffrey Osier
57 and updated September 1997 by Brent Baccala.
58
59 @vskip 0pt plus 1filll
60 Copyright @copyright{} 1988, 1992, 1997, 1998 Free Software Foundation, Inc.
61
62 Permission is granted to make and distribute verbatim copies of
63 this manual provided the copyright notice and this permission notice
64 are preserved on all copies.
65
66 @ignore
67 Permission is granted to process this file through TeX and print the
68 results, provided the printed document carries copying permission
69 notice identical to this one except for the removal of this paragraph
70 (this paragraph not being relevant to the printed manual).
71
72 @end ignore
73 Permission is granted to copy and distribute modified versions of this
74 manual under the conditions for verbatim copying, provided that the entire
75 resulting derived work is distributed under the terms of a permission
76 notice identical to this one.
77
78 Permission is granted to copy and distribute translations of this manual
79 into another language, under the same conditions as for modified versions.
80
81 @end titlepage
82
83 @ifinfo
84 @node Top
85 @top Profiling a Program: Where Does It Spend Its Time?
86
87 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
88 can use it to determine which parts of a program are taking most of the
89 execution time.  We assume that you know how to write, compile, and
90 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
91
92 This manual was updated August 1997 by Brent Baccala.
93
94 @menu
95 * Introduction::        What profiling means, and why it is useful.
96
97 * Compiling::           How to compile your program for profiling.
98 * Executing::           Executing your program to generate profile data
99 * Invoking::            How to run @code{gprof}, and its options
100
101 * Output::              Interpreting @code{gprof}'s output
102
103 * Inaccuracy::          Potential problems you should be aware of
104 * How do I?::           Answers to common questions
105 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
106 * Details::             Details of how profiling is done
107 @end menu
108 @end ifinfo
109
110 @node Introduction
111 @chapter Introduction to Profiling
112
113 Profiling allows you to learn where your program spent its time and which
114 functions called which other functions while it was executing.  This
115 information can show you which pieces of your program are slower than you
116 expected, and might be candidates for rewriting to make your program
117 execute faster.  It can also tell you which functions are being called more
118 or less often than you expected.  This may help you spot bugs that had
119 otherwise been unnoticed.
120
121 Since the profiler uses information collected during the actual execution
122 of your program, it can be used on programs that are too large or too
123 complex to analyze by reading the source.  However, how your program is run
124 will affect the information that shows up in the profile data.  If you
125 don't use some feature of your program while it is being profiled, no
126 profile information will be generated for that feature.
127
128 Profiling has several steps:
129
130 @itemize @bullet
131 @item
132 You must compile and link your program with profiling enabled.
133 @xref{Compiling}.
134
135 @item
136 You must execute your program to generate a profile data file.
137 @xref{Executing}.
138
139 @item
140 You must run @code{gprof} to analyze the profile data.
141 @xref{Invoking}.
142 @end itemize
143
144 The next three chapters explain these steps in greater detail.
145
146 Several forms of output are available from the analysis.
147
148 The @dfn{flat profile} shows how much time your program spent in each function,
149 and how many times that function was called.  If you simply want to know
150 which functions burn most of the cycles, it is stated concisely here.
151 @xref{Flat Profile}.
152
153 The @dfn{call graph} shows, for each function, which functions called it, which
154 other functions it called, and how many times.  There is also an estimate
155 of how much time was spent in the subroutines of each function.  This can
156 suggest places where you might try to eliminate function calls that use a
157 lot of time.  @xref{Call Graph}.
158
159 The @dfn{annotated source} listing is a copy of the program's
160 source code, labeled with the number of times each line of the
161 program was executed.  @xref{Annotated Source}.
162
163 To better understand how profiling works, you may wish to read
164 a description of its implementation.
165 @xref{Implementation}.
166
167 @node Compiling
168 @chapter Compiling a Program for Profiling
169
170 The first step in generating profile information for your program is
171 to compile and link it with profiling enabled.
172
173 To compile a source file for profiling, specify the @samp{-pg} option when
174 you run the compiler.  (This is in addition to the options you normally
175 use.)
176
177 To link the program for profiling, if you use a compiler such as @code{cc}
178 to do the linking, simply specify @samp{-pg} in addition to your usual
179 options.  The same option, @samp{-pg}, alters either compilation or linking
180 to do what is necessary for profiling.  Here are examples:
181
182 @example
183 cc -g -c myprog.c utils.c -pg
184 cc -o myprog myprog.o utils.o -pg
185 @end example
186
187 The @samp{-pg} option also works with a command that both compiles and links:
188
189 @example
190 cc -o myprog myprog.c utils.c -g -pg
191 @end example
192
193 If you run the linker @code{ld} directly instead of through a compiler
194 such as @code{cc}, you may have to specify a profiling startup file
195 @file{gcrt0.o} as the first input file instead of the usual startup
196 file @file{crt0.o}.  In addition, you would probably want to
197 specify the profiling C library, @file{libc_p.a}, by writing
198 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
199 necessary, but doing this gives you number-of-calls information for
200 standard library functions such as @code{read} and @code{open}.  For
201 example:
202
203 @example
204 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
205 @end example
206
207 If you compile only some of the modules of the program with @samp{-pg}, you
208 can still profile the program, but you won't get complete information about
209 the modules that were compiled without @samp{-pg}.  The only information
210 you get for the functions in those modules is the total time spent in them;
211 there is no record of how many times they were called, or from where.  This
212 will not affect the flat profile (except that the @code{calls} field for
213 the functions will be blank), but will greatly reduce the usefulness of the
214 call graph.
215
216 If you wish to perform line-by-line profiling,
217 you will also need to specify the @samp{-g} option,
218 instructing the compiler to insert debugging symbols into the program
219 that match program addresses to source code lines.
220 @xref{Line-by-line}.
221
222 In addition to the @samp{-pg} and @samp{-g} options,
223 you may also wish to specify the @samp{-a} option when compiling.
224 This will instrument
225 the program to perform basic-block counting.  As the program runs,
226 it will count how many times it executed each branch of each @samp{if}
227 statement, each iteration of each @samp{do} loop, etc.  This will
228 enable @code{gprof} to construct an annotated source code
229 listing showing how many times each line of code was executed.
230
231 @node Executing
232 @chapter Executing the Program
233
234 Once the program is compiled for profiling, you must run it in order to
235 generate the information that @code{gprof} needs.  Simply run the program
236 as usual, using the normal arguments, file names, etc.  The program should
237 run normally, producing the same output as usual.  It will, however, run
238 somewhat slower than normal because of the time spent collecting and the
239 writing the profile data.
240
241 The way you run the program---the arguments and input that you give
242 it---may have a dramatic effect on what the profile information shows.  The
243 profile data will describe the parts of the program that were activated for
244 the particular input you use.  For example, if the first command you give
245 to your program is to quit, the profile data will show the time used in
246 initialization and in cleanup, but not much else.
247
248 Your program will write the profile data into a file called @file{gmon.out}
249 just before exiting.  If there is already a file called @file{gmon.out},
250 its contents are overwritten.  There is currently no way to tell the
251 program to write the profile data under a different name, but you can rename
252 the file afterward if you are concerned that it may be overwritten.
253
254 In order to write the @file{gmon.out} file properly, your program must exit
255 normally: by returning from @code{main} or by calling @code{exit}.  Calling
256 the low-level function @code{_exit} does not write the profile data, and
257 neither does abnormal termination due to an unhandled signal.
258
259 The @file{gmon.out} file is written in the program's @emph{current working
260 directory} at the time it exits.  This means that if your program calls
261 @code{chdir}, the @file{gmon.out} file will be left in the last directory
262 your program @code{chdir}'d to.  If you don't have permission to write in
263 this directory, the file is not written, and you will get an error message.
264
265 Older versions of the @sc{gnu} profiling library may also write a file
266 called @file{bb.out}.  This file, if present, contains an human-readable
267 listing of the basic-block execution counts.  Unfortunately, the
268 appearance of a human-readable @file{bb.out} means the basic-block
269 counts didn't get written into @file{gmon.out}.
270 The Perl script @code{bbconv.pl}, included with the @code{gprof}
271 source distribution, will convert a @file{bb.out} file into
272 a format readable by @code{gprof}.
273
274 @node Invoking
275 @chapter @code{gprof} Command Summary
276
277 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
278 to interpret the information in it.  The @code{gprof} program prints a
279 flat profile and a call graph on standard output.  Typically you would
280 redirect the output of @code{gprof} into a file with @samp{>}.
281
282 You run @code{gprof} like this:
283
284 @smallexample
285 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
286 @end smallexample
287
288 @noindent
289 Here square-brackets indicate optional arguments.
290
291 If you omit the executable file name, the file @file{a.out} is used.  If
292 you give no profile data file name, the file @file{gmon.out} is used.  If
293 any file is not in the proper format, or if the profile data file does not
294 appear to belong to the executable file, an error message is printed.
295
296 You can give more than one profile data file by entering all their names
297 after the executable file name; then the statistics in all the data files
298 are summed together.
299
300 The order of these options does not matter.
301
302 @menu
303 * Output Options::      Controlling @code{gprof}'s output style
304 * Analysis Options::    Controlling how @code{gprof} analyses its data
305 * Miscellaneous Options::
306 * Depricated Options::  Options you no longer need to use, but which
307                             have been retained for compatibility
308 * Symspecs::            Specifying functions to include or exclude
309 @end menu
310
311 @node Output Options,Analysis Options,,Invoking
312 @section Output Options
313
314 These options specify which of several output formats
315 @code{gprof} should produce.
316
317 Many of these options take an optional @dfn{symspec} to specify
318 functions to be included or excluded.  These options can be
319 specified multiple times, with different symspecs, to include
320 or exclude sets of symbols.  @xref{Symspecs}.
321
322 Specifying any of these options overrides the default (@samp{-p -q}),
323 which prints a flat profile and call graph analysis
324 for all functions.
325
326 @table @code
327
328 @item -A[@var{symspec}]
329 @itemx --annotated-source[=@var{symspec}]
330 The @samp{-A} option causes @code{gprof} to print annotated source code.
331 If @var{symspec} is specified, print output only for matching symbols.
332 @xref{Annotated Source}.
333
334 @item -b
335 @itemx --brief
336 If the @samp{-b} option is given, @code{gprof} doesn't print the
337 verbose blurbs that try to explain the meaning of all of the fields in
338 the tables.  This is useful if you intend to print out the output, or
339 are tired of seeing the blurbs.
340
341 @item -C[@var{symspec}]
342 @itemx --exec-counts[=@var{symspec}]
343 The @samp{-C} option causes @code{gprof} to
344 print a tally of functions and the number of times each was called.
345 If @var{symspec} is specified, print tally only for matching symbols.
346
347 If the profile data file contains basic-block count records, specifing
348 the @samp{-l} option, along with @samp{-C}, will cause basic-block
349 execution counts to be tallied and displayed.
350
351 @item -i
352 @itemx --file-info
353 The @samp{-i} option causes @code{gprof} to display summary information
354 about the profile data file(s) and then exit.  The number of histogram,
355 call graph, and basic-block count records is displayed.
356
357 @item -I @var{dirs}
358 @itemx --directory-path=@var{dirs}
359 The @samp{-I} option specifies a list of search directories in
360 which to find source files.  Environment variable @var{GPROF_PATH}
361 can also be used to convery this information.
362 Used mostly for annotated source output.
363
364 @item -J[@var{symspec}]
365 @itemx --no-annotated-source[=@var{symspec}]
366 The @samp{-J} option causes @code{gprof} not to
367 print annotated source code.
368 If @var{symspec} is specified, @code{gprof} prints annotated source,
369 but excludes matching symbols.
370
371 @item -L
372 @itemx --print-path
373 Normally, source filenames are printed with the path
374 component suppressed.  The @samp{-L} option causes @code{gprof}
375 to print the full pathname of
376 source filenames, which is determined
377 from symbolic debugging information in the image file
378 and is relative to the directory in which the compiler
379 was invoked.
380
381 @item -p[@var{symspec}]
382 @itemx --flat-profile[=@var{symspec}]
383 The @samp{-p} option causes @code{gprof} to print a flat profile.
384 If @var{symspec} is specified, print flat profile only for matching symbols.
385 @xref{Flat Profile}.
386
387 @item -P[@var{symspec}]
388 @itemx --no-flat-profile[=@var{symspec}]
389 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
390 If @var{symspec} is specified, @code{gprof} prints a flat profile,
391 but excludes matching symbols.
392
393 @item -q[@var{symspec}]
394 @itemx --graph[=@var{symspec}]
395 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
396 If @var{symspec} is specified, print call graph only for matching symbols
397 and their children.
398 @xref{Call Graph}.
399
400 @item -Q[@var{symspec}]
401 @itemx --no-graph[=@var{symspec}]
402 The @samp{-Q} option causes @code{gprof} to suppress printing the
403 call graph.
404 If @var{symspec} is specified, @code{gprof} prints a call graph,
405 but excludes matching symbols.
406
407 @item -y
408 @itemx --separate-files
409 This option affects annotated source output only.
410 Normally, gprof prints annotated source files
411 to standard-output.  If this option is specified,
412 annotated source for a file named @file{path/filename}
413 is generated in the file @file{filename-ann}.
414
415 @item -Z[@var{symspec}]
416 @itemx --no-exec-counts[=@var{symspec}]
417 The @samp{-Z} option causes @code{gprof} not to
418 print a tally of functions and the number of times each was called.
419 If @var{symspec} is specified, print tally, but exclude matching symbols.
420
421 @item --function-ordering
422 The @samp{--function-ordering} option causes @code{gprof} to print a
423 suggested function ordering for the program based on profiling data.
424 This option suggests an ordering which may improve paging, tlb and
425 cache behavior for the program on systems which support arbitrary
426 ordering of functions in an executable.
427
428 The exact details of how to force the linker to place functions
429 in a particular order is system dependent and out of the scope of this
430 manual.
431
432 @item --file-ordering @var{map_file}
433 The @samp{--file-ordering} option causes @code{gprof} to print a
434 suggested .o link line ordering for the program based on profiling data.
435 This option suggests an ordering which may improve paging, tlb and
436 cache behavior for the program on systems which do not support arbitrary
437 ordering of functions in an executable.
438
439 Use of the @samp{-a} argument is highly recommended with this option.
440
441 The @var{map_file} argument is a pathname to a file which provides
442 function name to object file mappings.  The format of the file is similar to
443 the output of the program @code{nm}.
444
445 @smallexample
446 @group
447 c-parse.o:00000000 T yyparse
448 c-parse.o:00000004 C yyerrflag
449 c-lang.o:00000000 T maybe_objc_method_name
450 c-lang.o:00000000 T print_lang_statistics
451 c-lang.o:00000000 T recognize_objc_keyword
452 c-decl.o:00000000 T print_lang_identifier
453 c-decl.o:00000000 T print_lang_type
454 @dots{}
455
456 @end group
457 @end smallexample
458
459 GNU @code{nm} @samp{--extern-only} @samp{--defined-only} @samp{-v} @samp{--print-file-name} can be used to create @var{map_file}.
460
461 @item -T
462 @itemx --traditional
463 The @samp{-T} option causes @code{gprof} to print its output in
464 ``traditional'' BSD style.
465
466 @item -w @var{width}
467 @itemx --width=@var{width}
468 Sets width of output lines to @var{width}.
469 Currently only used when printing the function index at the bottom
470 of the call graph.
471
472 @item -x
473 @itemx --all-lines
474 This option affects annotated source output only.
475 By default, only the lines at the beginning of a basic-block
476 are annotated.  If this option is specified, every line in
477 a basic-block is annotated by repeating the annotation for the
478 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
479
480 @end table
481
482 @node Analysis Options,Miscellaneous Options,Output Options,Invoking
483 @section Analysis Options
484
485 @table @code
486
487 @item -a
488 @itemx --no-static
489 The @samp{-a} option causes @code{gprof} to suppress the printing of
490 statically declared (private) functions.  (These are functions whose
491 names are not listed as global, and which are not visible outside the
492 file/function/block where they were defined.)  Time spent in these
493 functions, calls to/from them, etc, will all be attributed to the
494 function that was loaded directly before it in the executable file.
495 @c This is compatible with Unix @code{gprof}, but a bad idea.  
496 This option affects both the flat profile and the call graph.
497
498 @item -c
499 @itemx --static-call-graph
500 The @samp{-c} option causes the call graph of the program to be
501 augmented by a heuristic which examines the text space of the object
502 file and identifies function calls in the binary machine code.
503 Since normal call graph records are only generated when functions are
504 entered, this option identifies children that could have been called,
505 but never were.  Calls to functions that were not compiled with
506 profiling enabled are also identified, but only if symbol table
507 entries are present for them.
508 Calls to dynamic library routines are typically @emph{not} found
509 by this option.
510 Parents or children identified via this heuristic
511 are indicated in the call graph with call counts of @samp{0}.
512
513 @item -D
514 @itemx --ignore-non-functions
515 The @samp{-D} option causes @code{gprof} to ignore symbols which
516 are not known to be functions.  This option will give more accurate
517 profile data on systems where it is supported (Solaris and HPUX for
518 example).
519
520 @item -k @var{from}/@var{to}
521 The @samp{-k} option allows you to delete from the call graph any arcs from
522 symbols matching symspec @var{from} to those matching symspec @var{to}.
523
524 @item -l
525 @itemx --line
526 The @samp{-l} option enables line-by-line profiling, which causes
527 histogram hits to be charged to individual source code lines,
528 instead of functions.
529 If the program was compiled with basic-block counting enabled,
530 this option will also identify how many times each line of
531 code was executed.
532 While line-by-line profiling can help isolate where in a large function
533 a program is spending its time, it also significantly increases
534 the running time of @code{gprof}, and magnifies statistical
535 inaccuracies.
536 @xref{Sampling Error}.
537
538 @item -m @var{num}
539 @itemx --min-count=@var{num}
540 This option affects execution count output only.
541 Symbols that are executed less than @var{num} times are suppressed.
542
543 @item -n[@var{symspec}]
544 @itemx --time[=@var{symspec}]
545 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
546 to only propagate times for symbols matching @var{symspec}.
547
548 @item -N[@var{symspec}]
549 @itemx --no-time[=@var{symspec}]
550 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
551 not to propagate times for symbols matching @var{symspec}.
552
553 @item -z
554 @itemx --display-unused-functions
555 If you give the @samp{-z} option, @code{gprof} will mention all
556 functions in the flat profile, even those that were never called, and
557 that had no time spent in them.  This is useful in conjunction with the
558 @samp{-c} option for discovering which routines were never called.
559
560 @end table
561
562 @node Miscellaneous Options,Depricated Options,Analysis Options,Invoking
563 @section Miscellaneous Options
564
565 @table @code
566
567 @item -d[@var{num}]
568 @itemx --debug[=@var{num}]
569 The @samp{-d @var{num}} option specifies debugging options.
570 If @var{num} is not specified, enable all debugging.
571 @xref{Debugging}.
572
573 @item -O@var{name}
574 @itemx --file-format=@var{name}
575 Selects the format of the profile data files.
576 Recognized formats are @samp{auto} (the default), @samp{bsd}, @samp{magic},
577 and @samp{prof} (not yet supported).
578
579 @item -s
580 @itemx --sum
581 The @samp{-s} option causes @code{gprof} to summarize the information
582 in the profile data files it read in, and write out a profile data
583 file called @file{gmon.sum}, which contains all the information from
584 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
585 may be one of the specified input files; the effect of this is to
586 merge the data in the other input files into @file{gmon.sum}.
587
588 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
589 cumulative data in the file @file{gmon.sum}.
590
591 @item -v
592 @itemx --version
593 The @samp{-v} flag causes @code{gprof} to print the current version
594 number, and then exit.
595
596 @end table
597
598 @node Depricated Options,Symspecs,Miscellaneous Options,Invoking
599 @section Depricated Options
600
601 @table @code
602
603 These options have been replaced with newer versions that use symspecs.
604
605 @item -e @var{function_name}
606 The @samp{-e @var{function}} option tells @code{gprof} to not print
607 information about the function @var{function_name} (and its
608 children@dots{}) in the call graph.  The function will still be listed
609 as a child of any functions that call it, but its index number will be
610 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
611 given; only one @var{function_name} may be indicated with each @samp{-e}
612 option. 
613
614 @item -E @var{function_name}
615 The @code{-E @var{function}} option works like the @code{-e} option, but
616 time spent in the function (and children who were not called from
617 anywhere else), will not be used to compute the percentages-of-time for
618 the call graph.  More than one @samp{-E} option may be given; only one
619 @var{function_name} may be indicated with each @samp{-E} option.
620
621 @item -f @var{function_name}
622 The @samp{-f @var{function}} option causes @code{gprof} to limit the
623 call graph to the function @var{function_name} and its children (and
624 their children@dots{}).  More than one @samp{-f} option may be given;
625 only one @var{function_name} may be indicated with each @samp{-f}
626 option.  
627
628 @item -F @var{function_name}
629 The @samp{-F @var{function}} option works like the @code{-f} option, but
630 only time spent in the function and its children (and their
631 children@dots{}) will be used to determine total-time and
632 percentages-of-time for the call graph.  More than one @samp{-F} option
633 may be given; only one @var{function_name} may be indicated with each
634 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
635
636 @end table
637
638 Note that only one function can be specified with each @code{-e},
639 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
640 function, use multiple options.  For example, this command:
641
642 @example
643 gprof -e boring -f foo -f bar myprogram > gprof.output
644 @end example
645
646 @noindent
647 lists in the call graph all functions that were reached from either
648 @code{foo} or @code{bar} and were not reachable from @code{boring}.
649
650 @node Symspecs,,Depricated Options,Invoking
651 @section Symspecs
652
653 Many of the output options allow functions to be included or excluded
654 using @dfn{symspecs} (symbol specifications), which observe the
655 following syntax:
656
657 @example
658   filename_containing_a_dot
659 | funcname_not_containing_a_dot
660 | linenumber
661 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
662 @end example
663
664 Here are some sample symspecs:
665
666 @table @code
667 @item main.c
668 Selects everything in file "main.c"---the
669 dot in the string tells gprof to interpret
670 the string as a filename, rather than as
671 a function name.  To select a file whose
672 name does not contain a dot, a trailing colon
673 should be specified.  For example, "odd:" is
674 interpreted as the file named "odd".
675
676 @item main
677 Selects all functions named "main".  Notice
678 that there may be multiple instances of the
679 same function name because some of the
680 definitions may be local (i.e., static).
681 Unless a function name is unique in a program,
682 you must use the colon notation explained
683 below to specify a function from a specific
684 source file.  Sometimes, function names contain
685 dots.  In such cases, it is necessar to
686 add a leading colon to the name.  For example,
687 ":.mul" selects function ".mul".
688
689 @item main.c:main
690 Selects function "main" in file "main.c".
691
692 @item main.c:134
693 Selects line 134 in file "main.c".
694 @end table
695
696 @node Output
697 @chapter Interpreting @code{gprof}'s Output
698
699 @code{gprof} can produce several different output styles, the
700 most important of which are described below.  The simplest output
701 styles (file information, execution count, and function and file ordering)
702 are not described here, but are documented with the respective options
703 that trigger them.
704 @xref{Output Options}.
705
706 @menu
707 * Flat Profile::        The flat profile shows how much time was spent
708                             executing directly in each function.
709 * Call Graph::          The call graph shows which functions called which
710                             others, and how much time each function used
711                             when its subroutine calls are included.
712 * Line-by-line::        @code{gprof} can analyze individual source code lines
713 * Annotated Source::    The annotated source listing displays source code
714                             labeled with execution counts
715 @end menu
716
717
718 @node Flat Profile,Call Graph,,Output
719 @section The Flat Profile
720 @cindex flat profile
721
722 The @dfn{flat profile} shows the total amount of time your program
723 spent executing each function.  Unless the @samp{-z} option is given,
724 functions with no apparent time spent in them, and no apparent calls
725 to them, are not mentioned.  Note that if a function was not compiled
726 for profiling, and didn't run long enough to show up on the program
727 counter histogram, it will be indistinguishable from a function that
728 was never called.
729
730 This is part of a flat profile for a small program:
731
732 @smallexample
733 @group
734 Flat profile:
735
736 Each sample counts as 0.01 seconds.
737   %   cumulative   self              self     total           
738  time   seconds   seconds    calls  ms/call  ms/call  name    
739  33.34      0.02     0.02     7208     0.00     0.00  open
740  16.67      0.03     0.01      244     0.04     0.12  offtime
741  16.67      0.04     0.01        8     1.25     1.25  memccpy
742  16.67      0.05     0.01        7     1.43     1.43  write
743  16.67      0.06     0.01                             mcount
744   0.00      0.06     0.00      236     0.00     0.00  tzset
745   0.00      0.06     0.00      192     0.00     0.00  tolower
746   0.00      0.06     0.00       47     0.00     0.00  strlen
747   0.00      0.06     0.00       45     0.00     0.00  strchr
748   0.00      0.06     0.00        1     0.00    50.00  main
749   0.00      0.06     0.00        1     0.00     0.00  memcpy
750   0.00      0.06     0.00        1     0.00    10.11  print
751   0.00      0.06     0.00        1     0.00     0.00  profil
752   0.00      0.06     0.00        1     0.00    50.00  report
753 @dots{}
754 @end group
755 @end smallexample
756
757 @noindent
758 The functions are sorted by first by decreasing run-time spent in them,
759 then by decreasing number of calls, then alphabetically by name.  The
760 functions @samp{mcount} and @samp{profil} are part of the profiling
761 aparatus and appear in every flat profile; their time gives a measure of
762 the amount of overhead due to profiling.
763
764 Just before the column headers, a statement appears indicating
765 how much time each sample counted as.
766 This @dfn{sampling period} estimates the margin of error in each of the time
767 figures.  A time figure that is not much larger than this is not
768 reliable.  In this example, each sample counted as 0.01 seconds,
769 suggesting a 100 Hz sampling rate.
770 The program's total execution time was 0.06
771 seconds, as indicated by the @samp{cumulative seconds} field.  Since
772 each sample counted for 0.01 seconds, this means only six samples
773 were taken during the run.  Two of the samples occured while the
774 program was in the @samp{open} function, as indicated by the
775 @samp{self seconds} field.  Each of the other four samples
776 occured one each in @samp{offtime}, @samp{memccpy}, @samp{write},
777 and @samp{mcount}.
778 Since only six samples were taken, none of these values can
779 be regarded as particularly reliable.
780 In another run,
781 the @samp{self seconds} field for
782 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
783 @xref{Sampling Error}, for a complete discussion.
784
785 The remaining functions in the listing (those whose
786 @samp{self seconds} field is @samp{0.00}) didn't appear
787 in the histogram samples at all.  However, the call graph
788 indicated that they were called, so therefore they are listed,
789 sorted in decreasing order by the @samp{calls} field.
790 Clearly some time was spent executing these functions,
791 but the paucity of histogram samples prevents any
792 determination of how much time each took.
793
794 Here is what the fields in each line mean:
795
796 @table @code
797 @item % time
798 This is the percentage of the total execution time your program spent
799 in this function.  These should all add up to 100%.
800
801 @item cumulative seconds
802 This is the cumulative total number of seconds the computer spent
803 executing this functions, plus the time spent in all the functions
804 above this one in this table.
805
806 @item self seconds
807 This is the number of seconds accounted for by this function alone.
808 The flat profile listing is sorted first by this number.
809
810 @item calls
811 This is the total number of times the function was called.  If the
812 function was never called, or the number of times it was called cannot
813 be determined (probably because the function was not compiled with
814 profiling enabled), the @dfn{calls} field is blank.
815
816 @item self ms/call
817 This represents the average number of milliseconds spent in this
818 function per call, if this function is profiled.  Otherwise, this field
819 is blank for this function.
820
821 @item total ms/call
822 This represents the average number of milliseconds spent in this
823 function and its descendants per call, if this function is profiled.
824 Otherwise, this field is blank for this function.
825 This is the only field in the flat profile that uses call graph analysis.
826
827 @item name
828 This is the name of the function.   The flat profile is sorted by this
829 field alphabetically after the @dfn{self seconds} and @dfn{calls}
830 fields are sorted.
831 @end table
832
833 @node Call Graph,Line-by-line,Flat Profile,Output
834 @section The Call Graph
835 @cindex call graph
836
837 The @dfn{call graph} shows how much time was spent in each function
838 and its children.  From this information, you can find functions that,
839 while they themselves may not have used much time, called other
840 functions that did use unusual amounts of time.
841
842 Here is a sample call from a small program.  This call came from the
843 same @code{gprof} run as the flat profile example in the previous
844 chapter.
845
846 @smallexample
847 @group
848 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
849
850 index % time    self  children    called     name
851                                                  <spontaneous>
852 [1]    100.0    0.00    0.05                 start [1]
853                 0.00    0.05       1/1           main [2]
854                 0.00    0.00       1/2           on_exit [28]
855                 0.00    0.00       1/1           exit [59]
856 -----------------------------------------------
857                 0.00    0.05       1/1           start [1]
858 [2]    100.0    0.00    0.05       1         main [2]
859                 0.00    0.05       1/1           report [3]
860 -----------------------------------------------
861                 0.00    0.05       1/1           main [2]
862 [3]    100.0    0.00    0.05       1         report [3]
863                 0.00    0.03       8/8           timelocal [6]
864                 0.00    0.01       1/1           print [9]
865                 0.00    0.01       9/9           fgets [12]
866                 0.00    0.00      12/34          strncmp <cycle 1> [40]
867                 0.00    0.00       8/8           lookup [20]
868                 0.00    0.00       1/1           fopen [21]
869                 0.00    0.00       8/8           chewtime [24]
870                 0.00    0.00       8/16          skipspace [44]
871 -----------------------------------------------
872 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole>   [4]
873                 0.01        0.02     244+260         offtime <cycle 2> [7]
874                 0.00        0.00     236+1           tzset <cycle 2> [26]
875 -----------------------------------------------
876 @end group
877 @end smallexample
878
879 The lines full of dashes divide this table into @dfn{entries}, one for each
880 function.  Each entry has one or more lines.
881
882 In each entry, the primary line is the one that starts with an index number
883 in square brackets.  The end of this line says which function the entry is
884 for.  The preceding lines in the entry describe the callers of this
885 function and the following lines describe its subroutines (also called
886 @dfn{children} when we speak of the call graph).
887
888 The entries are sorted by time spent in the function and its subroutines.
889
890 The internal profiling function @code{mcount} (@pxref{Flat Profile})
891 is never mentioned in the call graph.
892
893 @menu
894 * Primary::       Details of the primary line's contents.
895 * Callers::       Details of caller-lines' contents.
896 * Subroutines::   Details of subroutine-lines' contents.
897 * Cycles::        When there are cycles of recursion,
898                    such as @code{a} calls @code{b} calls @code{a}@dots{}
899 @end menu
900
901 @node Primary
902 @subsection The Primary Line
903
904 The @dfn{primary line} in a call graph entry is the line that
905 describes the function which the entry is about and gives the overall
906 statistics for this function.
907
908 For reference, we repeat the primary line from the entry for function
909 @code{report} in our main example, together with the heading line that
910 shows the names of the fields:
911
912 @smallexample
913 @group
914 index  % time    self  children called     name
915 @dots{}
916 [3]    100.0    0.00    0.05       1         report [3]
917 @end group
918 @end smallexample
919
920 Here is what the fields in the primary line mean:
921
922 @table @code
923 @item index
924 Entries are numbered with consecutive integers.  Each function
925 therefore has an index number, which appears at the beginning of its
926 primary line.
927
928 Each cross-reference to a function, as a caller or subroutine of
929 another, gives its index number as well as its name.  The index number
930 guides you if you wish to look for the entry for that function.
931
932 @item % time
933 This is the percentage of the total time that was spent in this
934 function, including time spent in subroutines called from this
935 function.
936
937 The time spent in this function is counted again for the callers of
938 this function.  Therefore, adding up these percentages is meaningless.
939
940 @item self
941 This is the total amount of time spent in this function.  This
942 should be identical to the number printed in the @code{seconds} field
943 for this function in the flat profile.
944
945 @item children
946 This is the total amount of time spent in the subroutine calls made by
947 this function.  This should be equal to the sum of all the @code{self}
948 and @code{children} entries of the children listed directly below this
949 function.
950
951 @item called
952 This is the number of times the function was called.
953
954 If the function called itself recursively, there are two numbers,
955 separated by a @samp{+}.  The first number counts non-recursive calls,
956 and the second counts recursive calls.
957
958 In the example above, the function @code{report} was called once from
959 @code{main}.
960
961 @item name
962 This is the name of the current function.  The index number is
963 repeated after it.
964
965 If the function is part of a cycle of recursion, the cycle number is
966 printed between the function's name and the index number
967 (@pxref{Cycles}).  For example, if function @code{gnurr} is part of
968 cycle number one, and has index number twelve, its primary line would
969 be end like this:
970
971 @example
972 gnurr <cycle 1> [12]
973 @end example
974 @end table
975
976 @node Callers, Subroutines, Primary, Call Graph
977 @subsection Lines for a Function's Callers
978
979 A function's entry has a line for each function it was called by.
980 These lines' fields correspond to the fields of the primary line, but
981 their meanings are different because of the difference in context.
982
983 For reference, we repeat two lines from the entry for the function
984 @code{report}, the primary line and one caller-line preceding it, together
985 with the heading line that shows the names of the fields:
986
987 @smallexample
988 index  % time    self  children called     name
989 @dots{}
990                 0.00    0.05       1/1           main [2]
991 [3]    100.0    0.00    0.05       1         report [3]
992 @end smallexample
993
994 Here are the meanings of the fields in the caller-line for @code{report}
995 called from @code{main}:
996
997 @table @code
998 @item self
999 An estimate of the amount of time spent in @code{report} itself when it was
1000 called from @code{main}.
1001
1002 @item children
1003 An estimate of the amount of time spent in subroutines of @code{report}
1004 when @code{report} was called from @code{main}.
1005
1006 The sum of the @code{self} and @code{children} fields is an estimate
1007 of the amount of time spent within calls to @code{report} from @code{main}.
1008
1009 @item called
1010 Two numbers: the number of times @code{report} was called from @code{main},
1011 followed by the total number of nonrecursive calls to @code{report} from
1012 all its callers.
1013
1014 @item name and index number
1015 The name of the caller of @code{report} to which this line applies,
1016 followed by the caller's index number.
1017
1018 Not all functions have entries in the call graph; some
1019 options to @code{gprof} request the omission of certain functions.
1020 When a caller has no entry of its own, it still has caller-lines
1021 in the entries of the functions it calls.
1022
1023 If the caller is part of a recursion cycle, the cycle number is
1024 printed between the name and the index number.
1025 @end table
1026
1027 If the identity of the callers of a function cannot be determined, a
1028 dummy caller-line is printed which has @samp{<spontaneous>} as the
1029 ``caller's name'' and all other fields blank.  This can happen for
1030 signal handlers.
1031 @c What if some calls have determinable callers' names but not all?
1032 @c FIXME - still relevant?
1033
1034 @node Subroutines, Cycles, Callers, Call Graph
1035 @subsection Lines for a Function's Subroutines
1036
1037 A function's entry has a line for each of its subroutines---in other
1038 words, a line for each other function that it called.  These lines'
1039 fields correspond to the fields of the primary line, but their meanings
1040 are different because of the difference in context.
1041
1042 For reference, we repeat two lines from the entry for the function
1043 @code{main}, the primary line and a line for a subroutine, together
1044 with the heading line that shows the names of the fields:
1045
1046 @smallexample
1047 index  % time    self  children called     name
1048 @dots{}
1049 [2]    100.0    0.00    0.05       1         main [2]
1050                 0.00    0.05       1/1           report [3]
1051 @end smallexample
1052
1053 Here are the meanings of the fields in the subroutine-line for @code{main}
1054 calling @code{report}:
1055
1056 @table @code
1057 @item self
1058 An estimate of the amount of time spent directly within @code{report}
1059 when @code{report} was called from @code{main}.
1060
1061 @item children
1062 An estimate of the amount of time spent in subroutines of @code{report}
1063 when @code{report} was called from @code{main}.
1064
1065 The sum of the @code{self} and @code{children} fields is an estimate
1066 of the total time spent in calls to @code{report} from @code{main}.
1067
1068 @item called
1069 Two numbers, the number of calls to @code{report} from @code{main}
1070 followed by the total number of nonrecursive calls to @code{report}.
1071 This ratio is used to determine how much of @code{report}'s @code{self}
1072 and @code{children} time gets credited to @code{main}.
1073 @xref{Assumptions}.
1074
1075 @item name
1076 The name of the subroutine of @code{main} to which this line applies,
1077 followed by the subroutine's index number.
1078
1079 If the caller is part of a recursion cycle, the cycle number is
1080 printed between the name and the index number.
1081 @end table
1082
1083 @node Cycles,, Subroutines, Call Graph
1084 @subsection How Mutually Recursive Functions Are Described
1085 @cindex cycle
1086 @cindex recursion cycle
1087
1088 The graph may be complicated by the presence of @dfn{cycles of
1089 recursion} in the call graph.  A cycle exists if a function calls
1090 another function that (directly or indirectly) calls (or appears to
1091 call) the original function.  For example: if @code{a} calls @code{b},
1092 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1093
1094 Whenever there are call paths both ways between a pair of functions, they
1095 belong to the same cycle.  If @code{a} and @code{b} call each other and
1096 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1097 even if @code{b} only calls @code{a} if it was not called from @code{a},
1098 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1099 considered a cycle.
1100
1101 The cycles are numbered with consecutive integers.  When a function
1102 belongs to a cycle, each time the function name appears in the call graph
1103 it is followed by @samp{<cycle @var{number}>}.
1104
1105 The reason cycles matter is that they make the time values in the call
1106 graph paradoxical.  The ``time spent in children'' of @code{a} should
1107 include the time spent in its subroutine @code{b} and in @code{b}'s
1108 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1109 @code{a}'s time should be included in the children of @code{a}, when
1110 @code{a} is indirectly recursive?
1111
1112 The way @code{gprof} resolves this paradox is by creating a single entry
1113 for the cycle as a whole.  The primary line of this entry describes the
1114 total time spent directly in the functions of the cycle.  The
1115 ``subroutines'' of the cycle are the individual functions of the cycle, and
1116 all other functions that were called directly by them.  The ``callers'' of
1117 the cycle are the functions, outside the cycle, that called functions in
1118 the cycle.
1119
1120 Here is an example portion of a call graph which shows a cycle containing
1121 functions @code{a} and @code{b}.  The cycle was entered by a call to
1122 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1123
1124 @smallexample
1125 index  % time    self  children called     name
1126 ----------------------------------------
1127                  1.77        0    1/1        main [2]
1128 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1129                  1.02        0    3          b <cycle 1> [4]
1130                  0.75        0    2          a <cycle 1> [5]
1131 ----------------------------------------
1132                                   3          a <cycle 1> [5]
1133 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1134                                   2          a <cycle 1> [5]
1135                     0        0    3/6        c [6]
1136 ----------------------------------------
1137                  1.77        0    1/1        main [2]
1138                                   2          b <cycle 1> [4]
1139 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1140                                   3          b <cycle 1> [4]
1141                     0        0    3/6        c [6]
1142 ----------------------------------------
1143 @end smallexample
1144
1145 @noindent
1146 (The entire call graph for this program contains in addition an entry for
1147 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1148 @code{a} and @code{b}.)
1149
1150 @smallexample
1151 index  % time    self  children called     name
1152                                              <spontaneous>
1153 [1]    100.00       0     1.93    0      start [1]
1154                  0.16     1.77    1/1        main [2]
1155 ----------------------------------------
1156                  0.16     1.77    1/1        start [1]
1157 [2]    100.00    0.16     1.77    1      main [2]
1158                  1.77        0    1/1        a <cycle 1> [5]
1159 ----------------------------------------
1160                  1.77        0    1/1        main [2]
1161 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1162                  1.02        0    3          b <cycle 1> [4]
1163                  0.75        0    2          a <cycle 1> [5]
1164                     0        0    6/6        c [6]
1165 ----------------------------------------
1166                                   3          a <cycle 1> [5]
1167 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1168                                   2          a <cycle 1> [5]
1169                     0        0    3/6        c [6]
1170 ----------------------------------------
1171                  1.77        0    1/1        main [2]
1172                                   2          b <cycle 1> [4]
1173 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1174                                   3          b <cycle 1> [4]
1175                     0        0    3/6        c [6]
1176 ----------------------------------------
1177                     0        0    3/6        b <cycle 1> [4]
1178                     0        0    3/6        a <cycle 1> [5]
1179 [6]      0.00       0        0    6      c [6]
1180 ----------------------------------------
1181 @end smallexample
1182
1183 The @code{self} field of the cycle's primary line is the total time
1184 spent in all the functions of the cycle.  It equals the sum of the
1185 @code{self} fields for the individual functions in the cycle, found
1186 in the entry in the subroutine lines for these functions.
1187
1188 The @code{children} fields of the cycle's primary line and subroutine lines
1189 count only subroutines outside the cycle.  Even though @code{a} calls
1190 @code{b}, the time spent in those calls to @code{b} is not counted in
1191 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1192 what to do when the time in those calls to @code{b} includes indirect
1193 recursive calls back to @code{a}.
1194
1195 The @code{children} field of a caller-line in the cycle's entry estimates
1196 the amount of time spent @emph{in the whole cycle}, and its other
1197 subroutines, on the times when that caller called a function in the cycle.
1198
1199 The @code{calls} field in the primary line for the cycle has two numbers:
1200 first, the number of times functions in the cycle were called by functions
1201 outside the cycle; second, the number of times they were called by
1202 functions in the cycle (including times when a function in the cycle calls
1203 itself).  This is a generalization of the usual split into nonrecursive and
1204 recursive calls.
1205
1206 The @code{calls} field of a subroutine-line for a cycle member in the
1207 cycle's entry says how many time that function was called from functions in
1208 the cycle.  The total of all these is the second number in the primary line's
1209 @code{calls} field.
1210
1211 In the individual entry for a function in a cycle, the other functions in
1212 the same cycle can appear as subroutines and as callers.  These lines show
1213 how many times each function in the cycle called or was called from each other
1214 function in the cycle.  The @code{self} and @code{children} fields in these
1215 lines are blank because of the difficulty of defining meanings for them
1216 when recursion is going on.
1217
1218 @node Line-by-line,Annotated Source,Call Graph,Output
1219 @section Line-by-line Profiling
1220
1221 @code{gprof}'s @samp{-l} option causes the program to perform
1222 @dfn{line-by-line} profiling.  In this mode, histogram
1223 samples are assigned not to functions, but to individual
1224 lines of source code.  The program usually must be compiled
1225 with a @samp{-g} option, in addition to @samp{-pg}, in order
1226 to generate debugging symbols for tracking source code lines.
1227
1228 The flat profile is the most useful output table
1229 in line-by-line mode.
1230 The call graph isn't as useful as normal, since
1231 the current version of @code{gprof} does not propagate
1232 call graph arcs from source code lines to the enclosing function.
1233 The call graph does, however, show each line of code
1234 that called each function, along with a count.
1235
1236 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1237 Note that @code{ct_init} accounted for four histogram hits, and
1238 13327 calls to @code{init_block}.
1239
1240 @smallexample
1241 Flat profile:
1242
1243 Each sample counts as 0.01 seconds.
1244   %   cumulative   self              self     total           
1245  time   seconds   seconds    calls  us/call  us/call  name    
1246  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1247
1248
1249                      Call graph (explanation follows)
1250
1251
1252 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1253
1254 index % time    self  children    called     name
1255
1256                 0.00    0.00       1/13496       name_too_long
1257                 0.00    0.00      40/13496       deflate
1258                 0.00    0.00     128/13496       deflate_fast
1259                 0.00    0.00   13327/13496       ct_init
1260 [7]      0.0    0.00    0.00   13496         init_block
1261
1262 @end smallexample
1263
1264 Now let's look at some of @code{gprof}'s output from the same program run,
1265 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1266 four histogram hits are broken down into four lines of source code - one hit
1267 occured on each of lines 349, 351, 382 and 385.  In the call graph,
1268 note how
1269 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1270 into one call from line 396, 3071 calls from line 384, 3730 calls
1271 from line 385, and 6525 calls from 387.
1272
1273 @smallexample
1274 Flat profile:
1275
1276 Each sample counts as 0.01 seconds.
1277   %   cumulative   self                    
1278  time   seconds   seconds    calls  name    
1279   7.69      0.10     0.01           ct_init (trees.c:349)
1280   7.69      0.11     0.01           ct_init (trees.c:351)
1281   7.69      0.12     0.01           ct_init (trees.c:382)
1282   7.69      0.13     0.01           ct_init (trees.c:385)
1283
1284
1285                      Call graph (explanation follows)
1286
1287
1288 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1289
1290   % time    self  children    called     name
1291
1292             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1293             0.00    0.00       1/13496       deflate (deflate.c:763)
1294             0.00    0.00       1/13496       ct_init (trees.c:396)
1295             0.00    0.00       2/13496       deflate (deflate.c:727)
1296             0.00    0.00       4/13496       deflate (deflate.c:686)
1297             0.00    0.00       5/13496       deflate (deflate.c:675)
1298             0.00    0.00      12/13496       deflate (deflate.c:679)
1299             0.00    0.00      16/13496       deflate (deflate.c:730)
1300             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1301             0.00    0.00    3071/13496       ct_init (trees.c:384)
1302             0.00    0.00    3730/13496       ct_init (trees.c:385)
1303             0.00    0.00    6525/13496       ct_init (trees.c:387)
1304 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1305
1306 @end smallexample
1307
1308
1309 @node Annotated Source,,Line-by-line,Output
1310 @section The Annotated Source Listing
1311
1312 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1313 which lists the program's source code, each function labeled with the
1314 number of times it was called.  You may also need to specify the
1315 @samp{-I} option, if @code{gprof} can't find the source code files.
1316
1317 Compiling with @samp{gcc @dots{} -g -pg -a} augments your program
1318 with basic-block counting code, in addition to function counting code.
1319 This enables @code{gprof} to determine how many times each line
1320 of code was exeucted.
1321 For example, consider the following function, taken from gzip,
1322 with line numbers added:
1323
1324 @smallexample
1325  1 ulg updcrc(s, n)
1326  2     uch *s;
1327  3     unsigned n;
1328  4 @{
1329  5     register ulg c;
1330  6
1331  7     static ulg crc = (ulg)0xffffffffL;
1332  8
1333  9     if (s == NULL) @{
1334 10         c = 0xffffffffL;
1335 11     @} else @{
1336 12         c = crc;
1337 13         if (n) do @{
1338 14             c = crc_32_tab[...];
1339 15         @} while (--n);
1340 16     @}
1341 17     crc = c;
1342 18     return c ^ 0xffffffffL;
1343 19 @}
1344
1345 @end smallexample
1346
1347 @code{updcrc} has at least five basic-blocks.
1348 One is the function itself.  The
1349 @code{if} statement on line 9 generates two more basic-blocks, one
1350 for each branch of the @code{if}.  A fourth basic-block results from
1351 the @code{if} on line 13, and the contents of the @code{do} loop form
1352 the fifth basic-block.  The compiler may also generate additional
1353 basic-blocks to handle various special cases.
1354
1355 A program augmented for basic-block counting can be analyzed with
1356 @code{gprof -l -A}.  I also suggest use of the @samp{-x} option,
1357 which ensures that each line of code is labeled at least once.
1358 Here is @code{updcrc}'s
1359 annotated source listing for a sample @code{gzip} run:
1360
1361 @smallexample
1362                 ulg updcrc(s, n)
1363                     uch *s;
1364                     unsigned n;
1365             2 ->@{
1366                     register ulg c;
1367                 
1368                     static ulg crc = (ulg)0xffffffffL;
1369                 
1370             2 ->    if (s == NULL) @{
1371             1 ->        c = 0xffffffffL;
1372             1 ->    @} else @{
1373             1 ->        c = crc;
1374             1 ->        if (n) do @{
1375         26312 ->            c = crc_32_tab[...];
1376 26312,1,26311 ->        @} while (--n);
1377                     @}
1378             2 ->    crc = c;
1379             2 ->    return c ^ 0xffffffffL;
1380             2 ->@}
1381 @end smallexample
1382
1383 In this example, the function was called twice, passing once through
1384 each branch of the @code{if} statement.  The body of the @code{do}
1385 loop was executed a total of 26312 times.  Note how the @code{while}
1386 statement is annotated.  It began execution 26312 times, once for
1387 each iteration through the loop.  One of those times (the last time)
1388 it exited, while it branched back to the beginning of the loop 26311 times.
1389
1390 @node Inaccuracy
1391 @chapter Inaccuracy of @code{gprof} Output
1392
1393 @menu
1394 * Sampling Error::      Statistical margins of error
1395 * Assumptions::         Estimating children times
1396 @end menu
1397
1398 @node Sampling Error,Assumptions,,Inaccuracy
1399 @section Statistical Sampling Error
1400
1401 The run-time figures that @code{gprof} gives you are based on a sampling
1402 process, so they are subject to statistical inaccuracy.  If a function runs
1403 only a small amount of time, so that on the average the sampling process
1404 ought to catch that function in the act only once, there is a pretty good
1405 chance it will actually find that function zero times, or twice.
1406
1407 By contrast, the number-of-calls and basic-block figures
1408 are derived by counting, not
1409 sampling.  They are completely accurate and will not vary from run to run
1410 if your program is deterministic.
1411
1412 The @dfn{sampling period} that is printed at the beginning of the flat
1413 profile says how often samples are taken.  The rule of thumb is that a
1414 run-time figure is accurate if it is considerably bigger than the sampling
1415 period.
1416
1417 The actual amount of error can be predicted.
1418 For @var{n} samples, the @emph{expected} error
1419 is the square-root of @var{n}.  For example,
1420 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1421 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1422 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1423 or ten percent of the observed value.
1424 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1425 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1426 the expected error in @code{bar}'s run-time is 1 second,
1427 or one percent of the observed value.
1428 It is likely to
1429 vary this much @emph{on the average} from one profiling run to the next.
1430 (@emph{Sometimes} it will vary more.)
1431
1432 This does not mean that a small run-time figure is devoid of information.
1433 If the program's @emph{total} run-time is large, a small run-time for one
1434 function does tell you that that function used an insignificant fraction of
1435 the whole program's time.  Usually this means it is not worth optimizing.
1436
1437 One way to get more accuracy is to give your program more (but similar)
1438 input data so it will take longer.  Another way is to combine the data from
1439 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1440
1441 @enumerate
1442 @item
1443 Run your program once.
1444
1445 @item
1446 Issue the command @samp{mv gmon.out gmon.sum}.
1447
1448 @item
1449 Run your program again, the same as before.
1450
1451 @item
1452 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1453
1454 @example
1455 gprof -s @var{executable-file} gmon.out gmon.sum
1456 @end example
1457
1458 @item
1459 Repeat the last two steps as often as you wish.
1460
1461 @item
1462 Analyze the cumulative data using this command:
1463
1464 @example
1465 gprof @var{executable-file} gmon.sum > @var{output-file}
1466 @end example
1467 @end enumerate
1468
1469 @node Assumptions,,Sampling Error,Inaccuracy
1470 @section Estimating @code{children} Times
1471
1472 Some of the figures in the call graph are estimates---for example, the
1473 @code{children} time values and all the the time figures in caller and
1474 subroutine lines.
1475
1476 There is no direct information about these measurements in the profile
1477 data itself.  Instead, @code{gprof} estimates them by making an assumption
1478 about your program that might or might not be true.
1479
1480 The assumption made is that the average time spent in each call to any
1481 function @code{foo} is not correlated with who called @code{foo}.  If
1482 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1483 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1484 @code{children} time, by assumption.
1485
1486 This assumption is usually true enough, but for some programs it is far
1487 from true.  Suppose that @code{foo} returns very quickly when its argument
1488 is zero; suppose that @code{a} always passes zero as an argument, while
1489 other callers of @code{foo} pass other arguments.  In this program, all the
1490 time spent in @code{foo} is in the calls from callers other than @code{a}.
1491 But @code{gprof} has no way of knowing this; it will blindly and
1492 incorrectly charge 2 seconds of time in @code{foo} to the children of
1493 @code{a}.
1494
1495 @c FIXME - has this been fixed?
1496 We hope some day to put more complete data into @file{gmon.out}, so that
1497 this assumption is no longer needed, if we can figure out how.  For the
1498 nonce, the estimated figures are usually more useful than misleading.
1499
1500 @node How do I?
1501 @chapter Answers to Common Questions
1502
1503 @table @asis
1504 @item How do I find which lines in my program were executed the most times?
1505
1506 Compile your program with basic-block counting enabled, run it, then
1507 use the following pipeline:
1508
1509 @example
1510 gprof -l -C @var{objfile} | sort -k 3 -n -r
1511 @end example
1512
1513 This listing will show you the lines in your code executed most often,
1514 but not necessarily those that consumed the most time.
1515
1516 @item How do I find which lines in my program called a particular function?
1517
1518 Use @code{gprof -l} and lookup the function in the call graph.
1519 The callers will be broken down by function and line number.
1520
1521 @item How do I analyze a program that runs for less than a second?
1522
1523 Try using a shell script like this one:
1524
1525 @example
1526 for i in `seq 1 100`; do
1527   fastprog
1528   mv gmon.out gmon.out.$i
1529 done
1530
1531 gprof -s fastprog gmon.out.*
1532
1533 gprof fastprog gmon.sum
1534 @end example
1535
1536 If your program is completely deterministic, all the call counts
1537 will be simple multiples of 100 (i.e. a function called once in
1538 each run will appear with a call count of 100).
1539
1540 @end table
1541
1542 @node Incompatibilities
1543 @chapter Incompatibilities with Unix @code{gprof}
1544
1545 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1546 file @file{gmon.out}, and provide essentially the same information.  But
1547 there are a few differences.
1548
1549 @itemize @bullet
1550 @item
1551 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1552 for basic-block execution counts and non-realtime histograms.  A magic
1553 cookie and version number allows @code{gprof} to easily identify
1554 new style files.  Old BSD-style files can still be read.
1555 @xref{File Format}.
1556
1557 @item
1558 For a recursive function, Unix @code{gprof} lists the function as a
1559 parent and as a child, with a @code{calls} field that lists the number
1560 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1561 the number of recursive calls in the primary line.
1562
1563 @item
1564 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1565 @code{gprof} still lists it as a subroutine of functions that call it.
1566
1567 @item
1568 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1569 in the form @samp{from/to}, instead of @samp{from to}.
1570
1571 @item
1572 In the annotated source listing,
1573 if there are multiple basic blocks on the same line,
1574 @sc{gnu} @code{gprof} prints all of their counts, seperated by commas.
1575
1576 @ignore - it does this now
1577 @item
1578 The function names printed in @sc{gnu} @code{gprof} output do not include
1579 the leading underscores that are added internally to the front of all
1580 C identifiers on many operating systems.
1581 @end ignore
1582
1583 @item
1584 The blurbs, field widths, and output formats are different.  @sc{gnu}
1585 @code{gprof} prints blurbs after the tables, so that you can see the
1586 tables without skipping the blurbs.
1587 @end itemize
1588
1589 @node Details
1590 @chapter Details of Profiling
1591
1592 @menu
1593 * Implementation::      How a program collets profiling information
1594 * File Format::         Format of @samp{gmon.out} files
1595 * Internals::           @code{gprof}'s internal operation
1596 * Debugging::           Using @code{gprof}'s @samp{-d} option
1597 @end menu
1598
1599 @node Implementation,File Format,,Details
1600 @section Implementation of Profiling
1601
1602 Profiling works by changing how every function in your program is compiled
1603 so that when it is called, it will stash away some information about where
1604 it was called from.  From this, the profiler can figure out what function
1605 called it, and can count how many times it was called.  This change is made
1606 by the compiler when your program is compiled with the @samp{-pg} option,
1607 which causes every function to call @code{mcount}
1608 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1609 as one of its first operations.
1610
1611 The @code{mcount} routine, included in the profiling library,
1612 is responsible for recording in an in-memory call graph table
1613 both its parent routine (the child) and its parent's parent.  This is
1614 typically done by examining the stack frame to find both
1615 the address of the child, and the return address in the original parent.
1616 Since this is a very machine-dependant operation, @code{mcount}
1617 itself is typically a short assembly-language stub routine
1618 that extracts the required
1619 information, and then calls @code{__mcount_internal}
1620 (a normal C function) with two arguments - @code{frompc} and @code{selfpc}.
1621 @code{__mcount_internal} is responsible for maintaining
1622 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1623 and the number of times each of these call arcs was transversed.
1624
1625 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1626 which allows a generic @code{mcount} function to extract the
1627 required information from the stack frame.  However, on some
1628 architectures, most notably the SPARC, using this builtin can be
1629 very computationally expensive, and an assembly language version
1630 of @code{mcount} is used for performance reasons.
1631
1632 Number-of-calls information for library routines is collected by using a
1633 special version of the C library.  The programs in it are the same as in
1634 the usual C library, but they were compiled with @samp{-pg}.  If you
1635 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1636 profiling version of the library.
1637
1638 Profiling also involves watching your program as it runs, and keeping a
1639 histogram of where the program counter happens to be every now and then.
1640 Typically the program counter is looked at around 100 times per second of
1641 run time, but the exact frequency may vary from system to system.
1642
1643 This is done is one of two ways.  Most UNIX-like operating systems
1644 provide a @code{profil()} system call, which registers a memory
1645 array with the kernel, along with a scale
1646 factor that determines how the program's address space maps
1647 into the array.
1648 Typical scaling values cause every 2 to 8 bytes of address space
1649 to map into a single array slot.
1650 On every tick of the system clock
1651 (assuming the profiled program is running), the value of the
1652 program counter is examined and the corresponding slot in
1653 the memory array is incremented.  Since this is done in the kernel,
1654 which had to interrupt the process anyway to handle the clock
1655 interrupt, very little additional system overhead is required.
1656
1657 However, some operating systems, most notably Linux 2.0 (and earlier),
1658 do not provide a @code{profil()} system call.  On such a system,
1659 arrangements are made for the kernel to periodically deliver
1660 a signal to the process (typically via @code{setitimer()}),
1661 which then performs the same operation of examining the
1662 program counter and incrementing a slot in the memory array.
1663 Since this method requires a signal to be delivered to
1664 user space every time a sample is taken, it uses considerably
1665 more overhead than kernel-based profiling.  Also, due to the
1666 added delay required to deliver the signal, this method is
1667 less accurate as well.
1668
1669 A special startup routine allocates memory for the histogram and 
1670 either calls @code{profil()} or sets up
1671 a clock signal handler.
1672 This routine (@code{monstartup}) can be invoked in several ways.
1673 On Linux systems, a special profiling startup file @code{gcrt0.o},
1674 which invokes @code{monstartup} before @code{main},
1675 is used instead of the default @code{crt0.o}.
1676 Use of this special startup file is one of the effects
1677 of using @samp{gcc @dots{} -pg} to link.
1678 On SPARC systems, no special startup files are used.
1679 Rather, the @code{mcount} routine, when it is invoked for
1680 the first time (typically when @code{main} is called),
1681 calls @code{monstartup}.
1682
1683 If the compiler's @samp{-a} option was used, basic-block counting
1684 is also enabled.  Each object file is then compiled with a static array
1685 of counts, initially zero.
1686 In the executable code, every time a new basic-block begins
1687 (i.e. when an @code{if} statement appears), an extra instruction
1688 is inserted to increment the corresponding count in the array.
1689 At compile time, a paired array was constructed that recorded
1690 the starting address of each basic-block.  Taken together,
1691 the two arrays record the starting address of every basic-block,
1692 along with the number of times it was executed.
1693
1694 The profiling library also includes a function (@code{mcleanup}) which is
1695 typically registered using @code{atexit()} to be called as the
1696 program exits, and is responsible for writing the file @file{gmon.out}.
1697 Profiling is turned off, various headers are output, and the histogram
1698 is written, followed by the call-graph arcs and the basic-block counts.
1699
1700 The output from @code{gprof} gives no indication of parts of your program that
1701 are limited by I/O or swapping bandwidth.  This is because samples of the
1702 program counter are taken at fixed intervals of the program's run time.
1703 Therefore, the
1704 time measurements in @code{gprof} output say nothing about time that your
1705 program was not running.  For example, a part of the program that creates
1706 so much data that it cannot all fit in physical memory at once may run very
1707 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1708 the other hand, sampling by run time has the advantage that the amount of
1709 load due to other users won't directly affect the output you get.
1710
1711 @node File Format,Internals,Implementation,Details
1712 @section Profiling Data File Format
1713
1714 The old BSD-derived file format used for profile data does not contain a
1715 magic cookie that allows to check whether a data file really is a
1716 gprof file.  Furthermore, it does not provide a version number, thus
1717 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1718 uses a new file format that provides these features.  For backward
1719 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1720 format, but not all features are supported with it.  For example,
1721 basic-block execution counts cannot be accommodated by the old file
1722 format.
1723
1724 The new file format is defined in header file @file{gmon_out.h}.  It
1725 consists of a header containing the magic cookie and a version number,
1726 as well as some spare bytes available for future extensions.  All data
1727 in a profile data file is in the native format of the host on which
1728 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically to the
1729 byte-order in use.
1730
1731 In the new file format, the header is followed by a sequence of
1732 records.  Currently, there are three different record types: histogram
1733 records, call-graph arc records, and basic-block execution count
1734 records.  Each file can contain any number of each record type.  When
1735 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1736 compatible with each other and compute the union of all records.  For
1737 example, for basic-block execution counts, the union is simply the sum
1738 of all execution counts for each basic-block.
1739
1740 @subsection Histogram Records
1741
1742 Histogram records consist of a header that is followed by an array of
1743 bins.  The header contains the text-segment range that the histogram
1744 spans, the size of the histogram in bytes (unlike in the old BSD
1745 format, this does not include the size of the header), the rate of the
1746 profiling clock, and the physical dimension that the bin counts
1747 represent after being scaled by the profiling clock rate.  The
1748 physical dimension is specified in two parts: a long name of up to 15
1749 characters and a single character abbreviation.  For example, a
1750 histogram representing real-time would specify the long name as
1751 "seconds" and the abbreviation as "s".  This feature is useful for
1752 architectures that support performance monitor hardware (which,
1753 fortunately, is becoming increasingly common).  For example, under DEC
1754 OSF/1, the "uprofile" command can be used to produce a histogram of,
1755 say, instruction cache misses.  In this case, the dimension in the
1756 histogram header could be set to "i-cache misses" and the abbreviation
1757 could be set to "1" (because it is simply a count, not a physical
1758 dimension).  Also, the profiling rate would have to be set to 1 in
1759 this case.
1760
1761 Histogram bins are 16-bit numbers and each bin represent an equal
1762 amount of text-space.  For example, if the text-segment is one
1763 thousand bytes long and if there are ten bins in the histogram, each
1764 bin represents one hundred bytes.
1765
1766
1767 @subsection Call-Graph Records
1768
1769 Call-graph records have a format that is identical to the one used in
1770 the BSD-derived file format.  It consists of an arc in the call graph
1771 and a count indicating the number of times the arc was traversed
1772 during program execution.  Arcs are specified by a pair of addresses:
1773 the first must be within caller's function and the second must be
1774 within the callee's function.  When performing profiling at the
1775 function level, these addresses can point anywhere within the
1776 respective function.  However, when profiling at the line-level, it is
1777 better if the addresses are as close to the call-site/entry-point as
1778 possible.  This will ensure that the line-level call-graph is able to
1779 identify exactly which line of source code performed calls to a
1780 function.
1781
1782 @subsection Basic-Block Execution Count Records
1783
1784 Basic-block execution count records consist of a header followed by a
1785 sequence of address/count pairs.  The header simply specifies the
1786 length of the sequence.  In an address/count pair, the address
1787 identifies a basic-block and the count specifies the number of times
1788 that basic-block was executed.  Any address within the basic-address can
1789 be used.
1790
1791 @node Internals,Debugging,File Format,Details
1792 @section @code{gprof}'s Internal Operation
1793
1794 Like most programs, @code{gprof} begins by processing its options.
1795 During this stage, it may building its symspec list
1796 (@code{sym_ids.c:sym_id_add}), if
1797 options are specified which use symspecs.
1798 @code{gprof} maintains a single linked list of symspecs,
1799 which will eventually get turned into 12 symbol tables,
1800 organized into six include/exclude pairs - one
1801 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
1802 the call graph arcs (INCL_ARCS/EXCL_ARCS),
1803 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
1804 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
1805 the annotated source listing (INCL_ANNO/EXCL_ANNO),
1806 and the execution count listing (INCL_EXEC/EXCL_EXEC).
1807
1808 After option processing, @code{gprof} finishes
1809 building the symspec list by adding all the symspecs in
1810 @code{default_excluded_list} to the exclude lists
1811 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
1812 EXCL_FLAT as well.
1813 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
1814
1815 Next, the BFD library is called to open the object file,
1816 verify that it is an object file,
1817 and read its symbol table (@code{core.c:core_init}),
1818 using @code{bfd_canonicalize_symtab} after mallocing
1819 an appropiate sized array of asymbols.  At this point,
1820 function mappings are read (if the @samp{--file-ordering} option
1821 has been specified), and the core text space is read into
1822 memory (if the @samp{-c} option was given).
1823
1824 @code{gprof}'s own symbol table, an array of Sym structures,
1825 is now built.
1826 This is done in one of two ways, by one of two routines, depending
1827 on whether line-by-line profiling (@samp{-l} option) has been
1828 enabled.
1829 For normal profiling, the BFD canonical symbol table is scanned.
1830 For line-by-line profiling, every
1831 text space address is examined, and a new symbol table entry
1832 gets created every time the line number changes.
1833 In either case, two passes are made through the symbol
1834 table - one to count the size of the symbol table required,
1835 and the other to actually read the symbols.  In between the
1836 two passes, a single array of type @code{Sym} is created of
1837 the appropiate length.
1838 Finally, @code{symtab.c:symtab_finalize}
1839 is called to sort the symbol table and remove duplicate entries
1840 (entries with the same memory address).
1841
1842 The symbol table must be a contiguous array for two reasons.
1843 First, the @code{qsort} library function (which sorts an array)
1844 will be used to sort the symbol table.
1845 Also, the symbol lookup routine (@code{symtab.c:sym_lookup}),
1846 which finds symbols
1847 based on memory address, uses a binary search algorithm
1848 which requires the symbol table to be a sorted array.
1849 Function symbols are indicated with an @code{is_func} flag.
1850 Line number symbols have no special flags set.
1851 Additionally, a symbol can have an @code{is_static} flag
1852 to indicate that it is a local symbol.
1853
1854 With the symbol table read, the symspecs can now be translated
1855 into Syms (@code{sym_ids.c:sym_id_parse}).  Remember that a single
1856 symspec can match multiple symbols.
1857 An array of symbol tables
1858 (@code{syms}) is created, each entry of which is a symbol table
1859 of Syms to be included or excluded from a particular listing.
1860 The master symbol table and the symspecs are examined by nested
1861 loops, and every symbol that matches a symspec is inserted
1862 into the appropriate syms table.  This is done twice, once to
1863 count the size of each required symbol table, and again to build
1864 the tables, which have been malloced between passes.
1865 From now on, to determine whether a symbol is on an include
1866 or exclude symspec list, @code{gprof} simply uses its
1867 standard symbol lookup routine on the appropriate table
1868 in the @code{syms} array.
1869
1870 Now the profile data file(s) themselves are read
1871 (@code{gmon_io.c:gmon_out_read}),
1872 first by checking for a new-style @samp{gmon.out} header,
1873 then assuming this is an old-style BSD @samp{gmon.out}
1874 if the magic number test failed.
1875
1876 New-style histogram records are read by @code{hist.c:hist_read_rec}.
1877 For the first histogram record, allocate a memory array to hold
1878 all the bins, and read them in.
1879 When multiple profile data files (or files with multiple histogram
1880 records) are read, the starting address, ending address, number
1881 of bins and sampling rate must match between the various histograms,
1882 or a fatal error will result.
1883 If everything matches, just sum the additional histograms into
1884 the existing in-memory array.
1885
1886 As each call graph record is read (@code{call_graph.c:cg_read_rec}),
1887 the parent and child addresses
1888 are matched to symbol table entries, and a call graph arc is
1889 created by @code{cg_arcs.c:arc_add}, unless the arc fails a symspec
1890 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
1891 a linked list is maintained of the parent's child arcs, and of the child's
1892 parent arcs.
1893 Both the child's call count and the arc's call count are
1894 incremented by the record's call count.
1895
1896 Basic-block records are read (@code{basic_blocks.c:bb_read_rec}),
1897 but only if line-by-line profiling has been selected.
1898 Each basic-block address is matched to a corresponding line
1899 symbol in the symbol table, and an entry made in the symbol's
1900 bb_addr and bb_calls arrays.  Again, if multiple basic-block
1901 records are present for the same address, the call counts
1902 are cumulative.
1903
1904 A gmon.sum file is dumped, if requested (@code{gmon_io.c:gmon_out_write}).
1905
1906 If histograms were present in the data files, assign them to symbols
1907 (@code{hist.c:hist_assign_samples}) by iterating over all the sample
1908 bins and assigning them to symbols.  Since the symbol table
1909 is sorted in order of ascending memory addresses, we can
1910 simple follow along in the symbol table as we make our pass
1911 over the sample bins.
1912 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
1913 Depending on the histogram
1914 scale factor, a sample bin may span multiple symbols,
1915 in which case a fraction of the sample count is allocated
1916 to each symbol, proportional to the degree of overlap.
1917 This effect is rare for normal profiling, but overlaps
1918 are more common during line-by-line profiling, and can
1919 cause each of two adjacent lines to be credited with half
1920 a hit, for example.
1921
1922 If call graph data is present, @code{cg_arcs.c:cg_assemble} is called.
1923 First, if @samp{-c} was specified, a machine-dependant
1924 routine (@code{find_call}) scans through each symbol's machine code,
1925 looking for subroutine call instructions, and adding them
1926 to the call graph with a zero call count.
1927 A topological sort is performed by depth-first numbering
1928 all the symbols (@code{cg_dfn.c:cg_dfn}), so that
1929 children are always numbered less than their parents,
1930 then making a array of pointers into the symbol table and sorting it into
1931 numerical order, which is reverse topological
1932 order (children appear before parents).
1933 Cycles are also detected at this point, all members
1934 of which are assigned the same topological number.
1935 Two passes are now made through this sorted array of symbol pointers.
1936 The first pass, from end to beginning (parents to children),
1937 computes the fraction of child time to propogate to each parent
1938 and a print flag.
1939 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
1940 with a parent's include or exclude (print or no print) property
1941 being propagated to its children, unless they themselves explicitly appear
1942 in INCL_GRAPH or EXCL_GRAPH.
1943 A second pass, from beginning to end (children to parents) actually
1944 propogates the timings along the call graph, subject
1945 to a check against INCL_TIME/EXCL_TIME.
1946 With the print flag, fractions, and timings now stored in the symbol
1947 structures, the topological sort array is now discarded, and a
1948 new array of pointers is assembled, this time sorted by propagated time.
1949
1950 Finally, print the various outputs the user requested, which is now fairly
1951 straightforward.  The call graph (@code{cg_print.c:cg_print}) and
1952 flat profile (@code{hist.c:hist_print}) are regurgitations of values
1953 already computed.  The annotated source listing
1954 (@code{basic_blocks.c:print_annotated_source}) uses basic-block
1955 information, if present, to label each line of code with call counts,
1956 otherwise only the function call counts are presented.
1957
1958 The function ordering code is marginally well documented
1959 in the source code itself (@code{cg_print.c}).  Basically,
1960 the functions with the most use and the most parents are
1961 placed first, followed by other functions with the most use,
1962 followed by lower use functions, followed by unused functions
1963 at the end.
1964
1965 @node Debugging,,Internals,Details
1966 @subsection Debugging @code{gprof}
1967
1968 If @code{gprof} was compiled with debugging enabled,
1969 the @samp{-d} option triggers debugging output
1970 (to stdout) which can be helpful in understanding its operation.
1971 The debugging number specified is interpreted as a sum of the following
1972 options:
1973
1974 @table @asis
1975 @item 2 - Topological sort
1976 Monitor depth-first numbering of symbols during call graph analysis
1977 @item 4 - Cycles
1978 Shows symbols as they are identified as cycle heads
1979 @item 16 - Tallying
1980 As the call graph arcs are read, show each arc and how
1981 the total calls to each function are tallied
1982 @item 32 - Call graph arc sorting
1983 Details sorting individual parents/children within each call graph entry
1984 @item 64 - Reading histogram and call graph records
1985 Shows address ranges of histograms as they are read, and each
1986 call graph arc
1987 @item 128 - Symbol table
1988 Reading, classifying, and sorting the symbol table from the object file.
1989 For line-by-line profiling (@samp{-l} option), also shows line numbers
1990 being assigned to memory addresses.
1991 @item 256 - Static call graph
1992 Trace operation of @samp{-c} option
1993 @item 512 - Symbol table and arc table lookups
1994 Detail operation of lookup routines
1995 @item 1024 - Call graph propagation
1996 Shows how function times are propagated along the call graph
1997 @item 2048 - Basic-blocks
1998 Shows basic-block records as they are read from profile data
1999 (only meaningful with @samp{-l} option)
2000 @item 4096 - Symspecs
2001 Shows symspec-to-symbol pattern matching operation
2002 @item 8192 - Annotate source
2003 Tracks operation of @samp{-A} option
2004 @end table
2005
2006 @contents
2007 @bye
2008
2009 NEEDS AN INDEX
2010
2011 -T - "traditional BSD style": How is it different?  Should the
2012 differences be documented?
2013
2014 example flat file adds up to 100.01%...
2015
2016 note: time estimates now only go out to one decimal place (0.0), where
2017 they used to extend two (78.67).