Imported Upstream version 1.14.0
[platform/upstream/gtest.git] / googlemock / include / gmock / gmock-actions.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The ACTION* family of macros can be used in a namespace scope to
33 // define custom actions easily.  The syntax:
34 //
35 //   ACTION(name) { statements; }
36 //
37 // will define an action with the given name that executes the
38 // statements.  The value returned by the statements will be used as
39 // the return value of the action.  Inside the statements, you can
40 // refer to the K-th (0-based) argument of the mock function by
41 // 'argK', and refer to its type by 'argK_type'.  For example:
42 //
43 //   ACTION(IncrementArg1) {
44 //     arg1_type temp = arg1;
45 //     return ++(*temp);
46 //   }
47 //
48 // allows you to write
49 //
50 //   ...WillOnce(IncrementArg1());
51 //
52 // You can also refer to the entire argument tuple and its type by
53 // 'args' and 'args_type', and refer to the mock function type and its
54 // return type by 'function_type' and 'return_type'.
55 //
56 // Note that you don't need to specify the types of the mock function
57 // arguments.  However rest assured that your code is still type-safe:
58 // you'll get a compiler error if *arg1 doesn't support the ++
59 // operator, or if the type of ++(*arg1) isn't compatible with the
60 // mock function's return type, for example.
61 //
62 // Sometimes you'll want to parameterize the action.   For that you can use
63 // another macro:
64 //
65 //   ACTION_P(name, param_name) { statements; }
66 //
67 // For example:
68 //
69 //   ACTION_P(Add, n) { return arg0 + n; }
70 //
71 // will allow you to write:
72 //
73 //   ...WillOnce(Add(5));
74 //
75 // Note that you don't need to provide the type of the parameter
76 // either.  If you need to reference the type of a parameter named
77 // 'foo', you can write 'foo_type'.  For example, in the body of
78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
79 // of 'n'.
80 //
81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
82 // multi-parameter actions.
83 //
84 // For the purpose of typing, you can view
85 //
86 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
87 //
88 // as shorthand for
89 //
90 //   template <typename p1_type, ..., typename pk_type>
91 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
92 //
93 // In particular, you can provide the template type arguments
94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
95 // although usually you can rely on the compiler to infer the types
96 // for you automatically.  You can assign the result of expression
97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
98 // pk_type>.  This can be useful when composing actions.
99 //
100 // You can also overload actions with different numbers of parameters:
101 //
102 //   ACTION_P(Plus, a) { ... }
103 //   ACTION_P2(Plus, a, b) { ... }
104 //
105 // While it's tempting to always use the ACTION* macros when defining
106 // a new action, you should also consider implementing ActionInterface
107 // or using MakePolymorphicAction() instead, especially if you need to
108 // use the action a lot.  While these approaches require more work,
109 // they give you more control on the types of the mock function
110 // arguments and the action parameters, which in general leads to
111 // better compiler error messages that pay off in the long run.  They
112 // also allow overloading actions based on parameter types (as opposed
113 // to just based on the number of parameters).
114 //
115 // CAVEAT:
116 //
117 // ACTION*() can only be used in a namespace scope as templates cannot be
118 // declared inside of a local class.
119 // Users can, however, define any local functors (e.g. a lambda) that
120 // can be used as actions.
121 //
122 // MORE INFORMATION:
123 //
124 // To learn more about using these macros, please search for 'ACTION' on
125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
126
127 // IWYU pragma: private, include "gmock/gmock.h"
128 // IWYU pragma: friend gmock/.*
129
130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
132
133 #ifndef _WIN32_WCE
134 #include <errno.h>
135 #endif
136
137 #include <algorithm>
138 #include <functional>
139 #include <memory>
140 #include <string>
141 #include <tuple>
142 #include <type_traits>
143 #include <utility>
144
145 #include "gmock/internal/gmock-internal-utils.h"
146 #include "gmock/internal/gmock-port.h"
147 #include "gmock/internal/gmock-pp.h"
148
149 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
150
151 namespace testing {
152
153 // To implement an action Foo, define:
154 //   1. a class FooAction that implements the ActionInterface interface, and
155 //   2. a factory function that creates an Action object from a
156 //      const FooAction*.
157 //
158 // The two-level delegation design follows that of Matcher, providing
159 // consistency for extension developers.  It also eases ownership
160 // management as Action objects can now be copied like plain values.
161
162 namespace internal {
163
164 // BuiltInDefaultValueGetter<T, true>::Get() returns a
165 // default-constructed T value.  BuiltInDefaultValueGetter<T,
166 // false>::Get() crashes with an error.
167 //
168 // This primary template is used when kDefaultConstructible is true.
169 template <typename T, bool kDefaultConstructible>
170 struct BuiltInDefaultValueGetter {
171   static T Get() { return T(); }
172 };
173 template <typename T>
174 struct BuiltInDefaultValueGetter<T, false> {
175   static T Get() {
176     Assert(false, __FILE__, __LINE__,
177            "Default action undefined for the function return type.");
178     return internal::Invalid<T>();
179     // The above statement will never be reached, but is required in
180     // order for this function to compile.
181   }
182 };
183
184 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
185 // for type T, which is NULL when T is a raw pointer type, 0 when T is
186 // a numeric type, false when T is bool, or "" when T is string or
187 // std::string.  In addition, in C++11 and above, it turns a
188 // default-constructed T value if T is default constructible.  For any
189 // other type T, the built-in default T value is undefined, and the
190 // function will abort the process.
191 template <typename T>
192 class BuiltInDefaultValue {
193  public:
194   // This function returns true if and only if type T has a built-in default
195   // value.
196   static bool Exists() { return ::std::is_default_constructible<T>::value; }
197
198   static T Get() {
199     return BuiltInDefaultValueGetter<
200         T, ::std::is_default_constructible<T>::value>::Get();
201   }
202 };
203
204 // This partial specialization says that we use the same built-in
205 // default value for T and const T.
206 template <typename T>
207 class BuiltInDefaultValue<const T> {
208  public:
209   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
210   static T Get() { return BuiltInDefaultValue<T>::Get(); }
211 };
212
213 // This partial specialization defines the default values for pointer
214 // types.
215 template <typename T>
216 class BuiltInDefaultValue<T*> {
217  public:
218   static bool Exists() { return true; }
219   static T* Get() { return nullptr; }
220 };
221
222 // The following specializations define the default values for
223 // specific types we care about.
224 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
225   template <>                                                     \
226   class BuiltInDefaultValue<type> {                               \
227    public:                                                        \
228     static bool Exists() { return true; }                         \
229     static type Get() { return value; }                           \
230   }
231
232 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
233 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
234 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
235 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
236 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
237 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
238
239 // There's no need for a default action for signed wchar_t, as that
240 // type is the same as wchar_t for gcc, and invalid for MSVC.
241 //
242 // There's also no need for a default action for unsigned wchar_t, as
243 // that type is the same as unsigned int for gcc, and invalid for
244 // MSVC.
245 #if GMOCK_WCHAR_T_IS_NATIVE_
246 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
247 #endif
248
249 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
250 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
251 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
252 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);     // NOLINT
254 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);        // NOLINT
255 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);    // NOLINT
257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
259
260 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
261
262 // Partial implementations of metaprogramming types from the standard library
263 // not available in C++11.
264
265 template <typename P>
266 struct negation
267     // NOLINTNEXTLINE
268     : std::integral_constant<bool, bool(!P::value)> {};
269
270 // Base case: with zero predicates the answer is always true.
271 template <typename...>
272 struct conjunction : std::true_type {};
273
274 // With a single predicate, the answer is that predicate.
275 template <typename P1>
276 struct conjunction<P1> : P1 {};
277
278 // With multiple predicates the answer is the first predicate if that is false,
279 // and we recurse otherwise.
280 template <typename P1, typename... Ps>
281 struct conjunction<P1, Ps...>
282     : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
283
284 template <typename...>
285 struct disjunction : std::false_type {};
286
287 template <typename P1>
288 struct disjunction<P1> : P1 {};
289
290 template <typename P1, typename... Ps>
291 struct disjunction<P1, Ps...>
292     // NOLINTNEXTLINE
293     : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
294
295 template <typename...>
296 using void_t = void;
297
298 // Detects whether an expression of type `From` can be implicitly converted to
299 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
300 //
301 //     An expression e can be implicitly converted to a type T if and only if
302 //     the declaration T t=e; is well-formed, for some invented temporary
303 //     variable t ([dcl.init]).
304 //
305 // [conv]/2 implies we can use function argument passing to detect whether this
306 // initialization is valid.
307 //
308 // Note that this is distinct from is_convertible, which requires this be valid:
309 //
310 //     To test() {
311 //       return declval<From>();
312 //     }
313 //
314 // In particular, is_convertible doesn't give the correct answer when `To` and
315 // `From` are the same non-moveable type since `declval<From>` will be an rvalue
316 // reference, defeating the guaranteed copy elision that would otherwise make
317 // this function work.
318 //
319 // REQUIRES: `From` is not cv void.
320 template <typename From, typename To>
321 struct is_implicitly_convertible {
322  private:
323   // A function that accepts a parameter of type T. This can be called with type
324   // U successfully only if U is implicitly convertible to T.
325   template <typename T>
326   static void Accept(T);
327
328   // A function that creates a value of type T.
329   template <typename T>
330   static T Make();
331
332   // An overload be selected when implicit conversion from T to To is possible.
333   template <typename T, typename = decltype(Accept<To>(Make<T>()))>
334   static std::true_type TestImplicitConversion(int);
335
336   // A fallback overload selected in all other cases.
337   template <typename T>
338   static std::false_type TestImplicitConversion(...);
339
340  public:
341   using type = decltype(TestImplicitConversion<From>(0));
342   static constexpr bool value = type::value;
343 };
344
345 // Like std::invoke_result_t from C++17, but works only for objects with call
346 // operators (not e.g. member function pointers, which we don't need specific
347 // support for in OnceAction because std::function deals with them).
348 template <typename F, typename... Args>
349 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
350
351 template <typename Void, typename R, typename F, typename... Args>
352 struct is_callable_r_impl : std::false_type {};
353
354 // Specialize the struct for those template arguments where call_result_t is
355 // well-formed. When it's not, the generic template above is chosen, resulting
356 // in std::false_type.
357 template <typename R, typename F, typename... Args>
358 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
359     : std::conditional<
360           std::is_void<R>::value,  //
361           std::true_type,          //
362           is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
363
364 // Like std::is_invocable_r from C++17, but works only for objects with call
365 // operators. See the note on call_result_t.
366 template <typename R, typename F, typename... Args>
367 using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
368
369 // Like std::as_const from C++17.
370 template <typename T>
371 typename std::add_const<T>::type& as_const(T& t) {
372   return t;
373 }
374
375 }  // namespace internal
376
377 // Specialized for function types below.
378 template <typename F>
379 class OnceAction;
380
381 // An action that can only be used once.
382 //
383 // This is accepted by WillOnce, which doesn't require the underlying action to
384 // be copy-constructible (only move-constructible), and promises to invoke it as
385 // an rvalue reference. This allows the action to work with move-only types like
386 // std::move_only_function in a type-safe manner.
387 //
388 // For example:
389 //
390 //     // Assume we have some API that needs to accept a unique pointer to some
391 //     // non-copyable object Foo.
392 //     void AcceptUniquePointer(std::unique_ptr<Foo> foo);
393 //
394 //     // We can define an action that provides a Foo to that API. Because It
395 //     // has to give away its unique pointer, it must not be called more than
396 //     // once, so its call operator is &&-qualified.
397 //     struct ProvideFoo {
398 //       std::unique_ptr<Foo> foo;
399 //
400 //       void operator()() && {
401 //         AcceptUniquePointer(std::move(Foo));
402 //       }
403 //     };
404 //
405 //     // This action can be used with WillOnce.
406 //     EXPECT_CALL(mock, Call)
407 //         .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
408 //
409 //     // But a call to WillRepeatedly will fail to compile. This is correct,
410 //     // since the action cannot correctly be used repeatedly.
411 //     EXPECT_CALL(mock, Call)
412 //         .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
413 //
414 // A less-contrived example would be an action that returns an arbitrary type,
415 // whose &&-qualified call operator is capable of dealing with move-only types.
416 template <typename Result, typename... Args>
417 class OnceAction<Result(Args...)> final {
418  private:
419   // True iff we can use the given callable type (or lvalue reference) directly
420   // via StdFunctionAdaptor.
421   template <typename Callable>
422   using IsDirectlyCompatible = internal::conjunction<
423       // It must be possible to capture the callable in StdFunctionAdaptor.
424       std::is_constructible<typename std::decay<Callable>::type, Callable>,
425       // The callable must be compatible with our signature.
426       internal::is_callable_r<Result, typename std::decay<Callable>::type,
427                               Args...>>;
428
429   // True iff we can use the given callable type via StdFunctionAdaptor once we
430   // ignore incoming arguments.
431   template <typename Callable>
432   using IsCompatibleAfterIgnoringArguments = internal::conjunction<
433       // It must be possible to capture the callable in a lambda.
434       std::is_constructible<typename std::decay<Callable>::type, Callable>,
435       // The callable must be invocable with zero arguments, returning something
436       // convertible to Result.
437       internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
438
439  public:
440   // Construct from a callable that is directly compatible with our mocked
441   // signature: it accepts our function type's arguments and returns something
442   // convertible to our result type.
443   template <typename Callable,
444             typename std::enable_if<
445                 internal::conjunction<
446                     // Teach clang on macOS that we're not talking about a
447                     // copy/move constructor here. Otherwise it gets confused
448                     // when checking the is_constructible requirement of our
449                     // traits above.
450                     internal::negation<std::is_same<
451                         OnceAction, typename std::decay<Callable>::type>>,
452                     IsDirectlyCompatible<Callable>>  //
453                 ::value,
454                 int>::type = 0>
455   OnceAction(Callable&& callable)  // NOLINT
456       : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
457             {}, std::forward<Callable>(callable))) {}
458
459   // As above, but for a callable that ignores the mocked function's arguments.
460   template <typename Callable,
461             typename std::enable_if<
462                 internal::conjunction<
463                     // Teach clang on macOS that we're not talking about a
464                     // copy/move constructor here. Otherwise it gets confused
465                     // when checking the is_constructible requirement of our
466                     // traits above.
467                     internal::negation<std::is_same<
468                         OnceAction, typename std::decay<Callable>::type>>,
469                     // Exclude callables for which the overload above works.
470                     // We'd rather provide the arguments if possible.
471                     internal::negation<IsDirectlyCompatible<Callable>>,
472                     IsCompatibleAfterIgnoringArguments<Callable>>::value,
473                 int>::type = 0>
474   OnceAction(Callable&& callable)  // NOLINT
475                                    // Call the constructor above with a callable
476                                    // that ignores the input arguments.
477       : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
478             std::forward<Callable>(callable)}) {}
479
480   // We are naturally copyable because we store only an std::function, but
481   // semantically we should not be copyable.
482   OnceAction(const OnceAction&) = delete;
483   OnceAction& operator=(const OnceAction&) = delete;
484   OnceAction(OnceAction&&) = default;
485
486   // Invoke the underlying action callable with which we were constructed,
487   // handing it the supplied arguments.
488   Result Call(Args... args) && {
489     return function_(std::forward<Args>(args)...);
490   }
491
492  private:
493   // An adaptor that wraps a callable that is compatible with our signature and
494   // being invoked as an rvalue reference so that it can be used as an
495   // StdFunctionAdaptor. This throws away type safety, but that's fine because
496   // this is only used by WillOnce, which we know calls at most once.
497   //
498   // Once we have something like std::move_only_function from C++23, we can do
499   // away with this.
500   template <typename Callable>
501   class StdFunctionAdaptor final {
502    public:
503     // A tag indicating that the (otherwise universal) constructor is accepting
504     // the callable itself, instead of e.g. stealing calls for the move
505     // constructor.
506     struct CallableTag final {};
507
508     template <typename F>
509     explicit StdFunctionAdaptor(CallableTag, F&& callable)
510         : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
511
512     // Rather than explicitly returning Result, we return whatever the wrapped
513     // callable returns. This allows for compatibility with existing uses like
514     // the following, when the mocked function returns void:
515     //
516     //     EXPECT_CALL(mock_fn_, Call)
517     //         .WillOnce([&] {
518     //            [...]
519     //            return 0;
520     //         });
521     //
522     // Such a callable can be turned into std::function<void()>. If we use an
523     // explicit return type of Result here then it *doesn't* work with
524     // std::function, because we'll get a "void function should not return a
525     // value" error.
526     //
527     // We need not worry about incompatible result types because the SFINAE on
528     // OnceAction already checks this for us. std::is_invocable_r_v itself makes
529     // the same allowance for void result types.
530     template <typename... ArgRefs>
531     internal::call_result_t<Callable, ArgRefs...> operator()(
532         ArgRefs&&... args) const {
533       return std::move(*callable_)(std::forward<ArgRefs>(args)...);
534     }
535
536    private:
537     // We must put the callable on the heap so that we are copyable, which
538     // std::function needs.
539     std::shared_ptr<Callable> callable_;
540   };
541
542   // An adaptor that makes a callable that accepts zero arguments callable with
543   // our mocked arguments.
544   template <typename Callable>
545   struct IgnoreIncomingArguments {
546     internal::call_result_t<Callable> operator()(Args&&...) {
547       return std::move(callable)();
548     }
549
550     Callable callable;
551   };
552
553   std::function<Result(Args...)> function_;
554 };
555
556 // When an unexpected function call is encountered, Google Mock will
557 // let it return a default value if the user has specified one for its
558 // return type, or if the return type has a built-in default value;
559 // otherwise Google Mock won't know what value to return and will have
560 // to abort the process.
561 //
562 // The DefaultValue<T> class allows a user to specify the
563 // default value for a type T that is both copyable and publicly
564 // destructible (i.e. anything that can be used as a function return
565 // type).  The usage is:
566 //
567 //   // Sets the default value for type T to be foo.
568 //   DefaultValue<T>::Set(foo);
569 template <typename T>
570 class DefaultValue {
571  public:
572   // Sets the default value for type T; requires T to be
573   // copy-constructable and have a public destructor.
574   static void Set(T x) {
575     delete producer_;
576     producer_ = new FixedValueProducer(x);
577   }
578
579   // Provides a factory function to be called to generate the default value.
580   // This method can be used even if T is only move-constructible, but it is not
581   // limited to that case.
582   typedef T (*FactoryFunction)();
583   static void SetFactory(FactoryFunction factory) {
584     delete producer_;
585     producer_ = new FactoryValueProducer(factory);
586   }
587
588   // Unsets the default value for type T.
589   static void Clear() {
590     delete producer_;
591     producer_ = nullptr;
592   }
593
594   // Returns true if and only if the user has set the default value for type T.
595   static bool IsSet() { return producer_ != nullptr; }
596
597   // Returns true if T has a default return value set by the user or there
598   // exists a built-in default value.
599   static bool Exists() {
600     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
601   }
602
603   // Returns the default value for type T if the user has set one;
604   // otherwise returns the built-in default value. Requires that Exists()
605   // is true, which ensures that the return value is well-defined.
606   static T Get() {
607     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
608                                 : producer_->Produce();
609   }
610
611  private:
612   class ValueProducer {
613    public:
614     virtual ~ValueProducer() = default;
615     virtual T Produce() = 0;
616   };
617
618   class FixedValueProducer : public ValueProducer {
619    public:
620     explicit FixedValueProducer(T value) : value_(value) {}
621     T Produce() override { return value_; }
622
623    private:
624     const T value_;
625     FixedValueProducer(const FixedValueProducer&) = delete;
626     FixedValueProducer& operator=(const FixedValueProducer&) = delete;
627   };
628
629   class FactoryValueProducer : public ValueProducer {
630    public:
631     explicit FactoryValueProducer(FactoryFunction factory)
632         : factory_(factory) {}
633     T Produce() override { return factory_(); }
634
635    private:
636     const FactoryFunction factory_;
637     FactoryValueProducer(const FactoryValueProducer&) = delete;
638     FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
639   };
640
641   static ValueProducer* producer_;
642 };
643
644 // This partial specialization allows a user to set default values for
645 // reference types.
646 template <typename T>
647 class DefaultValue<T&> {
648  public:
649   // Sets the default value for type T&.
650   static void Set(T& x) {  // NOLINT
651     address_ = &x;
652   }
653
654   // Unsets the default value for type T&.
655   static void Clear() { address_ = nullptr; }
656
657   // Returns true if and only if the user has set the default value for type T&.
658   static bool IsSet() { return address_ != nullptr; }
659
660   // Returns true if T has a default return value set by the user or there
661   // exists a built-in default value.
662   static bool Exists() {
663     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
664   }
665
666   // Returns the default value for type T& if the user has set one;
667   // otherwise returns the built-in default value if there is one;
668   // otherwise aborts the process.
669   static T& Get() {
670     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
671                                : *address_;
672   }
673
674  private:
675   static T* address_;
676 };
677
678 // This specialization allows DefaultValue<void>::Get() to
679 // compile.
680 template <>
681 class DefaultValue<void> {
682  public:
683   static bool Exists() { return true; }
684   static void Get() {}
685 };
686
687 // Points to the user-set default value for type T.
688 template <typename T>
689 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
690
691 // Points to the user-set default value for type T&.
692 template <typename T>
693 T* DefaultValue<T&>::address_ = nullptr;
694
695 // Implement this interface to define an action for function type F.
696 template <typename F>
697 class ActionInterface {
698  public:
699   typedef typename internal::Function<F>::Result Result;
700   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
701
702   ActionInterface() = default;
703   virtual ~ActionInterface() = default;
704
705   // Performs the action.  This method is not const, as in general an
706   // action can have side effects and be stateful.  For example, a
707   // get-the-next-element-from-the-collection action will need to
708   // remember the current element.
709   virtual Result Perform(const ArgumentTuple& args) = 0;
710
711  private:
712   ActionInterface(const ActionInterface&) = delete;
713   ActionInterface& operator=(const ActionInterface&) = delete;
714 };
715
716 template <typename F>
717 class Action;
718
719 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
720 // object that represents an action to be taken when a mock function of type
721 // R(Args...) is called. The implementation of Action<T> is just a
722 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
723 // can view an object implementing ActionInterface<F> as a concrete action
724 // (including its current state), and an Action<F> object as a handle to it.
725 template <typename R, typename... Args>
726 class Action<R(Args...)> {
727  private:
728   using F = R(Args...);
729
730   // Adapter class to allow constructing Action from a legacy ActionInterface.
731   // New code should create Actions from functors instead.
732   struct ActionAdapter {
733     // Adapter must be copyable to satisfy std::function requirements.
734     ::std::shared_ptr<ActionInterface<F>> impl_;
735
736     template <typename... InArgs>
737     typename internal::Function<F>::Result operator()(InArgs&&... args) {
738       return impl_->Perform(
739           ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
740     }
741   };
742
743   template <typename G>
744   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
745
746  public:
747   typedef typename internal::Function<F>::Result Result;
748   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
749
750   // Constructs a null Action.  Needed for storing Action objects in
751   // STL containers.
752   Action() = default;
753
754   // Construct an Action from a specified callable.
755   // This cannot take std::function directly, because then Action would not be
756   // directly constructible from lambda (it would require two conversions).
757   template <
758       typename G,
759       typename = typename std::enable_if<internal::disjunction<
760           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
761                                                         G>>::value>::type>
762   Action(G&& fun) {  // NOLINT
763     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
764   }
765
766   // Constructs an Action from its implementation.
767   explicit Action(ActionInterface<F>* impl)
768       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
769
770   // This constructor allows us to turn an Action<Func> object into an
771   // Action<F>, as long as F's arguments can be implicitly converted
772   // to Func's and Func's return type can be implicitly converted to F's.
773   template <typename Func>
774   Action(const Action<Func>& action)  // NOLINT
775       : fun_(action.fun_) {}
776
777   // Returns true if and only if this is the DoDefault() action.
778   bool IsDoDefault() const { return fun_ == nullptr; }
779
780   // Performs the action.  Note that this method is const even though
781   // the corresponding method in ActionInterface is not.  The reason
782   // is that a const Action<F> means that it cannot be re-bound to
783   // another concrete action, not that the concrete action it binds to
784   // cannot change state.  (Think of the difference between a const
785   // pointer and a pointer to const.)
786   Result Perform(ArgumentTuple args) const {
787     if (IsDoDefault()) {
788       internal::IllegalDoDefault(__FILE__, __LINE__);
789     }
790     return internal::Apply(fun_, ::std::move(args));
791   }
792
793   // An action can be used as a OnceAction, since it's obviously safe to call it
794   // once.
795   operator OnceAction<F>() const {  // NOLINT
796     // Return a OnceAction-compatible callable that calls Perform with the
797     // arguments it is provided. We could instead just return fun_, but then
798     // we'd need to handle the IsDoDefault() case separately.
799     struct OA {
800       Action<F> action;
801
802       R operator()(Args... args) && {
803         return action.Perform(
804             std::forward_as_tuple(std::forward<Args>(args)...));
805       }
806     };
807
808     return OA{*this};
809   }
810
811  private:
812   template <typename G>
813   friend class Action;
814
815   template <typename G>
816   void Init(G&& g, ::std::true_type) {
817     fun_ = ::std::forward<G>(g);
818   }
819
820   template <typename G>
821   void Init(G&& g, ::std::false_type) {
822     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
823   }
824
825   template <typename FunctionImpl>
826   struct IgnoreArgs {
827     template <typename... InArgs>
828     Result operator()(const InArgs&...) const {
829       return function_impl();
830     }
831
832     FunctionImpl function_impl;
833   };
834
835   // fun_ is an empty function if and only if this is the DoDefault() action.
836   ::std::function<F> fun_;
837 };
838
839 // The PolymorphicAction class template makes it easy to implement a
840 // polymorphic action (i.e. an action that can be used in mock
841 // functions of than one type, e.g. Return()).
842 //
843 // To define a polymorphic action, a user first provides a COPYABLE
844 // implementation class that has a Perform() method template:
845 //
846 //   class FooAction {
847 //    public:
848 //     template <typename Result, typename ArgumentTuple>
849 //     Result Perform(const ArgumentTuple& args) const {
850 //       // Processes the arguments and returns a result, using
851 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
852 //     }
853 //     ...
854 //   };
855 //
856 // Then the user creates the polymorphic action using
857 // MakePolymorphicAction(object) where object has type FooAction.  See
858 // the definition of Return(void) and SetArgumentPointee<N>(value) for
859 // complete examples.
860 template <typename Impl>
861 class PolymorphicAction {
862  public:
863   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
864
865   template <typename F>
866   operator Action<F>() const {
867     return Action<F>(new MonomorphicImpl<F>(impl_));
868   }
869
870  private:
871   template <typename F>
872   class MonomorphicImpl : public ActionInterface<F> {
873    public:
874     typedef typename internal::Function<F>::Result Result;
875     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
876
877     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
878
879     Result Perform(const ArgumentTuple& args) override {
880       return impl_.template Perform<Result>(args);
881     }
882
883    private:
884     Impl impl_;
885   };
886
887   Impl impl_;
888 };
889
890 // Creates an Action from its implementation and returns it.  The
891 // created Action object owns the implementation.
892 template <typename F>
893 Action<F> MakeAction(ActionInterface<F>* impl) {
894   return Action<F>(impl);
895 }
896
897 // Creates a polymorphic action from its implementation.  This is
898 // easier to use than the PolymorphicAction<Impl> constructor as it
899 // doesn't require you to explicitly write the template argument, e.g.
900 //
901 //   MakePolymorphicAction(foo);
902 // vs
903 //   PolymorphicAction<TypeOfFoo>(foo);
904 template <typename Impl>
905 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
906   return PolymorphicAction<Impl>(impl);
907 }
908
909 namespace internal {
910
911 // Helper struct to specialize ReturnAction to execute a move instead of a copy
912 // on return. Useful for move-only types, but could be used on any type.
913 template <typename T>
914 struct ByMoveWrapper {
915   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
916   T payload;
917 };
918
919 // The general implementation of Return(R). Specializations follow below.
920 template <typename R>
921 class ReturnAction final {
922  public:
923   explicit ReturnAction(R value) : value_(std::move(value)) {}
924
925   template <typename U, typename... Args,
926             typename = typename std::enable_if<conjunction<
927                 // See the requirements documented on Return.
928                 negation<std::is_same<void, U>>,  //
929                 negation<std::is_reference<U>>,   //
930                 std::is_convertible<R, U>,        //
931                 std::is_move_constructible<U>>::value>::type>
932   operator OnceAction<U(Args...)>() && {  // NOLINT
933     return Impl<U>(std::move(value_));
934   }
935
936   template <typename U, typename... Args,
937             typename = typename std::enable_if<conjunction<
938                 // See the requirements documented on Return.
939                 negation<std::is_same<void, U>>,   //
940                 negation<std::is_reference<U>>,    //
941                 std::is_convertible<const R&, U>,  //
942                 std::is_copy_constructible<U>>::value>::type>
943   operator Action<U(Args...)>() const {  // NOLINT
944     return Impl<U>(value_);
945   }
946
947  private:
948   // Implements the Return(x) action for a mock function that returns type U.
949   template <typename U>
950   class Impl final {
951    public:
952     // The constructor used when the return value is allowed to move from the
953     // input value (i.e. we are converting to OnceAction).
954     explicit Impl(R&& input_value)
955         : state_(new State(std::move(input_value))) {}
956
957     // The constructor used when the return value is not allowed to move from
958     // the input value (i.e. we are converting to Action).
959     explicit Impl(const R& input_value) : state_(new State(input_value)) {}
960
961     U operator()() && { return std::move(state_->value); }
962     U operator()() const& { return state_->value; }
963
964    private:
965     // We put our state on the heap so that the compiler-generated copy/move
966     // constructors work correctly even when U is a reference-like type. This is
967     // necessary only because we eagerly create State::value (see the note on
968     // that symbol for details). If we instead had only the input value as a
969     // member then the default constructors would work fine.
970     //
971     // For example, when R is std::string and U is std::string_view, value is a
972     // reference to the string backed by input_value. The copy constructor would
973     // copy both, so that we wind up with a new input_value object (with the
974     // same contents) and a reference to the *old* input_value object rather
975     // than the new one.
976     struct State {
977       explicit State(const R& input_value_in)
978           : input_value(input_value_in),
979             // Make an implicit conversion to Result before initializing the U
980             // object we store, avoiding calling any explicit constructor of U
981             // from R.
982             //
983             // This simulates the language rules: a function with return type U
984             // that does `return R()` requires R to be implicitly convertible to
985             // U, and uses that path for the conversion, even U Result has an
986             // explicit constructor from R.
987             value(ImplicitCast_<U>(internal::as_const(input_value))) {}
988
989       // As above, but for the case where we're moving from the ReturnAction
990       // object because it's being used as a OnceAction.
991       explicit State(R&& input_value_in)
992           : input_value(std::move(input_value_in)),
993             // For the same reason as above we make an implicit conversion to U
994             // before initializing the value.
995             //
996             // Unlike above we provide the input value as an rvalue to the
997             // implicit conversion because this is a OnceAction: it's fine if it
998             // wants to consume the input value.
999             value(ImplicitCast_<U>(std::move(input_value))) {}
1000
1001       // A copy of the value originally provided by the user. We retain this in
1002       // addition to the value of the mock function's result type below in case
1003       // the latter is a reference-like type. See the std::string_view example
1004       // in the documentation on Return.
1005       R input_value;
1006
1007       // The value we actually return, as the type returned by the mock function
1008       // itself.
1009       //
1010       // We eagerly initialize this here, rather than lazily doing the implicit
1011       // conversion automatically each time Perform is called, for historical
1012       // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
1013       // made the Action<U()> conversion operator eagerly convert the R value to
1014       // U, but without keeping the R alive. This broke the use case discussed
1015       // in the documentation for Return, making reference-like types such as
1016       // std::string_view not safe to use as U where the input type R is a
1017       // value-like type such as std::string.
1018       //
1019       // The example the commit gave was not very clear, nor was the issue
1020       // thread (https://github.com/google/googlemock/issues/86), but it seems
1021       // the worry was about reference-like input types R that flatten to a
1022       // value-like type U when being implicitly converted. An example of this
1023       // is std::vector<bool>::reference, which is often a proxy type with an
1024       // reference to the underlying vector:
1025       //
1026       //     // Helper method: have the mock function return bools according
1027       //     // to the supplied script.
1028       //     void SetActions(MockFunction<bool(size_t)>& mock,
1029       //                     const std::vector<bool>& script) {
1030       //       for (size_t i = 0; i < script.size(); ++i) {
1031       //         EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
1032       //       }
1033       //     }
1034       //
1035       //     TEST(Foo, Bar) {
1036       //       // Set actions using a temporary vector, whose operator[]
1037       //       // returns proxy objects that references that will be
1038       //       // dangling once the call to SetActions finishes and the
1039       //       // vector is destroyed.
1040       //       MockFunction<bool(size_t)> mock;
1041       //       SetActions(mock, {false, true});
1042       //
1043       //       EXPECT_FALSE(mock.AsStdFunction()(0));
1044       //       EXPECT_TRUE(mock.AsStdFunction()(1));
1045       //     }
1046       //
1047       // This eager conversion helps with a simple case like this, but doesn't
1048       // fully make these types work in general. For example the following still
1049       // uses a dangling reference:
1050       //
1051       //     TEST(Foo, Baz) {
1052       //       MockFunction<std::vector<std::string>()> mock;
1053       //
1054       //       // Return the same vector twice, and then the empty vector
1055       //       // thereafter.
1056       //       auto action = Return(std::initializer_list<std::string>{
1057       //           "taco", "burrito",
1058       //       });
1059       //
1060       //       EXPECT_CALL(mock, Call)
1061       //           .WillOnce(action)
1062       //           .WillOnce(action)
1063       //           .WillRepeatedly(Return(std::vector<std::string>{}));
1064       //
1065       //       EXPECT_THAT(mock.AsStdFunction()(),
1066       //                   ElementsAre("taco", "burrito"));
1067       //       EXPECT_THAT(mock.AsStdFunction()(),
1068       //                   ElementsAre("taco", "burrito"));
1069       //       EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
1070       //     }
1071       //
1072       U value;
1073     };
1074
1075     const std::shared_ptr<State> state_;
1076   };
1077
1078   R value_;
1079 };
1080
1081 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
1082 //
1083 // This version applies the type system-defeating hack of moving from T even in
1084 // the const call operator, checking at runtime that it isn't called more than
1085 // once, since the user has declared their intent to do so by using ByMove.
1086 template <typename T>
1087 class ReturnAction<ByMoveWrapper<T>> final {
1088  public:
1089   explicit ReturnAction(ByMoveWrapper<T> wrapper)
1090       : state_(new State(std::move(wrapper.payload))) {}
1091
1092   T operator()() const {
1093     GTEST_CHECK_(!state_->called)
1094         << "A ByMove() action must be performed at most once.";
1095
1096     state_->called = true;
1097     return std::move(state_->value);
1098   }
1099
1100  private:
1101   // We store our state on the heap so that we are copyable as required by
1102   // Action, despite the fact that we are stateful and T may not be copyable.
1103   struct State {
1104     explicit State(T&& value_in) : value(std::move(value_in)) {}
1105
1106     T value;
1107     bool called = false;
1108   };
1109
1110   const std::shared_ptr<State> state_;
1111 };
1112
1113 // Implements the ReturnNull() action.
1114 class ReturnNullAction {
1115  public:
1116   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1117   // this is enforced by returning nullptr, and in non-C++11 by asserting a
1118   // pointer type on compile time.
1119   template <typename Result, typename ArgumentTuple>
1120   static Result Perform(const ArgumentTuple&) {
1121     return nullptr;
1122   }
1123 };
1124
1125 // Implements the Return() action.
1126 class ReturnVoidAction {
1127  public:
1128   // Allows Return() to be used in any void-returning function.
1129   template <typename Result, typename ArgumentTuple>
1130   static void Perform(const ArgumentTuple&) {
1131     static_assert(std::is_void<Result>::value, "Result should be void.");
1132   }
1133 };
1134
1135 // Implements the polymorphic ReturnRef(x) action, which can be used
1136 // in any function that returns a reference to the type of x,
1137 // regardless of the argument types.
1138 template <typename T>
1139 class ReturnRefAction {
1140  public:
1141   // Constructs a ReturnRefAction object from the reference to be returned.
1142   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
1143
1144   // This template type conversion operator allows ReturnRef(x) to be
1145   // used in ANY function that returns a reference to x's type.
1146   template <typename F>
1147   operator Action<F>() const {
1148     typedef typename Function<F>::Result Result;
1149     // Asserts that the function return type is a reference.  This
1150     // catches the user error of using ReturnRef(x) when Return(x)
1151     // should be used, and generates some helpful error message.
1152     static_assert(std::is_reference<Result>::value,
1153                   "use Return instead of ReturnRef to return a value");
1154     return Action<F>(new Impl<F>(ref_));
1155   }
1156
1157  private:
1158   // Implements the ReturnRef(x) action for a particular function type F.
1159   template <typename F>
1160   class Impl : public ActionInterface<F> {
1161    public:
1162     typedef typename Function<F>::Result Result;
1163     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1164
1165     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
1166
1167     Result Perform(const ArgumentTuple&) override { return ref_; }
1168
1169    private:
1170     T& ref_;
1171   };
1172
1173   T& ref_;
1174 };
1175
1176 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1177 // used in any function that returns a reference to the type of x,
1178 // regardless of the argument types.
1179 template <typename T>
1180 class ReturnRefOfCopyAction {
1181  public:
1182   // Constructs a ReturnRefOfCopyAction object from the reference to
1183   // be returned.
1184   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
1185
1186   // This template type conversion operator allows ReturnRefOfCopy(x) to be
1187   // used in ANY function that returns a reference to x's type.
1188   template <typename F>
1189   operator Action<F>() const {
1190     typedef typename Function<F>::Result Result;
1191     // Asserts that the function return type is a reference.  This
1192     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1193     // should be used, and generates some helpful error message.
1194     static_assert(std::is_reference<Result>::value,
1195                   "use Return instead of ReturnRefOfCopy to return a value");
1196     return Action<F>(new Impl<F>(value_));
1197   }
1198
1199  private:
1200   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1201   template <typename F>
1202   class Impl : public ActionInterface<F> {
1203    public:
1204     typedef typename Function<F>::Result Result;
1205     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1206
1207     explicit Impl(const T& value) : value_(value) {}  // NOLINT
1208
1209     Result Perform(const ArgumentTuple&) override { return value_; }
1210
1211    private:
1212     T value_;
1213   };
1214
1215   const T value_;
1216 };
1217
1218 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1219 // used in any function that returns the element_type of v.
1220 template <typename T>
1221 class ReturnRoundRobinAction {
1222  public:
1223   explicit ReturnRoundRobinAction(std::vector<T> values) {
1224     GTEST_CHECK_(!values.empty())
1225         << "ReturnRoundRobin requires at least one element.";
1226     state_->values = std::move(values);
1227   }
1228
1229   template <typename... Args>
1230   T operator()(Args&&...) const {
1231     return state_->Next();
1232   }
1233
1234  private:
1235   struct State {
1236     T Next() {
1237       T ret_val = values[i++];
1238       if (i == values.size()) i = 0;
1239       return ret_val;
1240     }
1241
1242     std::vector<T> values;
1243     size_t i = 0;
1244   };
1245   std::shared_ptr<State> state_ = std::make_shared<State>();
1246 };
1247
1248 // Implements the polymorphic DoDefault() action.
1249 class DoDefaultAction {
1250  public:
1251   // This template type conversion operator allows DoDefault() to be
1252   // used in any function.
1253   template <typename F>
1254   operator Action<F>() const {
1255     return Action<F>();
1256   }  // NOLINT
1257 };
1258
1259 // Implements the Assign action to set a given pointer referent to a
1260 // particular value.
1261 template <typename T1, typename T2>
1262 class AssignAction {
1263  public:
1264   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1265
1266   template <typename Result, typename ArgumentTuple>
1267   void Perform(const ArgumentTuple& /* args */) const {
1268     *ptr_ = value_;
1269   }
1270
1271  private:
1272   T1* const ptr_;
1273   const T2 value_;
1274 };
1275
1276 #ifndef GTEST_OS_WINDOWS_MOBILE
1277
1278 // Implements the SetErrnoAndReturn action to simulate return from
1279 // various system calls and libc functions.
1280 template <typename T>
1281 class SetErrnoAndReturnAction {
1282  public:
1283   SetErrnoAndReturnAction(int errno_value, T result)
1284       : errno_(errno_value), result_(result) {}
1285   template <typename Result, typename ArgumentTuple>
1286   Result Perform(const ArgumentTuple& /* args */) const {
1287     errno = errno_;
1288     return result_;
1289   }
1290
1291  private:
1292   const int errno_;
1293   const T result_;
1294 };
1295
1296 #endif  // !GTEST_OS_WINDOWS_MOBILE
1297
1298 // Implements the SetArgumentPointee<N>(x) action for any function
1299 // whose N-th argument (0-based) is a pointer to x's type.
1300 template <size_t N, typename A, typename = void>
1301 struct SetArgumentPointeeAction {
1302   A value;
1303
1304   template <typename... Args>
1305   void operator()(const Args&... args) const {
1306     *::std::get<N>(std::tie(args...)) = value;
1307   }
1308 };
1309
1310 // Implements the Invoke(object_ptr, &Class::Method) action.
1311 template <class Class, typename MethodPtr>
1312 struct InvokeMethodAction {
1313   Class* const obj_ptr;
1314   const MethodPtr method_ptr;
1315
1316   template <typename... Args>
1317   auto operator()(Args&&... args) const
1318       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1319     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1320   }
1321 };
1322
1323 // Implements the InvokeWithoutArgs(f) action.  The template argument
1324 // FunctionImpl is the implementation type of f, which can be either a
1325 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
1326 // Action<F> as long as f's type is compatible with F.
1327 template <typename FunctionImpl>
1328 struct InvokeWithoutArgsAction {
1329   FunctionImpl function_impl;
1330
1331   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1332   // compatible with f.
1333   template <typename... Args>
1334   auto operator()(const Args&...) -> decltype(function_impl()) {
1335     return function_impl();
1336   }
1337 };
1338
1339 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1340 template <class Class, typename MethodPtr>
1341 struct InvokeMethodWithoutArgsAction {
1342   Class* const obj_ptr;
1343   const MethodPtr method_ptr;
1344
1345   using ReturnType =
1346       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1347
1348   template <typename... Args>
1349   ReturnType operator()(const Args&...) const {
1350     return (obj_ptr->*method_ptr)();
1351   }
1352 };
1353
1354 // Implements the IgnoreResult(action) action.
1355 template <typename A>
1356 class IgnoreResultAction {
1357  public:
1358   explicit IgnoreResultAction(const A& action) : action_(action) {}
1359
1360   template <typename F>
1361   operator Action<F>() const {
1362     // Assert statement belongs here because this is the best place to verify
1363     // conditions on F. It produces the clearest error messages
1364     // in most compilers.
1365     // Impl really belongs in this scope as a local class but can't
1366     // because MSVC produces duplicate symbols in different translation units
1367     // in this case. Until MS fixes that bug we put Impl into the class scope
1368     // and put the typedef both here (for use in assert statement) and
1369     // in the Impl class. But both definitions must be the same.
1370     typedef typename internal::Function<F>::Result Result;
1371
1372     // Asserts at compile time that F returns void.
1373     static_assert(std::is_void<Result>::value, "Result type should be void.");
1374
1375     return Action<F>(new Impl<F>(action_));
1376   }
1377
1378  private:
1379   template <typename F>
1380   class Impl : public ActionInterface<F> {
1381    public:
1382     typedef typename internal::Function<F>::Result Result;
1383     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1384
1385     explicit Impl(const A& action) : action_(action) {}
1386
1387     void Perform(const ArgumentTuple& args) override {
1388       // Performs the action and ignores its result.
1389       action_.Perform(args);
1390     }
1391
1392    private:
1393     // Type OriginalFunction is the same as F except that its return
1394     // type is IgnoredValue.
1395     typedef
1396         typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
1397
1398     const Action<OriginalFunction> action_;
1399   };
1400
1401   const A action_;
1402 };
1403
1404 template <typename InnerAction, size_t... I>
1405 struct WithArgsAction {
1406   InnerAction inner_action;
1407
1408   // The signature of the function as seen by the inner action, given an out
1409   // action with the given result and argument types.
1410   template <typename R, typename... Args>
1411   using InnerSignature =
1412       R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
1413
1414   // Rather than a call operator, we must define conversion operators to
1415   // particular action types. This is necessary for embedded actions like
1416   // DoDefault(), which rely on an action conversion operators rather than
1417   // providing a call operator because even with a particular set of arguments
1418   // they don't have a fixed return type.
1419
1420   template <
1421       typename R, typename... Args,
1422       typename std::enable_if<
1423           std::is_convertible<InnerAction,
1424                               // Unfortunately we can't use the InnerSignature
1425                               // alias here; MSVC complains about the I
1426                               // parameter pack not being expanded (error C3520)
1427                               // despite it being expanded in the type alias.
1428                               // TupleElement is also an MSVC workaround.
1429                               // See its definition for details.
1430                               OnceAction<R(internal::TupleElement<
1431                                            I, std::tuple<Args...>>...)>>::value,
1432           int>::type = 0>
1433   operator OnceAction<R(Args...)>() && {  // NOLINT
1434     struct OA {
1435       OnceAction<InnerSignature<R, Args...>> inner_action;
1436
1437       R operator()(Args&&... args) && {
1438         return std::move(inner_action)
1439             .Call(std::get<I>(
1440                 std::forward_as_tuple(std::forward<Args>(args)...))...);
1441       }
1442     };
1443
1444     return OA{std::move(inner_action)};
1445   }
1446
1447   template <
1448       typename R, typename... Args,
1449       typename std::enable_if<
1450           std::is_convertible<const InnerAction&,
1451                               // Unfortunately we can't use the InnerSignature
1452                               // alias here; MSVC complains about the I
1453                               // parameter pack not being expanded (error C3520)
1454                               // despite it being expanded in the type alias.
1455                               // TupleElement is also an MSVC workaround.
1456                               // See its definition for details.
1457                               Action<R(internal::TupleElement<
1458                                        I, std::tuple<Args...>>...)>>::value,
1459           int>::type = 0>
1460   operator Action<R(Args...)>() const {  // NOLINT
1461     Action<InnerSignature<R, Args...>> converted(inner_action);
1462
1463     return [converted](Args&&... args) -> R {
1464       return converted.Perform(std::forward_as_tuple(
1465           std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1466     };
1467   }
1468 };
1469
1470 template <typename... Actions>
1471 class DoAllAction;
1472
1473 // Base case: only a single action.
1474 template <typename FinalAction>
1475 class DoAllAction<FinalAction> {
1476  public:
1477   struct UserConstructorTag {};
1478
1479   template <typename T>
1480   explicit DoAllAction(UserConstructorTag, T&& action)
1481       : final_action_(std::forward<T>(action)) {}
1482
1483   // Rather than a call operator, we must define conversion operators to
1484   // particular action types. This is necessary for embedded actions like
1485   // DoDefault(), which rely on an action conversion operators rather than
1486   // providing a call operator because even with a particular set of arguments
1487   // they don't have a fixed return type.
1488
1489   template <typename R, typename... Args,
1490             typename std::enable_if<
1491                 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
1492                 int>::type = 0>
1493   operator OnceAction<R(Args...)>() && {  // NOLINT
1494     return std::move(final_action_);
1495   }
1496
1497   template <
1498       typename R, typename... Args,
1499       typename std::enable_if<
1500           std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
1501           int>::type = 0>
1502   operator Action<R(Args...)>() const {  // NOLINT
1503     return final_action_;
1504   }
1505
1506  private:
1507   FinalAction final_action_;
1508 };
1509
1510 // Recursive case: support N actions by calling the initial action and then
1511 // calling through to the base class containing N-1 actions.
1512 template <typename InitialAction, typename... OtherActions>
1513 class DoAllAction<InitialAction, OtherActions...>
1514     : private DoAllAction<OtherActions...> {
1515  private:
1516   using Base = DoAllAction<OtherActions...>;
1517
1518   // The type of reference that should be provided to an initial action for a
1519   // mocked function parameter of type T.
1520   //
1521   // There are two quirks here:
1522   //
1523   //  *  Unlike most forwarding functions, we pass scalars through by value.
1524   //     This isn't strictly necessary because an lvalue reference would work
1525   //     fine too and be consistent with other non-reference types, but it's
1526   //     perhaps less surprising.
1527   //
1528   //     For example if the mocked function has signature void(int), then it
1529   //     might seem surprising for the user's initial action to need to be
1530   //     convertible to Action<void(const int&)>. This is perhaps less
1531   //     surprising for a non-scalar type where there may be a performance
1532   //     impact, or it might even be impossible, to pass by value.
1533   //
1534   //  *  More surprisingly, `const T&` is often not a const reference type.
1535   //     By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
1536   //     U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
1537   //     U&. In other words, we may hand over a non-const reference.
1538   //
1539   //     So for example, given some non-scalar type Obj we have the following
1540   //     mappings:
1541   //
1542   //            T               InitialActionArgType<T>
1543   //         -------            -----------------------
1544   //         Obj                const Obj&
1545   //         Obj&               Obj&
1546   //         Obj&&              Obj&
1547   //         const Obj          const Obj&
1548   //         const Obj&         const Obj&
1549   //         const Obj&&        const Obj&
1550   //
1551   //     In other words, the initial actions get a mutable view of an non-scalar
1552   //     argument if and only if the mock function itself accepts a non-const
1553   //     reference type. They are never given an rvalue reference to an
1554   //     non-scalar type.
1555   //
1556   //     This situation makes sense if you imagine use with a matcher that is
1557   //     designed to write through a reference. For example, if the caller wants
1558   //     to fill in a reference argument and then return a canned value:
1559   //
1560   //         EXPECT_CALL(mock, Call)
1561   //             .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
1562   //
1563   template <typename T>
1564   using InitialActionArgType =
1565       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1566
1567  public:
1568   struct UserConstructorTag {};
1569
1570   template <typename T, typename... U>
1571   explicit DoAllAction(UserConstructorTag, T&& initial_action,
1572                        U&&... other_actions)
1573       : Base({}, std::forward<U>(other_actions)...),
1574         initial_action_(std::forward<T>(initial_action)) {}
1575
1576   template <typename R, typename... Args,
1577             typename std::enable_if<
1578                 conjunction<
1579                     // Both the initial action and the rest must support
1580                     // conversion to OnceAction.
1581                     std::is_convertible<
1582                         InitialAction,
1583                         OnceAction<void(InitialActionArgType<Args>...)>>,
1584                     std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
1585                 int>::type = 0>
1586   operator OnceAction<R(Args...)>() && {  // NOLINT
1587     // Return an action that first calls the initial action with arguments
1588     // filtered through InitialActionArgType, then forwards arguments directly
1589     // to the base class to deal with the remaining actions.
1590     struct OA {
1591       OnceAction<void(InitialActionArgType<Args>...)> initial_action;
1592       OnceAction<R(Args...)> remaining_actions;
1593
1594       R operator()(Args... args) && {
1595         std::move(initial_action)
1596             .Call(static_cast<InitialActionArgType<Args>>(args)...);
1597
1598         return std::move(remaining_actions).Call(std::forward<Args>(args)...);
1599       }
1600     };
1601
1602     return OA{
1603         std::move(initial_action_),
1604         std::move(static_cast<Base&>(*this)),
1605     };
1606   }
1607
1608   template <
1609       typename R, typename... Args,
1610       typename std::enable_if<
1611           conjunction<
1612               // Both the initial action and the rest must support conversion to
1613               // Action.
1614               std::is_convertible<const InitialAction&,
1615                                   Action<void(InitialActionArgType<Args>...)>>,
1616               std::is_convertible<const Base&, Action<R(Args...)>>>::value,
1617           int>::type = 0>
1618   operator Action<R(Args...)>() const {  // NOLINT
1619     // Return an action that first calls the initial action with arguments
1620     // filtered through InitialActionArgType, then forwards arguments directly
1621     // to the base class to deal with the remaining actions.
1622     struct OA {
1623       Action<void(InitialActionArgType<Args>...)> initial_action;
1624       Action<R(Args...)> remaining_actions;
1625
1626       R operator()(Args... args) const {
1627         initial_action.Perform(std::forward_as_tuple(
1628             static_cast<InitialActionArgType<Args>>(args)...));
1629
1630         return remaining_actions.Perform(
1631             std::forward_as_tuple(std::forward<Args>(args)...));
1632       }
1633     };
1634
1635     return OA{
1636         initial_action_,
1637         static_cast<const Base&>(*this),
1638     };
1639   }
1640
1641  private:
1642   InitialAction initial_action_;
1643 };
1644
1645 template <typename T, typename... Params>
1646 struct ReturnNewAction {
1647   T* operator()() const {
1648     return internal::Apply(
1649         [](const Params&... unpacked_params) {
1650           return new T(unpacked_params...);
1651         },
1652         params);
1653   }
1654   std::tuple<Params...> params;
1655 };
1656
1657 template <size_t k>
1658 struct ReturnArgAction {
1659   template <typename... Args,
1660             typename = typename std::enable_if<(k < sizeof...(Args))>::type>
1661   auto operator()(Args&&... args) const -> decltype(std::get<k>(
1662       std::forward_as_tuple(std::forward<Args>(args)...))) {
1663     return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
1664   }
1665 };
1666
1667 template <size_t k, typename Ptr>
1668 struct SaveArgAction {
1669   Ptr pointer;
1670
1671   template <typename... Args>
1672   void operator()(const Args&... args) const {
1673     *pointer = std::get<k>(std::tie(args...));
1674   }
1675 };
1676
1677 template <size_t k, typename Ptr>
1678 struct SaveArgPointeeAction {
1679   Ptr pointer;
1680
1681   template <typename... Args>
1682   void operator()(const Args&... args) const {
1683     *pointer = *std::get<k>(std::tie(args...));
1684   }
1685 };
1686
1687 template <size_t k, typename T>
1688 struct SetArgRefereeAction {
1689   T value;
1690
1691   template <typename... Args>
1692   void operator()(Args&&... args) const {
1693     using argk_type =
1694         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
1695     static_assert(std::is_lvalue_reference<argk_type>::value,
1696                   "Argument must be a reference type.");
1697     std::get<k>(std::tie(args...)) = value;
1698   }
1699 };
1700
1701 template <size_t k, typename I1, typename I2>
1702 struct SetArrayArgumentAction {
1703   I1 first;
1704   I2 last;
1705
1706   template <typename... Args>
1707   void operator()(const Args&... args) const {
1708     auto value = std::get<k>(std::tie(args...));
1709     for (auto it = first; it != last; ++it, (void)++value) {
1710       *value = *it;
1711     }
1712   }
1713 };
1714
1715 template <size_t k>
1716 struct DeleteArgAction {
1717   template <typename... Args>
1718   void operator()(const Args&... args) const {
1719     delete std::get<k>(std::tie(args...));
1720   }
1721 };
1722
1723 template <typename Ptr>
1724 struct ReturnPointeeAction {
1725   Ptr pointer;
1726   template <typename... Args>
1727   auto operator()(const Args&...) const -> decltype(*pointer) {
1728     return *pointer;
1729   }
1730 };
1731
1732 #if GTEST_HAS_EXCEPTIONS
1733 template <typename T>
1734 struct ThrowAction {
1735   T exception;
1736   // We use a conversion operator to adapt to any return type.
1737   template <typename R, typename... Args>
1738   operator Action<R(Args...)>() const {  // NOLINT
1739     T copy = exception;
1740     return [copy](Args...) -> R { throw copy; };
1741   }
1742 };
1743 #endif  // GTEST_HAS_EXCEPTIONS
1744
1745 }  // namespace internal
1746
1747 // An Unused object can be implicitly constructed from ANY value.
1748 // This is handy when defining actions that ignore some or all of the
1749 // mock function arguments.  For example, given
1750 //
1751 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1752 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
1753 //
1754 // instead of
1755 //
1756 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1757 //     return sqrt(x*x + y*y);
1758 //   }
1759 //   double DistanceToOriginWithIndex(int index, double x, double y) {
1760 //     return sqrt(x*x + y*y);
1761 //   }
1762 //   ...
1763 //   EXPECT_CALL(mock, Foo("abc", _, _))
1764 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
1765 //   EXPECT_CALL(mock, Bar(5, _, _))
1766 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
1767 //
1768 // you could write
1769 //
1770 //   // We can declare any uninteresting argument as Unused.
1771 //   double DistanceToOrigin(Unused, double x, double y) {
1772 //     return sqrt(x*x + y*y);
1773 //   }
1774 //   ...
1775 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1776 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1777 typedef internal::IgnoredValue Unused;
1778
1779 // Creates an action that does actions a1, a2, ..., sequentially in
1780 // each invocation. All but the last action will have a readonly view of the
1781 // arguments.
1782 template <typename... Action>
1783 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
1784     Action&&... action) {
1785   return internal::DoAllAction<typename std::decay<Action>::type...>(
1786       {}, std::forward<Action>(action)...);
1787 }
1788
1789 // WithArg<k>(an_action) creates an action that passes the k-th
1790 // (0-based) argument of the mock function to an_action and performs
1791 // it.  It adapts an action accepting one argument to one that accepts
1792 // multiple arguments.  For convenience, we also provide
1793 // WithArgs<k>(an_action) (defined below) as a synonym.
1794 template <size_t k, typename InnerAction>
1795 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
1796     InnerAction&& action) {
1797   return {std::forward<InnerAction>(action)};
1798 }
1799
1800 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
1801 // the selected arguments of the mock function to an_action and
1802 // performs it.  It serves as an adaptor between actions with
1803 // different argument lists.
1804 template <size_t k, size_t... ks, typename InnerAction>
1805 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
1806 WithArgs(InnerAction&& action) {
1807   return {std::forward<InnerAction>(action)};
1808 }
1809
1810 // WithoutArgs(inner_action) can be used in a mock function with a
1811 // non-empty argument list to perform inner_action, which takes no
1812 // argument.  In other words, it adapts an action accepting no
1813 // argument to one that accepts (and ignores) arguments.
1814 template <typename InnerAction>
1815 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
1816     InnerAction&& action) {
1817   return {std::forward<InnerAction>(action)};
1818 }
1819
1820 // Creates an action that returns a value.
1821 //
1822 // The returned type can be used with a mock function returning a non-void,
1823 // non-reference type U as follows:
1824 //
1825 //  *  If R is convertible to U and U is move-constructible, then the action can
1826 //     be used with WillOnce.
1827 //
1828 //  *  If const R& is convertible to U and U is copy-constructible, then the
1829 //     action can be used with both WillOnce and WillRepeatedly.
1830 //
1831 // The mock expectation contains the R value from which the U return value is
1832 // constructed (a move/copy of the argument to Return). This means that the R
1833 // value will survive at least until the mock object's expectations are cleared
1834 // or the mock object is destroyed, meaning that U can safely be a
1835 // reference-like type such as std::string_view:
1836 //
1837 //     // The mock function returns a view of a copy of the string fed to
1838 //     // Return. The view is valid even after the action is performed.
1839 //     MockFunction<std::string_view()> mock;
1840 //     EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
1841 //     const std::string_view result = mock.AsStdFunction()();
1842 //     EXPECT_EQ("taco", result);
1843 //
1844 template <typename R>
1845 internal::ReturnAction<R> Return(R value) {
1846   return internal::ReturnAction<R>(std::move(value));
1847 }
1848
1849 // Creates an action that returns NULL.
1850 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1851   return MakePolymorphicAction(internal::ReturnNullAction());
1852 }
1853
1854 // Creates an action that returns from a void function.
1855 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1856   return MakePolymorphicAction(internal::ReturnVoidAction());
1857 }
1858
1859 // Creates an action that returns the reference to a variable.
1860 template <typename R>
1861 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1862   return internal::ReturnRefAction<R>(x);
1863 }
1864
1865 // Prevent using ReturnRef on reference to temporary.
1866 template <typename R, R* = nullptr>
1867 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
1868
1869 // Creates an action that returns the reference to a copy of the
1870 // argument.  The copy is created when the action is constructed and
1871 // lives as long as the action.
1872 template <typename R>
1873 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1874   return internal::ReturnRefOfCopyAction<R>(x);
1875 }
1876
1877 // DEPRECATED: use Return(x) directly with WillOnce.
1878 //
1879 // Modifies the parent action (a Return() action) to perform a move of the
1880 // argument instead of a copy.
1881 // Return(ByMove()) actions can only be executed once and will assert this
1882 // invariant.
1883 template <typename R>
1884 internal::ByMoveWrapper<R> ByMove(R x) {
1885   return internal::ByMoveWrapper<R>(std::move(x));
1886 }
1887
1888 // Creates an action that returns an element of `vals`. Calling this action will
1889 // repeatedly return the next value from `vals` until it reaches the end and
1890 // will restart from the beginning.
1891 template <typename T>
1892 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
1893   return internal::ReturnRoundRobinAction<T>(std::move(vals));
1894 }
1895
1896 // Creates an action that returns an element of `vals`. Calling this action will
1897 // repeatedly return the next value from `vals` until it reaches the end and
1898 // will restart from the beginning.
1899 template <typename T>
1900 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
1901     std::initializer_list<T> vals) {
1902   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
1903 }
1904
1905 // Creates an action that does the default action for the give mock function.
1906 inline internal::DoDefaultAction DoDefault() {
1907   return internal::DoDefaultAction();
1908 }
1909
1910 // Creates an action that sets the variable pointed by the N-th
1911 // (0-based) function argument to 'value'.
1912 template <size_t N, typename T>
1913 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
1914   return {std::move(value)};
1915 }
1916
1917 // The following version is DEPRECATED.
1918 template <size_t N, typename T>
1919 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
1920   return {std::move(value)};
1921 }
1922
1923 // Creates an action that sets a pointer referent to a given value.
1924 template <typename T1, typename T2>
1925 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
1926   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1927 }
1928
1929 #ifndef GTEST_OS_WINDOWS_MOBILE
1930
1931 // Creates an action that sets errno and returns the appropriate error.
1932 template <typename T>
1933 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
1934     int errval, T result) {
1935   return MakePolymorphicAction(
1936       internal::SetErrnoAndReturnAction<T>(errval, result));
1937 }
1938
1939 #endif  // !GTEST_OS_WINDOWS_MOBILE
1940
1941 // Various overloads for Invoke().
1942
1943 // Legacy function.
1944 // Actions can now be implicitly constructed from callables. No need to create
1945 // wrapper objects.
1946 // This function exists for backwards compatibility.
1947 template <typename FunctionImpl>
1948 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1949   return std::forward<FunctionImpl>(function_impl);
1950 }
1951
1952 // Creates an action that invokes the given method on the given object
1953 // with the mock function's arguments.
1954 template <class Class, typename MethodPtr>
1955 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1956                                                       MethodPtr method_ptr) {
1957   return {obj_ptr, method_ptr};
1958 }
1959
1960 // Creates an action that invokes 'function_impl' with no argument.
1961 template <typename FunctionImpl>
1962 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1963 InvokeWithoutArgs(FunctionImpl function_impl) {
1964   return {std::move(function_impl)};
1965 }
1966
1967 // Creates an action that invokes the given method on the given object
1968 // with no argument.
1969 template <class Class, typename MethodPtr>
1970 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1971     Class* obj_ptr, MethodPtr method_ptr) {
1972   return {obj_ptr, method_ptr};
1973 }
1974
1975 // Creates an action that performs an_action and throws away its
1976 // result.  In other words, it changes the return type of an_action to
1977 // void.  an_action MUST NOT return void, or the code won't compile.
1978 template <typename A>
1979 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1980   return internal::IgnoreResultAction<A>(an_action);
1981 }
1982
1983 // Creates a reference wrapper for the given L-value.  If necessary,
1984 // you can explicitly specify the type of the reference.  For example,
1985 // suppose 'derived' is an object of type Derived, ByRef(derived)
1986 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1987 // where Base is a base class of Derived, just write:
1988 //
1989 //   ByRef<const Base>(derived)
1990 //
1991 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1992 // However, it may still be used for consistency with ByMove().
1993 template <typename T>
1994 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
1995   return ::std::reference_wrapper<T>(l_value);
1996 }
1997
1998 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
1999 // instance of type T, constructed on the heap with constructor arguments
2000 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2001 template <typename T, typename... Params>
2002 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2003     Params&&... params) {
2004   return {std::forward_as_tuple(std::forward<Params>(params)...)};
2005 }
2006
2007 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2008 template <size_t k>
2009 internal::ReturnArgAction<k> ReturnArg() {
2010   return {};
2011 }
2012
2013 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2014 // mock function to *pointer.
2015 template <size_t k, typename Ptr>
2016 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2017   return {pointer};
2018 }
2019
2020 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2021 // by the k-th (0-based) argument of the mock function to *pointer.
2022 template <size_t k, typename Ptr>
2023 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2024   return {pointer};
2025 }
2026
2027 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2028 // referenced by the k-th (0-based) argument of the mock function.
2029 template <size_t k, typename T>
2030 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2031     T&& value) {
2032   return {std::forward<T>(value)};
2033 }
2034
2035 // Action SetArrayArgument<k>(first, last) copies the elements in
2036 // source range [first, last) to the array pointed to by the k-th
2037 // (0-based) argument, which can be either a pointer or an
2038 // iterator. The action does not take ownership of the elements in the
2039 // source range.
2040 template <size_t k, typename I1, typename I2>
2041 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2042                                                              I2 last) {
2043   return {first, last};
2044 }
2045
2046 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2047 // function.
2048 template <size_t k>
2049 internal::DeleteArgAction<k> DeleteArg() {
2050   return {};
2051 }
2052
2053 // This action returns the value pointed to by 'pointer'.
2054 template <typename Ptr>
2055 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2056   return {pointer};
2057 }
2058
2059 // Action Throw(exception) can be used in a mock function of any type
2060 // to throw the given exception.  Any copyable value can be thrown.
2061 #if GTEST_HAS_EXCEPTIONS
2062 template <typename T>
2063 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2064   return {std::forward<T>(exception)};
2065 }
2066 #endif  // GTEST_HAS_EXCEPTIONS
2067
2068 namespace internal {
2069
2070 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2071 // defines an action that can be used in a mock function.  Typically,
2072 // these actions only care about a subset of the arguments of the mock
2073 // function.  For example, if such an action only uses the second
2074 // argument, it can be used in any mock function that takes >= 2
2075 // arguments where the type of the second argument is compatible.
2076 //
2077 // Therefore, the action implementation must be prepared to take more
2078 // arguments than it needs.  The ExcessiveArg type is used to
2079 // represent those excessive arguments.  In order to keep the compiler
2080 // error messages tractable, we define it in the testing namespace
2081 // instead of testing::internal.  However, this is an INTERNAL TYPE
2082 // and subject to change without notice, so a user MUST NOT USE THIS
2083 // TYPE DIRECTLY.
2084 struct ExcessiveArg {};
2085
2086 // Builds an implementation of an Action<> for some particular signature, using
2087 // a class defined by an ACTION* macro.
2088 template <typename F, typename Impl>
2089 struct ActionImpl;
2090
2091 template <typename Impl>
2092 struct ImplBase {
2093   struct Holder {
2094     // Allows each copy of the Action<> to get to the Impl.
2095     explicit operator const Impl&() const { return *ptr; }
2096     std::shared_ptr<Impl> ptr;
2097   };
2098   using type = typename std::conditional<std::is_constructible<Impl>::value,
2099                                          Impl, Holder>::type;
2100 };
2101
2102 template <typename R, typename... Args, typename Impl>
2103 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2104   using Base = typename ImplBase<Impl>::type;
2105   using function_type = R(Args...);
2106   using args_type = std::tuple<Args...>;
2107
2108   ActionImpl() = default;  // Only defined if appropriate for Base.
2109   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
2110
2111   R operator()(Args&&... arg) const {
2112     static constexpr size_t kMaxArgs =
2113         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2114     return Apply(MakeIndexSequence<kMaxArgs>{},
2115                  MakeIndexSequence<10 - kMaxArgs>{},
2116                  args_type{std::forward<Args>(arg)...});
2117   }
2118
2119   template <std::size_t... arg_id, std::size_t... excess_id>
2120   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2121           const args_type& args) const {
2122     // Impl need not be specific to the signature of action being implemented;
2123     // only the implementing function body needs to have all of the specific
2124     // types instantiated.  Up to 10 of the args that are provided by the
2125     // args_type get passed, followed by a dummy of unspecified type for the
2126     // remainder up to 10 explicit args.
2127     static constexpr ExcessiveArg kExcessArg{};
2128     return static_cast<const Impl&>(*this)
2129         .template gmock_PerformImpl<
2130             /*function_type=*/function_type, /*return_type=*/R,
2131             /*args_type=*/args_type,
2132             /*argN_type=*/
2133             typename std::tuple_element<arg_id, args_type>::type...>(
2134             /*args=*/args, std::get<arg_id>(args)...,
2135             ((void)excess_id, kExcessArg)...);
2136   }
2137 };
2138
2139 // Stores a default-constructed Impl as part of the Action<>'s
2140 // std::function<>. The Impl should be trivial to copy.
2141 template <typename F, typename Impl>
2142 ::testing::Action<F> MakeAction() {
2143   return ::testing::Action<F>(ActionImpl<F, Impl>());
2144 }
2145
2146 // Stores just the one given instance of Impl.
2147 template <typename F, typename Impl>
2148 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2149   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2150 }
2151
2152 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2153   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2154 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_                 \
2155   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2156       GMOCK_INTERNAL_ARG_UNUSED, , 10)
2157
2158 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2159 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2160   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2161
2162 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2163 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2164   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2165
2166 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2167 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2168   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2169
2170 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2171 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2172   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2173
2174 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2175   , param##_type gmock_p##i
2176 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2177   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2178
2179 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2180   , std::forward<param##_type>(gmock_p##i)
2181 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2182   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2183
2184 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2185   , param(::std::forward<param##_type>(gmock_p##i))
2186 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2187   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2188
2189 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2190 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2191   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2192
2193 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                         \
2194   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2195   class full_name {                                                            \
2196    public:                                                                     \
2197     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))               \
2198         : impl_(std::make_shared<gmock_Impl>(                                  \
2199               GMOCK_ACTION_GVALUE_PARAMS_(params))) {}                         \
2200     full_name(const full_name&) = default;                                     \
2201     full_name(full_name&&) noexcept = default;                                 \
2202     template <typename F>                                                      \
2203     operator ::testing::Action<F>() const {                                    \
2204       return ::testing::internal::MakeAction<F>(impl_);                        \
2205     }                                                                          \
2206                                                                                \
2207    private:                                                                    \
2208     class gmock_Impl {                                                         \
2209      public:                                                                   \
2210       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))            \
2211           : GMOCK_ACTION_INIT_PARAMS_(params) {}                               \
2212       template <typename function_type, typename return_type,                  \
2213                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
2214       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
2215       GMOCK_ACTION_FIELD_PARAMS_(params)                                       \
2216     };                                                                         \
2217     std::shared_ptr<const gmock_Impl> impl_;                                   \
2218   };                                                                           \
2219   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2220   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2221       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_;        \
2222   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2223   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                    \
2224       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                              \
2225     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                       \
2226         GMOCK_ACTION_GVALUE_PARAMS_(params));                                  \
2227   }                                                                            \
2228   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                             \
2229   template <typename function_type, typename return_type, typename args_type,  \
2230             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
2231   return_type                                                                  \
2232   full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
2233       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2234
2235 }  // namespace internal
2236
2237 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2238 #define ACTION(name)                                                          \
2239   class name##Action {                                                        \
2240    public:                                                                    \
2241     explicit name##Action() noexcept {}                                       \
2242     name##Action(const name##Action&) noexcept {}                             \
2243     template <typename F>                                                     \
2244     operator ::testing::Action<F>() const {                                   \
2245       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
2246     }                                                                         \
2247                                                                               \
2248    private:                                                                   \
2249     class gmock_Impl {                                                        \
2250      public:                                                                  \
2251       template <typename function_type, typename return_type,                 \
2252                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2253       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2254     };                                                                        \
2255   };                                                                          \
2256   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
2257   inline name##Action name() { return name##Action(); }                       \
2258   template <typename function_type, typename return_type, typename args_type, \
2259             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2260   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
2261       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2262
2263 #define ACTION_P(name, ...) \
2264   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2265
2266 #define ACTION_P2(name, ...) \
2267   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2268
2269 #define ACTION_P3(name, ...) \
2270   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2271
2272 #define ACTION_P4(name, ...) \
2273   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2274
2275 #define ACTION_P5(name, ...) \
2276   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2277
2278 #define ACTION_P6(name, ...) \
2279   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2280
2281 #define ACTION_P7(name, ...) \
2282   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2283
2284 #define ACTION_P8(name, ...) \
2285   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2286
2287 #define ACTION_P9(name, ...) \
2288   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2289
2290 #define ACTION_P10(name, ...) \
2291   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2292
2293 }  // namespace testing
2294
2295 GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100
2296
2297 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_