PR gprof/11524
[external/binutils.git] / gprof / gprof.texi
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright 1988, 1992, 1993, 1998, 1999, 2000, 2001, 2002, 2003,
4 @c 2004, 2007, 2008, 2009
5 @c Free Software Foundation, Inc.
6 @settitle GNU gprof
7 @setchapternewpage odd
8
9 @c man begin INCLUDE
10 @include bfdver.texi
11 @c man end
12
13 @ifinfo
14 @c This is a dir.info fragment to support semi-automated addition of
15 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
16 @format
17 START-INFO-DIR-ENTRY
18 * gprof: (gprof).                Profiling your program's execution
19 END-INFO-DIR-ENTRY
20 @end format
21 @end ifinfo
22
23 @copying
24 This file documents the gprof profiler of the GNU system.
25
26 @c man begin COPYRIGHT
27 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2001, 2003, 2007, 2008, 2009 Free Software Foundation, Inc.
28
29 Permission is granted to copy, distribute and/or modify this document
30 under the terms of the GNU Free Documentation License, Version 1.3
31 or any later version published by the Free Software Foundation;
32 with no Invariant Sections, with no Front-Cover Texts, and with no
33 Back-Cover Texts.  A copy of the license is included in the
34 section entitled ``GNU Free Documentation License''.
35
36 @c man end
37 @end copying
38
39 @finalout
40 @smallbook
41
42 @titlepage
43 @title GNU gprof
44 @subtitle The @sc{gnu} Profiler 
45 @ifset VERSION_PACKAGE
46 @subtitle @value{VERSION_PACKAGE}
47 @end ifset
48 @subtitle Version @value{VERSION}
49 @author Jay Fenlason and Richard Stallman
50
51 @page
52
53 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
54 can use it to determine which parts of a program are taking most of the
55 execution time.  We assume that you know how to write, compile, and
56 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
57 Eric S. Raymond made some minor corrections and additions in 2003.
58
59 @vskip 0pt plus 1filll
60 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2003, 2008, 2009 Free Software Foundation, Inc.
61
62       Permission is granted to copy, distribute and/or modify this document
63       under the terms of the GNU Free Documentation License, Version 1.3
64       or any later version published by the Free Software Foundation;
65       with no Invariant Sections, with no Front-Cover Texts, and with no
66       Back-Cover Texts.  A copy of the license is included in the
67       section entitled ``GNU Free Documentation License''.
68
69 @end titlepage
70 @contents
71
72 @ifnottex
73 @node Top
74 @top Profiling a Program: Where Does It Spend Its Time?
75
76 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
77 can use it to determine which parts of a program are taking most of the
78 execution time.  We assume that you know how to write, compile, and
79 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
80
81 This manual is for @code{gprof}
82 @ifset VERSION_PACKAGE
83 @value{VERSION_PACKAGE}
84 @end ifset
85 version @value{VERSION}.
86
87 This document is distributed under the terms of the GNU Free
88 Documentation License version 1.3.  A copy of the license is included
89 in the section entitled ``GNU Free Documentation License''.
90
91 @menu
92 * Introduction::        What profiling means, and why it is useful.
93
94 * Compiling::           How to compile your program for profiling.
95 * Executing::           Executing your program to generate profile data
96 * Invoking::            How to run @code{gprof}, and its options
97
98 * Output::              Interpreting @code{gprof}'s output
99
100 * Inaccuracy::          Potential problems you should be aware of
101 * How do I?::           Answers to common questions
102 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
103 * Details::             Details of how profiling is done
104 * GNU Free Documentation License::  GNU Free Documentation License
105 @end menu
106 @end ifnottex
107
108 @node Introduction
109 @chapter Introduction to Profiling
110
111 @ifset man
112 @c man title gprof display call graph profile data
113
114 @smallexample
115 @c man begin SYNOPSIS
116 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ACeEfFJnNOpPqQZ][@var{name}] ] 
117  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
118  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
119  [ --[no-]annotated-source[=@var{name}] ] 
120  [ --[no-]exec-counts[=@var{name}] ]
121  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
122  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ] 
123  [ --debug[=@var{level}] ] [ --function-ordering ] 
124  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
125  [ --display-unused-functions ] [ --file-format=@var{name} ]
126  [ --file-info ] [ --help ] [ --line ] [ --min-count=@var{n} ]
127  [ --no-static ] [ --print-path ] [ --separate-files ]
128  [ --static-call-graph ] [ --sum ] [ --table-length=@var{len} ]
129  [ --traditional ] [ --version ] [ --width=@var{n} ]
130  [ --ignore-non-functions ] [ --demangle[=@var{STYLE}] ]
131  [ --no-demangle ] [--external-symbol-table=name] 
132  [ @var{image-file} ] [ @var{profile-file} @dots{} ]
133 @c man end
134 @end smallexample
135
136 @c man begin DESCRIPTION
137 @code{gprof} produces an execution profile of C, Pascal, or Fortran77 
138 programs.  The effect of called routines is incorporated in the profile 
139 of each caller.  The profile data is taken from the call graph profile file
140 (@file{gmon.out} default) which is created by programs
141 that are compiled with the @samp{-pg} option of
142 @code{cc}, @code{pc}, and @code{f77}.
143 The @samp{-pg} option also links in versions of the library routines
144 that are compiled for profiling.  @code{Gprof} reads the given object 
145 file (the default is @code{a.out}) and establishes the relation between
146 its symbol table and the call graph profile from @file{gmon.out}.
147 If more than one profile file is specified, the @code{gprof}
148 output shows the sum of the profile information in the given profile files.
149
150 @code{Gprof} calculates the amount of time spent in each routine.
151 Next, these times are propagated along the edges of the call graph.
152 Cycles are discovered, and calls into a cycle are made to share the time
153 of the cycle.
154
155 @c man end
156
157 @c man begin BUGS
158 The granularity of the sampling is shown, but remains
159 statistical at best.
160 We assume that the time for each execution of a function
161 can be expressed by the total time for the function divided
162 by the number of times the function is called.
163 Thus the time propagated along the call graph arcs to the function's
164 parents is directly proportional to the number of times that
165 arc is traversed.
166
167 Parents that are not themselves profiled will have the time of
168 their profiled children propagated to them, but they will appear
169 to be spontaneously invoked in the call graph listing, and will
170 not have their time propagated further.
171 Similarly, signal catchers, even though profiled, will appear
172 to be spontaneous (although for more obscure reasons).
173 Any profiled children of signal catchers should have their times
174 propagated properly, unless the signal catcher was invoked during
175 the execution of the profiling routine, in which case all is lost.
176
177 The profiled program must call @code{exit}(2)
178 or return normally for the profiling information to be saved
179 in the @file{gmon.out} file.
180 @c man end
181
182 @c man begin FILES
183 @table @code
184 @item @file{a.out}
185 the namelist and text space.
186 @item @file{gmon.out}
187 dynamic call graph and profile.
188 @item @file{gmon.sum}
189 summarized dynamic call graph and profile.  
190 @end table
191 @c man end
192
193 @c man begin SEEALSO
194 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
195
196 ``An Execution Profiler for Modular Programs'',
197 by S. Graham, P. Kessler, M. McKusick;
198 Software - Practice and Experience,
199 Vol. 13, pp. 671-685, 1983.
200
201 ``gprof: A Call Graph Execution Profiler'',
202 by S. Graham, P. Kessler, M. McKusick;
203 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
204 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
205 @c man end
206 @end ifset
207
208 Profiling allows you to learn where your program spent its time and which
209 functions called which other functions while it was executing.  This
210 information can show you which pieces of your program are slower than you
211 expected, and might be candidates for rewriting to make your program
212 execute faster.  It can also tell you which functions are being called more
213 or less often than you expected.  This may help you spot bugs that had
214 otherwise been unnoticed.
215
216 Since the profiler uses information collected during the actual execution
217 of your program, it can be used on programs that are too large or too
218 complex to analyze by reading the source.  However, how your program is run
219 will affect the information that shows up in the profile data.  If you
220 don't use some feature of your program while it is being profiled, no
221 profile information will be generated for that feature.
222
223 Profiling has several steps:
224
225 @itemize @bullet
226 @item
227 You must compile and link your program with profiling enabled.
228 @xref{Compiling, ,Compiling a Program for Profiling}.
229
230 @item
231 You must execute your program to generate a profile data file.
232 @xref{Executing, ,Executing the Program}.
233
234 @item
235 You must run @code{gprof} to analyze the profile data.
236 @xref{Invoking, ,@code{gprof} Command Summary}.
237 @end itemize
238
239 The next three chapters explain these steps in greater detail.
240
241 @c man begin DESCRIPTION
242
243 Several forms of output are available from the analysis.
244
245 The @dfn{flat profile} shows how much time your program spent in each function,
246 and how many times that function was called.  If you simply want to know
247 which functions burn most of the cycles, it is stated concisely here.
248 @xref{Flat Profile, ,The Flat Profile}.
249
250 The @dfn{call graph} shows, for each function, which functions called it, which
251 other functions it called, and how many times.  There is also an estimate
252 of how much time was spent in the subroutines of each function.  This can
253 suggest places where you might try to eliminate function calls that use a
254 lot of time.  @xref{Call Graph, ,The Call Graph}.
255
256 The @dfn{annotated source} listing is a copy of the program's
257 source code, labeled with the number of times each line of the
258 program was executed.  @xref{Annotated Source, ,The Annotated Source
259 Listing}.
260 @c man end
261
262 To better understand how profiling works, you may wish to read
263 a description of its implementation.
264 @xref{Implementation, ,Implementation of Profiling}.
265
266 @node Compiling
267 @chapter Compiling a Program for Profiling
268
269 The first step in generating profile information for your program is
270 to compile and link it with profiling enabled.
271
272 To compile a source file for profiling, specify the @samp{-pg} option when
273 you run the compiler.  (This is in addition to the options you normally
274 use.)
275
276 To link the program for profiling, if you use a compiler such as @code{cc}
277 to do the linking, simply specify @samp{-pg} in addition to your usual
278 options.  The same option, @samp{-pg}, alters either compilation or linking
279 to do what is necessary for profiling.  Here are examples:
280
281 @example
282 cc -g -c myprog.c utils.c -pg
283 cc -o myprog myprog.o utils.o -pg
284 @end example
285
286 The @samp{-pg} option also works with a command that both compiles and links:
287
288 @example
289 cc -o myprog myprog.c utils.c -g -pg
290 @end example
291
292 Note: The @samp{-pg} option must be part of your compilation options
293 as well as your link options.  If it is not then no call-graph data
294 will be gathered and when you run @code{gprof} you will get an error
295 message like this:
296
297 @example
298 gprof: gmon.out file is missing call-graph data
299 @end example
300
301 If you add the @samp{-Q} switch to suppress the printing of the call
302 graph data you will still be able to see the time samples:
303
304 @example
305 Flat profile:
306
307 Each sample counts as 0.01 seconds.
308   %   cumulative   self              self     total           
309  time   seconds   seconds    calls  Ts/call  Ts/call  name    
310  44.12      0.07     0.07                             zazLoop
311  35.29      0.14     0.06                             main
312  20.59      0.17     0.04                             bazMillion
313 @end example
314
315 If you run the linker @code{ld} directly instead of through a compiler
316 such as @code{cc}, you may have to specify a profiling startup file
317 @file{gcrt0.o} as the first input file instead of the usual startup
318 file @file{crt0.o}.  In addition, you would probably want to
319 specify the profiling C library, @file{libc_p.a}, by writing
320 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
321 necessary, but doing this gives you number-of-calls information for
322 standard library functions such as @code{read} and @code{open}.  For
323 example:
324
325 @example
326 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
327 @end example
328
329 If you are running the program on a system which supports shared
330 libraries you may run into problems with the profiling support code in
331 a shared library being called before that library has been fully
332 initialised.  This is usually detected by the program encountering a
333 segmentation fault as soon as it is run.  The solution is to link
334 against a static version of the library containing the profiling
335 support code, which for @code{gcc} users can be done via the
336 @samp{-static} or @samp{-static-libgcc} command line option.  For
337 example:
338
339 @example
340 gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
341 @end example
342
343 If you compile only some of the modules of the program with @samp{-pg}, you
344 can still profile the program, but you won't get complete information about
345 the modules that were compiled without @samp{-pg}.  The only information
346 you get for the functions in those modules is the total time spent in them;
347 there is no record of how many times they were called, or from where.  This
348 will not affect the flat profile (except that the @code{calls} field for
349 the functions will be blank), but will greatly reduce the usefulness of the
350 call graph.
351
352 If you wish to perform line-by-line profiling you should use the
353 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
354 info pages for more details of how to do this.
355
356 Note, older versions of @code{gcc} produce line-by-line profiling
357 information that works with @code{gprof} rather than @code{gcov} so
358 there is still support for displaying this kind of information in
359 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
360
361 It also worth noting that @code{gcc} implements a
362 @samp{-finstrument-functions} command line option which will insert
363 calls to special user supplied instrumentation routines at the entry
364 and exit of every function in their program.  This can be used to
365 implement an alternative profiling scheme.
366
367 @node Executing
368 @chapter Executing the Program
369
370 Once the program is compiled for profiling, you must run it in order to
371 generate the information that @code{gprof} needs.  Simply run the program
372 as usual, using the normal arguments, file names, etc.  The program should
373 run normally, producing the same output as usual.  It will, however, run
374 somewhat slower than normal because of the time spent collecting and
375 writing the profile data.
376
377 The way you run the program---the arguments and input that you give
378 it---may have a dramatic effect on what the profile information shows.  The
379 profile data will describe the parts of the program that were activated for
380 the particular input you use.  For example, if the first command you give
381 to your program is to quit, the profile data will show the time used in
382 initialization and in cleanup, but not much else.
383
384 Your program will write the profile data into a file called @file{gmon.out}
385 just before exiting.  If there is already a file called @file{gmon.out},
386 its contents are overwritten.  There is currently no way to tell the
387 program to write the profile data under a different name, but you can rename
388 the file afterwards if you are concerned that it may be overwritten.
389
390 In order to write the @file{gmon.out} file properly, your program must exit
391 normally: by returning from @code{main} or by calling @code{exit}.  Calling
392 the low-level function @code{_exit} does not write the profile data, and
393 neither does abnormal termination due to an unhandled signal.
394
395 The @file{gmon.out} file is written in the program's @emph{current working
396 directory} at the time it exits.  This means that if your program calls
397 @code{chdir}, the @file{gmon.out} file will be left in the last directory
398 your program @code{chdir}'d to.  If you don't have permission to write in
399 this directory, the file is not written, and you will get an error message.
400
401 Older versions of the @sc{gnu} profiling library may also write a file
402 called @file{bb.out}.  This file, if present, contains an human-readable
403 listing of the basic-block execution counts.  Unfortunately, the
404 appearance of a human-readable @file{bb.out} means the basic-block
405 counts didn't get written into @file{gmon.out}.
406 The Perl script @code{bbconv.pl}, included with the @code{gprof}
407 source distribution, will convert a @file{bb.out} file into
408 a format readable by @code{gprof}.  Invoke it like this:
409
410 @smallexample
411 bbconv.pl < bb.out > @var{bh-data}
412 @end smallexample
413
414 This translates the information in @file{bb.out} into a form that
415 @code{gprof} can understand.  But you still need to tell @code{gprof}
416 about the existence of this translated information.  To do that, include
417 @var{bb-data} on the @code{gprof} command line, @emph{along with
418 @file{gmon.out}}, like this:
419
420 @smallexample
421 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
422 @end smallexample
423
424 @node Invoking
425 @chapter @code{gprof} Command Summary
426
427 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
428 to interpret the information in it.  The @code{gprof} program prints a
429 flat profile and a call graph on standard output.  Typically you would
430 redirect the output of @code{gprof} into a file with @samp{>}.
431
432 You run @code{gprof} like this:
433
434 @smallexample
435 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
436 @end smallexample
437
438 @noindent
439 Here square-brackets indicate optional arguments.
440
441 If you omit the executable file name, the file @file{a.out} is used.  If
442 you give no profile data file name, the file @file{gmon.out} is used.  If
443 any file is not in the proper format, or if the profile data file does not
444 appear to belong to the executable file, an error message is printed.
445
446 You can give more than one profile data file by entering all their names
447 after the executable file name; then the statistics in all the data files
448 are summed together.
449
450 The order of these options does not matter.
451
452 @menu
453 * Output Options::      Controlling @code{gprof}'s output style
454 * Analysis Options::    Controlling how @code{gprof} analyzes its data
455 * Miscellaneous Options::
456 * Deprecated Options::  Options you no longer need to use, but which
457                             have been retained for compatibility
458 * Symspecs::            Specifying functions to include or exclude
459 @end menu
460
461 @node Output Options
462 @section Output Options
463
464 @c man begin OPTIONS
465 These options specify which of several output formats
466 @code{gprof} should produce.
467
468 Many of these options take an optional @dfn{symspec} to specify
469 functions to be included or excluded.  These options can be
470 specified multiple times, with different symspecs, to include
471 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
472
473 Specifying any of these options overrides the default (@samp{-p -q}),
474 which prints a flat profile and call graph analysis
475 for all functions.
476
477 @table @code
478
479 @item -A[@var{symspec}]
480 @itemx --annotated-source[=@var{symspec}]
481 The @samp{-A} option causes @code{gprof} to print annotated source code.
482 If @var{symspec} is specified, print output only for matching symbols.
483 @xref{Annotated Source, ,The Annotated Source Listing}.
484
485 @item -b
486 @itemx --brief
487 If the @samp{-b} option is given, @code{gprof} doesn't print the
488 verbose blurbs that try to explain the meaning of all of the fields in
489 the tables.  This is useful if you intend to print out the output, or
490 are tired of seeing the blurbs.
491
492 @item -C[@var{symspec}]
493 @itemx --exec-counts[=@var{symspec}]
494 The @samp{-C} option causes @code{gprof} to
495 print a tally of functions and the number of times each was called.
496 If @var{symspec} is specified, print tally only for matching symbols.
497
498 If the profile data file contains basic-block count records, specifying
499 the @samp{-l} option, along with @samp{-C}, will cause basic-block
500 execution counts to be tallied and displayed.
501
502 @item -i
503 @itemx --file-info
504 The @samp{-i} option causes @code{gprof} to display summary information
505 about the profile data file(s) and then exit.  The number of histogram,
506 call graph, and basic-block count records is displayed.
507
508 @item -I @var{dirs}
509 @itemx --directory-path=@var{dirs}
510 The @samp{-I} option specifies a list of search directories in
511 which to find source files.  Environment variable @var{GPROF_PATH}
512 can also be used to convey this information.
513 Used mostly for annotated source output.
514
515 @item -J[@var{symspec}]
516 @itemx --no-annotated-source[=@var{symspec}]
517 The @samp{-J} option causes @code{gprof} not to
518 print annotated source code.
519 If @var{symspec} is specified, @code{gprof} prints annotated source,
520 but excludes matching symbols.
521
522 @item -L
523 @itemx --print-path
524 Normally, source filenames are printed with the path
525 component suppressed.  The @samp{-L} option causes @code{gprof}
526 to print the full pathname of
527 source filenames, which is determined
528 from symbolic debugging information in the image file
529 and is relative to the directory in which the compiler
530 was invoked.
531
532 @item -p[@var{symspec}]
533 @itemx --flat-profile[=@var{symspec}]
534 The @samp{-p} option causes @code{gprof} to print a flat profile.
535 If @var{symspec} is specified, print flat profile only for matching symbols.
536 @xref{Flat Profile, ,The Flat Profile}.
537
538 @item -P[@var{symspec}]
539 @itemx --no-flat-profile[=@var{symspec}]
540 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
541 If @var{symspec} is specified, @code{gprof} prints a flat profile,
542 but excludes matching symbols.
543
544 @item -q[@var{symspec}]
545 @itemx --graph[=@var{symspec}]
546 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
547 If @var{symspec} is specified, print call graph only for matching symbols
548 and their children.
549 @xref{Call Graph, ,The Call Graph}.
550
551 @item -Q[@var{symspec}]
552 @itemx --no-graph[=@var{symspec}]
553 The @samp{-Q} option causes @code{gprof} to suppress printing the
554 call graph.
555 If @var{symspec} is specified, @code{gprof} prints a call graph,
556 but excludes matching symbols.
557
558 @item -t
559 @itemx --table-length=@var{num}
560 The @samp{-t} option causes the @var{num} most active source lines in
561 each source file to be listed when source annotation is enabled.  The
562 default is 10.
563
564 @item -y
565 @itemx --separate-files
566 This option affects annotated source output only.
567 Normally, @code{gprof} prints annotated source files
568 to standard-output.  If this option is specified,
569 annotated source for a file named @file{path/@var{filename}}
570 is generated in the file @file{@var{filename}-ann}.  If the underlying
571 file system would truncate @file{@var{filename}-ann} so that it
572 overwrites the original @file{@var{filename}}, @code{gprof} generates
573 annotated source in the file @file{@var{filename}.ann} instead (if the
574 original file name has an extension, that extension is @emph{replaced}
575 with @file{.ann}).
576
577 @item -Z[@var{symspec}]
578 @itemx --no-exec-counts[=@var{symspec}]
579 The @samp{-Z} option causes @code{gprof} not to
580 print a tally of functions and the number of times each was called.
581 If @var{symspec} is specified, print tally, but exclude matching symbols.
582
583 @item -r
584 @itemx --function-ordering
585 The @samp{--function-ordering} option causes @code{gprof} to print a
586 suggested function ordering for the program based on profiling data.
587 This option suggests an ordering which may improve paging, tlb and
588 cache behavior for the program on systems which support arbitrary
589 ordering of functions in an executable.
590
591 The exact details of how to force the linker to place functions
592 in a particular order is system dependent and out of the scope of this
593 manual.
594
595 @item -R @var{map_file}
596 @itemx --file-ordering @var{map_file}
597 The @samp{--file-ordering} option causes @code{gprof} to print a
598 suggested .o link line ordering for the program based on profiling data.
599 This option suggests an ordering which may improve paging, tlb and
600 cache behavior for the program on systems which do not support arbitrary
601 ordering of functions in an executable.
602
603 Use of the @samp{-a} argument is highly recommended with this option.
604
605 The @var{map_file} argument is a pathname to a file which provides
606 function name to object file mappings.  The format of the file is similar to
607 the output of the program @code{nm}.
608
609 @smallexample
610 @group
611 c-parse.o:00000000 T yyparse
612 c-parse.o:00000004 C yyerrflag
613 c-lang.o:00000000 T maybe_objc_method_name
614 c-lang.o:00000000 T print_lang_statistics
615 c-lang.o:00000000 T recognize_objc_keyword
616 c-decl.o:00000000 T print_lang_identifier
617 c-decl.o:00000000 T print_lang_type
618 @dots{}
619
620 @end group
621 @end smallexample
622
623 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
624 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
625
626 @item -T
627 @itemx --traditional
628 The @samp{-T} option causes @code{gprof} to print its output in
629 ``traditional'' BSD style.
630
631 @item -w @var{width}
632 @itemx --width=@var{width}
633 Sets width of output lines to @var{width}.
634 Currently only used when printing the function index at the bottom
635 of the call graph.
636
637 @item -x
638 @itemx --all-lines
639 This option affects annotated source output only.
640 By default, only the lines at the beginning of a basic-block
641 are annotated.  If this option is specified, every line in
642 a basic-block is annotated by repeating the annotation for the
643 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
644
645 @item --demangle[=@var{style}]
646 @itemx --no-demangle
647 These options control whether C++ symbol names should be demangled when
648 printing output.  The default is to demangle symbols.  The
649 @code{--no-demangle} option may be used to turn off demangling. Different 
650 compilers have different mangling styles.  The optional demangling style 
651 argument can be used to choose an appropriate demangling style for your 
652 compiler.
653 @end table
654
655 @node Analysis Options
656 @section Analysis Options
657
658 @table @code
659
660 @item -a
661 @itemx --no-static
662 The @samp{-a} option causes @code{gprof} to suppress the printing of
663 statically declared (private) functions.  (These are functions whose
664 names are not listed as global, and which are not visible outside the
665 file/function/block where they were defined.)  Time spent in these
666 functions, calls to/from them, etc., will all be attributed to the
667 function that was loaded directly before it in the executable file.
668 @c This is compatible with Unix @code{gprof}, but a bad idea.  
669 This option affects both the flat profile and the call graph.
670
671 @item -c
672 @itemx --static-call-graph
673 The @samp{-c} option causes the call graph of the program to be
674 augmented by a heuristic which examines the text space of the object
675 file and identifies function calls in the binary machine code.
676 Since normal call graph records are only generated when functions are
677 entered, this option identifies children that could have been called,
678 but never were.  Calls to functions that were not compiled with
679 profiling enabled are also identified, but only if symbol table
680 entries are present for them.
681 Calls to dynamic library routines are typically @emph{not} found
682 by this option.
683 Parents or children identified via this heuristic
684 are indicated in the call graph with call counts of @samp{0}.
685
686 @item -D
687 @itemx --ignore-non-functions
688 The @samp{-D} option causes @code{gprof} to ignore symbols which
689 are not known to be functions.  This option will give more accurate
690 profile data on systems where it is supported (Solaris and HPUX for
691 example).
692
693 @item -k @var{from}/@var{to}
694 The @samp{-k} option allows you to delete from the call graph any arcs from
695 symbols matching symspec @var{from} to those matching symspec @var{to}.
696
697 @item -l
698 @itemx --line
699 The @samp{-l} option enables line-by-line profiling, which causes
700 histogram hits to be charged to individual source code lines,
701 instead of functions.  This feature only works with programs compiled
702 by older versions of the @code{gcc} compiler.  Newer versions of
703 @code{gcc} are designed to work with the @code{gcov} tool instead.
704
705 If the program was compiled with basic-block counting enabled,
706 this option will also identify how many times each line of
707 code was executed.
708 While line-by-line profiling can help isolate where in a large function
709 a program is spending its time, it also significantly increases
710 the running time of @code{gprof}, and magnifies statistical
711 inaccuracies.
712 @xref{Sampling Error, ,Statistical Sampling Error}.
713
714 @item -m @var{num}
715 @itemx --min-count=@var{num}
716 This option affects execution count output only.
717 Symbols that are executed less than @var{num} times are suppressed.
718
719 @item -n@var{symspec}
720 @itemx --time=@var{symspec}
721 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
722 to only propagate times for symbols matching @var{symspec}.
723
724 @item -N@var{symspec}
725 @itemx --no-time=@var{symspec}
726 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
727 not to propagate times for symbols matching @var{symspec}.
728
729 @item -S@var{filename}
730 @itemx --external-symbol-table=@var{filename}
731 The @samp{-S} option causes @code{gprof} to read an external symbol table
732 file, such as @file{/proc/kallsyms}, rather than read the symbol table 
733 from the given object file (the default is @code{a.out}). This is useful 
734 for profiling kernel modules.
735
736 @item -z
737 @itemx --display-unused-functions
738 If you give the @samp{-z} option, @code{gprof} will mention all
739 functions in the flat profile, even those that were never called, and
740 that had no time spent in them.  This is useful in conjunction with the
741 @samp{-c} option for discovering which routines were never called.
742
743 @end table
744
745 @node Miscellaneous Options
746 @section Miscellaneous Options
747
748 @table @code
749
750 @item -d[@var{num}]
751 @itemx --debug[=@var{num}]
752 The @samp{-d @var{num}} option specifies debugging options.
753 If @var{num} is not specified, enable all debugging.
754 @xref{Debugging, ,Debugging @code{gprof}}.
755
756 @item -h
757 @itemx --help
758 The @samp{-h} option prints command line usage.
759
760 @item -O@var{name}
761 @itemx --file-format=@var{name}
762 Selects the format of the profile data files.  Recognized formats are
763 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
764 @samp{prof} (not yet supported).
765
766 @item -s
767 @itemx --sum
768 The @samp{-s} option causes @code{gprof} to summarize the information
769 in the profile data files it read in, and write out a profile data
770 file called @file{gmon.sum}, which contains all the information from
771 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
772 may be one of the specified input files; the effect of this is to
773 merge the data in the other input files into @file{gmon.sum}.
774
775 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
776 cumulative data in the file @file{gmon.sum}.
777
778 @item -v
779 @itemx --version
780 The @samp{-v} flag causes @code{gprof} to print the current version
781 number, and then exit.
782
783 @end table
784
785 @node Deprecated Options
786 @section Deprecated Options
787
788 @table @code
789
790 These options have been replaced with newer versions that use symspecs.
791
792 @item -e @var{function_name}
793 The @samp{-e @var{function}} option tells @code{gprof} to not print
794 information about the function @var{function_name} (and its
795 children@dots{}) in the call graph.  The function will still be listed
796 as a child of any functions that call it, but its index number will be
797 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
798 given; only one @var{function_name} may be indicated with each @samp{-e}
799 option. 
800
801 @item -E @var{function_name}
802 The @code{-E @var{function}} option works like the @code{-e} option, but
803 time spent in the function (and children who were not called from
804 anywhere else), will not be used to compute the percentages-of-time for
805 the call graph.  More than one @samp{-E} option may be given; only one
806 @var{function_name} may be indicated with each @samp{-E} option.
807
808 @item -f @var{function_name}
809 The @samp{-f @var{function}} option causes @code{gprof} to limit the
810 call graph to the function @var{function_name} and its children (and
811 their children@dots{}).  More than one @samp{-f} option may be given;
812 only one @var{function_name} may be indicated with each @samp{-f}
813 option.  
814
815 @item -F @var{function_name}
816 The @samp{-F @var{function}} option works like the @code{-f} option, but
817 only time spent in the function and its children (and their
818 children@dots{}) will be used to determine total-time and
819 percentages-of-time for the call graph.  More than one @samp{-F} option
820 may be given; only one @var{function_name} may be indicated with each
821 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
822
823 @end table
824
825 @c man end
826
827 Note that only one function can be specified with each @code{-e},
828 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
829 function, use multiple options.  For example, this command:
830
831 @example
832 gprof -e boring -f foo -f bar myprogram > gprof.output
833 @end example
834
835 @noindent
836 lists in the call graph all functions that were reached from either
837 @code{foo} or @code{bar} and were not reachable from @code{boring}.
838
839 @node Symspecs
840 @section Symspecs
841
842 Many of the output options allow functions to be included or excluded
843 using @dfn{symspecs} (symbol specifications), which observe the
844 following syntax:
845
846 @example
847   filename_containing_a_dot
848 | funcname_not_containing_a_dot
849 | linenumber
850 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
851 @end example
852
853 Here are some sample symspecs:
854
855 @table @samp
856 @item main.c
857 Selects everything in file @file{main.c}---the
858 dot in the string tells @code{gprof} to interpret
859 the string as a filename, rather than as
860 a function name.  To select a file whose
861 name does not contain a dot, a trailing colon
862 should be specified.  For example, @samp{odd:} is
863 interpreted as the file named @file{odd}.
864
865 @item main
866 Selects all functions named @samp{main}.
867
868 Note that there may be multiple instances of the same function name
869 because some of the definitions may be local (i.e., static).  Unless a
870 function name is unique in a program, you must use the colon notation
871 explained below to specify a function from a specific source file.
872
873 Sometimes, function names contain dots.  In such cases, it is necessary
874 to add a leading colon to the name.  For example, @samp{:.mul} selects
875 function @samp{.mul}.
876
877 In some object file formats, symbols have a leading underscore.
878 @code{gprof} will normally not print these underscores.  When you name a
879 symbol in a symspec, you should type it exactly as @code{gprof} prints
880 it in its output.  For example, if the compiler produces a symbol
881 @samp{_main} from your @code{main} function, @code{gprof} still prints
882 it as @samp{main} in its output, so you should use @samp{main} in
883 symspecs.
884
885 @item main.c:main
886 Selects function @samp{main} in file @file{main.c}.
887
888 @item main.c:134
889 Selects line 134 in file @file{main.c}.
890 @end table
891
892 @node Output
893 @chapter Interpreting @code{gprof}'s Output
894
895 @code{gprof} can produce several different output styles, the
896 most important of which are described below.  The simplest output
897 styles (file information, execution count, and function and file ordering)
898 are not described here, but are documented with the respective options
899 that trigger them.
900 @xref{Output Options, ,Output Options}.
901
902 @menu
903 * Flat Profile::        The flat profile shows how much time was spent
904                             executing directly in each function.
905 * Call Graph::          The call graph shows which functions called which
906                             others, and how much time each function used
907                             when its subroutine calls are included.
908 * Line-by-line::        @code{gprof} can analyze individual source code lines
909 * Annotated Source::    The annotated source listing displays source code
910                             labeled with execution counts
911 @end menu
912
913
914 @node Flat Profile
915 @section The Flat Profile
916 @cindex flat profile
917
918 The @dfn{flat profile} shows the total amount of time your program
919 spent executing each function.  Unless the @samp{-z} option is given,
920 functions with no apparent time spent in them, and no apparent calls
921 to them, are not mentioned.  Note that if a function was not compiled
922 for profiling, and didn't run long enough to show up on the program
923 counter histogram, it will be indistinguishable from a function that
924 was never called.
925
926 This is part of a flat profile for a small program:
927
928 @smallexample
929 @group
930 Flat profile:
931
932 Each sample counts as 0.01 seconds.
933   %   cumulative   self              self     total           
934  time   seconds   seconds    calls  ms/call  ms/call  name    
935  33.34      0.02     0.02     7208     0.00     0.00  open
936  16.67      0.03     0.01      244     0.04     0.12  offtime
937  16.67      0.04     0.01        8     1.25     1.25  memccpy
938  16.67      0.05     0.01        7     1.43     1.43  write
939  16.67      0.06     0.01                             mcount
940   0.00      0.06     0.00      236     0.00     0.00  tzset
941   0.00      0.06     0.00      192     0.00     0.00  tolower
942   0.00      0.06     0.00       47     0.00     0.00  strlen
943   0.00      0.06     0.00       45     0.00     0.00  strchr
944   0.00      0.06     0.00        1     0.00    50.00  main
945   0.00      0.06     0.00        1     0.00     0.00  memcpy
946   0.00      0.06     0.00        1     0.00    10.11  print
947   0.00      0.06     0.00        1     0.00     0.00  profil
948   0.00      0.06     0.00        1     0.00    50.00  report
949 @dots{}
950 @end group
951 @end smallexample
952
953 @noindent
954 The functions are sorted first by decreasing run-time spent in them,
955 then by decreasing number of calls, then alphabetically by name.  The
956 functions @samp{mcount} and @samp{profil} are part of the profiling
957 apparatus and appear in every flat profile; their time gives a measure of
958 the amount of overhead due to profiling.
959
960 Just before the column headers, a statement appears indicating
961 how much time each sample counted as.
962 This @dfn{sampling period} estimates the margin of error in each of the time
963 figures.  A time figure that is not much larger than this is not
964 reliable.  In this example, each sample counted as 0.01 seconds,
965 suggesting a 100 Hz sampling rate.
966 The program's total execution time was 0.06
967 seconds, as indicated by the @samp{cumulative seconds} field.  Since
968 each sample counted for 0.01 seconds, this means only six samples
969 were taken during the run.  Two of the samples occurred while the
970 program was in the @samp{open} function, as indicated by the
971 @samp{self seconds} field.  Each of the other four samples
972 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
973 and @samp{mcount}.
974 Since only six samples were taken, none of these values can
975 be regarded as particularly reliable.
976 In another run,
977 the @samp{self seconds} field for
978 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
979 @xref{Sampling Error, ,Statistical Sampling Error},
980 for a complete discussion.
981
982 The remaining functions in the listing (those whose
983 @samp{self seconds} field is @samp{0.00}) didn't appear
984 in the histogram samples at all.  However, the call graph
985 indicated that they were called, so therefore they are listed,
986 sorted in decreasing order by the @samp{calls} field.
987 Clearly some time was spent executing these functions,
988 but the paucity of histogram samples prevents any
989 determination of how much time each took.
990
991 Here is what the fields in each line mean:
992
993 @table @code
994 @item % time
995 This is the percentage of the total execution time your program spent
996 in this function.  These should all add up to 100%.
997
998 @item cumulative seconds
999 This is the cumulative total number of seconds the computer spent
1000 executing this functions, plus the time spent in all the functions
1001 above this one in this table.
1002
1003 @item self seconds
1004 This is the number of seconds accounted for by this function alone.
1005 The flat profile listing is sorted first by this number.
1006
1007 @item calls
1008 This is the total number of times the function was called.  If the
1009 function was never called, or the number of times it was called cannot
1010 be determined (probably because the function was not compiled with
1011 profiling enabled), the @dfn{calls} field is blank.
1012
1013 @item self ms/call
1014 This represents the average number of milliseconds spent in this
1015 function per call, if this function is profiled.  Otherwise, this field
1016 is blank for this function.
1017
1018 @item total ms/call
1019 This represents the average number of milliseconds spent in this
1020 function and its descendants per call, if this function is profiled.
1021 Otherwise, this field is blank for this function.
1022 This is the only field in the flat profile that uses call graph analysis.
1023
1024 @item name
1025 This is the name of the function.   The flat profile is sorted by this
1026 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1027 fields are sorted.
1028 @end table
1029
1030 @node Call Graph
1031 @section The Call Graph
1032 @cindex call graph
1033
1034 The @dfn{call graph} shows how much time was spent in each function
1035 and its children.  From this information, you can find functions that,
1036 while they themselves may not have used much time, called other
1037 functions that did use unusual amounts of time.
1038
1039 Here is a sample call from a small program.  This call came from the
1040 same @code{gprof} run as the flat profile example in the previous
1041 section.
1042
1043 @smallexample
1044 @group
1045 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1046
1047 index % time    self  children    called     name
1048                                                  <spontaneous>
1049 [1]    100.0    0.00    0.05                 start [1]
1050                 0.00    0.05       1/1           main [2]
1051                 0.00    0.00       1/2           on_exit [28]
1052                 0.00    0.00       1/1           exit [59]
1053 -----------------------------------------------
1054                 0.00    0.05       1/1           start [1]
1055 [2]    100.0    0.00    0.05       1         main [2]
1056                 0.00    0.05       1/1           report [3]
1057 -----------------------------------------------
1058                 0.00    0.05       1/1           main [2]
1059 [3]    100.0    0.00    0.05       1         report [3]
1060                 0.00    0.03       8/8           timelocal [6]
1061                 0.00    0.01       1/1           print [9]
1062                 0.00    0.01       9/9           fgets [12]
1063                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1064                 0.00    0.00       8/8           lookup [20]
1065                 0.00    0.00       1/1           fopen [21]
1066                 0.00    0.00       8/8           chewtime [24]
1067                 0.00    0.00       8/16          skipspace [44]
1068 -----------------------------------------------
1069 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1070                 0.01        0.02     244+260         offtime <cycle 2> [7]
1071                 0.00        0.00     236+1           tzset <cycle 2> [26]
1072 -----------------------------------------------
1073 @end group
1074 @end smallexample
1075
1076 The lines full of dashes divide this table into @dfn{entries}, one for each
1077 function.  Each entry has one or more lines.
1078
1079 In each entry, the primary line is the one that starts with an index number
1080 in square brackets.  The end of this line says which function the entry is
1081 for.  The preceding lines in the entry describe the callers of this
1082 function and the following lines describe its subroutines (also called
1083 @dfn{children} when we speak of the call graph).
1084
1085 The entries are sorted by time spent in the function and its subroutines.
1086
1087 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The 
1088 Flat Profile}) is never mentioned in the call graph.
1089
1090 @menu
1091 * Primary::       Details of the primary line's contents.
1092 * Callers::       Details of caller-lines' contents.
1093 * Subroutines::   Details of subroutine-lines' contents.
1094 * Cycles::        When there are cycles of recursion,
1095                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1096 @end menu
1097
1098 @node Primary
1099 @subsection The Primary Line
1100
1101 The @dfn{primary line} in a call graph entry is the line that
1102 describes the function which the entry is about and gives the overall
1103 statistics for this function.
1104
1105 For reference, we repeat the primary line from the entry for function
1106 @code{report} in our main example, together with the heading line that
1107 shows the names of the fields:
1108
1109 @smallexample
1110 @group
1111 index  % time    self  children called     name
1112 @dots{}
1113 [3]    100.0    0.00    0.05       1         report [3]
1114 @end group
1115 @end smallexample
1116
1117 Here is what the fields in the primary line mean:
1118
1119 @table @code
1120 @item index
1121 Entries are numbered with consecutive integers.  Each function
1122 therefore has an index number, which appears at the beginning of its
1123 primary line.
1124
1125 Each cross-reference to a function, as a caller or subroutine of
1126 another, gives its index number as well as its name.  The index number
1127 guides you if you wish to look for the entry for that function.
1128
1129 @item % time
1130 This is the percentage of the total time that was spent in this
1131 function, including time spent in subroutines called from this
1132 function.
1133
1134 The time spent in this function is counted again for the callers of
1135 this function.  Therefore, adding up these percentages is meaningless.
1136
1137 @item self
1138 This is the total amount of time spent in this function.  This
1139 should be identical to the number printed in the @code{seconds} field
1140 for this function in the flat profile.
1141
1142 @item children
1143 This is the total amount of time spent in the subroutine calls made by
1144 this function.  This should be equal to the sum of all the @code{self}
1145 and @code{children} entries of the children listed directly below this
1146 function.
1147
1148 @item called
1149 This is the number of times the function was called.
1150
1151 If the function called itself recursively, there are two numbers,
1152 separated by a @samp{+}.  The first number counts non-recursive calls,
1153 and the second counts recursive calls.
1154
1155 In the example above, the function @code{report} was called once from
1156 @code{main}.
1157
1158 @item name
1159 This is the name of the current function.  The index number is
1160 repeated after it.
1161
1162 If the function is part of a cycle of recursion, the cycle number is
1163 printed between the function's name and the index number
1164 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1165 For example, if function @code{gnurr} is part of
1166 cycle number one, and has index number twelve, its primary line would
1167 be end like this:
1168
1169 @example
1170 gnurr <cycle 1> [12]
1171 @end example
1172 @end table
1173
1174 @node Callers
1175 @subsection Lines for a Function's Callers
1176
1177 A function's entry has a line for each function it was called by.
1178 These lines' fields correspond to the fields of the primary line, but
1179 their meanings are different because of the difference in context.
1180
1181 For reference, we repeat two lines from the entry for the function
1182 @code{report}, the primary line and one caller-line preceding it, together
1183 with the heading line that shows the names of the fields:
1184
1185 @smallexample
1186 index  % time    self  children called     name
1187 @dots{}
1188                 0.00    0.05       1/1           main [2]
1189 [3]    100.0    0.00    0.05       1         report [3]
1190 @end smallexample
1191
1192 Here are the meanings of the fields in the caller-line for @code{report}
1193 called from @code{main}:
1194
1195 @table @code
1196 @item self
1197 An estimate of the amount of time spent in @code{report} itself when it was
1198 called from @code{main}.
1199
1200 @item children
1201 An estimate of the amount of time spent in subroutines of @code{report}
1202 when @code{report} was called from @code{main}.
1203
1204 The sum of the @code{self} and @code{children} fields is an estimate
1205 of the amount of time spent within calls to @code{report} from @code{main}.
1206
1207 @item called
1208 Two numbers: the number of times @code{report} was called from @code{main},
1209 followed by the total number of non-recursive calls to @code{report} from
1210 all its callers.
1211
1212 @item name and index number
1213 The name of the caller of @code{report} to which this line applies,
1214 followed by the caller's index number.
1215
1216 Not all functions have entries in the call graph; some
1217 options to @code{gprof} request the omission of certain functions.
1218 When a caller has no entry of its own, it still has caller-lines
1219 in the entries of the functions it calls.
1220
1221 If the caller is part of a recursion cycle, the cycle number is
1222 printed between the name and the index number.
1223 @end table
1224
1225 If the identity of the callers of a function cannot be determined, a
1226 dummy caller-line is printed which has @samp{<spontaneous>} as the
1227 ``caller's name'' and all other fields blank.  This can happen for
1228 signal handlers.
1229 @c What if some calls have determinable callers' names but not all?
1230 @c FIXME - still relevant?
1231
1232 @node Subroutines
1233 @subsection Lines for a Function's Subroutines
1234
1235 A function's entry has a line for each of its subroutines---in other
1236 words, a line for each other function that it called.  These lines'
1237 fields correspond to the fields of the primary line, but their meanings
1238 are different because of the difference in context.
1239
1240 For reference, we repeat two lines from the entry for the function
1241 @code{main}, the primary line and a line for a subroutine, together
1242 with the heading line that shows the names of the fields:
1243
1244 @smallexample
1245 index  % time    self  children called     name
1246 @dots{}
1247 [2]    100.0    0.00    0.05       1         main [2]
1248                 0.00    0.05       1/1           report [3]
1249 @end smallexample
1250
1251 Here are the meanings of the fields in the subroutine-line for @code{main}
1252 calling @code{report}:
1253
1254 @table @code
1255 @item self
1256 An estimate of the amount of time spent directly within @code{report}
1257 when @code{report} was called from @code{main}.
1258
1259 @item children
1260 An estimate of the amount of time spent in subroutines of @code{report}
1261 when @code{report} was called from @code{main}.
1262
1263 The sum of the @code{self} and @code{children} fields is an estimate
1264 of the total time spent in calls to @code{report} from @code{main}.
1265
1266 @item called
1267 Two numbers, the number of calls to @code{report} from @code{main}
1268 followed by the total number of non-recursive calls to @code{report}.
1269 This ratio is used to determine how much of @code{report}'s @code{self}
1270 and @code{children} time gets credited to @code{main}.
1271 @xref{Assumptions, ,Estimating @code{children} Times}.
1272
1273 @item name
1274 The name of the subroutine of @code{main} to which this line applies,
1275 followed by the subroutine's index number.
1276
1277 If the caller is part of a recursion cycle, the cycle number is
1278 printed between the name and the index number.
1279 @end table
1280
1281 @node Cycles
1282 @subsection How Mutually Recursive Functions Are Described
1283 @cindex cycle
1284 @cindex recursion cycle
1285
1286 The graph may be complicated by the presence of @dfn{cycles of
1287 recursion} in the call graph.  A cycle exists if a function calls
1288 another function that (directly or indirectly) calls (or appears to
1289 call) the original function.  For example: if @code{a} calls @code{b},
1290 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1291
1292 Whenever there are call paths both ways between a pair of functions, they
1293 belong to the same cycle.  If @code{a} and @code{b} call each other and
1294 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1295 even if @code{b} only calls @code{a} if it was not called from @code{a},
1296 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1297 considered a cycle.
1298
1299 The cycles are numbered with consecutive integers.  When a function
1300 belongs to a cycle, each time the function name appears in the call graph
1301 it is followed by @samp{<cycle @var{number}>}.
1302
1303 The reason cycles matter is that they make the time values in the call
1304 graph paradoxical.  The ``time spent in children'' of @code{a} should
1305 include the time spent in its subroutine @code{b} and in @code{b}'s
1306 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1307 @code{a}'s time should be included in the children of @code{a}, when
1308 @code{a} is indirectly recursive?
1309
1310 The way @code{gprof} resolves this paradox is by creating a single entry
1311 for the cycle as a whole.  The primary line of this entry describes the
1312 total time spent directly in the functions of the cycle.  The
1313 ``subroutines'' of the cycle are the individual functions of the cycle, and
1314 all other functions that were called directly by them.  The ``callers'' of
1315 the cycle are the functions, outside the cycle, that called functions in
1316 the cycle.
1317
1318 Here is an example portion of a call graph which shows a cycle containing
1319 functions @code{a} and @code{b}.  The cycle was entered by a call to
1320 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1321
1322 @smallexample
1323 index  % time    self  children called     name
1324 ----------------------------------------
1325                  1.77        0    1/1        main [2]
1326 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1327                  1.02        0    3          b <cycle 1> [4]
1328                  0.75        0    2          a <cycle 1> [5]
1329 ----------------------------------------
1330                                   3          a <cycle 1> [5]
1331 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1332                                   2          a <cycle 1> [5]
1333                     0        0    3/6        c [6]
1334 ----------------------------------------
1335                  1.77        0    1/1        main [2]
1336                                   2          b <cycle 1> [4]
1337 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1338                                   3          b <cycle 1> [4]
1339                     0        0    3/6        c [6]
1340 ----------------------------------------
1341 @end smallexample
1342
1343 @noindent
1344 (The entire call graph for this program contains in addition an entry for
1345 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1346 @code{a} and @code{b}.)
1347
1348 @smallexample
1349 index  % time    self  children called     name
1350                                              <spontaneous>
1351 [1]    100.00       0     1.93    0      start [1]
1352                  0.16     1.77    1/1        main [2]
1353 ----------------------------------------
1354                  0.16     1.77    1/1        start [1]
1355 [2]    100.00    0.16     1.77    1      main [2]
1356                  1.77        0    1/1        a <cycle 1> [5]
1357 ----------------------------------------
1358                  1.77        0    1/1        main [2]
1359 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1360                  1.02        0    3          b <cycle 1> [4]
1361                  0.75        0    2          a <cycle 1> [5]
1362                     0        0    6/6        c [6]
1363 ----------------------------------------
1364                                   3          a <cycle 1> [5]
1365 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1366                                   2          a <cycle 1> [5]
1367                     0        0    3/6        c [6]
1368 ----------------------------------------
1369                  1.77        0    1/1        main [2]
1370                                   2          b <cycle 1> [4]
1371 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1372                                   3          b <cycle 1> [4]
1373                     0        0    3/6        c [6]
1374 ----------------------------------------
1375                     0        0    3/6        b <cycle 1> [4]
1376                     0        0    3/6        a <cycle 1> [5]
1377 [6]      0.00       0        0    6      c [6]
1378 ----------------------------------------
1379 @end smallexample
1380
1381 The @code{self} field of the cycle's primary line is the total time
1382 spent in all the functions of the cycle.  It equals the sum of the
1383 @code{self} fields for the individual functions in the cycle, found
1384 in the entry in the subroutine lines for these functions.
1385
1386 The @code{children} fields of the cycle's primary line and subroutine lines
1387 count only subroutines outside the cycle.  Even though @code{a} calls
1388 @code{b}, the time spent in those calls to @code{b} is not counted in
1389 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1390 what to do when the time in those calls to @code{b} includes indirect
1391 recursive calls back to @code{a}.
1392
1393 The @code{children} field of a caller-line in the cycle's entry estimates
1394 the amount of time spent @emph{in the whole cycle}, and its other
1395 subroutines, on the times when that caller called a function in the cycle.
1396
1397 The @code{called} field in the primary line for the cycle has two numbers:
1398 first, the number of times functions in the cycle were called by functions
1399 outside the cycle; second, the number of times they were called by
1400 functions in the cycle (including times when a function in the cycle calls
1401 itself).  This is a generalization of the usual split into non-recursive and
1402 recursive calls.
1403
1404 The @code{called} field of a subroutine-line for a cycle member in the
1405 cycle's entry says how many time that function was called from functions in
1406 the cycle.  The total of all these is the second number in the primary line's
1407 @code{called} field.
1408
1409 In the individual entry for a function in a cycle, the other functions in
1410 the same cycle can appear as subroutines and as callers.  These lines show
1411 how many times each function in the cycle called or was called from each other
1412 function in the cycle.  The @code{self} and @code{children} fields in these
1413 lines are blank because of the difficulty of defining meanings for them
1414 when recursion is going on.
1415
1416 @node Line-by-line
1417 @section Line-by-line Profiling
1418
1419 @code{gprof}'s @samp{-l} option causes the program to perform
1420 @dfn{line-by-line} profiling.  In this mode, histogram
1421 samples are assigned not to functions, but to individual
1422 lines of source code.  This only works with programs compiled with
1423 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1424 use a different program - @code{gcov} - to display line-by-line
1425 profiling information.
1426
1427 With the older versions of @code{gcc} the program usually has to be
1428 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1429 to generate debugging symbols for tracking source code lines.
1430 Note, in much older versions of @code{gcc} the program had to be
1431 compiled with the @samp{-a} command line option as well.
1432
1433 The flat profile is the most useful output table
1434 in line-by-line mode.
1435 The call graph isn't as useful as normal, since
1436 the current version of @code{gprof} does not propagate
1437 call graph arcs from source code lines to the enclosing function.
1438 The call graph does, however, show each line of code
1439 that called each function, along with a count.
1440
1441 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1442 Note that @code{ct_init} accounted for four histogram hits, and
1443 13327 calls to @code{init_block}.
1444
1445 @smallexample
1446 Flat profile:
1447
1448 Each sample counts as 0.01 seconds.
1449   %   cumulative   self              self     total           
1450  time   seconds   seconds    calls  us/call  us/call  name    
1451  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1452
1453
1454                      Call graph (explanation follows)
1455
1456
1457 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1458
1459 index % time    self  children    called     name
1460
1461                 0.00    0.00       1/13496       name_too_long
1462                 0.00    0.00      40/13496       deflate
1463                 0.00    0.00     128/13496       deflate_fast
1464                 0.00    0.00   13327/13496       ct_init
1465 [7]      0.0    0.00    0.00   13496         init_block
1466
1467 @end smallexample
1468
1469 Now let's look at some of @code{gprof}'s output from the same program run,
1470 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1471 four histogram hits are broken down into four lines of source code---one hit
1472 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1473 note how
1474 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1475 into one call from line 396, 3071 calls from line 384, 3730 calls
1476 from line 385, and 6525 calls from 387.
1477
1478 @smallexample
1479 Flat profile:
1480
1481 Each sample counts as 0.01 seconds.
1482   %   cumulative   self                    
1483  time   seconds   seconds    calls  name    
1484   7.69      0.10     0.01           ct_init (trees.c:349)
1485   7.69      0.11     0.01           ct_init (trees.c:351)
1486   7.69      0.12     0.01           ct_init (trees.c:382)
1487   7.69      0.13     0.01           ct_init (trees.c:385)
1488
1489
1490                      Call graph (explanation follows)
1491
1492
1493 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1494
1495   % time    self  children    called     name
1496
1497             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1498             0.00    0.00       1/13496       deflate (deflate.c:763)
1499             0.00    0.00       1/13496       ct_init (trees.c:396)
1500             0.00    0.00       2/13496       deflate (deflate.c:727)
1501             0.00    0.00       4/13496       deflate (deflate.c:686)
1502             0.00    0.00       5/13496       deflate (deflate.c:675)
1503             0.00    0.00      12/13496       deflate (deflate.c:679)
1504             0.00    0.00      16/13496       deflate (deflate.c:730)
1505             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1506             0.00    0.00    3071/13496       ct_init (trees.c:384)
1507             0.00    0.00    3730/13496       ct_init (trees.c:385)
1508             0.00    0.00    6525/13496       ct_init (trees.c:387)
1509 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1510
1511 @end smallexample
1512
1513
1514 @node Annotated Source
1515 @section The Annotated Source Listing
1516
1517 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1518 which lists the program's source code, each function labeled with the
1519 number of times it was called.  You may also need to specify the
1520 @samp{-I} option, if @code{gprof} can't find the source code files.
1521
1522 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1523 -pg -a} augments your program with basic-block counting code, in
1524 addition to function counting code.  This enables @code{gprof} to
1525 determine how many times each line of code was executed.  With newer
1526 versions of @code{gcc} support for displaying basic-block counts is
1527 provided by the @code{gcov} program.
1528
1529 For example, consider the following function, taken from gzip,
1530 with line numbers added:
1531
1532 @smallexample
1533  1 ulg updcrc(s, n)
1534  2     uch *s;
1535  3     unsigned n;
1536  4 @{
1537  5     register ulg c;
1538  6
1539  7     static ulg crc = (ulg)0xffffffffL;
1540  8
1541  9     if (s == NULL) @{
1542 10         c = 0xffffffffL;
1543 11     @} else @{
1544 12         c = crc;
1545 13         if (n) do @{
1546 14             c = crc_32_tab[...];
1547 15         @} while (--n);
1548 16     @}
1549 17     crc = c;
1550 18     return c ^ 0xffffffffL;
1551 19 @}
1552
1553 @end smallexample
1554
1555 @code{updcrc} has at least five basic-blocks.
1556 One is the function itself.  The
1557 @code{if} statement on line 9 generates two more basic-blocks, one
1558 for each branch of the @code{if}.  A fourth basic-block results from
1559 the @code{if} on line 13, and the contents of the @code{do} loop form
1560 the fifth basic-block.  The compiler may also generate additional
1561 basic-blocks to handle various special cases.
1562
1563 A program augmented for basic-block counting can be analyzed with
1564 @samp{gprof -l -A}.
1565 The @samp{-x} option is also helpful,
1566 to ensure that each line of code is labeled at least once.
1567 Here is @code{updcrc}'s
1568 annotated source listing for a sample @code{gzip} run:
1569
1570 @smallexample
1571                 ulg updcrc(s, n)
1572                     uch *s;
1573                     unsigned n;
1574             2 ->@{
1575                     register ulg c;
1576                 
1577                     static ulg crc = (ulg)0xffffffffL;
1578                 
1579             2 ->    if (s == NULL) @{
1580             1 ->        c = 0xffffffffL;
1581             1 ->    @} else @{
1582             1 ->        c = crc;
1583             1 ->        if (n) do @{
1584         26312 ->            c = crc_32_tab[...];
1585 26312,1,26311 ->        @} while (--n);
1586                     @}
1587             2 ->    crc = c;
1588             2 ->    return c ^ 0xffffffffL;
1589             2 ->@}
1590 @end smallexample
1591
1592 In this example, the function was called twice, passing once through
1593 each branch of the @code{if} statement.  The body of the @code{do}
1594 loop was executed a total of 26312 times.  Note how the @code{while}
1595 statement is annotated.  It began execution 26312 times, once for
1596 each iteration through the loop.  One of those times (the last time)
1597 it exited, while it branched back to the beginning of the loop 26311 times.
1598
1599 @node Inaccuracy
1600 @chapter Inaccuracy of @code{gprof} Output
1601
1602 @menu
1603 * Sampling Error::      Statistical margins of error
1604 * Assumptions::         Estimating children times
1605 @end menu
1606
1607 @node Sampling Error
1608 @section Statistical Sampling Error
1609
1610 The run-time figures that @code{gprof} gives you are based on a sampling
1611 process, so they are subject to statistical inaccuracy.  If a function runs
1612 only a small amount of time, so that on the average the sampling process
1613 ought to catch that function in the act only once, there is a pretty good
1614 chance it will actually find that function zero times, or twice.
1615
1616 By contrast, the number-of-calls and basic-block figures
1617 are derived by counting, not
1618 sampling.  They are completely accurate and will not vary from run to run
1619 if your program is deterministic.
1620
1621 The @dfn{sampling period} that is printed at the beginning of the flat
1622 profile says how often samples are taken.  The rule of thumb is that a
1623 run-time figure is accurate if it is considerably bigger than the sampling
1624 period.
1625
1626 The actual amount of error can be predicted.
1627 For @var{n} samples, the @emph{expected} error
1628 is the square-root of @var{n}.  For example,
1629 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1630 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1631 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1632 or ten percent of the observed value.
1633 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1634 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1635 the expected error in @code{bar}'s run-time is 1 second,
1636 or one percent of the observed value.
1637 It is likely to
1638 vary this much @emph{on the average} from one profiling run to the next.
1639 (@emph{Sometimes} it will vary more.)
1640
1641 This does not mean that a small run-time figure is devoid of information.
1642 If the program's @emph{total} run-time is large, a small run-time for one
1643 function does tell you that that function used an insignificant fraction of
1644 the whole program's time.  Usually this means it is not worth optimizing.
1645
1646 One way to get more accuracy is to give your program more (but similar)
1647 input data so it will take longer.  Another way is to combine the data from
1648 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1649
1650 @enumerate
1651 @item
1652 Run your program once.
1653
1654 @item
1655 Issue the command @samp{mv gmon.out gmon.sum}.
1656
1657 @item
1658 Run your program again, the same as before.
1659
1660 @item
1661 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1662
1663 @example
1664 gprof -s @var{executable-file} gmon.out gmon.sum
1665 @end example
1666
1667 @item
1668 Repeat the last two steps as often as you wish.
1669
1670 @item
1671 Analyze the cumulative data using this command:
1672
1673 @example
1674 gprof @var{executable-file} gmon.sum > @var{output-file}
1675 @end example
1676 @end enumerate
1677
1678 @node Assumptions
1679 @section Estimating @code{children} Times
1680
1681 Some of the figures in the call graph are estimates---for example, the
1682 @code{children} time values and all the time figures in caller and
1683 subroutine lines.
1684
1685 There is no direct information about these measurements in the profile
1686 data itself.  Instead, @code{gprof} estimates them by making an assumption
1687 about your program that might or might not be true.
1688
1689 The assumption made is that the average time spent in each call to any
1690 function @code{foo} is not correlated with who called @code{foo}.  If
1691 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1692 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1693 @code{children} time, by assumption.
1694
1695 This assumption is usually true enough, but for some programs it is far
1696 from true.  Suppose that @code{foo} returns very quickly when its argument
1697 is zero; suppose that @code{a} always passes zero as an argument, while
1698 other callers of @code{foo} pass other arguments.  In this program, all the
1699 time spent in @code{foo} is in the calls from callers other than @code{a}.
1700 But @code{gprof} has no way of knowing this; it will blindly and
1701 incorrectly charge 2 seconds of time in @code{foo} to the children of
1702 @code{a}.
1703
1704 @c FIXME - has this been fixed?
1705 We hope some day to put more complete data into @file{gmon.out}, so that
1706 this assumption is no longer needed, if we can figure out how.  For the
1707 novice, the estimated figures are usually more useful than misleading.
1708
1709 @node How do I?
1710 @chapter Answers to Common Questions
1711
1712 @table @asis
1713 @item How can I get more exact information about hot spots in my program?
1714
1715 Looking at the per-line call counts only tells part of the story.
1716 Because @code{gprof} can only report call times and counts by function,
1717 the best way to get finer-grained information on where the program
1718 is spending its time is to re-factor large functions into sequences
1719 of calls to smaller ones.  Beware however that this can introduce
1720 artificial hot spots since compiling with @samp{-pg} adds a significant
1721 overhead to function calls.  An alternative solution is to use a
1722 non-intrusive profiler, e.g.@: oprofile.
1723
1724 @item How do I find which lines in my program were executed the most times?
1725
1726 Use the @code{gcov} program.
1727
1728 @item How do I find which lines in my program called a particular function?
1729
1730 Use @samp{gprof -l} and lookup the function in the call graph.
1731 The callers will be broken down by function and line number.
1732
1733 @item How do I analyze a program that runs for less than a second?
1734
1735 Try using a shell script like this one:
1736
1737 @example
1738 for i in `seq 1 100`; do
1739   fastprog
1740   mv gmon.out gmon.out.$i
1741 done
1742
1743 gprof -s fastprog gmon.out.*
1744
1745 gprof fastprog gmon.sum
1746 @end example
1747
1748 If your program is completely deterministic, all the call counts
1749 will be simple multiples of 100 (i.e., a function called once in
1750 each run will appear with a call count of 100).
1751
1752 @end table
1753
1754 @node Incompatibilities
1755 @chapter Incompatibilities with Unix @code{gprof}
1756
1757 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1758 file @file{gmon.out}, and provide essentially the same information.  But
1759 there are a few differences.
1760
1761 @itemize @bullet
1762 @item
1763 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1764 for basic-block execution counts and non-realtime histograms.  A magic
1765 cookie and version number allows @code{gprof} to easily identify
1766 new style files.  Old BSD-style files can still be read.
1767 @xref{File Format, ,Profiling Data File Format}.
1768
1769 @item
1770 For a recursive function, Unix @code{gprof} lists the function as a
1771 parent and as a child, with a @code{calls} field that lists the number
1772 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1773 the number of recursive calls in the primary line.
1774
1775 @item
1776 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1777 @code{gprof} still lists it as a subroutine of functions that call it.
1778
1779 @item
1780 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1781 in the form @samp{from/to}, instead of @samp{from to}.
1782
1783 @item
1784 In the annotated source listing,
1785 if there are multiple basic blocks on the same line,
1786 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1787
1788 @ignore - it does this now
1789 @item
1790 The function names printed in @sc{gnu} @code{gprof} output do not include
1791 the leading underscores that are added internally to the front of all
1792 C identifiers on many operating systems.
1793 @end ignore
1794
1795 @item
1796 The blurbs, field widths, and output formats are different.  @sc{gnu}
1797 @code{gprof} prints blurbs after the tables, so that you can see the
1798 tables without skipping the blurbs.
1799 @end itemize
1800
1801 @node Details
1802 @chapter Details of Profiling
1803
1804 @menu
1805 * Implementation::      How a program collects profiling information
1806 * File Format::         Format of @samp{gmon.out} files
1807 * Internals::           @code{gprof}'s internal operation
1808 * Debugging::           Using @code{gprof}'s @samp{-d} option
1809 @end menu
1810
1811 @node Implementation
1812 @section Implementation of Profiling
1813
1814 Profiling works by changing how every function in your program is compiled
1815 so that when it is called, it will stash away some information about where
1816 it was called from.  From this, the profiler can figure out what function
1817 called it, and can count how many times it was called.  This change is made
1818 by the compiler when your program is compiled with the @samp{-pg} option,
1819 which causes every function to call @code{mcount}
1820 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1821 as one of its first operations.
1822
1823 The @code{mcount} routine, included in the profiling library,
1824 is responsible for recording in an in-memory call graph table
1825 both its parent routine (the child) and its parent's parent.  This is
1826 typically done by examining the stack frame to find both
1827 the address of the child, and the return address in the original parent.
1828 Since this is a very machine-dependent operation, @code{mcount}
1829 itself is typically a short assembly-language stub routine
1830 that extracts the required
1831 information, and then calls @code{__mcount_internal}
1832 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1833 @code{__mcount_internal} is responsible for maintaining
1834 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1835 and the number of times each of these call arcs was traversed.
1836
1837 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1838 which allows a generic @code{mcount} function to extract the
1839 required information from the stack frame.  However, on some
1840 architectures, most notably the SPARC, using this builtin can be
1841 very computationally expensive, and an assembly language version
1842 of @code{mcount} is used for performance reasons.
1843
1844 Number-of-calls information for library routines is collected by using a
1845 special version of the C library.  The programs in it are the same as in
1846 the usual C library, but they were compiled with @samp{-pg}.  If you
1847 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1848 profiling version of the library.
1849
1850 Profiling also involves watching your program as it runs, and keeping a
1851 histogram of where the program counter happens to be every now and then.
1852 Typically the program counter is looked at around 100 times per second of
1853 run time, but the exact frequency may vary from system to system.
1854
1855 This is done is one of two ways.  Most UNIX-like operating systems
1856 provide a @code{profil()} system call, which registers a memory
1857 array with the kernel, along with a scale
1858 factor that determines how the program's address space maps
1859 into the array.
1860 Typical scaling values cause every 2 to 8 bytes of address space
1861 to map into a single array slot.
1862 On every tick of the system clock
1863 (assuming the profiled program is running), the value of the
1864 program counter is examined and the corresponding slot in
1865 the memory array is incremented.  Since this is done in the kernel,
1866 which had to interrupt the process anyway to handle the clock
1867 interrupt, very little additional system overhead is required.
1868
1869 However, some operating systems, most notably Linux 2.0 (and earlier),
1870 do not provide a @code{profil()} system call.  On such a system,
1871 arrangements are made for the kernel to periodically deliver
1872 a signal to the process (typically via @code{setitimer()}),
1873 which then performs the same operation of examining the
1874 program counter and incrementing a slot in the memory array.
1875 Since this method requires a signal to be delivered to
1876 user space every time a sample is taken, it uses considerably
1877 more overhead than kernel-based profiling.  Also, due to the
1878 added delay required to deliver the signal, this method is
1879 less accurate as well.
1880
1881 A special startup routine allocates memory for the histogram and 
1882 either calls @code{profil()} or sets up
1883 a clock signal handler.
1884 This routine (@code{monstartup}) can be invoked in several ways.
1885 On Linux systems, a special profiling startup file @code{gcrt0.o},
1886 which invokes @code{monstartup} before @code{main},
1887 is used instead of the default @code{crt0.o}.
1888 Use of this special startup file is one of the effects
1889 of using @samp{gcc @dots{} -pg} to link.
1890 On SPARC systems, no special startup files are used.
1891 Rather, the @code{mcount} routine, when it is invoked for
1892 the first time (typically when @code{main} is called),
1893 calls @code{monstartup}.
1894
1895 If the compiler's @samp{-a} option was used, basic-block counting
1896 is also enabled.  Each object file is then compiled with a static array
1897 of counts, initially zero.
1898 In the executable code, every time a new basic-block begins
1899 (i.e., when an @code{if} statement appears), an extra instruction
1900 is inserted to increment the corresponding count in the array.
1901 At compile time, a paired array was constructed that recorded
1902 the starting address of each basic-block.  Taken together,
1903 the two arrays record the starting address of every basic-block,
1904 along with the number of times it was executed.
1905
1906 The profiling library also includes a function (@code{mcleanup}) which is
1907 typically registered using @code{atexit()} to be called as the
1908 program exits, and is responsible for writing the file @file{gmon.out}.
1909 Profiling is turned off, various headers are output, and the histogram
1910 is written, followed by the call-graph arcs and the basic-block counts.
1911
1912 The output from @code{gprof} gives no indication of parts of your program that
1913 are limited by I/O or swapping bandwidth.  This is because samples of the
1914 program counter are taken at fixed intervals of the program's run time.
1915 Therefore, the
1916 time measurements in @code{gprof} output say nothing about time that your
1917 program was not running.  For example, a part of the program that creates
1918 so much data that it cannot all fit in physical memory at once may run very
1919 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1920 the other hand, sampling by run time has the advantage that the amount of
1921 load due to other users won't directly affect the output you get.
1922
1923 @node File Format
1924 @section Profiling Data File Format
1925
1926 The old BSD-derived file format used for profile data does not contain a
1927 magic cookie that allows to check whether a data file really is a
1928 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1929 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1930 uses a new file format that provides these features.  For backward
1931 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1932 format, but not all features are supported with it.  For example,
1933 basic-block execution counts cannot be accommodated by the old file
1934 format.
1935
1936 The new file format is defined in header file @file{gmon_out.h}.  It
1937 consists of a header containing the magic cookie and a version number,
1938 as well as some spare bytes available for future extensions.  All data
1939 in a profile data file is in the native format of the target for which
1940 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1941 to the byte-order in use.
1942
1943 In the new file format, the header is followed by a sequence of
1944 records.  Currently, there are three different record types: histogram
1945 records, call-graph arc records, and basic-block execution count
1946 records.  Each file can contain any number of each record type.  When
1947 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1948 compatible with each other and compute the union of all records.  For
1949 example, for basic-block execution counts, the union is simply the sum
1950 of all execution counts for each basic-block.
1951
1952 @subsection Histogram Records
1953
1954 Histogram records consist of a header that is followed by an array of
1955 bins.  The header contains the text-segment range that the histogram
1956 spans, the size of the histogram in bytes (unlike in the old BSD
1957 format, this does not include the size of the header), the rate of the
1958 profiling clock, and the physical dimension that the bin counts
1959 represent after being scaled by the profiling clock rate.  The
1960 physical dimension is specified in two parts: a long name of up to 15
1961 characters and a single character abbreviation.  For example, a
1962 histogram representing real-time would specify the long name as
1963 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1964 architectures that support performance monitor hardware (which,
1965 fortunately, is becoming increasingly common).  For example, under DEC
1966 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1967 say, instruction cache misses.  In this case, the dimension in the
1968 histogram header could be set to ``i-cache misses'' and the abbreviation
1969 could be set to ``1'' (because it is simply a count, not a physical
1970 dimension).  Also, the profiling rate would have to be set to 1 in
1971 this case.
1972
1973 Histogram bins are 16-bit numbers and each bin represent an equal
1974 amount of text-space.  For example, if the text-segment is one
1975 thousand bytes long and if there are ten bins in the histogram, each
1976 bin represents one hundred bytes.
1977
1978
1979 @subsection Call-Graph Records
1980
1981 Call-graph records have a format that is identical to the one used in
1982 the BSD-derived file format.  It consists of an arc in the call graph
1983 and a count indicating the number of times the arc was traversed
1984 during program execution.  Arcs are specified by a pair of addresses:
1985 the first must be within caller's function and the second must be
1986 within the callee's function.  When performing profiling at the
1987 function level, these addresses can point anywhere within the
1988 respective function.  However, when profiling at the line-level, it is
1989 better if the addresses are as close to the call-site/entry-point as
1990 possible.  This will ensure that the line-level call-graph is able to
1991 identify exactly which line of source code performed calls to a
1992 function.
1993
1994 @subsection Basic-Block Execution Count Records
1995
1996 Basic-block execution count records consist of a header followed by a
1997 sequence of address/count pairs.  The header simply specifies the
1998 length of the sequence.  In an address/count pair, the address
1999 identifies a basic-block and the count specifies the number of times
2000 that basic-block was executed.  Any address within the basic-address can
2001 be used.
2002
2003 @node Internals
2004 @section @code{gprof}'s Internal Operation
2005
2006 Like most programs, @code{gprof} begins by processing its options.
2007 During this stage, it may building its symspec list
2008 (@code{sym_ids.c:@-sym_id_add}), if
2009 options are specified which use symspecs.
2010 @code{gprof} maintains a single linked list of symspecs,
2011 which will eventually get turned into 12 symbol tables,
2012 organized into six include/exclude pairs---one
2013 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
2014 the call graph arcs (INCL_ARCS/EXCL_ARCS),
2015 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
2016 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
2017 the annotated source listing (INCL_ANNO/EXCL_ANNO),
2018 and the execution count listing (INCL_EXEC/EXCL_EXEC).
2019
2020 After option processing, @code{gprof} finishes
2021 building the symspec list by adding all the symspecs in
2022 @code{default_excluded_list} to the exclude lists
2023 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2024 EXCL_FLAT as well.
2025 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2026
2027 Next, the BFD library is called to open the object file,
2028 verify that it is an object file,
2029 and read its symbol table (@code{core.c:@-core_init}),
2030 using @code{bfd_canonicalize_symtab} after mallocing
2031 an appropriately sized array of symbols.  At this point,
2032 function mappings are read (if the @samp{--file-ordering} option
2033 has been specified), and the core text space is read into
2034 memory (if the @samp{-c} option was given).
2035
2036 @code{gprof}'s own symbol table, an array of Sym structures,
2037 is now built.
2038 This is done in one of two ways, by one of two routines, depending
2039 on whether line-by-line profiling (@samp{-l} option) has been
2040 enabled.
2041 For normal profiling, the BFD canonical symbol table is scanned.
2042 For line-by-line profiling, every
2043 text space address is examined, and a new symbol table entry
2044 gets created every time the line number changes.
2045 In either case, two passes are made through the symbol
2046 table---one to count the size of the symbol table required,
2047 and the other to actually read the symbols.  In between the
2048 two passes, a single array of type @code{Sym} is created of
2049 the appropriate length.
2050 Finally, @code{symtab.c:@-symtab_finalize}
2051 is called to sort the symbol table and remove duplicate entries
2052 (entries with the same memory address).
2053
2054 The symbol table must be a contiguous array for two reasons.
2055 First, the @code{qsort} library function (which sorts an array)
2056 will be used to sort the symbol table.
2057 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2058 which finds symbols
2059 based on memory address, uses a binary search algorithm
2060 which requires the symbol table to be a sorted array.
2061 Function symbols are indicated with an @code{is_func} flag.
2062 Line number symbols have no special flags set.
2063 Additionally, a symbol can have an @code{is_static} flag
2064 to indicate that it is a local symbol.
2065
2066 With the symbol table read, the symspecs can now be translated
2067 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2068 symspec can match multiple symbols.
2069 An array of symbol tables
2070 (@code{syms}) is created, each entry of which is a symbol table
2071 of Syms to be included or excluded from a particular listing.
2072 The master symbol table and the symspecs are examined by nested
2073 loops, and every symbol that matches a symspec is inserted
2074 into the appropriate syms table.  This is done twice, once to
2075 count the size of each required symbol table, and again to build
2076 the tables, which have been malloced between passes.
2077 From now on, to determine whether a symbol is on an include
2078 or exclude symspec list, @code{gprof} simply uses its
2079 standard symbol lookup routine on the appropriate table
2080 in the @code{syms} array.
2081
2082 Now the profile data file(s) themselves are read
2083 (@code{gmon_io.c:@-gmon_out_read}),
2084 first by checking for a new-style @samp{gmon.out} header,
2085 then assuming this is an old-style BSD @samp{gmon.out}
2086 if the magic number test failed.
2087
2088 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2089 For the first histogram record, allocate a memory array to hold
2090 all the bins, and read them in.
2091 When multiple profile data files (or files with multiple histogram
2092 records) are read, the memory ranges of each pair of histogram records
2093 must be either equal, or non-overlapping.  For each pair of histogram
2094 records, the resolution (memory region size divided by the number of
2095 bins) must be the same.  The time unit must be the same for all 
2096 histogram records. If the above containts are met, all histograms
2097 for the same memory range are merged.
2098
2099 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2100 the parent and child addresses
2101 are matched to symbol table entries, and a call graph arc is
2102 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2103 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2104 a linked list is maintained of the parent's child arcs, and of the child's
2105 parent arcs.
2106 Both the child's call count and the arc's call count are
2107 incremented by the record's call count.
2108
2109 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2110 but only if line-by-line profiling has been selected.
2111 Each basic-block address is matched to a corresponding line
2112 symbol in the symbol table, and an entry made in the symbol's
2113 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2114 records are present for the same address, the call counts
2115 are cumulative.
2116
2117 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2118
2119 If histograms were present in the data files, assign them to symbols
2120 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2121 bins and assigning them to symbols.  Since the symbol table
2122 is sorted in order of ascending memory addresses, we can
2123 simple follow along in the symbol table as we make our pass
2124 over the sample bins.
2125 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2126 Depending on the histogram
2127 scale factor, a sample bin may span multiple symbols,
2128 in which case a fraction of the sample count is allocated
2129 to each symbol, proportional to the degree of overlap.
2130 This effect is rare for normal profiling, but overlaps
2131 are more common during line-by-line profiling, and can
2132 cause each of two adjacent lines to be credited with half
2133 a hit, for example.
2134
2135 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2136 First, if @samp{-c} was specified, a machine-dependent
2137 routine (@code{find_call}) scans through each symbol's machine code,
2138 looking for subroutine call instructions, and adding them
2139 to the call graph with a zero call count.
2140 A topological sort is performed by depth-first numbering
2141 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2142 children are always numbered less than their parents,
2143 then making a array of pointers into the symbol table and sorting it into
2144 numerical order, which is reverse topological
2145 order (children appear before parents).
2146 Cycles are also detected at this point, all members
2147 of which are assigned the same topological number.
2148 Two passes are now made through this sorted array of symbol pointers.
2149 The first pass, from end to beginning (parents to children),
2150 computes the fraction of child time to propagate to each parent
2151 and a print flag.
2152 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2153 with a parent's include or exclude (print or no print) property
2154 being propagated to its children, unless they themselves explicitly appear
2155 in INCL_GRAPH or EXCL_GRAPH.
2156 A second pass, from beginning to end (children to parents) actually
2157 propagates the timings along the call graph, subject
2158 to a check against INCL_TIME/EXCL_TIME.
2159 With the print flag, fractions, and timings now stored in the symbol
2160 structures, the topological sort array is now discarded, and a
2161 new array of pointers is assembled, this time sorted by propagated time.
2162
2163 Finally, print the various outputs the user requested, which is now fairly
2164 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2165 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2166 already computed.  The annotated source listing
2167 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2168 information, if present, to label each line of code with call counts,
2169 otherwise only the function call counts are presented.
2170
2171 The function ordering code is marginally well documented
2172 in the source code itself (@code{cg_print.c}).  Basically,
2173 the functions with the most use and the most parents are
2174 placed first, followed by other functions with the most use,
2175 followed by lower use functions, followed by unused functions
2176 at the end.
2177
2178 @node Debugging
2179 @section Debugging @code{gprof}
2180
2181 If @code{gprof} was compiled with debugging enabled,
2182 the @samp{-d} option triggers debugging output
2183 (to stdout) which can be helpful in understanding its operation.
2184 The debugging number specified is interpreted as a sum of the following
2185 options:
2186
2187 @table @asis
2188 @item 2 - Topological sort
2189 Monitor depth-first numbering of symbols during call graph analysis
2190 @item 4 - Cycles
2191 Shows symbols as they are identified as cycle heads
2192 @item 16 - Tallying
2193 As the call graph arcs are read, show each arc and how
2194 the total calls to each function are tallied
2195 @item 32 - Call graph arc sorting
2196 Details sorting individual parents/children within each call graph entry
2197 @item 64 - Reading histogram and call graph records
2198 Shows address ranges of histograms as they are read, and each
2199 call graph arc
2200 @item 128 - Symbol table
2201 Reading, classifying, and sorting the symbol table from the object file.
2202 For line-by-line profiling (@samp{-l} option), also shows line numbers
2203 being assigned to memory addresses.
2204 @item 256 - Static call graph
2205 Trace operation of @samp{-c} option
2206 @item 512 - Symbol table and arc table lookups
2207 Detail operation of lookup routines
2208 @item 1024 - Call graph propagation
2209 Shows how function times are propagated along the call graph
2210 @item 2048 - Basic-blocks
2211 Shows basic-block records as they are read from profile data
2212 (only meaningful with @samp{-l} option)
2213 @item 4096 - Symspecs
2214 Shows symspec-to-symbol pattern matching operation
2215 @item 8192 - Annotate source
2216 Tracks operation of @samp{-A} option
2217 @end table
2218
2219 @node GNU Free Documentation License
2220 @appendix GNU Free Documentation License
2221 @include fdl.texi
2222
2223 @bye
2224
2225 NEEDS AN INDEX
2226
2227 -T - "traditional BSD style": How is it different?  Should the
2228 differences be documented?
2229
2230 example flat file adds up to 100.01%...
2231
2232 note: time estimates now only go out to one decimal place (0.0), where
2233 they used to extend two (78.67).