Initial x32 support in gold
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "gc.h"
43 #include "icf.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 // A class to handle the PLT data.
51
52 template<int size>
53 class Output_data_plt_x86_64 : public Output_section_data
54 {
55  public:
56   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
57
58   Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
59                          Output_data_space* got_plt,
60                          Output_data_space* got_irelative)
61     : Output_section_data(16), layout_(layout), tlsdesc_rel_(NULL),
62       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
63       got_irelative_(got_irelative), count_(0), irelative_count_(0),
64       tlsdesc_got_offset_(-1U), free_list_()
65   { this->init(layout); }
66
67   Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
68                          Output_data_space* got_plt,
69                          Output_data_space* got_irelative,
70                          unsigned int plt_count)
71     : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
72       layout_(layout), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
73       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
74       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
75   {
76     this->init(layout);
77
78     // Initialize the free list and reserve the first entry.
79     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
80     this->free_list_.remove(0, plt_entry_size);
81   }
82
83   // Initialize the PLT section.
84   void
85   init(Layout* layout);
86
87   // Add an entry to the PLT.
88   void
89   add_entry(Symbol_table*, Layout*, Symbol* gsym);
90
91   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
92   unsigned int
93   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
94                         Sized_relobj_file<size, false>* relobj,
95                         unsigned int local_sym_index);
96
97   // Add the relocation for a PLT entry.
98   void
99   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
100                  unsigned int got_offset);
101
102   // Add the reserved TLSDESC_PLT entry to the PLT.
103   void
104   reserve_tlsdesc_entry(unsigned int got_offset)
105   { this->tlsdesc_got_offset_ = got_offset; }
106
107   // Return true if a TLSDESC_PLT entry has been reserved.
108   bool
109   has_tlsdesc_entry() const
110   { return this->tlsdesc_got_offset_ != -1U; }
111
112   // Return the GOT offset for the reserved TLSDESC_PLT entry.
113   unsigned int
114   get_tlsdesc_got_offset() const
115   { return this->tlsdesc_got_offset_; }
116
117   // Return the offset of the reserved TLSDESC_PLT entry.
118   unsigned int
119   get_tlsdesc_plt_offset() const
120   { return (this->count_ + this->irelative_count_ + 1) * plt_entry_size; }
121
122   // Return the .rela.plt section data.
123   Reloc_section*
124   rela_plt()
125   { return this->rel_; }
126
127   // Return where the TLSDESC relocations should go.
128   Reloc_section*
129   rela_tlsdesc(Layout*);
130
131   // Return where the IRELATIVE relocations should go in the PLT
132   // relocations.
133   Reloc_section*
134   rela_irelative(Symbol_table*, Layout*);
135
136   // Return whether we created a section for IRELATIVE relocations.
137   bool
138   has_irelative_section() const
139   { return this->irelative_rel_ != NULL; }
140
141   // Return the number of PLT entries.
142   unsigned int
143   entry_count() const
144   { return this->count_ + this->irelative_count_; }
145
146   // Return the offset of the first non-reserved PLT entry.
147   static unsigned int
148   first_plt_entry_offset()
149   { return plt_entry_size; }
150
151   // Return the size of a PLT entry.
152   static unsigned int
153   get_plt_entry_size()
154   { return plt_entry_size; }
155
156   // Reserve a slot in the PLT for an existing symbol in an incremental update.
157   void
158   reserve_slot(unsigned int plt_index)
159   {
160     this->free_list_.remove((plt_index + 1) * plt_entry_size,
161                             (plt_index + 2) * plt_entry_size);
162   }
163
164   // Return the PLT address to use for a global symbol.
165   uint64_t
166   address_for_global(const Symbol*);
167
168   // Return the PLT address to use for a local symbol.
169   uint64_t
170   address_for_local(const Relobj*, unsigned int symndx);
171
172  protected:
173   void
174   do_adjust_output_section(Output_section* os);
175
176   // Write to a map file.
177   void
178   do_print_to_mapfile(Mapfile* mapfile) const
179   { mapfile->print_output_data(this, _("** PLT")); }
180
181  private:
182   // The size of an entry in the PLT.
183   static const int plt_entry_size = 16;
184
185   // The first entry in the PLT.
186   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
187   // procedure linkage table for both programs and shared objects."
188   static const unsigned char first_plt_entry[plt_entry_size];
189
190   // Other entries in the PLT for an executable.
191   static const unsigned char plt_entry[plt_entry_size];
192
193   // The reserved TLSDESC entry in the PLT for an executable.
194   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
195
196   // The .eh_frame unwind information for the PLT.
197   static const int plt_eh_frame_cie_size = 16;
198   static const int plt_eh_frame_fde_size = 32;
199   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
200   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
201
202   // Set the final size.
203   void
204   set_final_data_size();
205
206   // Write out the PLT data.
207   void
208   do_write(Output_file*);
209
210   // A pointer to the Layout class, so that we can find the .dynamic
211   // section when we write out the GOT PLT section.
212   Layout* layout_;
213   // The reloc section.
214   Reloc_section* rel_;
215   // The TLSDESC relocs, if necessary.  These must follow the regular
216   // PLT relocs.
217   Reloc_section* tlsdesc_rel_;
218   // The IRELATIVE relocs, if necessary.  These must follow the
219   // regular PLT relocations and the TLSDESC relocations.
220   Reloc_section* irelative_rel_;
221   // The .got section.
222   Output_data_got<64, false>* got_;
223   // The .got.plt section.
224   Output_data_space* got_plt_;
225   // The part of the .got.plt section used for IRELATIVE relocs.
226   Output_data_space* got_irelative_;
227   // The number of PLT entries.
228   unsigned int count_;
229   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
230   // follow the regular PLT entries.
231   unsigned int irelative_count_;
232   // Offset of the reserved TLSDESC_GOT entry when needed.
233   unsigned int tlsdesc_got_offset_;
234   // List of available regions within the section, for incremental
235   // update links.
236   Free_list free_list_;
237 };
238
239 // The x86_64 target class.
240 // See the ABI at
241 //   http://www.x86-64.org/documentation/abi.pdf
242 // TLS info comes from
243 //   http://people.redhat.com/drepper/tls.pdf
244 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
245
246 template<int size>
247 class Target_x86_64 : public Sized_target<size, false>
248 {
249  public:
250   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
251   // uses only Elf64_Rela relocation entries with explicit addends."
252   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
253
254   Target_x86_64()
255     : Sized_target<size, false>(&x86_64_info),
256       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
257       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
258       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
259       dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
260       tls_base_symbol_defined_(false)
261   { }
262
263   // Hook for a new output section.
264   void
265   do_new_output_section(Output_section*) const;
266
267   // Scan the relocations to look for symbol adjustments.
268   void
269   gc_process_relocs(Symbol_table* symtab,
270                     Layout* layout,
271                     Sized_relobj_file<size, false>* object,
272                     unsigned int data_shndx,
273                     unsigned int sh_type,
274                     const unsigned char* prelocs,
275                     size_t reloc_count,
276                     Output_section* output_section,
277                     bool needs_special_offset_handling,
278                     size_t local_symbol_count,
279                     const unsigned char* plocal_symbols);
280
281   // Scan the relocations to look for symbol adjustments.
282   void
283   scan_relocs(Symbol_table* symtab,
284               Layout* layout,
285               Sized_relobj_file<size, false>* object,
286               unsigned int data_shndx,
287               unsigned int sh_type,
288               const unsigned char* prelocs,
289               size_t reloc_count,
290               Output_section* output_section,
291               bool needs_special_offset_handling,
292               size_t local_symbol_count,
293               const unsigned char* plocal_symbols);
294
295   // Finalize the sections.
296   void
297   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
298
299   // Return the value to use for a dynamic which requires special
300   // treatment.
301   uint64_t
302   do_dynsym_value(const Symbol*) const;
303
304   // Relocate a section.
305   void
306   relocate_section(const Relocate_info<size, false>*,
307                    unsigned int sh_type,
308                    const unsigned char* prelocs,
309                    size_t reloc_count,
310                    Output_section* output_section,
311                    bool needs_special_offset_handling,
312                    unsigned char* view,
313                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
314                    section_size_type view_size,
315                    const Reloc_symbol_changes*);
316
317   // Scan the relocs during a relocatable link.
318   void
319   scan_relocatable_relocs(Symbol_table* symtab,
320                           Layout* layout,
321                           Sized_relobj_file<size, false>* object,
322                           unsigned int data_shndx,
323                           unsigned int sh_type,
324                           const unsigned char* prelocs,
325                           size_t reloc_count,
326                           Output_section* output_section,
327                           bool needs_special_offset_handling,
328                           size_t local_symbol_count,
329                           const unsigned char* plocal_symbols,
330                           Relocatable_relocs*);
331
332   // Relocate a section during a relocatable link.
333   void
334   relocate_for_relocatable(
335       const Relocate_info<size, false>*,
336       unsigned int sh_type,
337       const unsigned char* prelocs,
338       size_t reloc_count,
339       Output_section* output_section,
340       off_t offset_in_output_section,
341       const Relocatable_relocs*,
342       unsigned char* view,
343       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
344       section_size_type view_size,
345       unsigned char* reloc_view,
346       section_size_type reloc_view_size);
347
348   // Return a string used to fill a code section with nops.
349   std::string
350   do_code_fill(section_size_type length) const;
351
352   // Return whether SYM is defined by the ABI.
353   bool
354   do_is_defined_by_abi(const Symbol* sym) const
355   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
356
357   // Return the symbol index to use for a target specific relocation.
358   // The only target specific relocation is R_X86_64_TLSDESC for a
359   // local symbol, which is an absolute reloc.
360   unsigned int
361   do_reloc_symbol_index(void*, unsigned int r_type) const
362   {
363     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
364     return 0;
365   }
366
367   // Return the addend to use for a target specific relocation.
368   uint64_t
369   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
370
371   // Return the PLT section.
372   uint64_t
373   do_plt_address_for_global(const Symbol* gsym) const
374   { return this->plt_section()->address_for_global(gsym); }
375
376   uint64_t
377   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
378   { return this->plt_section()->address_for_local(relobj, symndx); }
379
380   // This function should be defined in targets that can use relocation
381   // types to determine (implemented in local_reloc_may_be_function_pointer
382   // and global_reloc_may_be_function_pointer)
383   // if a function's pointer is taken.  ICF uses this in safe mode to only
384   // fold those functions whose pointer is defintely not taken.  For x86_64
385   // pie binaries, safe ICF cannot be done by looking at relocation types.
386   bool
387   do_can_check_for_function_pointers() const
388   { return !parameters->options().pie(); }
389
390   // Return the base for a DW_EH_PE_datarel encoding.
391   uint64_t
392   do_ehframe_datarel_base() const;
393
394   // Adjust -fsplit-stack code which calls non-split-stack code.
395   void
396   do_calls_non_split(Relobj* object, unsigned int shndx,
397                      section_offset_type fnoffset, section_size_type fnsize,
398                      unsigned char* view, section_size_type view_size,
399                      std::string* from, std::string* to) const;
400
401   // Return the size of the GOT section.
402   section_size_type
403   got_size() const
404   {
405     gold_assert(this->got_ != NULL);
406     return this->got_->data_size();
407   }
408
409   // Return the number of entries in the GOT.
410   unsigned int
411   got_entry_count() const
412   {
413     if (this->got_ == NULL)
414       return 0;
415     return this->got_size() / 8;
416   }
417
418   // Return the number of entries in the PLT.
419   unsigned int
420   plt_entry_count() const;
421
422   // Return the offset of the first non-reserved PLT entry.
423   unsigned int
424   first_plt_entry_offset() const;
425
426   // Return the size of each PLT entry.
427   unsigned int
428   plt_entry_size() const;
429
430   // Create the GOT section for an incremental update.
431   Output_data_got_base*
432   init_got_plt_for_update(Symbol_table* symtab,
433                           Layout* layout,
434                           unsigned int got_count,
435                           unsigned int plt_count);
436
437   // Reserve a GOT entry for a local symbol, and regenerate any
438   // necessary dynamic relocations.
439   void
440   reserve_local_got_entry(unsigned int got_index,
441                           Sized_relobj<size, false>* obj,
442                           unsigned int r_sym,
443                           unsigned int got_type);
444
445   // Reserve a GOT entry for a global symbol, and regenerate any
446   // necessary dynamic relocations.
447   void
448   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
449                            unsigned int got_type);
450
451   // Register an existing PLT entry for a global symbol.
452   void
453   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
454                             Symbol* gsym);
455
456   // Force a COPY relocation for a given symbol.
457   void
458   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
459
460   // Apply an incremental relocation.
461   void
462   apply_relocation(const Relocate_info<size, false>* relinfo,
463                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
464                    unsigned int r_type,
465                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
466                    const Symbol* gsym,
467                    unsigned char* view,
468                    typename elfcpp::Elf_types<size>::Elf_Addr address,
469                    section_size_type view_size);
470
471   // Add a new reloc argument, returning the index in the vector.
472   size_t
473   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
474   {
475     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
476     return this->tlsdesc_reloc_info_.size() - 1;
477   }
478
479  private:
480   // The class which scans relocations.
481   class Scan
482   {
483   public:
484     Scan()
485       : issued_non_pic_error_(false)
486     { }
487
488     static inline int
489     get_reference_flags(unsigned int r_type);
490
491     inline void
492     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
493           Sized_relobj_file<size, false>* object,
494           unsigned int data_shndx,
495           Output_section* output_section,
496           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
497           const elfcpp::Sym<size, false>& lsym);
498
499     inline void
500     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
501            Sized_relobj_file<size, false>* object,
502            unsigned int data_shndx,
503            Output_section* output_section,
504            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
505            Symbol* gsym);
506
507     inline bool
508     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
509                                         Target_x86_64* target,
510                                         Sized_relobj_file<size, false>* object,
511                                         unsigned int data_shndx,
512                                         Output_section* output_section,
513                                         const elfcpp::Rela<size, false>& reloc,
514                                         unsigned int r_type,
515                                         const elfcpp::Sym<size, false>& lsym);
516
517     inline bool
518     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
519                                          Target_x86_64* target,
520                                          Sized_relobj_file<size, false>* object,
521                                          unsigned int data_shndx,
522                                          Output_section* output_section,
523                                          const elfcpp::Rela<size, false>& reloc,
524                                          unsigned int r_type,
525                                          Symbol* gsym);
526
527   private:
528     static void
529     unsupported_reloc_local(Sized_relobj_file<size, false>*,
530                             unsigned int r_type);
531
532     static void
533     unsupported_reloc_global(Sized_relobj_file<size, false>*,
534                              unsigned int r_type, Symbol*);
535
536     void
537     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
538
539     inline bool
540     possible_function_pointer_reloc(unsigned int r_type);
541
542     bool
543     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
544                               unsigned int r_type);
545
546     // Whether we have issued an error about a non-PIC compilation.
547     bool issued_non_pic_error_;
548   };
549
550   // The class which implements relocation.
551   class Relocate
552   {
553    public:
554     Relocate()
555       : skip_call_tls_get_addr_(false)
556     { }
557
558     ~Relocate()
559     {
560       if (this->skip_call_tls_get_addr_)
561         {
562           // FIXME: This needs to specify the location somehow.
563           gold_error(_("missing expected TLS relocation"));
564         }
565     }
566
567     // Do a relocation.  Return false if the caller should not issue
568     // any warnings about this relocation.
569     inline bool
570     relocate(const Relocate_info<size, false>*, Target_x86_64*,
571              Output_section*,
572              size_t relnum, const elfcpp::Rela<size, false>&,
573              unsigned int r_type, const Sized_symbol<size>*,
574              const Symbol_value<size>*,
575              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
576              section_size_type);
577
578    private:
579     // Do a TLS relocation.
580     inline void
581     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
582                  size_t relnum, const elfcpp::Rela<size, false>&,
583                  unsigned int r_type, const Sized_symbol<size>*,
584                  const Symbol_value<size>*,
585                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
586                  section_size_type);
587
588     // Do a TLS General-Dynamic to Initial-Exec transition.
589     inline void
590     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
591                  Output_segment* tls_segment,
592                  const elfcpp::Rela<size, false>&, unsigned int r_type,
593                  typename elfcpp::Elf_types<size>::Elf_Addr value,
594                  unsigned char* view,
595                  typename elfcpp::Elf_types<size>::Elf_Addr,
596                  section_size_type view_size);
597
598     // Do a TLS General-Dynamic to Local-Exec transition.
599     inline void
600     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
601                  Output_segment* tls_segment,
602                  const elfcpp::Rela<size, false>&, unsigned int r_type,
603                  typename elfcpp::Elf_types<size>::Elf_Addr value,
604                  unsigned char* view,
605                  section_size_type view_size);
606
607     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
608     inline void
609     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
610                       Output_segment* tls_segment,
611                       const elfcpp::Rela<size, false>&, unsigned int r_type,
612                       typename elfcpp::Elf_types<size>::Elf_Addr value,
613                       unsigned char* view,
614                       typename elfcpp::Elf_types<size>::Elf_Addr,
615                       section_size_type view_size);
616
617     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
618     inline void
619     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
620                       Output_segment* tls_segment,
621                       const elfcpp::Rela<size, false>&, unsigned int r_type,
622                       typename elfcpp::Elf_types<size>::Elf_Addr value,
623                       unsigned char* view,
624                       section_size_type view_size);
625
626     // Do a TLS Local-Dynamic to Local-Exec transition.
627     inline void
628     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
629                  Output_segment* tls_segment,
630                  const elfcpp::Rela<size, false>&, unsigned int r_type,
631                  typename elfcpp::Elf_types<size>::Elf_Addr value,
632                  unsigned char* view,
633                  section_size_type view_size);
634
635     // Do a TLS Initial-Exec to Local-Exec transition.
636     static inline void
637     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
638                  Output_segment* tls_segment,
639                  const elfcpp::Rela<size, false>&, unsigned int r_type,
640                  typename elfcpp::Elf_types<size>::Elf_Addr value,
641                  unsigned char* view,
642                  section_size_type view_size);
643
644     // This is set if we should skip the next reloc, which should be a
645     // PLT32 reloc against ___tls_get_addr.
646     bool skip_call_tls_get_addr_;
647   };
648
649   // A class which returns the size required for a relocation type,
650   // used while scanning relocs during a relocatable link.
651   class Relocatable_size_for_reloc
652   {
653    public:
654     unsigned int
655     get_size_for_reloc(unsigned int, Relobj*);
656   };
657
658   // Adjust TLS relocation type based on the options and whether this
659   // is a local symbol.
660   static tls::Tls_optimization
661   optimize_tls_reloc(bool is_final, int r_type);
662
663   // Get the GOT section, creating it if necessary.
664   Output_data_got<64, false>*
665   got_section(Symbol_table*, Layout*);
666
667   // Get the GOT PLT section.
668   Output_data_space*
669   got_plt_section() const
670   {
671     gold_assert(this->got_plt_ != NULL);
672     return this->got_plt_;
673   }
674
675   // Get the GOT section for TLSDESC entries.
676   Output_data_got<64, false>*
677   got_tlsdesc_section() const
678   {
679     gold_assert(this->got_tlsdesc_ != NULL);
680     return this->got_tlsdesc_;
681   }
682
683   // Create the PLT section.
684   void
685   make_plt_section(Symbol_table* symtab, Layout* layout);
686
687   // Create a PLT entry for a global symbol.
688   void
689   make_plt_entry(Symbol_table*, Layout*, Symbol*);
690
691   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
692   void
693   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
694                              Sized_relobj_file<size, false>* relobj,
695                              unsigned int local_sym_index);
696
697   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
698   void
699   define_tls_base_symbol(Symbol_table*, Layout*);
700
701   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
702   void
703   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
704
705   // Create a GOT entry for the TLS module index.
706   unsigned int
707   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
708                       Sized_relobj_file<size, false>* object);
709
710   // Get the PLT section.
711   Output_data_plt_x86_64<size>*
712   plt_section() const
713   {
714     gold_assert(this->plt_ != NULL);
715     return this->plt_;
716   }
717
718   // Get the dynamic reloc section, creating it if necessary.
719   Reloc_section*
720   rela_dyn_section(Layout*);
721
722   // Get the section to use for TLSDESC relocations.
723   Reloc_section*
724   rela_tlsdesc_section(Layout*) const;
725
726   // Get the section to use for IRELATIVE relocations.
727   Reloc_section*
728   rela_irelative_section(Layout*);
729
730   // Add a potential copy relocation.
731   void
732   copy_reloc(Symbol_table* symtab, Layout* layout,
733              Sized_relobj_file<size, false>* object,
734              unsigned int shndx, Output_section* output_section,
735              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
736   {
737     this->copy_relocs_.copy_reloc(symtab, layout,
738                                   symtab->get_sized_symbol<size>(sym),
739                                   object, shndx, output_section,
740                                   reloc, this->rela_dyn_section(layout));
741   }
742
743   // Information about this specific target which we pass to the
744   // general Target structure.
745   static const Target::Target_info x86_64_info;
746
747   // The types of GOT entries needed for this platform.
748   // These values are exposed to the ABI in an incremental link.
749   // Do not renumber existing values without changing the version
750   // number of the .gnu_incremental_inputs section.
751   enum Got_type
752   {
753     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
754     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
755     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
756     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
757   };
758
759   // This type is used as the argument to the target specific
760   // relocation routines.  The only target specific reloc is
761   // R_X86_64_TLSDESC against a local symbol.
762   struct Tlsdesc_info
763   {
764     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
765       : object(a_object), r_sym(a_r_sym)
766     { }
767
768     // The object in which the local symbol is defined.
769     Sized_relobj_file<size, false>* object;
770     // The local symbol index in the object.
771     unsigned int r_sym;
772   };
773
774   // The GOT section.
775   Output_data_got<64, false>* got_;
776   // The PLT section.
777   Output_data_plt_x86_64<size>* plt_;
778   // The GOT PLT section.
779   Output_data_space* got_plt_;
780   // The GOT section for IRELATIVE relocations.
781   Output_data_space* got_irelative_;
782   // The GOT section for TLSDESC relocations.
783   Output_data_got<64, false>* got_tlsdesc_;
784   // The _GLOBAL_OFFSET_TABLE_ symbol.
785   Symbol* global_offset_table_;
786   // The dynamic reloc section.
787   Reloc_section* rela_dyn_;
788   // The section to use for IRELATIVE relocs.
789   Reloc_section* rela_irelative_;
790   // Relocs saved to avoid a COPY reloc.
791   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
792   // Space for variables copied with a COPY reloc.
793   Output_data_space* dynbss_;
794   // Offset of the GOT entry for the TLS module index.
795   unsigned int got_mod_index_offset_;
796   // We handle R_X86_64_TLSDESC against a local symbol as a target
797   // specific relocation.  Here we store the object and local symbol
798   // index for the relocation.
799   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
800   // True if the _TLS_MODULE_BASE_ symbol has been defined.
801   bool tls_base_symbol_defined_;
802 };
803
804 template<>
805 const Target::Target_info Target_x86_64<64>::x86_64_info =
806 {
807   64,                   // size
808   false,                // is_big_endian
809   elfcpp::EM_X86_64,    // machine_code
810   false,                // has_make_symbol
811   false,                // has_resolve
812   true,                 // has_code_fill
813   true,                 // is_default_stack_executable
814   true,                 // can_icf_inline_merge_sections
815   '\0',                 // wrap_char
816   "/lib/ld64.so.1",     // program interpreter
817   0x400000,             // default_text_segment_address
818   0x1000,               // abi_pagesize (overridable by -z max-page-size)
819   0x1000,               // common_pagesize (overridable by -z common-page-size)
820   elfcpp::SHN_UNDEF,    // small_common_shndx
821   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
822   0,                    // small_common_section_flags
823   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
824   NULL,                 // attributes_section
825   NULL                  // attributes_vendor
826 };
827
828 template<>
829 const Target::Target_info Target_x86_64<32>::x86_64_info =
830 {
831   32,                   // size
832   false,                // is_big_endian
833   elfcpp::EM_X86_64,    // machine_code
834   false,                // has_make_symbol
835   false,                // has_resolve
836   true,                 // has_code_fill
837   true,                 // is_default_stack_executable
838   true,                 // can_icf_inline_merge_sections
839   '\0',                 // wrap_char
840   "/libx32/ldx32.so.1", // program interpreter
841   0x400000,             // default_text_segment_address
842   0x1000,               // abi_pagesize (overridable by -z max-page-size)
843   0x1000,               // common_pagesize (overridable by -z common-page-size)
844   elfcpp::SHN_UNDEF,    // small_common_shndx
845   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
846   0,                    // small_common_section_flags
847   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
848   NULL,                 // attributes_section
849   NULL                  // attributes_vendor
850 };
851
852 // This is called when a new output section is created.  This is where
853 // we handle the SHF_X86_64_LARGE.
854
855 template<int size>
856 void
857 Target_x86_64<size>::do_new_output_section(Output_section* os) const
858 {
859   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
860     os->set_is_large_section();
861 }
862
863 // Get the GOT section, creating it if necessary.
864
865 template<int size>
866 Output_data_got<64, false>*
867 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
868 {
869   if (this->got_ == NULL)
870     {
871       gold_assert(symtab != NULL && layout != NULL);
872
873       // When using -z now, we can treat .got.plt as a relro section.
874       // Without -z now, it is modified after program startup by lazy
875       // PLT relocations.
876       bool is_got_plt_relro = parameters->options().now();
877       Output_section_order got_order = (is_got_plt_relro
878                                         ? ORDER_RELRO
879                                         : ORDER_RELRO_LAST);
880       Output_section_order got_plt_order = (is_got_plt_relro
881                                             ? ORDER_RELRO
882                                             : ORDER_NON_RELRO_FIRST);
883
884       this->got_ = new Output_data_got<64, false>();
885
886       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
887                                       (elfcpp::SHF_ALLOC
888                                        | elfcpp::SHF_WRITE),
889                                       this->got_, got_order, true);
890
891       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
892       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
893                                       (elfcpp::SHF_ALLOC
894                                        | elfcpp::SHF_WRITE),
895                                       this->got_plt_, got_plt_order,
896                                       is_got_plt_relro);
897
898       // The first three entries are reserved.
899       this->got_plt_->set_current_data_size(3 * 8);
900
901       if (!is_got_plt_relro)
902         {
903           // Those bytes can go into the relro segment.
904           layout->increase_relro(3 * 8);
905         }
906
907       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
908       this->global_offset_table_ =
909         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
910                                       Symbol_table::PREDEFINED,
911                                       this->got_plt_,
912                                       0, 0, elfcpp::STT_OBJECT,
913                                       elfcpp::STB_LOCAL,
914                                       elfcpp::STV_HIDDEN, 0,
915                                       false, false);
916
917       // If there are any IRELATIVE relocations, they get GOT entries
918       // in .got.plt after the jump slot entries.
919       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
920       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
921                                       (elfcpp::SHF_ALLOC
922                                        | elfcpp::SHF_WRITE),
923                                       this->got_irelative_,
924                                       got_plt_order, is_got_plt_relro);
925
926       // If there are any TLSDESC relocations, they get GOT entries in
927       // .got.plt after the jump slot and IRELATIVE entries.
928       this->got_tlsdesc_ = new Output_data_got<64, false>();
929       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
930                                       (elfcpp::SHF_ALLOC
931                                        | elfcpp::SHF_WRITE),
932                                       this->got_tlsdesc_,
933                                       got_plt_order, is_got_plt_relro);
934     }
935
936   return this->got_;
937 }
938
939 // Get the dynamic reloc section, creating it if necessary.
940
941 template<int size>
942 typename Target_x86_64<size>::Reloc_section*
943 Target_x86_64<size>::rela_dyn_section(Layout* layout)
944 {
945   if (this->rela_dyn_ == NULL)
946     {
947       gold_assert(layout != NULL);
948       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
949       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
950                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
951                                       ORDER_DYNAMIC_RELOCS, false);
952     }
953   return this->rela_dyn_;
954 }
955
956 // Get the section to use for IRELATIVE relocs, creating it if
957 // necessary.  These go in .rela.dyn, but only after all other dynamic
958 // relocations.  They need to follow the other dynamic relocations so
959 // that they can refer to global variables initialized by those
960 // relocs.
961
962 template<int size>
963 typename Target_x86_64<size>::Reloc_section*
964 Target_x86_64<size>::rela_irelative_section(Layout* layout)
965 {
966   if (this->rela_irelative_ == NULL)
967     {
968       // Make sure we have already created the dynamic reloc section.
969       this->rela_dyn_section(layout);
970       this->rela_irelative_ = new Reloc_section(false);
971       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
972                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
973                                       ORDER_DYNAMIC_RELOCS, false);
974       gold_assert(this->rela_dyn_->output_section()
975                   == this->rela_irelative_->output_section());
976     }
977   return this->rela_irelative_;
978 }
979
980 // Initialize the PLT section.
981
982 template<int size>
983 void
984 Output_data_plt_x86_64<size>::init(Layout* layout)
985 {
986   this->rel_ = new Reloc_section(false);
987   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
988                                   elfcpp::SHF_ALLOC, this->rel_,
989                                   ORDER_DYNAMIC_PLT_RELOCS, false);
990
991   // Add unwind information if requested.
992   if (parameters->options().ld_generated_unwind_info())
993     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
994                                  plt_eh_frame_fde, plt_eh_frame_fde_size);
995 }
996
997 template<int size>
998 void
999 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1000 {
1001   os->set_entsize(plt_entry_size);
1002 }
1003
1004 // Add an entry to the PLT.
1005
1006 template<int size>
1007 void
1008 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1009                                         Symbol* gsym)
1010 {
1011   gold_assert(!gsym->has_plt_offset());
1012
1013   unsigned int plt_index;
1014   off_t plt_offset;
1015   section_offset_type got_offset;
1016
1017   unsigned int* pcount;
1018   unsigned int offset;
1019   unsigned int reserved;
1020   Output_data_space* got;
1021   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1022       && gsym->can_use_relative_reloc(false))
1023     {
1024       pcount = &this->irelative_count_;
1025       offset = 0;
1026       reserved = 0;
1027       got = this->got_irelative_;
1028     }
1029   else
1030     {
1031       pcount = &this->count_;
1032       offset = 1;
1033       reserved = 3;
1034       got = this->got_plt_;
1035     }
1036
1037   if (!this->is_data_size_valid())
1038     {
1039       // Note that when setting the PLT offset for a non-IRELATIVE
1040       // entry we skip the initial reserved PLT entry.
1041       plt_index = *pcount + offset;
1042       plt_offset = plt_index * plt_entry_size;
1043
1044       ++*pcount;
1045
1046       got_offset = (plt_index - offset + reserved) * 8;
1047       gold_assert(got_offset == got->current_data_size());
1048
1049       // Every PLT entry needs a GOT entry which points back to the PLT
1050       // entry (this will be changed by the dynamic linker, normally
1051       // lazily when the function is called).
1052       got->set_current_data_size(got_offset + 8);
1053     }
1054   else
1055     {
1056       // FIXME: This is probably not correct for IRELATIVE relocs.
1057
1058       // For incremental updates, find an available slot.
1059       plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
1060       if (plt_offset == -1)
1061         gold_fallback(_("out of patch space (PLT);"
1062                         " relink with --incremental-full"));
1063
1064       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1065       // can be calculated from the PLT index, adjusting for the three
1066       // reserved entries at the beginning of the GOT.
1067       plt_index = plt_offset / plt_entry_size - 1;
1068       got_offset = (plt_index - offset + reserved) * 8;
1069     }
1070
1071   gsym->set_plt_offset(plt_offset);
1072
1073   // Every PLT entry needs a reloc.
1074   this->add_relocation(symtab, layout, gsym, got_offset);
1075
1076   // Note that we don't need to save the symbol.  The contents of the
1077   // PLT are independent of which symbols are used.  The symbols only
1078   // appear in the relocations.
1079 }
1080
1081 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1082 // the PLT offset.
1083
1084 template<int size>
1085 unsigned int
1086 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1087     Symbol_table* symtab,
1088     Layout* layout,
1089     Sized_relobj_file<size, false>* relobj,
1090     unsigned int local_sym_index)
1091 {
1092   unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1093   ++this->irelative_count_;
1094
1095   section_offset_type got_offset = this->got_irelative_->current_data_size();
1096
1097   // Every PLT entry needs a GOT entry which points back to the PLT
1098   // entry.
1099   this->got_irelative_->set_current_data_size(got_offset + 8);
1100
1101   // Every PLT entry needs a reloc.
1102   Reloc_section* rela = this->rela_irelative(symtab, layout);
1103   rela->add_symbolless_local_addend(relobj, local_sym_index,
1104                                     elfcpp::R_X86_64_IRELATIVE,
1105                                     this->got_irelative_, got_offset, 0);
1106
1107   return plt_offset;
1108 }
1109
1110 // Add the relocation for a PLT entry.
1111
1112 template<int size>
1113 void
1114 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1115                                              Layout* layout,
1116                                              Symbol* gsym,
1117                                              unsigned int got_offset)
1118 {
1119   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1120       && gsym->can_use_relative_reloc(false))
1121     {
1122       Reloc_section* rela = this->rela_irelative(symtab, layout);
1123       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1124                                          this->got_irelative_, got_offset, 0);
1125     }
1126   else
1127     {
1128       gsym->set_needs_dynsym_entry();
1129       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1130                              got_offset, 0);
1131     }
1132 }
1133
1134 // Return where the TLSDESC relocations should go, creating it if
1135 // necessary.  These follow the JUMP_SLOT relocations.
1136
1137 template<int size>
1138 typename Output_data_plt_x86_64<size>::Reloc_section*
1139 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1140 {
1141   if (this->tlsdesc_rel_ == NULL)
1142     {
1143       this->tlsdesc_rel_ = new Reloc_section(false);
1144       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1145                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1146                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1147       gold_assert(this->tlsdesc_rel_->output_section()
1148                   == this->rel_->output_section());
1149     }
1150   return this->tlsdesc_rel_;
1151 }
1152
1153 // Return where the IRELATIVE relocations should go in the PLT.  These
1154 // follow the JUMP_SLOT and the TLSDESC relocations.
1155
1156 template<int size>
1157 typename Output_data_plt_x86_64<size>::Reloc_section*
1158 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1159                                              Layout* layout)
1160 {
1161   if (this->irelative_rel_ == NULL)
1162     {
1163       // Make sure we have a place for the TLSDESC relocations, in
1164       // case we see any later on.
1165       this->rela_tlsdesc(layout);
1166       this->irelative_rel_ = new Reloc_section(false);
1167       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1168                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1169                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1170       gold_assert(this->irelative_rel_->output_section()
1171                   == this->rel_->output_section());
1172
1173       if (parameters->doing_static_link())
1174         {
1175           // A statically linked executable will only have a .rela.plt
1176           // section to hold R_X86_64_IRELATIVE relocs for
1177           // STT_GNU_IFUNC symbols.  The library will use these
1178           // symbols to locate the IRELATIVE relocs at program startup
1179           // time.
1180           symtab->define_in_output_data("__rela_iplt_start", NULL,
1181                                         Symbol_table::PREDEFINED,
1182                                         this->irelative_rel_, 0, 0,
1183                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1184                                         elfcpp::STV_HIDDEN, 0, false, true);
1185           symtab->define_in_output_data("__rela_iplt_end", NULL,
1186                                         Symbol_table::PREDEFINED,
1187                                         this->irelative_rel_, 0, 0,
1188                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1189                                         elfcpp::STV_HIDDEN, 0, true, true);
1190         }
1191     }
1192   return this->irelative_rel_;
1193 }
1194
1195 // Return the PLT address to use for a global symbol.
1196
1197 template<int size>
1198 uint64_t
1199 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1200 {
1201   uint64_t offset = 0;
1202   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1203       && gsym->can_use_relative_reloc(false))
1204     offset = (this->count_ + 1) * plt_entry_size;
1205   return this->address() + offset;
1206 }
1207
1208 // Return the PLT address to use for a local symbol.  These are always
1209 // IRELATIVE relocs.
1210
1211 template<int size>
1212 uint64_t
1213 Output_data_plt_x86_64<size>::address_for_local(const Relobj*, unsigned int)
1214 {
1215   return this->address() + (this->count_ + 1) * plt_entry_size;
1216 }
1217
1218 // Set the final size.
1219 template<int size>
1220 void
1221 Output_data_plt_x86_64<size>::set_final_data_size()
1222 {
1223   unsigned int count = this->count_ + this->irelative_count_;
1224   if (this->has_tlsdesc_entry())
1225     ++count;
1226   this->set_data_size((count + 1) * plt_entry_size);
1227 }
1228
1229 // The first entry in the PLT for an executable.
1230
1231 template<int size>
1232 const unsigned char
1233 Output_data_plt_x86_64<size>::first_plt_entry[plt_entry_size] =
1234 {
1235   // From AMD64 ABI Draft 0.98, page 76
1236   0xff, 0x35,   // pushq contents of memory address
1237   0, 0, 0, 0,   // replaced with address of .got + 8
1238   0xff, 0x25,   // jmp indirect
1239   0, 0, 0, 0,   // replaced with address of .got + 16
1240   0x90, 0x90, 0x90, 0x90   // noop (x4)
1241 };
1242
1243 // Subsequent entries in the PLT for an executable.
1244
1245 template<int size>
1246 const unsigned char
1247 Output_data_plt_x86_64<size>::plt_entry[plt_entry_size] =
1248 {
1249   // From AMD64 ABI Draft 0.98, page 76
1250   0xff, 0x25,   // jmpq indirect
1251   0, 0, 0, 0,   // replaced with address of symbol in .got
1252   0x68,         // pushq immediate
1253   0, 0, 0, 0,   // replaced with offset into relocation table
1254   0xe9,         // jmpq relative
1255   0, 0, 0, 0    // replaced with offset to start of .plt
1256 };
1257
1258 // The reserved TLSDESC entry in the PLT for an executable.
1259
1260 template<int size>
1261 const unsigned char
1262 Output_data_plt_x86_64<size>::tlsdesc_plt_entry[plt_entry_size] =
1263 {
1264   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1265   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1266   0xff, 0x35,   // pushq x(%rip)
1267   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1268   0xff, 0x25,   // jmpq *y(%rip)
1269   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1270   0x0f, 0x1f,   // nop
1271   0x40, 0
1272 };
1273
1274 // The .eh_frame unwind information for the PLT.
1275
1276 template<int size>
1277 const unsigned char 
1278 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1279 {
1280   1,                            // CIE version.
1281   'z',                          // Augmentation: augmentation size included.
1282   'R',                          // Augmentation: FDE encoding included.
1283   '\0',                         // End of augmentation string.
1284   1,                            // Code alignment factor.
1285   0x78,                         // Data alignment factor.
1286   16,                           // Return address column.
1287   1,                            // Augmentation size.
1288   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1289    | elfcpp::DW_EH_PE_sdata4),
1290   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1291   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1292   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1293   elfcpp::DW_CFA_nop
1294 };
1295
1296 template<int size>
1297 const unsigned char
1298 Output_data_plt_x86_64<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1299 {
1300   0, 0, 0, 0,                           // Replaced with offset to .plt.
1301   0, 0, 0, 0,                           // Replaced with size of .plt.
1302   0,                                    // Augmentation size.
1303   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1304   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1305   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1306   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1307   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1308   11,                                   // Block length.
1309   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1310   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1311   elfcpp::DW_OP_lit15,                  // Push 0xf.
1312   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1313   elfcpp::DW_OP_lit11,                  // Push 0xb.
1314   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1315   elfcpp::DW_OP_lit3,                   // Push 3.
1316   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1317   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1318   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1319   elfcpp::DW_CFA_nop,
1320   elfcpp::DW_CFA_nop,
1321   elfcpp::DW_CFA_nop
1322 };
1323
1324 // Write out the PLT.  This uses the hand-coded instructions above,
1325 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1326
1327 template<int size>
1328 void
1329 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1330 {
1331   const off_t offset = this->offset();
1332   const section_size_type oview_size =
1333     convert_to_section_size_type(this->data_size());
1334   unsigned char* const oview = of->get_output_view(offset, oview_size);
1335
1336   const off_t got_file_offset = this->got_plt_->offset();
1337   gold_assert(parameters->incremental_update()
1338               || (got_file_offset + this->got_plt_->data_size()
1339                   == this->got_irelative_->offset()));
1340   const section_size_type got_size =
1341     convert_to_section_size_type(this->got_plt_->data_size()
1342                                  + this->got_irelative_->data_size());
1343   unsigned char* const got_view = of->get_output_view(got_file_offset,
1344                                                       got_size);
1345
1346   unsigned char* pov = oview;
1347
1348   // The base address of the .plt section.
1349   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1350   // The base address of the .got section.
1351   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1352   // The base address of the PLT portion of the .got section,
1353   // which is where the GOT pointer will point, and where the
1354   // three reserved GOT entries are located.
1355   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1356     = this->got_plt_->address();
1357
1358   memcpy(pov, first_plt_entry, plt_entry_size);
1359   // We do a jmp relative to the PC at the end of this instruction.
1360   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1361                                               (got_address + 8
1362                                                - (plt_address + 6)));
1363   elfcpp::Swap<32, false>::writeval(pov + 8,
1364                                     (got_address + 16
1365                                      - (plt_address + 12)));
1366   pov += plt_entry_size;
1367
1368   unsigned char* got_pov = got_view;
1369
1370   // The first entry in the GOT is the address of the .dynamic section
1371   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1372   // We saved space for them when we created the section in
1373   // Target_x86_64::got_section.
1374   Output_section* dynamic = this->layout_->dynamic_section();
1375   uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1376   elfcpp::Swap<64, false>::writeval(got_pov, dynamic_addr);
1377   got_pov += 8;
1378   memset(got_pov, 0, 16);
1379   got_pov += 16;
1380
1381   unsigned int plt_offset = plt_entry_size;
1382   unsigned int got_offset = 24;
1383   const unsigned int count = this->count_ + this->irelative_count_;
1384   for (unsigned int plt_index = 0;
1385        plt_index < count;
1386        ++plt_index,
1387          pov += plt_entry_size,
1388          got_pov += 8,
1389          plt_offset += plt_entry_size,
1390          got_offset += 8)
1391     {
1392       // Set and adjust the PLT entry itself.
1393       memcpy(pov, plt_entry, plt_entry_size);
1394       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1395                                                   (got_address + got_offset
1396                                                    - (plt_address + plt_offset
1397                                                       + 6)));
1398
1399       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1400       elfcpp::Swap<32, false>::writeval(pov + 12,
1401                                         - (plt_offset + plt_entry_size));
1402
1403       // Set the entry in the GOT.
1404       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1405     }
1406
1407   if (this->has_tlsdesc_entry())
1408     {
1409       // Set and adjust the reserved TLSDESC PLT entry.
1410       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1411       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1412       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1413                                                   (got_address + 8
1414                                                    - (plt_address + plt_offset
1415                                                       + 6)));
1416       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1417                                                   (got_base
1418                                                    + tlsdesc_got_offset
1419                                                    - (plt_address + plt_offset
1420                                                       + 12)));
1421       pov += plt_entry_size;
1422     }
1423
1424   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1425   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1426
1427   of->write_output_view(offset, oview_size, oview);
1428   of->write_output_view(got_file_offset, got_size, got_view);
1429 }
1430
1431 // Create the PLT section.
1432
1433 template<int size>
1434 void
1435 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1436 {
1437   if (this->plt_ == NULL)
1438     {
1439       // Create the GOT sections first.
1440       this->got_section(symtab, layout);
1441
1442       this->plt_ = new Output_data_plt_x86_64<size>(layout, this->got_,
1443                                                     this->got_plt_,
1444                                                     this->got_irelative_);
1445       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1446                                       (elfcpp::SHF_ALLOC
1447                                        | elfcpp::SHF_EXECINSTR),
1448                                       this->plt_, ORDER_PLT, false);
1449
1450       // Make the sh_info field of .rela.plt point to .plt.
1451       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1452       rela_plt_os->set_info_section(this->plt_->output_section());
1453     }
1454 }
1455
1456 // Return the section for TLSDESC relocations.
1457
1458 template<int size>
1459 typename Target_x86_64<size>::Reloc_section*
1460 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1461 {
1462   return this->plt_section()->rela_tlsdesc(layout);
1463 }
1464
1465 // Create a PLT entry for a global symbol.
1466
1467 template<int size>
1468 void
1469 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1470                                     Symbol* gsym)
1471 {
1472   if (gsym->has_plt_offset())
1473     return;
1474
1475   if (this->plt_ == NULL)
1476     this->make_plt_section(symtab, layout);
1477
1478   this->plt_->add_entry(symtab, layout, gsym);
1479 }
1480
1481 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1482
1483 template<int size>
1484 void
1485 Target_x86_64<size>::make_local_ifunc_plt_entry(
1486     Symbol_table* symtab, Layout* layout,
1487     Sized_relobj_file<size, false>* relobj,
1488     unsigned int local_sym_index)
1489 {
1490   if (relobj->local_has_plt_offset(local_sym_index))
1491     return;
1492   if (this->plt_ == NULL)
1493     this->make_plt_section(symtab, layout);
1494   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1495                                                               relobj,
1496                                                               local_sym_index);
1497   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1498 }
1499
1500 // Return the number of entries in the PLT.
1501
1502 template<int size>
1503 unsigned int
1504 Target_x86_64<size>::plt_entry_count() const
1505 {
1506   if (this->plt_ == NULL)
1507     return 0;
1508   return this->plt_->entry_count();
1509 }
1510
1511 // Return the offset of the first non-reserved PLT entry.
1512
1513 template<int size>
1514 unsigned int
1515 Target_x86_64<size>::first_plt_entry_offset() const
1516 {
1517   return Output_data_plt_x86_64<size>::first_plt_entry_offset();
1518 }
1519
1520 // Return the size of each PLT entry.
1521
1522 template<int size>
1523 unsigned int
1524 Target_x86_64<size>::plt_entry_size() const
1525 {
1526   return Output_data_plt_x86_64<size>::get_plt_entry_size();
1527 }
1528
1529 // Create the GOT and PLT sections for an incremental update.
1530
1531 template<int size>
1532 Output_data_got_base*
1533 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1534                                        Layout* layout,
1535                                        unsigned int got_count,
1536                                        unsigned int plt_count)
1537 {
1538   gold_assert(this->got_ == NULL);
1539
1540   this->got_ = new Output_data_got<64, false>(got_count * 8);
1541   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1542                                   (elfcpp::SHF_ALLOC
1543                                    | elfcpp::SHF_WRITE),
1544                                   this->got_, ORDER_RELRO_LAST,
1545                                   true);
1546
1547   // Add the three reserved entries.
1548   this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1549   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1550                                   (elfcpp::SHF_ALLOC
1551                                    | elfcpp::SHF_WRITE),
1552                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1553                                   false);
1554
1555   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1556   this->global_offset_table_ =
1557     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1558                                   Symbol_table::PREDEFINED,
1559                                   this->got_plt_,
1560                                   0, 0, elfcpp::STT_OBJECT,
1561                                   elfcpp::STB_LOCAL,
1562                                   elfcpp::STV_HIDDEN, 0,
1563                                   false, false);
1564
1565   // If there are any TLSDESC relocations, they get GOT entries in
1566   // .got.plt after the jump slot entries.
1567   // FIXME: Get the count for TLSDESC entries.
1568   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1569   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1570                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1571                                   this->got_tlsdesc_,
1572                                   ORDER_NON_RELRO_FIRST, false);
1573
1574   // If there are any IRELATIVE relocations, they get GOT entries in
1575   // .got.plt after the jump slot and TLSDESC entries.
1576   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1577   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1578                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1579                                   this->got_irelative_,
1580                                   ORDER_NON_RELRO_FIRST, false);
1581
1582   // Create the PLT section.
1583   this->plt_ = new Output_data_plt_x86_64<size>(layout, this->got_,
1584                                                 this->got_plt_,
1585                                                 this->got_irelative_,
1586                                                 plt_count);
1587   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1588                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1589                                   this->plt_, ORDER_PLT, false);
1590
1591   // Make the sh_info field of .rela.plt point to .plt.
1592   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1593   rela_plt_os->set_info_section(this->plt_->output_section());
1594
1595   // Create the rela_dyn section.
1596   this->rela_dyn_section(layout);
1597
1598   return this->got_;
1599 }
1600
1601 // Reserve a GOT entry for a local symbol, and regenerate any
1602 // necessary dynamic relocations.
1603
1604 template<int size>
1605 void
1606 Target_x86_64<size>::reserve_local_got_entry(
1607     unsigned int got_index,
1608     Sized_relobj<size, false>* obj,
1609     unsigned int r_sym,
1610     unsigned int got_type)
1611 {
1612   unsigned int got_offset = got_index * 8;
1613   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1614
1615   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1616   switch (got_type)
1617     {
1618     case GOT_TYPE_STANDARD:
1619       if (parameters->options().output_is_position_independent())
1620         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1621                                      this->got_, got_offset, 0, false);
1622       break;
1623     case GOT_TYPE_TLS_OFFSET:
1624       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1625                           this->got_, got_offset, 0);
1626       break;
1627     case GOT_TYPE_TLS_PAIR:
1628       this->got_->reserve_slot(got_index + 1);
1629       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1630                           this->got_, got_offset, 0);
1631       break;
1632     case GOT_TYPE_TLS_DESC:
1633       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1634       // this->got_->reserve_slot(got_index + 1);
1635       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1636       //                               this->got_, got_offset, 0);
1637       break;
1638     default:
1639       gold_unreachable();
1640     }
1641 }
1642
1643 // Reserve a GOT entry for a global symbol, and regenerate any
1644 // necessary dynamic relocations.
1645
1646 template<int size>
1647 void
1648 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1649                                               Symbol* gsym,
1650                                               unsigned int got_type)
1651 {
1652   unsigned int got_offset = got_index * 8;
1653   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1654
1655   this->got_->reserve_global(got_index, gsym, got_type);
1656   switch (got_type)
1657     {
1658     case GOT_TYPE_STANDARD:
1659       if (!gsym->final_value_is_known())
1660         {
1661           if (gsym->is_from_dynobj()
1662               || gsym->is_undefined()
1663               || gsym->is_preemptible()
1664               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1665             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1666                                  this->got_, got_offset, 0);
1667           else
1668             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1669                                           this->got_, got_offset, 0);
1670         }
1671       break;
1672     case GOT_TYPE_TLS_OFFSET:
1673       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1674                                     this->got_, got_offset, 0);
1675       break;
1676     case GOT_TYPE_TLS_PAIR:
1677       this->got_->reserve_slot(got_index + 1);
1678       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1679                                     this->got_, got_offset, 0);
1680       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1681                                     this->got_, got_offset + 8, 0);
1682       break;
1683     case GOT_TYPE_TLS_DESC:
1684       this->got_->reserve_slot(got_index + 1);
1685       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1686                                     this->got_, got_offset, 0);
1687       break;
1688     default:
1689       gold_unreachable();
1690     }
1691 }
1692
1693 // Register an existing PLT entry for a global symbol.
1694
1695 template<int size>
1696 void
1697 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
1698                                                Layout* layout,
1699                                                unsigned int plt_index,
1700                                                Symbol* gsym)
1701 {
1702   gold_assert(this->plt_ != NULL);
1703   gold_assert(!gsym->has_plt_offset());
1704
1705   this->plt_->reserve_slot(plt_index);
1706
1707   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1708
1709   unsigned int got_offset = (plt_index + 3) * 8;
1710   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1711 }
1712
1713 // Force a COPY relocation for a given symbol.
1714
1715 template<int size>
1716 void
1717 Target_x86_64<size>::emit_copy_reloc(
1718     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1719 {
1720   this->copy_relocs_.emit_copy_reloc(symtab,
1721                                      symtab->get_sized_symbol<size>(sym),
1722                                      os,
1723                                      offset,
1724                                      this->rela_dyn_section(NULL));
1725 }
1726
1727 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1728
1729 template<int size>
1730 void
1731 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
1732                                             Layout* layout)
1733 {
1734   if (this->tls_base_symbol_defined_)
1735     return;
1736
1737   Output_segment* tls_segment = layout->tls_segment();
1738   if (tls_segment != NULL)
1739     {
1740       bool is_exec = parameters->options().output_is_executable();
1741       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1742                                        Symbol_table::PREDEFINED,
1743                                        tls_segment, 0, 0,
1744                                        elfcpp::STT_TLS,
1745                                        elfcpp::STB_LOCAL,
1746                                        elfcpp::STV_HIDDEN, 0,
1747                                        (is_exec
1748                                         ? Symbol::SEGMENT_END
1749                                         : Symbol::SEGMENT_START),
1750                                        true);
1751     }
1752   this->tls_base_symbol_defined_ = true;
1753 }
1754
1755 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1756
1757 template<int size>
1758 void
1759 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
1760                                              Layout* layout)
1761 {
1762   if (this->plt_ == NULL)
1763     this->make_plt_section(symtab, layout);
1764
1765   if (!this->plt_->has_tlsdesc_entry())
1766     {
1767       // Allocate the TLSDESC_GOT entry.
1768       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1769       unsigned int got_offset = got->add_constant(0);
1770
1771       // Allocate the TLSDESC_PLT entry.
1772       this->plt_->reserve_tlsdesc_entry(got_offset);
1773     }
1774 }
1775
1776 // Create a GOT entry for the TLS module index.
1777
1778 template<int size>
1779 unsigned int
1780 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1781                                          Sized_relobj_file<size, false>* object)
1782 {
1783   if (this->got_mod_index_offset_ == -1U)
1784     {
1785       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1786       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1787       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1788       unsigned int got_offset = got->add_constant(0);
1789       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1790                           got_offset, 0);
1791       got->add_constant(0);
1792       this->got_mod_index_offset_ = got_offset;
1793     }
1794   return this->got_mod_index_offset_;
1795 }
1796
1797 // Optimize the TLS relocation type based on what we know about the
1798 // symbol.  IS_FINAL is true if the final address of this symbol is
1799 // known at link time.
1800
1801 template<int size>
1802 tls::Tls_optimization
1803 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
1804 {
1805   // If we are generating a shared library, then we can't do anything
1806   // in the linker.
1807   if (parameters->options().shared())
1808     return tls::TLSOPT_NONE;
1809
1810   switch (r_type)
1811     {
1812     case elfcpp::R_X86_64_TLSGD:
1813     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1814     case elfcpp::R_X86_64_TLSDESC_CALL:
1815       // These are General-Dynamic which permits fully general TLS
1816       // access.  Since we know that we are generating an executable,
1817       // we can convert this to Initial-Exec.  If we also know that
1818       // this is a local symbol, we can further switch to Local-Exec.
1819       if (is_final)
1820         return tls::TLSOPT_TO_LE;
1821       return tls::TLSOPT_TO_IE;
1822
1823     case elfcpp::R_X86_64_TLSLD:
1824       // This is Local-Dynamic, which refers to a local symbol in the
1825       // dynamic TLS block.  Since we know that we generating an
1826       // executable, we can switch to Local-Exec.
1827       return tls::TLSOPT_TO_LE;
1828
1829     case elfcpp::R_X86_64_DTPOFF32:
1830     case elfcpp::R_X86_64_DTPOFF64:
1831       // Another Local-Dynamic reloc.
1832       return tls::TLSOPT_TO_LE;
1833
1834     case elfcpp::R_X86_64_GOTTPOFF:
1835       // These are Initial-Exec relocs which get the thread offset
1836       // from the GOT.  If we know that we are linking against the
1837       // local symbol, we can switch to Local-Exec, which links the
1838       // thread offset into the instruction.
1839       if (is_final)
1840         return tls::TLSOPT_TO_LE;
1841       return tls::TLSOPT_NONE;
1842
1843     case elfcpp::R_X86_64_TPOFF32:
1844       // When we already have Local-Exec, there is nothing further we
1845       // can do.
1846       return tls::TLSOPT_NONE;
1847
1848     default:
1849       gold_unreachable();
1850     }
1851 }
1852
1853 // Get the Reference_flags for a particular relocation.
1854
1855 template<int size>
1856 int
1857 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
1858 {
1859   switch (r_type)
1860     {
1861     case elfcpp::R_X86_64_NONE:
1862     case elfcpp::R_X86_64_GNU_VTINHERIT:
1863     case elfcpp::R_X86_64_GNU_VTENTRY:
1864     case elfcpp::R_X86_64_GOTPC32:
1865     case elfcpp::R_X86_64_GOTPC64:
1866       // No symbol reference.
1867       return 0;
1868
1869     case elfcpp::R_X86_64_64:
1870     case elfcpp::R_X86_64_32:
1871     case elfcpp::R_X86_64_32S:
1872     case elfcpp::R_X86_64_16:
1873     case elfcpp::R_X86_64_8:
1874       return Symbol::ABSOLUTE_REF;
1875
1876     case elfcpp::R_X86_64_PC64:
1877     case elfcpp::R_X86_64_PC32:
1878     case elfcpp::R_X86_64_PC16:
1879     case elfcpp::R_X86_64_PC8:
1880     case elfcpp::R_X86_64_GOTOFF64:
1881       return Symbol::RELATIVE_REF;
1882
1883     case elfcpp::R_X86_64_PLT32:
1884     case elfcpp::R_X86_64_PLTOFF64:
1885       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1886
1887     case elfcpp::R_X86_64_GOT64:
1888     case elfcpp::R_X86_64_GOT32:
1889     case elfcpp::R_X86_64_GOTPCREL64:
1890     case elfcpp::R_X86_64_GOTPCREL:
1891     case elfcpp::R_X86_64_GOTPLT64:
1892       // Absolute in GOT.
1893       return Symbol::ABSOLUTE_REF;
1894
1895     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1896     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1897     case elfcpp::R_X86_64_TLSDESC_CALL:
1898     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1899     case elfcpp::R_X86_64_DTPOFF32:
1900     case elfcpp::R_X86_64_DTPOFF64:
1901     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1902     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1903       return Symbol::TLS_REF;
1904
1905     case elfcpp::R_X86_64_COPY:
1906     case elfcpp::R_X86_64_GLOB_DAT:
1907     case elfcpp::R_X86_64_JUMP_SLOT:
1908     case elfcpp::R_X86_64_RELATIVE:
1909     case elfcpp::R_X86_64_IRELATIVE:
1910     case elfcpp::R_X86_64_TPOFF64:
1911     case elfcpp::R_X86_64_DTPMOD64:
1912     case elfcpp::R_X86_64_TLSDESC:
1913     case elfcpp::R_X86_64_SIZE32:
1914     case elfcpp::R_X86_64_SIZE64:
1915     default:
1916       // Not expected.  We will give an error later.
1917       return 0;
1918     }
1919 }
1920
1921 // Report an unsupported relocation against a local symbol.
1922
1923 template<int size>
1924 void
1925 Target_x86_64<size>::Scan::unsupported_reloc_local(
1926      Sized_relobj_file<size, false>* object,
1927      unsigned int r_type)
1928 {
1929   gold_error(_("%s: unsupported reloc %u against local symbol"),
1930              object->name().c_str(), r_type);
1931 }
1932
1933 // We are about to emit a dynamic relocation of type R_TYPE.  If the
1934 // dynamic linker does not support it, issue an error.  The GNU linker
1935 // only issues a non-PIC error for an allocated read-only section.
1936 // Here we know the section is allocated, but we don't know that it is
1937 // read-only.  But we check for all the relocation types which the
1938 // glibc dynamic linker supports, so it seems appropriate to issue an
1939 // error even if the section is not read-only.  If GSYM is not NULL,
1940 // it is the symbol the relocation is against; if it is NULL, the
1941 // relocation is against a local symbol.
1942
1943 template<int size>
1944 void
1945 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
1946                                          Symbol* gsym)
1947 {
1948   switch (r_type)
1949     {
1950       // These are the relocation types supported by glibc for x86_64
1951       // which should always work.
1952     case elfcpp::R_X86_64_RELATIVE:
1953     case elfcpp::R_X86_64_IRELATIVE:
1954     case elfcpp::R_X86_64_GLOB_DAT:
1955     case elfcpp::R_X86_64_JUMP_SLOT:
1956     case elfcpp::R_X86_64_DTPMOD64:
1957     case elfcpp::R_X86_64_DTPOFF64:
1958     case elfcpp::R_X86_64_TPOFF64:
1959     case elfcpp::R_X86_64_64:
1960     case elfcpp::R_X86_64_COPY:
1961       return;
1962
1963       // glibc supports these reloc types, but they can overflow.
1964     case elfcpp::R_X86_64_PC32:
1965       // A PC relative reference is OK against a local symbol or if
1966       // the symbol is defined locally.
1967       if (gsym == NULL
1968           || (!gsym->is_from_dynobj()
1969               && !gsym->is_undefined()
1970               && !gsym->is_preemptible()))
1971         return;
1972       /* Fall through.  */
1973     case elfcpp::R_X86_64_32:
1974       if (this->issued_non_pic_error_)
1975         return;
1976       gold_assert(parameters->options().output_is_position_independent());
1977       if (gsym == NULL)
1978         object->error(_("requires dynamic R_X86_64_32 reloc which may "
1979                         "overflow at runtime; recompile with -fPIC"));
1980       else
1981         object->error(_("requires dynamic %s reloc against '%s' which may "
1982                         "overflow at runtime; recompile with -fPIC"),
1983                       (r_type == elfcpp::R_X86_64_32
1984                        ? "R_X86_64_32"
1985                        : "R_X86_64_PC32"),
1986                       gsym->name());
1987       this->issued_non_pic_error_ = true;
1988       return;
1989
1990     default:
1991       // This prevents us from issuing more than one error per reloc
1992       // section.  But we can still wind up issuing more than one
1993       // error per object file.
1994       if (this->issued_non_pic_error_)
1995         return;
1996       gold_assert(parameters->options().output_is_position_independent());
1997       object->error(_("requires unsupported dynamic reloc %u; "
1998                       "recompile with -fPIC"),
1999                     r_type);
2000       this->issued_non_pic_error_ = true;
2001       return;
2002
2003     case elfcpp::R_X86_64_NONE:
2004       gold_unreachable();
2005     }
2006 }
2007
2008 // Return whether we need to make a PLT entry for a relocation of the
2009 // given type against a STT_GNU_IFUNC symbol.
2010
2011 template<int size>
2012 bool
2013 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2014      Sized_relobj_file<size, false>* object,
2015      unsigned int r_type)
2016 {
2017   int flags = Scan::get_reference_flags(r_type);
2018   if (flags & Symbol::TLS_REF)
2019     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2020                object->name().c_str(), r_type);
2021   return flags != 0;
2022 }
2023
2024 // Scan a relocation for a local symbol.
2025
2026 template<int size>
2027 inline void
2028 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2029                                  Layout* layout,
2030                                  Target_x86_64<size>* target,
2031                                  Sized_relobj_file<size, false>* object,
2032                                  unsigned int data_shndx,
2033                                  Output_section* output_section,
2034                                  const elfcpp::Rela<size, false>& reloc,
2035                                  unsigned int r_type,
2036                                  const elfcpp::Sym<size, false>& lsym)
2037 {
2038   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2039   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2040   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2041     {
2042       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2043       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2044     }
2045
2046   switch (r_type)
2047     {
2048     case elfcpp::R_X86_64_NONE:
2049     case elfcpp::R_X86_64_GNU_VTINHERIT:
2050     case elfcpp::R_X86_64_GNU_VTENTRY:
2051       break;
2052
2053     case elfcpp::R_X86_64_64:
2054       // If building a shared library (or a position-independent
2055       // executable), we need to create a dynamic relocation for this
2056       // location.  The relocation applied at link time will apply the
2057       // link-time value, so we flag the location with an
2058       // R_X86_64_RELATIVE relocation so the dynamic loader can
2059       // relocate it easily.
2060       if (parameters->options().output_is_position_independent())
2061         {
2062           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2063           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2064           rela_dyn->add_local_relative(object, r_sym,
2065                                        elfcpp::R_X86_64_RELATIVE,
2066                                        output_section, data_shndx,
2067                                        reloc.get_r_offset(),
2068                                        reloc.get_r_addend(), is_ifunc);
2069         }
2070       break;
2071
2072     case elfcpp::R_X86_64_32:
2073     case elfcpp::R_X86_64_32S:
2074     case elfcpp::R_X86_64_16:
2075     case elfcpp::R_X86_64_8:
2076       // If building a shared library (or a position-independent
2077       // executable), we need to create a dynamic relocation for this
2078       // location.  We can't use an R_X86_64_RELATIVE relocation
2079       // because that is always a 64-bit relocation.
2080       if (parameters->options().output_is_position_independent())
2081         {
2082           this->check_non_pic(object, r_type, NULL);
2083
2084           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2085           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2086           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2087             rela_dyn->add_local(object, r_sym, r_type, output_section,
2088                                 data_shndx, reloc.get_r_offset(),
2089                                 reloc.get_r_addend());
2090           else
2091             {
2092               gold_assert(lsym.get_st_value() == 0);
2093               unsigned int shndx = lsym.get_st_shndx();
2094               bool is_ordinary;
2095               shndx = object->adjust_sym_shndx(r_sym, shndx,
2096                                                &is_ordinary);
2097               if (!is_ordinary)
2098                 object->error(_("section symbol %u has bad shndx %u"),
2099                               r_sym, shndx);
2100               else
2101                 rela_dyn->add_local_section(object, shndx,
2102                                             r_type, output_section,
2103                                             data_shndx, reloc.get_r_offset(),
2104                                             reloc.get_r_addend());
2105             }
2106         }
2107       break;
2108
2109     case elfcpp::R_X86_64_PC64:
2110     case elfcpp::R_X86_64_PC32:
2111     case elfcpp::R_X86_64_PC16:
2112     case elfcpp::R_X86_64_PC8:
2113       break;
2114
2115     case elfcpp::R_X86_64_PLT32:
2116       // Since we know this is a local symbol, we can handle this as a
2117       // PC32 reloc.
2118       break;
2119
2120     case elfcpp::R_X86_64_GOTPC32:
2121     case elfcpp::R_X86_64_GOTOFF64:
2122     case elfcpp::R_X86_64_GOTPC64:
2123     case elfcpp::R_X86_64_PLTOFF64:
2124       // We need a GOT section.
2125       target->got_section(symtab, layout);
2126       // For PLTOFF64, we'd normally want a PLT section, but since we
2127       // know this is a local symbol, no PLT is needed.
2128       break;
2129
2130     case elfcpp::R_X86_64_GOT64:
2131     case elfcpp::R_X86_64_GOT32:
2132     case elfcpp::R_X86_64_GOTPCREL64:
2133     case elfcpp::R_X86_64_GOTPCREL:
2134     case elfcpp::R_X86_64_GOTPLT64:
2135       {
2136         // The symbol requires a GOT entry.
2137         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2138         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2139
2140         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2141         // lets function pointers compare correctly with shared
2142         // libraries.  Otherwise we would need an IRELATIVE reloc.
2143         bool is_new;
2144         if (is_ifunc)
2145           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2146         else
2147           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2148         if (is_new)
2149           {
2150             // If we are generating a shared object, we need to add a
2151             // dynamic relocation for this symbol's GOT entry.
2152             if (parameters->options().output_is_position_independent())
2153               {
2154                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2155                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2156                 if (r_type != elfcpp::R_X86_64_GOT32)
2157                   {
2158                     unsigned int got_offset =
2159                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2160                     rela_dyn->add_local_relative(object, r_sym,
2161                                                  elfcpp::R_X86_64_RELATIVE,
2162                                                  got, got_offset, 0, is_ifunc);
2163                   }
2164                 else
2165                   {
2166                     this->check_non_pic(object, r_type, NULL);
2167
2168                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2169                     rela_dyn->add_local(
2170                         object, r_sym, r_type, got,
2171                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2172                   }
2173               }
2174           }
2175         // For GOTPLT64, we'd normally want a PLT section, but since
2176         // we know this is a local symbol, no PLT is needed.
2177       }
2178       break;
2179
2180     case elfcpp::R_X86_64_COPY:
2181     case elfcpp::R_X86_64_GLOB_DAT:
2182     case elfcpp::R_X86_64_JUMP_SLOT:
2183     case elfcpp::R_X86_64_RELATIVE:
2184     case elfcpp::R_X86_64_IRELATIVE:
2185       // These are outstanding tls relocs, which are unexpected when linking
2186     case elfcpp::R_X86_64_TPOFF64:
2187     case elfcpp::R_X86_64_DTPMOD64:
2188     case elfcpp::R_X86_64_TLSDESC:
2189       gold_error(_("%s: unexpected reloc %u in object file"),
2190                  object->name().c_str(), r_type);
2191       break;
2192
2193       // These are initial tls relocs, which are expected when linking
2194     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2195     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2196     case elfcpp::R_X86_64_TLSDESC_CALL:
2197     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2198     case elfcpp::R_X86_64_DTPOFF32:
2199     case elfcpp::R_X86_64_DTPOFF64:
2200     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2201     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2202       {
2203         bool output_is_shared = parameters->options().shared();
2204         const tls::Tls_optimization optimized_type
2205             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2206                                                       r_type);
2207         switch (r_type)
2208           {
2209           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2210             if (optimized_type == tls::TLSOPT_NONE)
2211               {
2212                 // Create a pair of GOT entries for the module index and
2213                 // dtv-relative offset.
2214                 Output_data_got<64, false>* got
2215                     = target->got_section(symtab, layout);
2216                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2217                 unsigned int shndx = lsym.get_st_shndx();
2218                 bool is_ordinary;
2219                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2220                 if (!is_ordinary)
2221                   object->error(_("local symbol %u has bad shndx %u"),
2222                               r_sym, shndx);
2223                 else
2224                   got->add_local_pair_with_rel(object, r_sym,
2225                                                shndx,
2226                                                GOT_TYPE_TLS_PAIR,
2227                                                target->rela_dyn_section(layout),
2228                                                elfcpp::R_X86_64_DTPMOD64, 0);
2229               }
2230             else if (optimized_type != tls::TLSOPT_TO_LE)
2231               unsupported_reloc_local(object, r_type);
2232             break;
2233
2234           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2235             target->define_tls_base_symbol(symtab, layout);
2236             if (optimized_type == tls::TLSOPT_NONE)
2237               {
2238                 // Create reserved PLT and GOT entries for the resolver.
2239                 target->reserve_tlsdesc_entries(symtab, layout);
2240
2241                 // Generate a double GOT entry with an
2242                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2243                 // is resolved lazily, so the GOT entry needs to be in
2244                 // an area in .got.plt, not .got.  Call got_section to
2245                 // make sure the section has been created.
2246                 target->got_section(symtab, layout);
2247                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2248                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2249                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2250                   {
2251                     unsigned int got_offset = got->add_constant(0);
2252                     got->add_constant(0);
2253                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2254                                                  got_offset);
2255                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2256                     // We store the arguments we need in a vector, and
2257                     // use the index into the vector as the parameter
2258                     // to pass to the target specific routines.
2259                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2260                     void* arg = reinterpret_cast<void*>(intarg);
2261                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2262                                             got, got_offset, 0);
2263                   }
2264               }
2265             else if (optimized_type != tls::TLSOPT_TO_LE)
2266               unsupported_reloc_local(object, r_type);
2267             break;
2268
2269           case elfcpp::R_X86_64_TLSDESC_CALL:
2270             break;
2271
2272           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2273             if (optimized_type == tls::TLSOPT_NONE)
2274               {
2275                 // Create a GOT entry for the module index.
2276                 target->got_mod_index_entry(symtab, layout, object);
2277               }
2278             else if (optimized_type != tls::TLSOPT_TO_LE)
2279               unsupported_reloc_local(object, r_type);
2280             break;
2281
2282           case elfcpp::R_X86_64_DTPOFF32:
2283           case elfcpp::R_X86_64_DTPOFF64:
2284             break;
2285
2286           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2287             layout->set_has_static_tls();
2288             if (optimized_type == tls::TLSOPT_NONE)
2289               {
2290                 // Create a GOT entry for the tp-relative offset.
2291                 Output_data_got<64, false>* got
2292                     = target->got_section(symtab, layout);
2293                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2294                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2295                                         target->rela_dyn_section(layout),
2296                                         elfcpp::R_X86_64_TPOFF64);
2297               }
2298             else if (optimized_type != tls::TLSOPT_TO_LE)
2299               unsupported_reloc_local(object, r_type);
2300             break;
2301
2302           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2303             layout->set_has_static_tls();
2304             if (output_is_shared)
2305               unsupported_reloc_local(object, r_type);
2306             break;
2307
2308           default:
2309             gold_unreachable();
2310           }
2311       }
2312       break;
2313
2314     case elfcpp::R_X86_64_SIZE32:
2315     case elfcpp::R_X86_64_SIZE64:
2316     default:
2317       gold_error(_("%s: unsupported reloc %u against local symbol"),
2318                  object->name().c_str(), r_type);
2319       break;
2320     }
2321 }
2322
2323
2324 // Report an unsupported relocation against a global symbol.
2325
2326 template<int size>
2327 void
2328 Target_x86_64<size>::Scan::unsupported_reloc_global(
2329     Sized_relobj_file<size, false>* object,
2330     unsigned int r_type,
2331     Symbol* gsym)
2332 {
2333   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2334              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2335 }
2336
2337 // Returns true if this relocation type could be that of a function pointer.
2338 template<int size>
2339 inline bool
2340 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2341 {
2342   switch (r_type)
2343     {
2344     case elfcpp::R_X86_64_64:
2345     case elfcpp::R_X86_64_32:
2346     case elfcpp::R_X86_64_32S:
2347     case elfcpp::R_X86_64_16:
2348     case elfcpp::R_X86_64_8:
2349     case elfcpp::R_X86_64_GOT64:
2350     case elfcpp::R_X86_64_GOT32:
2351     case elfcpp::R_X86_64_GOTPCREL64:
2352     case elfcpp::R_X86_64_GOTPCREL:
2353     case elfcpp::R_X86_64_GOTPLT64:
2354       {
2355         return true;
2356       }
2357     }
2358   return false;
2359 }
2360
2361 // For safe ICF, scan a relocation for a local symbol to check if it
2362 // corresponds to a function pointer being taken.  In that case mark
2363 // the function whose pointer was taken as not foldable.
2364
2365 template<int size>
2366 inline bool
2367 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2368   Symbol_table* ,
2369   Layout* ,
2370   Target_x86_64<size>* ,
2371   Sized_relobj_file<size, false>* ,
2372   unsigned int ,
2373   Output_section* ,
2374   const elfcpp::Rela<size, false>& ,
2375   unsigned int r_type,
2376   const elfcpp::Sym<size, false>&)
2377 {
2378   // When building a shared library, do not fold any local symbols as it is
2379   // not possible to distinguish pointer taken versus a call by looking at
2380   // the relocation types.
2381   return (parameters->options().shared()
2382           || possible_function_pointer_reloc(r_type));
2383 }
2384
2385 // For safe ICF, scan a relocation for a global symbol to check if it
2386 // corresponds to a function pointer being taken.  In that case mark
2387 // the function whose pointer was taken as not foldable.
2388
2389 template<int size>
2390 inline bool
2391 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2392   Symbol_table*,
2393   Layout* ,
2394   Target_x86_64<size>* ,
2395   Sized_relobj_file<size, false>* ,
2396   unsigned int ,
2397   Output_section* ,
2398   const elfcpp::Rela<size, false>& ,
2399   unsigned int r_type,
2400   Symbol* gsym)
2401 {
2402   // When building a shared library, do not fold symbols whose visibility
2403   // is hidden, internal or protected.
2404   return ((parameters->options().shared()
2405            && (gsym->visibility() == elfcpp::STV_INTERNAL
2406                || gsym->visibility() == elfcpp::STV_PROTECTED
2407                || gsym->visibility() == elfcpp::STV_HIDDEN))
2408           || possible_function_pointer_reloc(r_type));
2409 }
2410
2411 // Scan a relocation for a global symbol.
2412
2413 template<int size>
2414 inline void
2415 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2416                             Layout* layout,
2417                             Target_x86_64<size>* target,
2418                             Sized_relobj_file<size, false>* object,
2419                             unsigned int data_shndx,
2420                             Output_section* output_section,
2421                             const elfcpp::Rela<size, false>& reloc,
2422                             unsigned int r_type,
2423                             Symbol* gsym)
2424 {
2425   // A STT_GNU_IFUNC symbol may require a PLT entry.
2426   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2427       && this->reloc_needs_plt_for_ifunc(object, r_type))
2428     target->make_plt_entry(symtab, layout, gsym);
2429
2430   switch (r_type)
2431     {
2432     case elfcpp::R_X86_64_NONE:
2433     case elfcpp::R_X86_64_GNU_VTINHERIT:
2434     case elfcpp::R_X86_64_GNU_VTENTRY:
2435       break;
2436
2437     case elfcpp::R_X86_64_64:
2438     case elfcpp::R_X86_64_32:
2439     case elfcpp::R_X86_64_32S:
2440     case elfcpp::R_X86_64_16:
2441     case elfcpp::R_X86_64_8:
2442       {
2443         // Make a PLT entry if necessary.
2444         if (gsym->needs_plt_entry())
2445           {
2446             target->make_plt_entry(symtab, layout, gsym);
2447             // Since this is not a PC-relative relocation, we may be
2448             // taking the address of a function. In that case we need to
2449             // set the entry in the dynamic symbol table to the address of
2450             // the PLT entry.
2451             if (gsym->is_from_dynobj() && !parameters->options().shared())
2452               gsym->set_needs_dynsym_value();
2453           }
2454         // Make a dynamic relocation if necessary.
2455         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2456           {
2457             if (gsym->may_need_copy_reloc())
2458               {
2459                 target->copy_reloc(symtab, layout, object,
2460                                    data_shndx, output_section, gsym, reloc);
2461               }
2462             else if (r_type == elfcpp::R_X86_64_64
2463                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2464                      && gsym->can_use_relative_reloc(false)
2465                      && !gsym->is_from_dynobj()
2466                      && !gsym->is_undefined()
2467                      && !gsym->is_preemptible())
2468               {
2469                 // Use an IRELATIVE reloc for a locally defined
2470                 // STT_GNU_IFUNC symbol.  This makes a function
2471                 // address in a PIE executable match the address in a
2472                 // shared library that it links against.
2473                 Reloc_section* rela_dyn =
2474                   target->rela_irelative_section(layout);
2475                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2476                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2477                                                        output_section, object,
2478                                                        data_shndx,
2479                                                        reloc.get_r_offset(),
2480                                                        reloc.get_r_addend());
2481               }
2482             else if (r_type == elfcpp::R_X86_64_64
2483                      && gsym->can_use_relative_reloc(false))
2484               {
2485                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2486                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2487                                               output_section, object,
2488                                               data_shndx,
2489                                               reloc.get_r_offset(),
2490                                               reloc.get_r_addend());
2491               }
2492             else
2493               {
2494                 this->check_non_pic(object, r_type, gsym);
2495                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2496                 rela_dyn->add_global(gsym, r_type, output_section, object,
2497                                      data_shndx, reloc.get_r_offset(),
2498                                      reloc.get_r_addend());
2499               }
2500           }
2501       }
2502       break;
2503
2504     case elfcpp::R_X86_64_PC64:
2505     case elfcpp::R_X86_64_PC32:
2506     case elfcpp::R_X86_64_PC16:
2507     case elfcpp::R_X86_64_PC8:
2508       {
2509         // Make a PLT entry if necessary.
2510         if (gsym->needs_plt_entry())
2511           target->make_plt_entry(symtab, layout, gsym);
2512         // Make a dynamic relocation if necessary.
2513         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2514           {
2515             if (gsym->may_need_copy_reloc())
2516               {
2517                 target->copy_reloc(symtab, layout, object,
2518                                    data_shndx, output_section, gsym, reloc);
2519               }
2520             else
2521               {
2522                 this->check_non_pic(object, r_type, gsym);
2523                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2524                 rela_dyn->add_global(gsym, r_type, output_section, object,
2525                                      data_shndx, reloc.get_r_offset(),
2526                                      reloc.get_r_addend());
2527               }
2528           }
2529       }
2530       break;
2531
2532     case elfcpp::R_X86_64_GOT64:
2533     case elfcpp::R_X86_64_GOT32:
2534     case elfcpp::R_X86_64_GOTPCREL64:
2535     case elfcpp::R_X86_64_GOTPCREL:
2536     case elfcpp::R_X86_64_GOTPLT64:
2537       {
2538         // The symbol requires a GOT entry.
2539         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2540         if (gsym->final_value_is_known())
2541           {
2542             // For a STT_GNU_IFUNC symbol we want the PLT address.
2543             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2544               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2545             else
2546               got->add_global(gsym, GOT_TYPE_STANDARD);
2547           }
2548         else
2549           {
2550             // If this symbol is not fully resolved, we need to add a
2551             // dynamic relocation for it.
2552             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2553
2554             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2555             //
2556             // 1) The symbol may be defined in some other module.
2557             //
2558             // 2) We are building a shared library and this is a
2559             // protected symbol; using GLOB_DAT means that the dynamic
2560             // linker can use the address of the PLT in the main
2561             // executable when appropriate so that function address
2562             // comparisons work.
2563             //
2564             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2565             // code, again so that function address comparisons work.
2566             if (gsym->is_from_dynobj()
2567                 || gsym->is_undefined()
2568                 || gsym->is_preemptible()
2569                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2570                     && parameters->options().shared())
2571                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2572                     && parameters->options().output_is_position_independent()))
2573               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2574                                        elfcpp::R_X86_64_GLOB_DAT);
2575             else
2576               {
2577                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2578                 // offset into the GOT, so that function pointer
2579                 // comparisons work correctly.
2580                 bool is_new;
2581                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2582                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2583                 else
2584                   {
2585                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2586                     // Tell the dynamic linker to use the PLT address
2587                     // when resolving relocations.
2588                     if (gsym->is_from_dynobj()
2589                         && !parameters->options().shared())
2590                       gsym->set_needs_dynsym_value();
2591                   }
2592                 if (is_new)
2593                   {
2594                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2595                     rela_dyn->add_global_relative(gsym,
2596                                                   elfcpp::R_X86_64_RELATIVE,
2597                                                   got, got_off, 0);
2598                   }
2599               }
2600           }
2601         // For GOTPLT64, we also need a PLT entry (but only if the
2602         // symbol is not fully resolved).
2603         if (r_type == elfcpp::R_X86_64_GOTPLT64
2604             && !gsym->final_value_is_known())
2605           target->make_plt_entry(symtab, layout, gsym);
2606       }
2607       break;
2608
2609     case elfcpp::R_X86_64_PLT32:
2610       // If the symbol is fully resolved, this is just a PC32 reloc.
2611       // Otherwise we need a PLT entry.
2612       if (gsym->final_value_is_known())
2613         break;
2614       // If building a shared library, we can also skip the PLT entry
2615       // if the symbol is defined in the output file and is protected
2616       // or hidden.
2617       if (gsym->is_defined()
2618           && !gsym->is_from_dynobj()
2619           && !gsym->is_preemptible())
2620         break;
2621       target->make_plt_entry(symtab, layout, gsym);
2622       break;
2623
2624     case elfcpp::R_X86_64_GOTPC32:
2625     case elfcpp::R_X86_64_GOTOFF64:
2626     case elfcpp::R_X86_64_GOTPC64:
2627     case elfcpp::R_X86_64_PLTOFF64:
2628       // We need a GOT section.
2629       target->got_section(symtab, layout);
2630       // For PLTOFF64, we also need a PLT entry (but only if the
2631       // symbol is not fully resolved).
2632       if (r_type == elfcpp::R_X86_64_PLTOFF64
2633           && !gsym->final_value_is_known())
2634         target->make_plt_entry(symtab, layout, gsym);
2635       break;
2636
2637     case elfcpp::R_X86_64_COPY:
2638     case elfcpp::R_X86_64_GLOB_DAT:
2639     case elfcpp::R_X86_64_JUMP_SLOT:
2640     case elfcpp::R_X86_64_RELATIVE:
2641     case elfcpp::R_X86_64_IRELATIVE:
2642       // These are outstanding tls relocs, which are unexpected when linking
2643     case elfcpp::R_X86_64_TPOFF64:
2644     case elfcpp::R_X86_64_DTPMOD64:
2645     case elfcpp::R_X86_64_TLSDESC:
2646       gold_error(_("%s: unexpected reloc %u in object file"),
2647                  object->name().c_str(), r_type);
2648       break;
2649
2650       // These are initial tls relocs, which are expected for global()
2651     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2652     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2653     case elfcpp::R_X86_64_TLSDESC_CALL:
2654     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2655     case elfcpp::R_X86_64_DTPOFF32:
2656     case elfcpp::R_X86_64_DTPOFF64:
2657     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2658     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2659       {
2660         const bool is_final = gsym->final_value_is_known();
2661         const tls::Tls_optimization optimized_type
2662             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
2663         switch (r_type)
2664           {
2665           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2666             if (optimized_type == tls::TLSOPT_NONE)
2667               {
2668                 // Create a pair of GOT entries for the module index and
2669                 // dtv-relative offset.
2670                 Output_data_got<64, false>* got
2671                     = target->got_section(symtab, layout);
2672                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2673                                               target->rela_dyn_section(layout),
2674                                               elfcpp::R_X86_64_DTPMOD64,
2675                                               elfcpp::R_X86_64_DTPOFF64);
2676               }
2677             else if (optimized_type == tls::TLSOPT_TO_IE)
2678               {
2679                 // Create a GOT entry for the tp-relative offset.
2680                 Output_data_got<64, false>* got
2681                     = target->got_section(symtab, layout);
2682                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2683                                          target->rela_dyn_section(layout),
2684                                          elfcpp::R_X86_64_TPOFF64);
2685               }
2686             else if (optimized_type != tls::TLSOPT_TO_LE)
2687               unsupported_reloc_global(object, r_type, gsym);
2688             break;
2689
2690           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2691             target->define_tls_base_symbol(symtab, layout);
2692             if (optimized_type == tls::TLSOPT_NONE)
2693               {
2694                 // Create reserved PLT and GOT entries for the resolver.
2695                 target->reserve_tlsdesc_entries(symtab, layout);
2696
2697                 // Create a double GOT entry with an R_X86_64_TLSDESC
2698                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
2699                 // lazily, so the GOT entry needs to be in an area in
2700                 // .got.plt, not .got.  Call got_section to make sure
2701                 // the section has been created.
2702                 target->got_section(symtab, layout);
2703                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2704                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2705                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2706                                               elfcpp::R_X86_64_TLSDESC, 0);
2707               }
2708             else if (optimized_type == tls::TLSOPT_TO_IE)
2709               {
2710                 // Create a GOT entry for the tp-relative offset.
2711                 Output_data_got<64, false>* got
2712                     = target->got_section(symtab, layout);
2713                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2714                                          target->rela_dyn_section(layout),
2715                                          elfcpp::R_X86_64_TPOFF64);
2716               }
2717             else if (optimized_type != tls::TLSOPT_TO_LE)
2718               unsupported_reloc_global(object, r_type, gsym);
2719             break;
2720
2721           case elfcpp::R_X86_64_TLSDESC_CALL:
2722             break;
2723
2724           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2725             if (optimized_type == tls::TLSOPT_NONE)
2726               {
2727                 // Create a GOT entry for the module index.
2728                 target->got_mod_index_entry(symtab, layout, object);
2729               }
2730             else if (optimized_type != tls::TLSOPT_TO_LE)
2731               unsupported_reloc_global(object, r_type, gsym);
2732             break;
2733
2734           case elfcpp::R_X86_64_DTPOFF32:
2735           case elfcpp::R_X86_64_DTPOFF64:
2736             break;
2737
2738           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2739             layout->set_has_static_tls();
2740             if (optimized_type == tls::TLSOPT_NONE)
2741               {
2742                 // Create a GOT entry for the tp-relative offset.
2743                 Output_data_got<64, false>* got
2744                     = target->got_section(symtab, layout);
2745                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2746                                          target->rela_dyn_section(layout),
2747                                          elfcpp::R_X86_64_TPOFF64);
2748               }
2749             else if (optimized_type != tls::TLSOPT_TO_LE)
2750               unsupported_reloc_global(object, r_type, gsym);
2751             break;
2752
2753           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2754             layout->set_has_static_tls();
2755             if (parameters->options().shared())
2756               unsupported_reloc_local(object, r_type);
2757             break;
2758
2759           default:
2760             gold_unreachable();
2761           }
2762       }
2763       break;
2764
2765     case elfcpp::R_X86_64_SIZE32:
2766     case elfcpp::R_X86_64_SIZE64:
2767     default:
2768       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2769                  object->name().c_str(), r_type,
2770                  gsym->demangled_name().c_str());
2771       break;
2772     }
2773 }
2774
2775 template<int size>
2776 void
2777 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
2778                                        Layout* layout,
2779                                        Sized_relobj_file<size, false>* object,
2780                                        unsigned int data_shndx,
2781                                        unsigned int sh_type,
2782                                        const unsigned char* prelocs,
2783                                        size_t reloc_count,
2784                                        Output_section* output_section,
2785                                        bool needs_special_offset_handling,
2786                                        size_t local_symbol_count,
2787                                        const unsigned char* plocal_symbols)
2788 {
2789
2790   if (sh_type == elfcpp::SHT_REL)
2791     {
2792       return;
2793     }
2794
2795    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
2796                            Target_x86_64<size>::Scan,
2797                            Target_x86_64<size>::Relocatable_size_for_reloc>(
2798     symtab,
2799     layout,
2800     this,
2801     object,
2802     data_shndx,
2803     prelocs,
2804     reloc_count,
2805     output_section,
2806     needs_special_offset_handling,
2807     local_symbol_count,
2808     plocal_symbols);
2809  
2810 }
2811 // Scan relocations for a section.
2812
2813 template<int size>
2814 void
2815 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
2816                                  Layout* layout,
2817                                  Sized_relobj_file<size, false>* object,
2818                                  unsigned int data_shndx,
2819                                  unsigned int sh_type,
2820                                  const unsigned char* prelocs,
2821                                  size_t reloc_count,
2822                                  Output_section* output_section,
2823                                  bool needs_special_offset_handling,
2824                                  size_t local_symbol_count,
2825                                  const unsigned char* plocal_symbols)
2826 {
2827   if (sh_type == elfcpp::SHT_REL)
2828     {
2829       gold_error(_("%s: unsupported REL reloc section"),
2830                  object->name().c_str());
2831       return;
2832     }
2833
2834   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
2835       Target_x86_64<size>::Scan>(
2836     symtab,
2837     layout,
2838     this,
2839     object,
2840     data_shndx,
2841     prelocs,
2842     reloc_count,
2843     output_section,
2844     needs_special_offset_handling,
2845     local_symbol_count,
2846     plocal_symbols);
2847 }
2848
2849 // Finalize the sections.
2850
2851 template<int size>
2852 void
2853 Target_x86_64<size>::do_finalize_sections(
2854     Layout* layout,
2855     const Input_objects*,
2856     Symbol_table* symtab)
2857 {
2858   const Reloc_section* rel_plt = (this->plt_ == NULL
2859                                   ? NULL
2860                                   : this->plt_->rela_plt());
2861   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2862                                   this->rela_dyn_, true, false);
2863                                   
2864   // Fill in some more dynamic tags.
2865   Output_data_dynamic* const odyn = layout->dynamic_data();
2866   if (odyn != NULL)
2867     {
2868       if (this->plt_ != NULL
2869           && this->plt_->output_section() != NULL
2870           && this->plt_->has_tlsdesc_entry())
2871         {
2872           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2873           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2874           this->got_->finalize_data_size();
2875           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2876                                         this->plt_, plt_offset);
2877           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2878                                         this->got_, got_offset);
2879         }
2880     }
2881
2882   // Emit any relocs we saved in an attempt to avoid generating COPY
2883   // relocs.
2884   if (this->copy_relocs_.any_saved_relocs())
2885     this->copy_relocs_.emit(this->rela_dyn_section(layout));
2886
2887   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2888   // the .got.plt section.
2889   Symbol* sym = this->global_offset_table_;
2890   if (sym != NULL)
2891     {
2892       uint64_t data_size = this->got_plt_->current_data_size();
2893       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
2894     }
2895
2896   if (parameters->doing_static_link()
2897       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2898     {
2899       // If linking statically, make sure that the __rela_iplt symbols
2900       // were defined if necessary, even if we didn't create a PLT.
2901       static const Define_symbol_in_segment syms[] =
2902         {
2903           {
2904             "__rela_iplt_start",        // name
2905             elfcpp::PT_LOAD,            // segment_type
2906             elfcpp::PF_W,               // segment_flags_set
2907             elfcpp::PF(0),              // segment_flags_clear
2908             0,                          // value
2909             0,                          // size
2910             elfcpp::STT_NOTYPE,         // type
2911             elfcpp::STB_GLOBAL,         // binding
2912             elfcpp::STV_HIDDEN,         // visibility
2913             0,                          // nonvis
2914             Symbol::SEGMENT_START,      // offset_from_base
2915             true                        // only_if_ref
2916           },
2917           {
2918             "__rela_iplt_end",          // name
2919             elfcpp::PT_LOAD,            // segment_type
2920             elfcpp::PF_W,               // segment_flags_set
2921             elfcpp::PF(0),              // segment_flags_clear
2922             0,                          // value
2923             0,                          // size
2924             elfcpp::STT_NOTYPE,         // type
2925             elfcpp::STB_GLOBAL,         // binding
2926             elfcpp::STV_HIDDEN,         // visibility
2927             0,                          // nonvis
2928             Symbol::SEGMENT_START,      // offset_from_base
2929             true                        // only_if_ref
2930           }
2931         };
2932
2933       symtab->define_symbols(layout, 2, syms,
2934                              layout->script_options()->saw_sections_clause());
2935     }
2936 }
2937
2938 // Perform a relocation.
2939
2940 template<int size>
2941 inline bool
2942 Target_x86_64<size>::Relocate::relocate(
2943     const Relocate_info<size, false>* relinfo,
2944     Target_x86_64<size>* target,
2945     Output_section*,
2946     size_t relnum,
2947     const elfcpp::Rela<size, false>& rela,
2948     unsigned int r_type,
2949     const Sized_symbol<size>* gsym,
2950     const Symbol_value<size>* psymval,
2951     unsigned char* view,
2952     typename elfcpp::Elf_types<size>::Elf_Addr address,
2953     section_size_type view_size)
2954 {
2955   if (this->skip_call_tls_get_addr_)
2956     {
2957       if ((r_type != elfcpp::R_X86_64_PLT32
2958            && r_type != elfcpp::R_X86_64_PC32)
2959           || gsym == NULL
2960           || strcmp(gsym->name(), "__tls_get_addr") != 0)
2961         {
2962           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2963                                  _("missing expected TLS relocation"));
2964         }
2965       else
2966         {
2967           this->skip_call_tls_get_addr_ = false;
2968           return false;
2969         }
2970     }
2971
2972   const Sized_relobj_file<size, false>* object = relinfo->object;
2973
2974   // Pick the value to use for symbols defined in the PLT.
2975   Symbol_value<size> symval;
2976   if (gsym != NULL
2977       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2978     {
2979       symval.set_output_value(target->plt_address_for_global(gsym)
2980                               + gsym->plt_offset());
2981       psymval = &symval;
2982     }
2983   else if (gsym == NULL && psymval->is_ifunc_symbol())
2984     {
2985       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
2986       if (object->local_has_plt_offset(r_sym))
2987         {
2988           symval.set_output_value(target->plt_address_for_local(object, r_sym)
2989                                   + object->local_plt_offset(r_sym));
2990           psymval = &symval;
2991         }
2992     }
2993
2994   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2995
2996   // Get the GOT offset if needed.
2997   // The GOT pointer points to the end of the GOT section.
2998   // We need to subtract the size of the GOT section to get
2999   // the actual offset to use in the relocation.
3000   bool have_got_offset = false;
3001   unsigned int got_offset = 0;
3002   switch (r_type)
3003     {
3004     case elfcpp::R_X86_64_GOT32:
3005     case elfcpp::R_X86_64_GOT64:
3006     case elfcpp::R_X86_64_GOTPLT64:
3007     case elfcpp::R_X86_64_GOTPCREL:
3008     case elfcpp::R_X86_64_GOTPCREL64:
3009       if (gsym != NULL)
3010         {
3011           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3012           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3013         }
3014       else
3015         {
3016           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3017           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3018           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3019                         - target->got_size());
3020         }
3021       have_got_offset = true;
3022       break;
3023
3024     default:
3025       break;
3026     }
3027
3028   switch (r_type)
3029     {
3030     case elfcpp::R_X86_64_NONE:
3031     case elfcpp::R_X86_64_GNU_VTINHERIT:
3032     case elfcpp::R_X86_64_GNU_VTENTRY:
3033       break;
3034
3035     case elfcpp::R_X86_64_64:
3036       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3037       break;
3038
3039     case elfcpp::R_X86_64_PC64:
3040       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3041                                               address);
3042       break;
3043
3044     case elfcpp::R_X86_64_32:
3045       // FIXME: we need to verify that value + addend fits into 32 bits:
3046       //    uint64_t x = value + addend;
3047       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3048       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3049       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3050       break;
3051
3052     case elfcpp::R_X86_64_32S:
3053       // FIXME: we need to verify that value + addend fits into 32 bits:
3054       //    int64_t x = value + addend;   // note this quantity is signed!
3055       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3056       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3057       break;
3058
3059     case elfcpp::R_X86_64_PC32:
3060       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3061                                                 address);
3062       break;
3063
3064     case elfcpp::R_X86_64_16:
3065       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3066       break;
3067
3068     case elfcpp::R_X86_64_PC16:
3069       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3070                                                 address);
3071       break;
3072
3073     case elfcpp::R_X86_64_8:
3074       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3075       break;
3076
3077     case elfcpp::R_X86_64_PC8:
3078       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3079                                                address);
3080       break;
3081
3082     case elfcpp::R_X86_64_PLT32:
3083       gold_assert(gsym == NULL
3084                   || gsym->has_plt_offset()
3085                   || gsym->final_value_is_known()
3086                   || (gsym->is_defined()
3087                       && !gsym->is_from_dynobj()
3088                       && !gsym->is_preemptible()));
3089       // Note: while this code looks the same as for R_X86_64_PC32, it
3090       // behaves differently because psymval was set to point to
3091       // the PLT entry, rather than the symbol, in Scan::global().
3092       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3093                                                 address);
3094       break;
3095
3096     case elfcpp::R_X86_64_PLTOFF64:
3097       {
3098         gold_assert(gsym);
3099         gold_assert(gsym->has_plt_offset()
3100                     || gsym->final_value_is_known());
3101         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3102         got_address = target->got_section(NULL, NULL)->address();
3103         Relocate_functions<size, false>::rela64(view, object, psymval,
3104                                                 addend - got_address);
3105       }
3106
3107     case elfcpp::R_X86_64_GOT32:
3108       gold_assert(have_got_offset);
3109       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3110       break;
3111
3112     case elfcpp::R_X86_64_GOTPC32:
3113       {
3114         gold_assert(gsym);
3115         typename elfcpp::Elf_types<size>::Elf_Addr value;
3116         value = target->got_plt_section()->address();
3117         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3118       }
3119       break;
3120
3121     case elfcpp::R_X86_64_GOT64:
3122       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
3123       // Since we always add a PLT entry, this is equivalent.
3124     case elfcpp::R_X86_64_GOTPLT64:
3125       gold_assert(have_got_offset);
3126       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3127       break;
3128
3129     case elfcpp::R_X86_64_GOTPC64:
3130       {
3131         gold_assert(gsym);
3132         typename elfcpp::Elf_types<size>::Elf_Addr value;
3133         value = target->got_plt_section()->address();
3134         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3135       }
3136       break;
3137
3138     case elfcpp::R_X86_64_GOTOFF64:
3139       {
3140         typename elfcpp::Elf_types<size>::Elf_Addr value;
3141         value = (psymval->value(object, 0)
3142                  - target->got_plt_section()->address());
3143         Relocate_functions<size, false>::rela64(view, value, addend);
3144       }
3145       break;
3146
3147     case elfcpp::R_X86_64_GOTPCREL:
3148       {
3149         gold_assert(have_got_offset);
3150         typename elfcpp::Elf_types<size>::Elf_Addr value;
3151         value = target->got_plt_section()->address() + got_offset;
3152         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3153       }
3154       break;
3155
3156     case elfcpp::R_X86_64_GOTPCREL64:
3157       {
3158         gold_assert(have_got_offset);
3159         typename elfcpp::Elf_types<size>::Elf_Addr value;
3160         value = target->got_plt_section()->address() + got_offset;
3161         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3162       }
3163       break;
3164
3165     case elfcpp::R_X86_64_COPY:
3166     case elfcpp::R_X86_64_GLOB_DAT:
3167     case elfcpp::R_X86_64_JUMP_SLOT:
3168     case elfcpp::R_X86_64_RELATIVE:
3169     case elfcpp::R_X86_64_IRELATIVE:
3170       // These are outstanding tls relocs, which are unexpected when linking
3171     case elfcpp::R_X86_64_TPOFF64:
3172     case elfcpp::R_X86_64_DTPMOD64:
3173     case elfcpp::R_X86_64_TLSDESC:
3174       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3175                              _("unexpected reloc %u in object file"),
3176                              r_type);
3177       break;
3178
3179       // These are initial tls relocs, which are expected when linking
3180     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3181     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3182     case elfcpp::R_X86_64_TLSDESC_CALL:
3183     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3184     case elfcpp::R_X86_64_DTPOFF32:
3185     case elfcpp::R_X86_64_DTPOFF64:
3186     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3187     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3188       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3189                          view, address, view_size);
3190       break;
3191
3192     case elfcpp::R_X86_64_SIZE32:
3193     case elfcpp::R_X86_64_SIZE64:
3194     default:
3195       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3196                              _("unsupported reloc %u"),
3197                              r_type);
3198       break;
3199     }
3200
3201   return true;
3202 }
3203
3204 // Perform a TLS relocation.
3205
3206 template<int size>
3207 inline void
3208 Target_x86_64<size>::Relocate::relocate_tls(
3209     const Relocate_info<size, false>* relinfo,
3210     Target_x86_64<size>* target,
3211     size_t relnum,
3212     const elfcpp::Rela<size, false>& rela,
3213     unsigned int r_type,
3214     const Sized_symbol<size>* gsym,
3215     const Symbol_value<size>* psymval,
3216     unsigned char* view,
3217     typename elfcpp::Elf_types<size>::Elf_Addr address,
3218     section_size_type view_size)
3219 {
3220   Output_segment* tls_segment = relinfo->layout->tls_segment();
3221
3222   const Sized_relobj_file<size, false>* object = relinfo->object;
3223   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3224   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3225   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3226
3227   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3228
3229   const bool is_final = (gsym == NULL
3230                          ? !parameters->options().shared()
3231                          : gsym->final_value_is_known());
3232   tls::Tls_optimization optimized_type
3233       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3234   switch (r_type)
3235     {
3236     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3237       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3238         {
3239           // If this code sequence is used in a non-executable section,
3240           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3241           // on the assumption that it's being used by itself in a debug
3242           // section.  Therefore, in the unlikely event that the code
3243           // sequence appears in a non-executable section, we simply
3244           // leave it unoptimized.
3245           optimized_type = tls::TLSOPT_NONE;
3246         }
3247       if (optimized_type == tls::TLSOPT_TO_LE)
3248         {
3249           if (tls_segment == NULL)
3250             {
3251               gold_assert(parameters->errors()->error_count() > 0
3252                           || issue_undefined_symbol_error(gsym));
3253               return;
3254             }
3255           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3256                              rela, r_type, value, view,
3257                              view_size);
3258           break;
3259         }
3260       else
3261         {
3262           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3263                                    ? GOT_TYPE_TLS_OFFSET
3264                                    : GOT_TYPE_TLS_PAIR);
3265           unsigned int got_offset;
3266           if (gsym != NULL)
3267             {
3268               gold_assert(gsym->has_got_offset(got_type));
3269               got_offset = gsym->got_offset(got_type) - target->got_size();
3270             }
3271           else
3272             {
3273               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3274               gold_assert(object->local_has_got_offset(r_sym, got_type));
3275               got_offset = (object->local_got_offset(r_sym, got_type)
3276                             - target->got_size());
3277             }
3278           if (optimized_type == tls::TLSOPT_TO_IE)
3279             {
3280               value = target->got_plt_section()->address() + got_offset;
3281               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3282                                  value, view, address, view_size);
3283               break;
3284             }
3285           else if (optimized_type == tls::TLSOPT_NONE)
3286             {
3287               // Relocate the field with the offset of the pair of GOT
3288               // entries.
3289               value = target->got_plt_section()->address() + got_offset;
3290               Relocate_functions<size, false>::pcrela32(view, value, addend,
3291                                                         address);
3292               break;
3293             }
3294         }
3295       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3296                              _("unsupported reloc %u"), r_type);
3297       break;
3298
3299     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3300     case elfcpp::R_X86_64_TLSDESC_CALL:
3301       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3302         {
3303           // See above comment for R_X86_64_TLSGD.
3304           optimized_type = tls::TLSOPT_NONE;
3305         }
3306       if (optimized_type == tls::TLSOPT_TO_LE)
3307         {
3308           if (tls_segment == NULL)
3309             {
3310               gold_assert(parameters->errors()->error_count() > 0
3311                           || issue_undefined_symbol_error(gsym));
3312               return;
3313             }
3314           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3315                                   rela, r_type, value, view,
3316                                   view_size);
3317           break;
3318         }
3319       else
3320         {
3321           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3322                                    ? GOT_TYPE_TLS_OFFSET
3323                                    : GOT_TYPE_TLS_DESC);
3324           unsigned int got_offset = 0;
3325           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3326               && optimized_type == tls::TLSOPT_NONE)
3327             {
3328               // We created GOT entries in the .got.tlsdesc portion of
3329               // the .got.plt section, but the offset stored in the
3330               // symbol is the offset within .got.tlsdesc.
3331               got_offset = (target->got_size()
3332                             + target->got_plt_section()->data_size());
3333             }
3334           if (gsym != NULL)
3335             {
3336               gold_assert(gsym->has_got_offset(got_type));
3337               got_offset += gsym->got_offset(got_type) - target->got_size();
3338             }
3339           else
3340             {
3341               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3342               gold_assert(object->local_has_got_offset(r_sym, got_type));
3343               got_offset += (object->local_got_offset(r_sym, got_type)
3344                              - target->got_size());
3345             }
3346           if (optimized_type == tls::TLSOPT_TO_IE)
3347             {
3348               if (tls_segment == NULL)
3349                 {
3350                   gold_assert(parameters->errors()->error_count() > 0
3351                               || issue_undefined_symbol_error(gsym));
3352                   return;
3353                 }
3354               value = target->got_plt_section()->address() + got_offset;
3355               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3356                                       rela, r_type, value, view, address,
3357                                       view_size);
3358               break;
3359             }
3360           else if (optimized_type == tls::TLSOPT_NONE)
3361             {
3362               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3363                 {
3364                   // Relocate the field with the offset of the pair of GOT
3365                   // entries.
3366                   value = target->got_plt_section()->address() + got_offset;
3367                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3368                                                             address);
3369                 }
3370               break;
3371             }
3372         }
3373       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3374                              _("unsupported reloc %u"), r_type);
3375       break;
3376
3377     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3378       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3379         {
3380           // See above comment for R_X86_64_TLSGD.
3381           optimized_type = tls::TLSOPT_NONE;
3382         }
3383       if (optimized_type == tls::TLSOPT_TO_LE)
3384         {
3385           if (tls_segment == NULL)
3386             {
3387               gold_assert(parameters->errors()->error_count() > 0
3388                           || issue_undefined_symbol_error(gsym));
3389               return;
3390             }
3391           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3392                              value, view, view_size);
3393           break;
3394         }
3395       else if (optimized_type == tls::TLSOPT_NONE)
3396         {
3397           // Relocate the field with the offset of the GOT entry for
3398           // the module index.
3399           unsigned int got_offset;
3400           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3401                         - target->got_size());
3402           value = target->got_plt_section()->address() + got_offset;
3403           Relocate_functions<size, false>::pcrela32(view, value, addend,
3404                                                     address);
3405           break;
3406         }
3407       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3408                              _("unsupported reloc %u"), r_type);
3409       break;
3410
3411     case elfcpp::R_X86_64_DTPOFF32:
3412       // This relocation type is used in debugging information.
3413       // In that case we need to not optimize the value.  If the
3414       // section is not executable, then we assume we should not
3415       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3416       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3417       // R_X86_64_TLSLD.
3418       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3419         {
3420           if (tls_segment == NULL)
3421             {
3422               gold_assert(parameters->errors()->error_count() > 0
3423                           || issue_undefined_symbol_error(gsym));
3424               return;
3425             }
3426           value -= tls_segment->memsz();
3427         }
3428       Relocate_functions<size, false>::rela32(view, value, addend);
3429       break;
3430
3431     case elfcpp::R_X86_64_DTPOFF64:
3432       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3433       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3434         {
3435           if (tls_segment == NULL)
3436             {
3437               gold_assert(parameters->errors()->error_count() > 0
3438                           || issue_undefined_symbol_error(gsym));
3439               return;
3440             }
3441           value -= tls_segment->memsz();
3442         }
3443       Relocate_functions<size, false>::rela64(view, value, addend);
3444       break;
3445
3446     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3447       if (optimized_type == tls::TLSOPT_TO_LE)
3448         {
3449           if (tls_segment == NULL)
3450             {
3451               gold_assert(parameters->errors()->error_count() > 0
3452                           || issue_undefined_symbol_error(gsym));
3453               return;
3454             }
3455           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3456                                                       tls_segment, rela,
3457                                                       r_type, value, view,
3458                                                       view_size);
3459           break;
3460         }
3461       else if (optimized_type == tls::TLSOPT_NONE)
3462         {
3463           // Relocate the field with the offset of the GOT entry for
3464           // the tp-relative offset of the symbol.
3465           unsigned int got_offset;
3466           if (gsym != NULL)
3467             {
3468               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3469               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3470                             - target->got_size());
3471             }
3472           else
3473             {
3474               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3475               gold_assert(object->local_has_got_offset(r_sym,
3476                                                        GOT_TYPE_TLS_OFFSET));
3477               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3478                             - target->got_size());
3479             }
3480           value = target->got_plt_section()->address() + got_offset;
3481           Relocate_functions<size, false>::pcrela32(view, value, addend,
3482                                                     address);
3483           break;
3484         }
3485       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3486                              _("unsupported reloc type %u"),
3487                              r_type);
3488       break;
3489
3490     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3491       if (tls_segment == NULL)
3492         {
3493           gold_assert(parameters->errors()->error_count() > 0
3494                       || issue_undefined_symbol_error(gsym));
3495           return;
3496         }
3497       value -= tls_segment->memsz();
3498       Relocate_functions<size, false>::rela32(view, value, addend);
3499       break;
3500     }
3501 }
3502
3503 // Do a relocation in which we convert a TLS General-Dynamic to an
3504 // Initial-Exec.
3505
3506 template<int size>
3507 inline void
3508 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3509     const Relocate_info<size, false>* relinfo,
3510     size_t relnum,
3511     Output_segment*,
3512     const elfcpp::Rela<size, false>& rela,
3513     unsigned int,
3514     typename elfcpp::Elf_types<size>::Elf_Addr value,
3515     unsigned char* view,
3516     typename elfcpp::Elf_types<size>::Elf_Addr address,
3517     section_size_type view_size)
3518 {
3519   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3520   // .word 0x6666; rex64; call __tls_get_addr
3521   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3522
3523   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3524   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3525
3526   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3527                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3528   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3529                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3530
3531   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3532
3533   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3534   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
3535                                             address);
3536
3537   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3538   // We can skip it.
3539   this->skip_call_tls_get_addr_ = true;
3540 }
3541
3542 // Do a relocation in which we convert a TLS General-Dynamic to a
3543 // Local-Exec.
3544
3545 template<int size>
3546 inline void
3547 Target_x86_64<size>::Relocate::tls_gd_to_le(
3548     const Relocate_info<size, false>* relinfo,
3549     size_t relnum,
3550     Output_segment* tls_segment,
3551     const elfcpp::Rela<size, false>& rela,
3552     unsigned int,
3553     typename elfcpp::Elf_types<size>::Elf_Addr value,
3554     unsigned char* view,
3555     section_size_type view_size)
3556 {
3557   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3558   // .word 0x6666; rex64; call __tls_get_addr
3559   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3560
3561   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3562   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3563
3564   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3565                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3566   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3567                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3568
3569   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3570
3571   value -= tls_segment->memsz();
3572   Relocate_functions<size, false>::rela32(view + 8, value, 0);
3573
3574   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3575   // We can skip it.
3576   this->skip_call_tls_get_addr_ = true;
3577 }
3578
3579 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3580
3581 template<int size>
3582 inline void
3583 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
3584     const Relocate_info<size, false>* relinfo,
3585     size_t relnum,
3586     Output_segment*,
3587     const elfcpp::Rela<size, false>& rela,
3588     unsigned int r_type,
3589     typename elfcpp::Elf_types<size>::Elf_Addr value,
3590     unsigned char* view,
3591     typename elfcpp::Elf_types<size>::Elf_Addr address,
3592     section_size_type view_size)
3593 {
3594   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3595     {
3596       // leaq foo@tlsdesc(%rip), %rax
3597       // ==> movq foo@gottpoff(%rip), %rax
3598       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3599       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3600       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3601                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3602       view[-2] = 0x8b;
3603       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3604       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3605     }
3606   else
3607     {
3608       // call *foo@tlscall(%rax)
3609       // ==> nop; nop
3610       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3611       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3612       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3613                      view[0] == 0xff && view[1] == 0x10);
3614       view[0] = 0x66;
3615       view[1] = 0x90;
3616     }
3617 }
3618
3619 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3620
3621 template<int size>
3622 inline void
3623 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
3624     const Relocate_info<size, false>* relinfo,
3625     size_t relnum,
3626     Output_segment* tls_segment,
3627     const elfcpp::Rela<size, false>& rela,
3628     unsigned int r_type,
3629     typename elfcpp::Elf_types<size>::Elf_Addr value,
3630     unsigned char* view,
3631     section_size_type view_size)
3632 {
3633   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3634     {
3635       // leaq foo@tlsdesc(%rip), %rax
3636       // ==> movq foo@tpoff, %rax
3637       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3638       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3639       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3640                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3641       view[-2] = 0xc7;
3642       view[-1] = 0xc0;
3643       value -= tls_segment->memsz();
3644       Relocate_functions<size, false>::rela32(view, value, 0);
3645     }
3646   else
3647     {
3648       // call *foo@tlscall(%rax)
3649       // ==> nop; nop
3650       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3651       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3652       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3653                      view[0] == 0xff && view[1] == 0x10);
3654       view[0] = 0x66;
3655       view[1] = 0x90;
3656     }
3657 }
3658
3659 template<int size>
3660 inline void
3661 Target_x86_64<size>::Relocate::tls_ld_to_le(
3662     const Relocate_info<size, false>* relinfo,
3663     size_t relnum,
3664     Output_segment*,
3665     const elfcpp::Rela<size, false>& rela,
3666     unsigned int,
3667     typename elfcpp::Elf_types<size>::Elf_Addr,
3668     unsigned char* view,
3669     section_size_type view_size)
3670 {
3671   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3672   // ... leq foo@dtpoff(%rax),%reg
3673   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3674
3675   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3676   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3677
3678   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3679                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3680
3681   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3682
3683   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3684
3685   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3686   // We can skip it.
3687   this->skip_call_tls_get_addr_ = true;
3688 }
3689
3690 // Do a relocation in which we convert a TLS Initial-Exec to a
3691 // Local-Exec.
3692
3693 template<int size>
3694 inline void
3695 Target_x86_64<size>::Relocate::tls_ie_to_le(
3696     const Relocate_info<size, false>* relinfo,
3697     size_t relnum,
3698     Output_segment* tls_segment,
3699     const elfcpp::Rela<size, false>& rela,
3700     unsigned int,
3701     typename elfcpp::Elf_types<size>::Elf_Addr value,
3702     unsigned char* view,
3703     section_size_type view_size)
3704 {
3705   // We need to examine the opcodes to figure out which instruction we
3706   // are looking at.
3707
3708   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
3709   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
3710
3711   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3712   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3713
3714   unsigned char op1 = view[-3];
3715   unsigned char op2 = view[-2];
3716   unsigned char op3 = view[-1];
3717   unsigned char reg = op3 >> 3;
3718
3719   if (op2 == 0x8b)
3720     {
3721       // movq
3722       if (op1 == 0x4c)
3723         view[-3] = 0x49;
3724       view[-2] = 0xc7;
3725       view[-1] = 0xc0 | reg;
3726     }
3727   else if (reg == 4)
3728     {
3729       // Special handling for %rsp.
3730       if (op1 == 0x4c)
3731         view[-3] = 0x49;
3732       view[-2] = 0x81;
3733       view[-1] = 0xc0 | reg;
3734     }
3735   else
3736     {
3737       // addq
3738       if (op1 == 0x4c)
3739         view[-3] = 0x4d;
3740       view[-2] = 0x8d;
3741       view[-1] = 0x80 | reg | (reg << 3);
3742     }
3743
3744   value -= tls_segment->memsz();
3745   Relocate_functions<size, false>::rela32(view, value, 0);
3746 }
3747
3748 // Relocate section data.
3749
3750 template<int size>
3751 void
3752 Target_x86_64<size>::relocate_section(
3753     const Relocate_info<size, false>* relinfo,
3754     unsigned int sh_type,
3755     const unsigned char* prelocs,
3756     size_t reloc_count,
3757     Output_section* output_section,
3758     bool needs_special_offset_handling,
3759     unsigned char* view,
3760     typename elfcpp::Elf_types<size>::Elf_Addr address,
3761     section_size_type view_size,
3762     const Reloc_symbol_changes* reloc_symbol_changes)
3763 {
3764   gold_assert(sh_type == elfcpp::SHT_RELA);
3765
3766   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3767                          Target_x86_64<size>::Relocate>(
3768     relinfo,
3769     this,
3770     prelocs,
3771     reloc_count,
3772     output_section,
3773     needs_special_offset_handling,
3774     view,
3775     address,
3776     view_size,
3777     reloc_symbol_changes);
3778 }
3779
3780 // Apply an incremental relocation.  Incremental relocations always refer
3781 // to global symbols.
3782
3783 template<int size>
3784 void
3785 Target_x86_64<size>::apply_relocation(
3786     const Relocate_info<size, false>* relinfo,
3787     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
3788     unsigned int r_type,
3789     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
3790     const Symbol* gsym,
3791     unsigned char* view,
3792     typename elfcpp::Elf_types<size>::Elf_Addr address,
3793     section_size_type view_size)
3794 {
3795   gold::apply_relocation<size, false, Target_x86_64<size>,
3796                          Target_x86_64<size>::Relocate>(
3797     relinfo,
3798     this,
3799     r_offset,
3800     r_type,
3801     r_addend,
3802     gsym,
3803     view,
3804     address,
3805     view_size);
3806 }
3807
3808 // Return the size of a relocation while scanning during a relocatable
3809 // link.
3810
3811 template<int size>
3812 unsigned int
3813 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
3814     unsigned int r_type,
3815     Relobj* object)
3816 {
3817   switch (r_type)
3818     {
3819     case elfcpp::R_X86_64_NONE:
3820     case elfcpp::R_X86_64_GNU_VTINHERIT:
3821     case elfcpp::R_X86_64_GNU_VTENTRY:
3822     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3823     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3824     case elfcpp::R_X86_64_TLSDESC_CALL:
3825     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3826     case elfcpp::R_X86_64_DTPOFF32:
3827     case elfcpp::R_X86_64_DTPOFF64:
3828     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3829     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3830       return 0;
3831
3832     case elfcpp::R_X86_64_64:
3833     case elfcpp::R_X86_64_PC64:
3834     case elfcpp::R_X86_64_GOTOFF64:
3835     case elfcpp::R_X86_64_GOTPC64:
3836     case elfcpp::R_X86_64_PLTOFF64:
3837     case elfcpp::R_X86_64_GOT64:
3838     case elfcpp::R_X86_64_GOTPCREL64:
3839     case elfcpp::R_X86_64_GOTPCREL:
3840     case elfcpp::R_X86_64_GOTPLT64:
3841       return 8;
3842
3843     case elfcpp::R_X86_64_32:
3844     case elfcpp::R_X86_64_32S:
3845     case elfcpp::R_X86_64_PC32:
3846     case elfcpp::R_X86_64_PLT32:
3847     case elfcpp::R_X86_64_GOTPC32:
3848     case elfcpp::R_X86_64_GOT32:
3849       return 4;
3850
3851     case elfcpp::R_X86_64_16:
3852     case elfcpp::R_X86_64_PC16:
3853       return 2;
3854
3855     case elfcpp::R_X86_64_8:
3856     case elfcpp::R_X86_64_PC8:
3857       return 1;
3858
3859     case elfcpp::R_X86_64_COPY:
3860     case elfcpp::R_X86_64_GLOB_DAT:
3861     case elfcpp::R_X86_64_JUMP_SLOT:
3862     case elfcpp::R_X86_64_RELATIVE:
3863     case elfcpp::R_X86_64_IRELATIVE:
3864       // These are outstanding tls relocs, which are unexpected when linking
3865     case elfcpp::R_X86_64_TPOFF64:
3866     case elfcpp::R_X86_64_DTPMOD64:
3867     case elfcpp::R_X86_64_TLSDESC:
3868       object->error(_("unexpected reloc %u in object file"), r_type);
3869       return 0;
3870
3871     case elfcpp::R_X86_64_SIZE32:
3872     case elfcpp::R_X86_64_SIZE64:
3873     default:
3874       object->error(_("unsupported reloc %u against local symbol"), r_type);
3875       return 0;
3876     }
3877 }
3878
3879 // Scan the relocs during a relocatable link.
3880
3881 template<int size>
3882 void
3883 Target_x86_64<size>::scan_relocatable_relocs(
3884     Symbol_table* symtab,
3885     Layout* layout,
3886     Sized_relobj_file<size, false>* object,
3887     unsigned int data_shndx,
3888     unsigned int sh_type,
3889     const unsigned char* prelocs,
3890     size_t reloc_count,
3891     Output_section* output_section,
3892     bool needs_special_offset_handling,
3893     size_t local_symbol_count,
3894     const unsigned char* plocal_symbols,
3895     Relocatable_relocs* rr)
3896 {
3897   gold_assert(sh_type == elfcpp::SHT_RELA);
3898
3899   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3900     Relocatable_size_for_reloc> Scan_relocatable_relocs;
3901
3902   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
3903       Scan_relocatable_relocs>(
3904     symtab,
3905     layout,
3906     object,
3907     data_shndx,
3908     prelocs,
3909     reloc_count,
3910     output_section,
3911     needs_special_offset_handling,
3912     local_symbol_count,
3913     plocal_symbols,
3914     rr);
3915 }
3916
3917 // Relocate a section during a relocatable link.
3918
3919 template<int size>
3920 void
3921 Target_x86_64<size>::relocate_for_relocatable(
3922     const Relocate_info<size, false>* relinfo,
3923     unsigned int sh_type,
3924     const unsigned char* prelocs,
3925     size_t reloc_count,
3926     Output_section* output_section,
3927     off_t offset_in_output_section,
3928     const Relocatable_relocs* rr,
3929     unsigned char* view,
3930     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3931     section_size_type view_size,
3932     unsigned char* reloc_view,
3933     section_size_type reloc_view_size)
3934 {
3935   gold_assert(sh_type == elfcpp::SHT_RELA);
3936
3937   gold::relocate_for_relocatable<size, false, elfcpp::SHT_RELA>(
3938     relinfo,
3939     prelocs,
3940     reloc_count,
3941     output_section,
3942     offset_in_output_section,
3943     rr,
3944     view,
3945     view_address,
3946     view_size,
3947     reloc_view,
3948     reloc_view_size);
3949 }
3950
3951 // Return the value to use for a dynamic which requires special
3952 // treatment.  This is how we support equality comparisons of function
3953 // pointers across shared library boundaries, as described in the
3954 // processor specific ABI supplement.
3955
3956 template<int size>
3957 uint64_t
3958 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
3959 {
3960   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3961   return this->plt_address_for_global(gsym) + gsym->plt_offset();
3962 }
3963
3964 // Return a string used to fill a code section with nops to take up
3965 // the specified length.
3966
3967 template<int size>
3968 std::string
3969 Target_x86_64<size>::do_code_fill(section_size_type length) const
3970 {
3971   if (length >= 16)
3972     {
3973       // Build a jmpq instruction to skip over the bytes.
3974       unsigned char jmp[5];
3975       jmp[0] = 0xe9;
3976       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3977       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3978               + std::string(length - 5, '\0'));
3979     }
3980
3981   // Nop sequences of various lengths.
3982   const char nop1[1] = { '\x90' };                 // nop
3983   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
3984   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
3985   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
3986                          '\x00'};
3987   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
3988                          '\x00', '\x00' };
3989   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
3990                          '\x44', '\x00', '\x00' };
3991   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
3992                          '\x00', '\x00', '\x00',
3993                          '\x00' };
3994   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
3995                          '\x00', '\x00', '\x00',
3996                          '\x00', '\x00' };
3997   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
3998                          '\x84', '\x00', '\x00',
3999                          '\x00', '\x00', '\x00' };
4000   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4001                            '\x1f', '\x84', '\x00',
4002                            '\x00', '\x00', '\x00',
4003                            '\x00' };
4004   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4005                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4006                            '\x00', '\x00', '\x00',
4007                            '\x00', '\x00' };
4008   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4009                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4010                            '\x84', '\x00', '\x00',
4011                            '\x00', '\x00', '\x00' };
4012   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4013                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4014                            '\x1f', '\x84', '\x00',
4015                            '\x00', '\x00', '\x00',
4016                            '\x00' };
4017   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4018                            '\x66', '\x66', '\x2e', // data16
4019                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4020                            '\x00', '\x00', '\x00',
4021                            '\x00', '\x00' };
4022   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4023                            '\x66', '\x66', '\x66', // data16; data16
4024                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4025                            '\x84', '\x00', '\x00',
4026                            '\x00', '\x00', '\x00' };
4027
4028   const char* nops[16] = {
4029     NULL,
4030     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4031     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4032   };
4033
4034   return std::string(nops[length], length);
4035 }
4036
4037 // Return the addend to use for a target specific relocation.  The
4038 // only target specific relocation is R_X86_64_TLSDESC for a local
4039 // symbol.  We want to set the addend is the offset of the local
4040 // symbol in the TLS segment.
4041
4042 template<int size>
4043 uint64_t
4044 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4045                                      uint64_t) const
4046 {
4047   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4048   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4049   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4050   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4051   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4052   gold_assert(psymval->is_tls_symbol());
4053   // The value of a TLS symbol is the offset in the TLS segment.
4054   return psymval->value(ti.object, 0);
4055 }
4056
4057 // Return the value to use for the base of a DW_EH_PE_datarel offset
4058 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4059 // assembler can not write out the difference between two labels in
4060 // different sections, so instead of using a pc-relative value they
4061 // use an offset from the GOT.
4062
4063 template<int size>
4064 uint64_t
4065 Target_x86_64<size>::do_ehframe_datarel_base() const
4066 {
4067   gold_assert(this->global_offset_table_ != NULL);
4068   Symbol* sym = this->global_offset_table_;
4069   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4070   return ssym->value();
4071 }
4072
4073 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4074 // compiled with -fsplit-stack.  The function calls non-split-stack
4075 // code.  We have to change the function so that it always ensures
4076 // that it has enough stack space to run some random function.
4077
4078 template<int size>
4079 void
4080 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4081                                         section_offset_type fnoffset,
4082                                         section_size_type fnsize,
4083                                         unsigned char* view,
4084                                         section_size_type view_size,
4085                                         std::string* from,
4086                                         std::string* to) const
4087 {
4088   // The function starts with a comparison of the stack pointer and a
4089   // field in the TCB.  This is followed by a jump.
4090
4091   // cmp %fs:NN,%rsp
4092   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
4093       && fnsize > 9)
4094     {
4095       // We will call __morestack if the carry flag is set after this
4096       // comparison.  We turn the comparison into an stc instruction
4097       // and some nops.
4098       view[fnoffset] = '\xf9';
4099       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
4100     }
4101   // lea NN(%rsp),%r10
4102   // lea NN(%rsp),%r11
4103   else if ((this->match_view(view, view_size, fnoffset,
4104                              "\x4c\x8d\x94\x24", 4)
4105             || this->match_view(view, view_size, fnoffset,
4106                                 "\x4c\x8d\x9c\x24", 4))
4107            && fnsize > 8)
4108     {
4109       // This is loading an offset from the stack pointer for a
4110       // comparison.  The offset is negative, so we decrease the
4111       // offset by the amount of space we need for the stack.  This
4112       // means we will avoid calling __morestack if there happens to
4113       // be plenty of space on the stack already.
4114       unsigned char* pval = view + fnoffset + 4;
4115       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4116       val -= parameters->options().split_stack_adjust_size();
4117       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4118     }
4119   else
4120     {
4121       if (!object->has_no_split_stack())
4122         object->error(_("failed to match split-stack sequence at "
4123                         "section %u offset %0zx"),
4124                       shndx, static_cast<size_t>(fnoffset));
4125       return;
4126     }
4127
4128   // We have to change the function so that it calls
4129   // __morestack_non_split instead of __morestack.  The former will
4130   // allocate additional stack space.
4131   *from = "__morestack";
4132   *to = "__morestack_non_split";
4133 }
4134
4135 // The selector for x86_64 object files.
4136
4137 template<int size>
4138 class Target_selector_x86_64 : public Target_selector_freebsd
4139 {
4140 public:
4141   Target_selector_x86_64()
4142     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4143                               (size == 64 
4144                                ? "elf64-x86-64" : "elf32-x86-64"),
4145                               (size == 64 
4146                                ? "elf64-x86-64-freebsd"
4147                                : "elf32-x86-64-freebsd"),
4148                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4149   { }
4150
4151   Target*
4152   do_instantiate_target()
4153   { return new Target_x86_64<size>(); }
4154
4155 };
4156
4157 Target_selector_x86_64<64> target_selector_x86_64;
4158 Target_selector_x86_64<32> target_selector_x32;
4159
4160 } // End anonymous namespace.