* output.h (class Output_data): Add const version of
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_x86_64;
49
50 // The x86_64 target class.
51 // See the ABI at
52 //   http://www.x86-64.org/documentation/abi.pdf
53 // TLS info comes from
54 //   http://people.redhat.com/drepper/tls.pdf
55 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
56
57 class Target_x86_64 : public Target_freebsd<64, false>
58 {
59  public:
60   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
61   // uses only Elf64_Rela relocation entries with explicit addends."
62   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
63
64   Target_x86_64()
65     : Target_freebsd<64, false>(&x86_64_info),
66       got_(NULL), plt_(NULL), got_plt_(NULL), global_offset_table_(NULL),
67       rela_dyn_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
68       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
69   { }
70
71   // Hook for a new output section.
72   void
73   do_new_output_section(Output_section*) const;
74
75   // Scan the relocations to look for symbol adjustments.
76   void
77   gc_process_relocs(Symbol_table* symtab,
78                     Layout* layout,
79                     Sized_relobj<64, false>* object,
80                     unsigned int data_shndx,
81                     unsigned int sh_type,
82                     const unsigned char* prelocs,
83                     size_t reloc_count,
84                     Output_section* output_section,
85                     bool needs_special_offset_handling,
86                     size_t local_symbol_count,
87                     const unsigned char* plocal_symbols);
88
89   // Scan the relocations to look for symbol adjustments.
90   void
91   scan_relocs(Symbol_table* symtab,
92               Layout* layout,
93               Sized_relobj<64, false>* object,
94               unsigned int data_shndx,
95               unsigned int sh_type,
96               const unsigned char* prelocs,
97               size_t reloc_count,
98               Output_section* output_section,
99               bool needs_special_offset_handling,
100               size_t local_symbol_count,
101               const unsigned char* plocal_symbols);
102
103   // Finalize the sections.
104   void
105   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
106
107   // Return the value to use for a dynamic which requires special
108   // treatment.
109   uint64_t
110   do_dynsym_value(const Symbol*) const;
111
112   // Relocate a section.
113   void
114   relocate_section(const Relocate_info<64, false>*,
115                    unsigned int sh_type,
116                    const unsigned char* prelocs,
117                    size_t reloc_count,
118                    Output_section* output_section,
119                    bool needs_special_offset_handling,
120                    unsigned char* view,
121                    elfcpp::Elf_types<64>::Elf_Addr view_address,
122                    section_size_type view_size,
123                    const Reloc_symbol_changes*);
124
125   // Scan the relocs during a relocatable link.
126   void
127   scan_relocatable_relocs(Symbol_table* symtab,
128                           Layout* layout,
129                           Sized_relobj<64, false>* object,
130                           unsigned int data_shndx,
131                           unsigned int sh_type,
132                           const unsigned char* prelocs,
133                           size_t reloc_count,
134                           Output_section* output_section,
135                           bool needs_special_offset_handling,
136                           size_t local_symbol_count,
137                           const unsigned char* plocal_symbols,
138                           Relocatable_relocs*);
139
140   // Relocate a section during a relocatable link.
141   void
142   relocate_for_relocatable(const Relocate_info<64, false>*,
143                            unsigned int sh_type,
144                            const unsigned char* prelocs,
145                            size_t reloc_count,
146                            Output_section* output_section,
147                            off_t offset_in_output_section,
148                            const Relocatable_relocs*,
149                            unsigned char* view,
150                            elfcpp::Elf_types<64>::Elf_Addr view_address,
151                            section_size_type view_size,
152                            unsigned char* reloc_view,
153                            section_size_type reloc_view_size);
154
155   // Return a string used to fill a code section with nops.
156   std::string
157   do_code_fill(section_size_type length) const;
158
159   // Return whether SYM is defined by the ABI.
160   bool
161   do_is_defined_by_abi(const Symbol* sym) const
162   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
163
164   // Adjust -fstack-split code which calls non-stack-split code.
165   void
166   do_calls_non_split(Relobj* object, unsigned int shndx,
167                      section_offset_type fnoffset, section_size_type fnsize,
168                      unsigned char* view, section_size_type view_size,
169                      std::string* from, std::string* to) const;
170
171   // Return the size of the GOT section.
172   section_size_type
173   got_size()
174   {
175     gold_assert(this->got_ != NULL);
176     return this->got_->data_size();
177   }
178
179  private:
180   // The class which scans relocations.
181   class Scan
182   {
183   public:
184     Scan()
185       : issued_non_pic_error_(false)
186     { }
187
188     inline void
189     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
190           Sized_relobj<64, false>* object,
191           unsigned int data_shndx,
192           Output_section* output_section,
193           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
194           const elfcpp::Sym<64, false>& lsym);
195
196     inline void
197     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
198            Sized_relobj<64, false>* object,
199            unsigned int data_shndx,
200            Output_section* output_section,
201            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
202            Symbol* gsym);
203
204   private:
205     static void
206     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
207
208     static void
209     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
210                              Symbol*);
211
212     void
213     check_non_pic(Relobj*, unsigned int r_type);
214
215     // Whether we have issued an error about a non-PIC compilation.
216     bool issued_non_pic_error_;
217   };
218
219   // The class which implements relocation.
220   class Relocate
221   {
222    public:
223     Relocate()
224       : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
225     { }
226
227     ~Relocate()
228     {
229       if (this->skip_call_tls_get_addr_)
230         {
231           // FIXME: This needs to specify the location somehow.
232           gold_error(_("missing expected TLS relocation"));
233         }
234     }
235
236     // Do a relocation.  Return false if the caller should not issue
237     // any warnings about this relocation.
238     inline bool
239     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
240              size_t relnum, const elfcpp::Rela<64, false>&,
241              unsigned int r_type, const Sized_symbol<64>*,
242              const Symbol_value<64>*,
243              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
244              section_size_type);
245
246    private:
247     // Do a TLS relocation.
248     inline void
249     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
250                  size_t relnum, const elfcpp::Rela<64, false>&,
251                  unsigned int r_type, const Sized_symbol<64>*,
252                  const Symbol_value<64>*,
253                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
254                  section_size_type);
255
256     // Do a TLS General-Dynamic to Initial-Exec transition.
257     inline void
258     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
259                  Output_segment* tls_segment,
260                  const elfcpp::Rela<64, false>&, unsigned int r_type,
261                  elfcpp::Elf_types<64>::Elf_Addr value,
262                  unsigned char* view,
263                  elfcpp::Elf_types<64>::Elf_Addr,
264                  section_size_type view_size);
265
266     // Do a TLS General-Dynamic to Local-Exec transition.
267     inline void
268     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
269                  Output_segment* tls_segment,
270                  const elfcpp::Rela<64, false>&, unsigned int r_type,
271                  elfcpp::Elf_types<64>::Elf_Addr value,
272                  unsigned char* view,
273                  section_size_type view_size);
274
275     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
276     inline void
277     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
278                       Output_segment* tls_segment,
279                       const elfcpp::Rela<64, false>&, unsigned int r_type,
280                       elfcpp::Elf_types<64>::Elf_Addr value,
281                       unsigned char* view,
282                       elfcpp::Elf_types<64>::Elf_Addr,
283                       section_size_type view_size);
284
285     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
286     inline void
287     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
288                       Output_segment* tls_segment,
289                       const elfcpp::Rela<64, false>&, unsigned int r_type,
290                       elfcpp::Elf_types<64>::Elf_Addr value,
291                       unsigned char* view,
292                       section_size_type view_size);
293
294     // Do a TLS Local-Dynamic to Local-Exec transition.
295     inline void
296     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
297                  Output_segment* tls_segment,
298                  const elfcpp::Rela<64, false>&, unsigned int r_type,
299                  elfcpp::Elf_types<64>::Elf_Addr value,
300                  unsigned char* view,
301                  section_size_type view_size);
302
303     // Do a TLS Initial-Exec to Local-Exec transition.
304     static inline void
305     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
306                  Output_segment* tls_segment,
307                  const elfcpp::Rela<64, false>&, unsigned int r_type,
308                  elfcpp::Elf_types<64>::Elf_Addr value,
309                  unsigned char* view,
310                  section_size_type view_size);
311
312     // This is set if we should skip the next reloc, which should be a
313     // PLT32 reloc against ___tls_get_addr.
314     bool skip_call_tls_get_addr_;
315
316     // This is set if we see a relocation which could load the address
317     // of the TLS block.  Whether we see such a relocation determines
318     // how we handle the R_X86_64_DTPOFF32 relocation, which is used
319     // in debugging sections.
320     bool saw_tls_block_reloc_;
321   };
322
323   // A class which returns the size required for a relocation type,
324   // used while scanning relocs during a relocatable link.
325   class Relocatable_size_for_reloc
326   {
327    public:
328     unsigned int
329     get_size_for_reloc(unsigned int, Relobj*);
330   };
331
332   // Adjust TLS relocation type based on the options and whether this
333   // is a local symbol.
334   static tls::Tls_optimization
335   optimize_tls_reloc(bool is_final, int r_type);
336
337   // Get the GOT section, creating it if necessary.
338   Output_data_got<64, false>*
339   got_section(Symbol_table*, Layout*);
340
341   // Get the GOT PLT section.
342   Output_data_space*
343   got_plt_section() const
344   {
345     gold_assert(this->got_plt_ != NULL);
346     return this->got_plt_;
347   }
348
349   // Create the PLT section.
350   void
351   make_plt_section(Symbol_table* symtab, Layout* layout);
352
353   // Create a PLT entry for a global symbol.
354   void
355   make_plt_entry(Symbol_table*, Layout*, Symbol*);
356
357   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
358   void
359   define_tls_base_symbol(Symbol_table*, Layout*);
360
361   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
362   void
363   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
364
365   // Create a GOT entry for the TLS module index.
366   unsigned int
367   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
368                       Sized_relobj<64, false>* object);
369
370   // Get the PLT section.
371   Output_data_plt_x86_64*
372   plt_section() const
373   {
374     gold_assert(this->plt_ != NULL);
375     return this->plt_;
376   }
377
378   // Get the dynamic reloc section, creating it if necessary.
379   Reloc_section*
380   rela_dyn_section(Layout*);
381
382   // Add a potential copy relocation.
383   void
384   copy_reloc(Symbol_table* symtab, Layout* layout,
385              Sized_relobj<64, false>* object,
386              unsigned int shndx, Output_section* output_section,
387              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
388   {
389     this->copy_relocs_.copy_reloc(symtab, layout,
390                                   symtab->get_sized_symbol<64>(sym),
391                                   object, shndx, output_section,
392                                   reloc, this->rela_dyn_section(layout));
393   }
394
395   // Information about this specific target which we pass to the
396   // general Target structure.
397   static const Target::Target_info x86_64_info;
398
399   enum Got_type
400   {
401     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
402     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
403     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
404     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
405   };
406
407   // The GOT section.
408   Output_data_got<64, false>* got_;
409   // The PLT section.
410   Output_data_plt_x86_64* plt_;
411   // The GOT PLT section.
412   Output_data_space* got_plt_;
413   // The _GLOBAL_OFFSET_TABLE_ symbol.
414   Symbol* global_offset_table_;
415   // The dynamic reloc section.
416   Reloc_section* rela_dyn_;
417   // Relocs saved to avoid a COPY reloc.
418   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
419   // Space for variables copied with a COPY reloc.
420   Output_data_space* dynbss_;
421   // Offset of the GOT entry for the TLS module index.
422   unsigned int got_mod_index_offset_;
423   // True if the _TLS_MODULE_BASE_ symbol has been defined.
424   bool tls_base_symbol_defined_;
425 };
426
427 const Target::Target_info Target_x86_64::x86_64_info =
428 {
429   64,                   // size
430   false,                // is_big_endian
431   elfcpp::EM_X86_64,    // machine_code
432   false,                // has_make_symbol
433   false,                // has_resolve
434   true,                 // has_code_fill
435   true,                 // is_default_stack_executable
436   '\0',                 // wrap_char
437   "/lib/ld64.so.1",     // program interpreter
438   0x400000,             // default_text_segment_address
439   0x1000,               // abi_pagesize (overridable by -z max-page-size)
440   0x1000,               // common_pagesize (overridable by -z common-page-size)
441   elfcpp::SHN_UNDEF,    // small_common_shndx
442   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
443   0,                    // small_common_section_flags
444   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
445   NULL,                 // attributes_section
446   NULL                  // attributes_vendor
447 };
448
449 // This is called when a new output section is created.  This is where
450 // we handle the SHF_X86_64_LARGE.
451
452 void
453 Target_x86_64::do_new_output_section(Output_section *os) const
454 {
455   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
456     os->set_is_large_section();
457 }
458
459 // Get the GOT section, creating it if necessary.
460
461 Output_data_got<64, false>*
462 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
463 {
464   if (this->got_ == NULL)
465     {
466       gold_assert(symtab != NULL && layout != NULL);
467
468       this->got_ = new Output_data_got<64, false>();
469
470       Output_section* os;
471       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
472                                            (elfcpp::SHF_ALLOC
473                                             | elfcpp::SHF_WRITE),
474                                            this->got_, false, true, true,
475                                            false);
476
477       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
478       os = layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
479                                            (elfcpp::SHF_ALLOC
480                                             | elfcpp::SHF_WRITE),
481                                            this->got_plt_, false, false,
482                                            false, true);
483
484       // The first three entries are reserved.
485       this->got_plt_->set_current_data_size(3 * 8);
486
487       // Those bytes can go into the relro segment.
488       layout->increase_relro(3 * 8);
489
490       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
491       this->global_offset_table_ =
492         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
493                                       Symbol_table::PREDEFINED,
494                                       this->got_plt_,
495                                       0, 0, elfcpp::STT_OBJECT,
496                                       elfcpp::STB_LOCAL,
497                                       elfcpp::STV_HIDDEN, 0,
498                                       false, false);
499     }
500
501   return this->got_;
502 }
503
504 // Get the dynamic reloc section, creating it if necessary.
505
506 Target_x86_64::Reloc_section*
507 Target_x86_64::rela_dyn_section(Layout* layout)
508 {
509   if (this->rela_dyn_ == NULL)
510     {
511       gold_assert(layout != NULL);
512       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
513       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
514                                       elfcpp::SHF_ALLOC, this->rela_dyn_, true,
515                                       false, false, false);
516     }
517   return this->rela_dyn_;
518 }
519
520 // A class to handle the PLT data.
521
522 class Output_data_plt_x86_64 : public Output_section_data
523 {
524  public:
525   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
526
527   Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
528                          Output_data_space*);
529
530   // Add an entry to the PLT.
531   void
532   add_entry(Symbol* gsym);
533
534   // Add the reserved TLSDESC_PLT entry to the PLT.
535   void
536   reserve_tlsdesc_entry(unsigned int got_offset)
537   { this->tlsdesc_got_offset_ = got_offset; }
538
539   // Return true if a TLSDESC_PLT entry has been reserved.
540   bool
541   has_tlsdesc_entry() const
542   { return this->tlsdesc_got_offset_ != -1U; }
543
544   // Return the GOT offset for the reserved TLSDESC_PLT entry.
545   unsigned int
546   get_tlsdesc_got_offset() const
547   { return this->tlsdesc_got_offset_; }
548
549   // Return the offset of the reserved TLSDESC_PLT entry.
550   unsigned int
551   get_tlsdesc_plt_offset() const
552   { return (this->count_ + 1) * plt_entry_size; }
553
554   // Return the .rel.plt section data.
555   const Reloc_section*
556   rel_plt() const
557   { return this->rel_; }
558
559  protected:
560   void
561   do_adjust_output_section(Output_section* os);
562
563   // Write to a map file.
564   void
565   do_print_to_mapfile(Mapfile* mapfile) const
566   { mapfile->print_output_data(this, _("** PLT")); }
567
568  private:
569   // The size of an entry in the PLT.
570   static const int plt_entry_size = 16;
571
572   // The first entry in the PLT.
573   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
574   // procedure linkage table for both programs and shared objects."
575   static unsigned char first_plt_entry[plt_entry_size];
576
577   // Other entries in the PLT for an executable.
578   static unsigned char plt_entry[plt_entry_size];
579
580   // The reserved TLSDESC entry in the PLT for an executable.
581   static unsigned char tlsdesc_plt_entry[plt_entry_size];
582
583   // Set the final size.
584   void
585   set_final_data_size();
586
587   // Write out the PLT data.
588   void
589   do_write(Output_file*);
590
591   // The reloc section.
592   Reloc_section* rel_;
593   // The .got section.
594   Output_data_got<64, false>* got_;
595   // The .got.plt section.
596   Output_data_space* got_plt_;
597   // The number of PLT entries.
598   unsigned int count_;
599   // Offset of the reserved TLSDESC_GOT entry when needed.
600   unsigned int tlsdesc_got_offset_;
601 };
602
603 // Create the PLT section.  The ordinary .got section is an argument,
604 // since we need to refer to the start.  We also create our own .got
605 // section just for PLT entries.
606
607 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
608                                                Output_data_got<64, false>* got,
609                                                Output_data_space* got_plt)
610   : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
611     tlsdesc_got_offset_(-1U)
612 {
613   this->rel_ = new Reloc_section(false);
614   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
615                                   elfcpp::SHF_ALLOC, this->rel_, true,
616                                   false, false, false);
617 }
618
619 void
620 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
621 {
622   os->set_entsize(plt_entry_size);
623 }
624
625 // Add an entry to the PLT.
626
627 void
628 Output_data_plt_x86_64::add_entry(Symbol* gsym)
629 {
630   gold_assert(!gsym->has_plt_offset());
631
632   // Note that when setting the PLT offset we skip the initial
633   // reserved PLT entry.
634   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
635
636   ++this->count_;
637
638   section_offset_type got_offset = this->got_plt_->current_data_size();
639
640   // Every PLT entry needs a GOT entry which points back to the PLT
641   // entry (this will be changed by the dynamic linker, normally
642   // lazily when the function is called).
643   this->got_plt_->set_current_data_size(got_offset + 8);
644
645   // Every PLT entry needs a reloc.
646   gsym->set_needs_dynsym_entry();
647   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
648                          got_offset, 0);
649
650   // Note that we don't need to save the symbol.  The contents of the
651   // PLT are independent of which symbols are used.  The symbols only
652   // appear in the relocations.
653 }
654
655 // Set the final size.
656 void
657 Output_data_plt_x86_64::set_final_data_size()
658 {
659   unsigned int count = this->count_;
660   if (this->has_tlsdesc_entry())
661     ++count;
662   this->set_data_size((count + 1) * plt_entry_size);
663 }
664
665 // The first entry in the PLT for an executable.
666
667 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
668 {
669   // From AMD64 ABI Draft 0.98, page 76
670   0xff, 0x35,   // pushq contents of memory address
671   0, 0, 0, 0,   // replaced with address of .got + 8
672   0xff, 0x25,   // jmp indirect
673   0, 0, 0, 0,   // replaced with address of .got + 16
674   0x90, 0x90, 0x90, 0x90   // noop (x4)
675 };
676
677 // Subsequent entries in the PLT for an executable.
678
679 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
680 {
681   // From AMD64 ABI Draft 0.98, page 76
682   0xff, 0x25,   // jmpq indirect
683   0, 0, 0, 0,   // replaced with address of symbol in .got
684   0x68,         // pushq immediate
685   0, 0, 0, 0,   // replaced with offset into relocation table
686   0xe9,         // jmpq relative
687   0, 0, 0, 0    // replaced with offset to start of .plt
688 };
689
690 // The reserved TLSDESC entry in the PLT for an executable.
691
692 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
693 {
694   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
695   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
696   0xff, 0x35,   // pushq x(%rip)
697   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
698   0xff, 0x25,   // jmpq *y(%rip)
699   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
700   0x0f, 0x1f,   // nop
701   0x40, 0
702 };
703
704 // Write out the PLT.  This uses the hand-coded instructions above,
705 // and adjusts them as needed.  This is specified by the AMD64 ABI.
706
707 void
708 Output_data_plt_x86_64::do_write(Output_file* of)
709 {
710   const off_t offset = this->offset();
711   const section_size_type oview_size =
712     convert_to_section_size_type(this->data_size());
713   unsigned char* const oview = of->get_output_view(offset, oview_size);
714
715   const off_t got_file_offset = this->got_plt_->offset();
716   const section_size_type got_size =
717     convert_to_section_size_type(this->got_plt_->data_size());
718   unsigned char* const got_view = of->get_output_view(got_file_offset,
719                                                       got_size);
720
721   unsigned char* pov = oview;
722
723   // The base address of the .plt section.
724   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
725   // The base address of the .got section.
726   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
727   // The base address of the PLT portion of the .got section,
728   // which is where the GOT pointer will point, and where the
729   // three reserved GOT entries are located.
730   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
731
732   memcpy(pov, first_plt_entry, plt_entry_size);
733   // We do a jmp relative to the PC at the end of this instruction.
734   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
735                                               (got_address + 8
736                                                - (plt_address + 6)));
737   elfcpp::Swap<32, false>::writeval(pov + 8,
738                                     (got_address + 16
739                                      - (plt_address + 12)));
740   pov += plt_entry_size;
741
742   unsigned char* got_pov = got_view;
743
744   memset(got_pov, 0, 24);
745   got_pov += 24;
746
747   unsigned int plt_offset = plt_entry_size;
748   unsigned int got_offset = 24;
749   const unsigned int count = this->count_;
750   for (unsigned int plt_index = 0;
751        plt_index < count;
752        ++plt_index,
753          pov += plt_entry_size,
754          got_pov += 8,
755          plt_offset += plt_entry_size,
756          got_offset += 8)
757     {
758       // Set and adjust the PLT entry itself.
759       memcpy(pov, plt_entry, plt_entry_size);
760       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
761                                                   (got_address + got_offset
762                                                    - (plt_address + plt_offset
763                                                       + 6)));
764
765       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
766       elfcpp::Swap<32, false>::writeval(pov + 12,
767                                         - (plt_offset + plt_entry_size));
768
769       // Set the entry in the GOT.
770       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
771     }
772
773   if (this->has_tlsdesc_entry())
774     {
775       // Set and adjust the reserved TLSDESC PLT entry.
776       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
777       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
778       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
779                                                   (got_address + 8
780                                                    - (plt_address + plt_offset
781                                                       + 6)));
782       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
783                                                   (got_base
784                                                    + tlsdesc_got_offset
785                                                    - (plt_address + plt_offset
786                                                       + 12)));
787       pov += plt_entry_size;
788     }
789
790   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
791   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
792
793   of->write_output_view(offset, oview_size, oview);
794   of->write_output_view(got_file_offset, got_size, got_view);
795 }
796
797 // Create the PLT section.
798
799 void
800 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
801 {
802   if (this->plt_ == NULL)
803     {
804       // Create the GOT sections first.
805       this->got_section(symtab, layout);
806
807       this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
808                                               this->got_plt_);
809       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
810                                       (elfcpp::SHF_ALLOC
811                                        | elfcpp::SHF_EXECINSTR),
812                                       this->plt_, false, false, false, false);
813     }
814 }
815
816 // Create a PLT entry for a global symbol.
817
818 void
819 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
820                               Symbol* gsym)
821 {
822   if (gsym->has_plt_offset())
823     return;
824
825   if (this->plt_ == NULL)
826     this->make_plt_section(symtab, layout);
827
828   this->plt_->add_entry(gsym);
829 }
830
831 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
832
833 void
834 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
835 {
836   if (this->tls_base_symbol_defined_)
837     return;
838
839   Output_segment* tls_segment = layout->tls_segment();
840   if (tls_segment != NULL)
841     {
842       bool is_exec = parameters->options().output_is_executable();
843       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
844                                        Symbol_table::PREDEFINED,
845                                        tls_segment, 0, 0,
846                                        elfcpp::STT_TLS,
847                                        elfcpp::STB_LOCAL,
848                                        elfcpp::STV_HIDDEN, 0,
849                                        (is_exec
850                                         ? Symbol::SEGMENT_END
851                                         : Symbol::SEGMENT_START),
852                                        true);
853     }
854   this->tls_base_symbol_defined_ = true;
855 }
856
857 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
858
859 void
860 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
861                                              Layout* layout)
862 {
863   if (this->plt_ == NULL)
864     this->make_plt_section(symtab, layout);
865
866   if (!this->plt_->has_tlsdesc_entry())
867     {
868       // Allocate the TLSDESC_GOT entry.
869       Output_data_got<64, false>* got = this->got_section(symtab, layout);
870       unsigned int got_offset = got->add_constant(0);
871
872       // Allocate the TLSDESC_PLT entry.
873       this->plt_->reserve_tlsdesc_entry(got_offset);
874     }
875 }
876
877 // Create a GOT entry for the TLS module index.
878
879 unsigned int
880 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
881                                    Sized_relobj<64, false>* object)
882 {
883   if (this->got_mod_index_offset_ == -1U)
884     {
885       gold_assert(symtab != NULL && layout != NULL && object != NULL);
886       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
887       Output_data_got<64, false>* got = this->got_section(symtab, layout);
888       unsigned int got_offset = got->add_constant(0);
889       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
890                           got_offset, 0);
891       got->add_constant(0);
892       this->got_mod_index_offset_ = got_offset;
893     }
894   return this->got_mod_index_offset_;
895 }
896
897 // Optimize the TLS relocation type based on what we know about the
898 // symbol.  IS_FINAL is true if the final address of this symbol is
899 // known at link time.
900
901 tls::Tls_optimization
902 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
903 {
904   // If we are generating a shared library, then we can't do anything
905   // in the linker.
906   if (parameters->options().shared())
907     return tls::TLSOPT_NONE;
908
909   switch (r_type)
910     {
911     case elfcpp::R_X86_64_TLSGD:
912     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
913     case elfcpp::R_X86_64_TLSDESC_CALL:
914       // These are General-Dynamic which permits fully general TLS
915       // access.  Since we know that we are generating an executable,
916       // we can convert this to Initial-Exec.  If we also know that
917       // this is a local symbol, we can further switch to Local-Exec.
918       if (is_final)
919         return tls::TLSOPT_TO_LE;
920       return tls::TLSOPT_TO_IE;
921
922     case elfcpp::R_X86_64_TLSLD:
923       // This is Local-Dynamic, which refers to a local symbol in the
924       // dynamic TLS block.  Since we know that we generating an
925       // executable, we can switch to Local-Exec.
926       return tls::TLSOPT_TO_LE;
927
928     case elfcpp::R_X86_64_DTPOFF32:
929     case elfcpp::R_X86_64_DTPOFF64:
930       // Another Local-Dynamic reloc.
931       return tls::TLSOPT_TO_LE;
932
933     case elfcpp::R_X86_64_GOTTPOFF:
934       // These are Initial-Exec relocs which get the thread offset
935       // from the GOT.  If we know that we are linking against the
936       // local symbol, we can switch to Local-Exec, which links the
937       // thread offset into the instruction.
938       if (is_final)
939         return tls::TLSOPT_TO_LE;
940       return tls::TLSOPT_NONE;
941
942     case elfcpp::R_X86_64_TPOFF32:
943       // When we already have Local-Exec, there is nothing further we
944       // can do.
945       return tls::TLSOPT_NONE;
946
947     default:
948       gold_unreachable();
949     }
950 }
951
952 // Report an unsupported relocation against a local symbol.
953
954 void
955 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
956                                              unsigned int r_type)
957 {
958   gold_error(_("%s: unsupported reloc %u against local symbol"),
959              object->name().c_str(), r_type);
960 }
961
962 // We are about to emit a dynamic relocation of type R_TYPE.  If the
963 // dynamic linker does not support it, issue an error.  The GNU linker
964 // only issues a non-PIC error for an allocated read-only section.
965 // Here we know the section is allocated, but we don't know that it is
966 // read-only.  But we check for all the relocation types which the
967 // glibc dynamic linker supports, so it seems appropriate to issue an
968 // error even if the section is not read-only.
969
970 void
971 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
972 {
973   switch (r_type)
974     {
975       // These are the relocation types supported by glibc for x86_64.
976     case elfcpp::R_X86_64_RELATIVE:
977     case elfcpp::R_X86_64_GLOB_DAT:
978     case elfcpp::R_X86_64_JUMP_SLOT:
979     case elfcpp::R_X86_64_DTPMOD64:
980     case elfcpp::R_X86_64_DTPOFF64:
981     case elfcpp::R_X86_64_TPOFF64:
982     case elfcpp::R_X86_64_64:
983     case elfcpp::R_X86_64_32:
984     case elfcpp::R_X86_64_PC32:
985     case elfcpp::R_X86_64_COPY:
986       return;
987
988     default:
989       // This prevents us from issuing more than one error per reloc
990       // section.  But we can still wind up issuing more than one
991       // error per object file.
992       if (this->issued_non_pic_error_)
993         return;
994       gold_assert(parameters->options().output_is_position_independent());
995       object->error(_("requires unsupported dynamic reloc; "
996                       "recompile with -fPIC"));
997       this->issued_non_pic_error_ = true;
998       return;
999
1000     case elfcpp::R_X86_64_NONE:
1001       gold_unreachable();
1002     }
1003 }
1004
1005 // Scan a relocation for a local symbol.
1006
1007 inline void
1008 Target_x86_64::Scan::local(Symbol_table* symtab,
1009                            Layout* layout,
1010                            Target_x86_64* target,
1011                            Sized_relobj<64, false>* object,
1012                            unsigned int data_shndx,
1013                            Output_section* output_section,
1014                            const elfcpp::Rela<64, false>& reloc,
1015                            unsigned int r_type,
1016                            const elfcpp::Sym<64, false>& lsym)
1017 {
1018   switch (r_type)
1019     {
1020     case elfcpp::R_X86_64_NONE:
1021     case elfcpp::R_386_GNU_VTINHERIT:
1022     case elfcpp::R_386_GNU_VTENTRY:
1023       break;
1024
1025     case elfcpp::R_X86_64_64:
1026       // If building a shared library (or a position-independent
1027       // executable), we need to create a dynamic relocation for this
1028       // location.  The relocation applied at link time will apply the
1029       // link-time value, so we flag the location with an
1030       // R_X86_64_RELATIVE relocation so the dynamic loader can
1031       // relocate it easily.
1032       if (parameters->options().output_is_position_independent())
1033         {
1034           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1035           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1036           rela_dyn->add_local_relative(object, r_sym,
1037                                        elfcpp::R_X86_64_RELATIVE,
1038                                        output_section, data_shndx,
1039                                        reloc.get_r_offset(),
1040                                        reloc.get_r_addend());
1041         }
1042       break;
1043
1044     case elfcpp::R_X86_64_32:
1045     case elfcpp::R_X86_64_32S:
1046     case elfcpp::R_X86_64_16:
1047     case elfcpp::R_X86_64_8:
1048       // If building a shared library (or a position-independent
1049       // executable), we need to create a dynamic relocation for this
1050       // location.  We can't use an R_X86_64_RELATIVE relocation
1051       // because that is always a 64-bit relocation.
1052       if (parameters->options().output_is_position_independent())
1053         {
1054           this->check_non_pic(object, r_type);
1055
1056           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1057           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1058           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1059             rela_dyn->add_local(object, r_sym, r_type, output_section,
1060                                 data_shndx, reloc.get_r_offset(),
1061                                 reloc.get_r_addend());
1062           else
1063             {
1064               gold_assert(lsym.get_st_value() == 0);
1065               unsigned int shndx = lsym.get_st_shndx();
1066               bool is_ordinary;
1067               shndx = object->adjust_sym_shndx(r_sym, shndx,
1068                                                &is_ordinary);
1069               if (!is_ordinary)
1070                 object->error(_("section symbol %u has bad shndx %u"),
1071                               r_sym, shndx);
1072               else
1073                 rela_dyn->add_local_section(object, shndx,
1074                                             r_type, output_section,
1075                                             data_shndx, reloc.get_r_offset(),
1076                                             reloc.get_r_addend());
1077             }
1078         }
1079       break;
1080
1081     case elfcpp::R_X86_64_PC64:
1082     case elfcpp::R_X86_64_PC32:
1083     case elfcpp::R_X86_64_PC16:
1084     case elfcpp::R_X86_64_PC8:
1085       break;
1086
1087     case elfcpp::R_X86_64_PLT32:
1088       // Since we know this is a local symbol, we can handle this as a
1089       // PC32 reloc.
1090       break;
1091
1092     case elfcpp::R_X86_64_GOTPC32:
1093     case elfcpp::R_X86_64_GOTOFF64:
1094     case elfcpp::R_X86_64_GOTPC64:
1095     case elfcpp::R_X86_64_PLTOFF64:
1096       // We need a GOT section.
1097       target->got_section(symtab, layout);
1098       // For PLTOFF64, we'd normally want a PLT section, but since we
1099       // know this is a local symbol, no PLT is needed.
1100       break;
1101
1102     case elfcpp::R_X86_64_GOT64:
1103     case elfcpp::R_X86_64_GOT32:
1104     case elfcpp::R_X86_64_GOTPCREL64:
1105     case elfcpp::R_X86_64_GOTPCREL:
1106     case elfcpp::R_X86_64_GOTPLT64:
1107       {
1108         // The symbol requires a GOT entry.
1109         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1110         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1111         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1112           {
1113             // If we are generating a shared object, we need to add a
1114             // dynamic relocation for this symbol's GOT entry.
1115             if (parameters->options().output_is_position_independent())
1116               {
1117                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1118                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1119                 if (r_type != elfcpp::R_X86_64_GOT32)
1120                   rela_dyn->add_local_relative(
1121                       object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1122                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1123                 else
1124                   {
1125                     this->check_non_pic(object, r_type);
1126
1127                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1128                     rela_dyn->add_local(
1129                         object, r_sym, r_type, got,
1130                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1131                   }
1132               }
1133           }
1134         // For GOTPLT64, we'd normally want a PLT section, but since
1135         // we know this is a local symbol, no PLT is needed.
1136       }
1137       break;
1138
1139     case elfcpp::R_X86_64_COPY:
1140     case elfcpp::R_X86_64_GLOB_DAT:
1141     case elfcpp::R_X86_64_JUMP_SLOT:
1142     case elfcpp::R_X86_64_RELATIVE:
1143       // These are outstanding tls relocs, which are unexpected when linking
1144     case elfcpp::R_X86_64_TPOFF64:
1145     case elfcpp::R_X86_64_DTPMOD64:
1146     case elfcpp::R_X86_64_TLSDESC:
1147       gold_error(_("%s: unexpected reloc %u in object file"),
1148                  object->name().c_str(), r_type);
1149       break;
1150
1151       // These are initial tls relocs, which are expected when linking
1152     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1153     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1154     case elfcpp::R_X86_64_TLSDESC_CALL:
1155     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1156     case elfcpp::R_X86_64_DTPOFF32:
1157     case elfcpp::R_X86_64_DTPOFF64:
1158     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1159     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1160       {
1161         bool output_is_shared = parameters->options().shared();
1162         const tls::Tls_optimization optimized_type
1163             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1164         switch (r_type)
1165           {
1166           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1167             if (optimized_type == tls::TLSOPT_NONE)
1168               {
1169                 // Create a pair of GOT entries for the module index and
1170                 // dtv-relative offset.
1171                 Output_data_got<64, false>* got
1172                     = target->got_section(symtab, layout);
1173                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1174                 unsigned int shndx = lsym.get_st_shndx();
1175                 bool is_ordinary;
1176                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1177                 if (!is_ordinary)
1178                   object->error(_("local symbol %u has bad shndx %u"),
1179                               r_sym, shndx);
1180                 else
1181                   got->add_local_pair_with_rela(object, r_sym,
1182                                                 shndx,
1183                                                 GOT_TYPE_TLS_PAIR,
1184                                                 target->rela_dyn_section(layout),
1185                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1186               }
1187             else if (optimized_type != tls::TLSOPT_TO_LE)
1188               unsupported_reloc_local(object, r_type);
1189             break;
1190
1191           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1192             target->define_tls_base_symbol(symtab, layout);
1193             if (optimized_type == tls::TLSOPT_NONE)
1194               {
1195                 // Create reserved PLT and GOT entries for the resolver.
1196                 target->reserve_tlsdesc_entries(symtab, layout);
1197
1198                 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1199                 Output_data_got<64, false>* got
1200                     = target->got_section(symtab, layout);
1201                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1202                 unsigned int shndx = lsym.get_st_shndx();
1203                 bool is_ordinary;
1204                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1205                 if (!is_ordinary)
1206                   object->error(_("local symbol %u has bad shndx %u"),
1207                               r_sym, shndx);
1208                 else
1209                   got->add_local_pair_with_rela(object, r_sym,
1210                                                 shndx,
1211                                                 GOT_TYPE_TLS_DESC,
1212                                                 target->rela_dyn_section(layout),
1213                                                 elfcpp::R_X86_64_TLSDESC, 0);
1214               }
1215             else if (optimized_type != tls::TLSOPT_TO_LE)
1216               unsupported_reloc_local(object, r_type);
1217             break;
1218
1219           case elfcpp::R_X86_64_TLSDESC_CALL:
1220             break;
1221
1222           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1223             if (optimized_type == tls::TLSOPT_NONE)
1224               {
1225                 // Create a GOT entry for the module index.
1226                 target->got_mod_index_entry(symtab, layout, object);
1227               }
1228             else if (optimized_type != tls::TLSOPT_TO_LE)
1229               unsupported_reloc_local(object, r_type);
1230             break;
1231
1232           case elfcpp::R_X86_64_DTPOFF32:
1233           case elfcpp::R_X86_64_DTPOFF64:
1234             break;
1235
1236           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1237             layout->set_has_static_tls();
1238             if (optimized_type == tls::TLSOPT_NONE)
1239               {
1240                 // Create a GOT entry for the tp-relative offset.
1241                 Output_data_got<64, false>* got
1242                     = target->got_section(symtab, layout);
1243                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1244                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1245                                          target->rela_dyn_section(layout),
1246                                          elfcpp::R_X86_64_TPOFF64);
1247               }
1248             else if (optimized_type != tls::TLSOPT_TO_LE)
1249               unsupported_reloc_local(object, r_type);
1250             break;
1251
1252           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1253             layout->set_has_static_tls();
1254             if (output_is_shared)
1255               unsupported_reloc_local(object, r_type);
1256             break;
1257
1258           default:
1259             gold_unreachable();
1260           }
1261       }
1262       break;
1263
1264     case elfcpp::R_X86_64_SIZE32:
1265     case elfcpp::R_X86_64_SIZE64:
1266     default:
1267       gold_error(_("%s: unsupported reloc %u against local symbol"),
1268                  object->name().c_str(), r_type);
1269       break;
1270     }
1271 }
1272
1273
1274 // Report an unsupported relocation against a global symbol.
1275
1276 void
1277 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1278                                               unsigned int r_type,
1279                                               Symbol* gsym)
1280 {
1281   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1282              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1283 }
1284
1285 // Scan a relocation for a global symbol.
1286
1287 inline void
1288 Target_x86_64::Scan::global(Symbol_table* symtab,
1289                             Layout* layout,
1290                             Target_x86_64* target,
1291                             Sized_relobj<64, false>* object,
1292                             unsigned int data_shndx,
1293                             Output_section* output_section,
1294                             const elfcpp::Rela<64, false>& reloc,
1295                             unsigned int r_type,
1296                             Symbol* gsym)
1297 {
1298   switch (r_type)
1299     {
1300     case elfcpp::R_X86_64_NONE:
1301     case elfcpp::R_386_GNU_VTINHERIT:
1302     case elfcpp::R_386_GNU_VTENTRY:
1303       break;
1304
1305     case elfcpp::R_X86_64_64:
1306     case elfcpp::R_X86_64_32:
1307     case elfcpp::R_X86_64_32S:
1308     case elfcpp::R_X86_64_16:
1309     case elfcpp::R_X86_64_8:
1310       {
1311         // Make a PLT entry if necessary.
1312         if (gsym->needs_plt_entry())
1313           {
1314             target->make_plt_entry(symtab, layout, gsym);
1315             // Since this is not a PC-relative relocation, we may be
1316             // taking the address of a function. In that case we need to
1317             // set the entry in the dynamic symbol table to the address of
1318             // the PLT entry.
1319             if (gsym->is_from_dynobj() && !parameters->options().shared())
1320               gsym->set_needs_dynsym_value();
1321           }
1322         // Make a dynamic relocation if necessary.
1323         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1324           {
1325             if (gsym->may_need_copy_reloc())
1326               {
1327                 target->copy_reloc(symtab, layout, object,
1328                                    data_shndx, output_section, gsym, reloc);
1329               }
1330             else if (r_type == elfcpp::R_X86_64_64
1331                      && gsym->can_use_relative_reloc(false))
1332               {
1333                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1334                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1335                                               output_section, object,
1336                                               data_shndx, reloc.get_r_offset(),
1337                                               reloc.get_r_addend());
1338               }
1339             else
1340               {
1341                 this->check_non_pic(object, r_type);
1342                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1343                 rela_dyn->add_global(gsym, r_type, output_section, object,
1344                                      data_shndx, reloc.get_r_offset(),
1345                                      reloc.get_r_addend());
1346               }
1347           }
1348       }
1349       break;
1350
1351     case elfcpp::R_X86_64_PC64:
1352     case elfcpp::R_X86_64_PC32:
1353     case elfcpp::R_X86_64_PC16:
1354     case elfcpp::R_X86_64_PC8:
1355       {
1356         // Make a PLT entry if necessary.
1357         if (gsym->needs_plt_entry())
1358           target->make_plt_entry(symtab, layout, gsym);
1359         // Make a dynamic relocation if necessary.
1360         int flags = Symbol::NON_PIC_REF;
1361         if (gsym->is_func())
1362           flags |= Symbol::FUNCTION_CALL;
1363         if (gsym->needs_dynamic_reloc(flags))
1364           {
1365             if (gsym->may_need_copy_reloc())
1366               {
1367                 target->copy_reloc(symtab, layout, object,
1368                                    data_shndx, output_section, gsym, reloc);
1369               }
1370             else
1371               {
1372                 this->check_non_pic(object, r_type);
1373                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1374                 rela_dyn->add_global(gsym, r_type, output_section, object,
1375                                      data_shndx, reloc.get_r_offset(),
1376                                      reloc.get_r_addend());
1377               }
1378           }
1379       }
1380       break;
1381
1382     case elfcpp::R_X86_64_GOT64:
1383     case elfcpp::R_X86_64_GOT32:
1384     case elfcpp::R_X86_64_GOTPCREL64:
1385     case elfcpp::R_X86_64_GOTPCREL:
1386     case elfcpp::R_X86_64_GOTPLT64:
1387       {
1388         // The symbol requires a GOT entry.
1389         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1390         if (gsym->final_value_is_known())
1391           got->add_global(gsym, GOT_TYPE_STANDARD);
1392         else
1393           {
1394             // If this symbol is not fully resolved, we need to add a
1395             // dynamic relocation for it.
1396             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1397             if (gsym->is_from_dynobj()
1398                 || gsym->is_undefined()
1399                 || gsym->is_preemptible())
1400               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1401                                         elfcpp::R_X86_64_GLOB_DAT);
1402             else
1403               {
1404                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1405                   rela_dyn->add_global_relative(
1406                       gsym, elfcpp::R_X86_64_RELATIVE, got,
1407                       gsym->got_offset(GOT_TYPE_STANDARD), 0);
1408               }
1409           }
1410         // For GOTPLT64, we also need a PLT entry (but only if the
1411         // symbol is not fully resolved).
1412         if (r_type == elfcpp::R_X86_64_GOTPLT64
1413             && !gsym->final_value_is_known())
1414           target->make_plt_entry(symtab, layout, gsym);
1415       }
1416       break;
1417
1418     case elfcpp::R_X86_64_PLT32:
1419       // If the symbol is fully resolved, this is just a PC32 reloc.
1420       // Otherwise we need a PLT entry.
1421       if (gsym->final_value_is_known())
1422         break;
1423       // If building a shared library, we can also skip the PLT entry
1424       // if the symbol is defined in the output file and is protected
1425       // or hidden.
1426       if (gsym->is_defined()
1427           && !gsym->is_from_dynobj()
1428           && !gsym->is_preemptible())
1429         break;
1430       target->make_plt_entry(symtab, layout, gsym);
1431       break;
1432
1433     case elfcpp::R_X86_64_GOTPC32:
1434     case elfcpp::R_X86_64_GOTOFF64:
1435     case elfcpp::R_X86_64_GOTPC64:
1436     case elfcpp::R_X86_64_PLTOFF64:
1437       // We need a GOT section.
1438       target->got_section(symtab, layout);
1439       // For PLTOFF64, we also need a PLT entry (but only if the
1440       // symbol is not fully resolved).
1441       if (r_type == elfcpp::R_X86_64_PLTOFF64
1442           && !gsym->final_value_is_known())
1443         target->make_plt_entry(symtab, layout, gsym);
1444       break;
1445
1446     case elfcpp::R_X86_64_COPY:
1447     case elfcpp::R_X86_64_GLOB_DAT:
1448     case elfcpp::R_X86_64_JUMP_SLOT:
1449     case elfcpp::R_X86_64_RELATIVE:
1450       // These are outstanding tls relocs, which are unexpected when linking
1451     case elfcpp::R_X86_64_TPOFF64:
1452     case elfcpp::R_X86_64_DTPMOD64:
1453     case elfcpp::R_X86_64_TLSDESC:
1454       gold_error(_("%s: unexpected reloc %u in object file"),
1455                  object->name().c_str(), r_type);
1456       break;
1457
1458       // These are initial tls relocs, which are expected for global()
1459     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1460     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1461     case elfcpp::R_X86_64_TLSDESC_CALL:
1462     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1463     case elfcpp::R_X86_64_DTPOFF32:
1464     case elfcpp::R_X86_64_DTPOFF64:
1465     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1466     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1467       {
1468         const bool is_final = gsym->final_value_is_known();
1469         const tls::Tls_optimization optimized_type
1470             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1471         switch (r_type)
1472           {
1473           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1474             if (optimized_type == tls::TLSOPT_NONE)
1475               {
1476                 // Create a pair of GOT entries for the module index and
1477                 // dtv-relative offset.
1478                 Output_data_got<64, false>* got
1479                     = target->got_section(symtab, layout);
1480                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1481                                                target->rela_dyn_section(layout),
1482                                                elfcpp::R_X86_64_DTPMOD64,
1483                                                elfcpp::R_X86_64_DTPOFF64);
1484               }
1485             else if (optimized_type == tls::TLSOPT_TO_IE)
1486               {
1487                 // Create a GOT entry for the tp-relative offset.
1488                 Output_data_got<64, false>* got
1489                     = target->got_section(symtab, layout);
1490                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1491                                           target->rela_dyn_section(layout),
1492                                           elfcpp::R_X86_64_TPOFF64);
1493               }
1494             else if (optimized_type != tls::TLSOPT_TO_LE)
1495               unsupported_reloc_global(object, r_type, gsym);
1496             break;
1497
1498           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1499             target->define_tls_base_symbol(symtab, layout);
1500             if (optimized_type == tls::TLSOPT_NONE)
1501               {
1502                 // Create reserved PLT and GOT entries for the resolver.
1503                 target->reserve_tlsdesc_entries(symtab, layout);
1504
1505                 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1506                 Output_data_got<64, false>* got
1507                     = target->got_section(symtab, layout);
1508                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1509                                                target->rela_dyn_section(layout),
1510                                                elfcpp::R_X86_64_TLSDESC, 0);
1511               }
1512             else if (optimized_type == tls::TLSOPT_TO_IE)
1513               {
1514                 // Create a GOT entry for the tp-relative offset.
1515                 Output_data_got<64, false>* got
1516                     = target->got_section(symtab, layout);
1517                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1518                                           target->rela_dyn_section(layout),
1519                                           elfcpp::R_X86_64_TPOFF64);
1520               }
1521             else if (optimized_type != tls::TLSOPT_TO_LE)
1522               unsupported_reloc_global(object, r_type, gsym);
1523             break;
1524
1525           case elfcpp::R_X86_64_TLSDESC_CALL:
1526             break;
1527
1528           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1529             if (optimized_type == tls::TLSOPT_NONE)
1530               {
1531                 // Create a GOT entry for the module index.
1532                 target->got_mod_index_entry(symtab, layout, object);
1533               }
1534             else if (optimized_type != tls::TLSOPT_TO_LE)
1535               unsupported_reloc_global(object, r_type, gsym);
1536             break;
1537
1538           case elfcpp::R_X86_64_DTPOFF32:
1539           case elfcpp::R_X86_64_DTPOFF64:
1540             break;
1541
1542           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1543             layout->set_has_static_tls();
1544             if (optimized_type == tls::TLSOPT_NONE)
1545               {
1546                 // Create a GOT entry for the tp-relative offset.
1547                 Output_data_got<64, false>* got
1548                     = target->got_section(symtab, layout);
1549                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1550                                           target->rela_dyn_section(layout),
1551                                           elfcpp::R_X86_64_TPOFF64);
1552               }
1553             else if (optimized_type != tls::TLSOPT_TO_LE)
1554               unsupported_reloc_global(object, r_type, gsym);
1555             break;
1556
1557           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1558             layout->set_has_static_tls();
1559             if (parameters->options().shared())
1560               unsupported_reloc_local(object, r_type);
1561             break;
1562
1563           default:
1564             gold_unreachable();
1565           }
1566       }
1567       break;
1568
1569     case elfcpp::R_X86_64_SIZE32:
1570     case elfcpp::R_X86_64_SIZE64:
1571     default:
1572       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1573                  object->name().c_str(), r_type,
1574                  gsym->demangled_name().c_str());
1575       break;
1576     }
1577 }
1578
1579 void
1580 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
1581                                  Layout* layout,
1582                                  Sized_relobj<64, false>* object,
1583                                  unsigned int data_shndx,
1584                                  unsigned int sh_type,
1585                                  const unsigned char* prelocs,
1586                                  size_t reloc_count,
1587                                  Output_section* output_section,
1588                                  bool needs_special_offset_handling,
1589                                  size_t local_symbol_count,
1590                                  const unsigned char* plocal_symbols)
1591 {
1592
1593   if (sh_type == elfcpp::SHT_REL)
1594     {
1595       return;
1596     }
1597
1598    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1599                            Target_x86_64::Scan>(
1600     symtab,
1601     layout,
1602     this,
1603     object,
1604     data_shndx,
1605     prelocs,
1606     reloc_count,
1607     output_section,
1608     needs_special_offset_handling,
1609     local_symbol_count,
1610     plocal_symbols);
1611  
1612 }
1613 // Scan relocations for a section.
1614
1615 void
1616 Target_x86_64::scan_relocs(Symbol_table* symtab,
1617                            Layout* layout,
1618                            Sized_relobj<64, false>* object,
1619                            unsigned int data_shndx,
1620                            unsigned int sh_type,
1621                            const unsigned char* prelocs,
1622                            size_t reloc_count,
1623                            Output_section* output_section,
1624                            bool needs_special_offset_handling,
1625                            size_t local_symbol_count,
1626                            const unsigned char* plocal_symbols)
1627 {
1628   if (sh_type == elfcpp::SHT_REL)
1629     {
1630       gold_error(_("%s: unsupported REL reloc section"),
1631                  object->name().c_str());
1632       return;
1633     }
1634
1635   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1636       Target_x86_64::Scan>(
1637     symtab,
1638     layout,
1639     this,
1640     object,
1641     data_shndx,
1642     prelocs,
1643     reloc_count,
1644     output_section,
1645     needs_special_offset_handling,
1646     local_symbol_count,
1647     plocal_symbols);
1648 }
1649
1650 // Finalize the sections.
1651
1652 void
1653 Target_x86_64::do_finalize_sections(
1654     Layout* layout,
1655     const Input_objects*,
1656     Symbol_table* symtab)
1657 {
1658   const Reloc_section* rel_plt = (this->plt_ == NULL
1659                                   ? NULL
1660                                   : this->plt_->rel_plt());
1661   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
1662                                   this->rela_dyn_, true);
1663                                   
1664   // Fill in some more dynamic tags.
1665   Output_data_dynamic* const odyn = layout->dynamic_data();
1666   if (odyn != NULL)
1667     {
1668       if (this->plt_ != NULL
1669           && this->plt_->output_section() != NULL
1670           && this->plt_->has_tlsdesc_entry())
1671         {
1672           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1673           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1674           this->got_->finalize_data_size();
1675           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1676                                         this->plt_, plt_offset);
1677           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1678                                         this->got_, got_offset);
1679         }
1680     }
1681
1682   // Emit any relocs we saved in an attempt to avoid generating COPY
1683   // relocs.
1684   if (this->copy_relocs_.any_saved_relocs())
1685     this->copy_relocs_.emit(this->rela_dyn_section(layout));
1686
1687   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
1688   // the .got.plt section.
1689   Symbol* sym = this->global_offset_table_;
1690   if (sym != NULL)
1691     {
1692       uint64_t data_size = this->got_plt_->current_data_size();
1693       symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
1694     }
1695 }
1696
1697 // Perform a relocation.
1698
1699 inline bool
1700 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1701                                   Target_x86_64* target,
1702                                   Output_section*,
1703                                   size_t relnum,
1704                                   const elfcpp::Rela<64, false>& rela,
1705                                   unsigned int r_type,
1706                                   const Sized_symbol<64>* gsym,
1707                                   const Symbol_value<64>* psymval,
1708                                   unsigned char* view,
1709                                   elfcpp::Elf_types<64>::Elf_Addr address,
1710                                   section_size_type view_size)
1711 {
1712   if (this->skip_call_tls_get_addr_)
1713     {
1714       if ((r_type != elfcpp::R_X86_64_PLT32
1715            && r_type != elfcpp::R_X86_64_PC32)
1716           || gsym == NULL
1717           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1718         {
1719           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1720                                  _("missing expected TLS relocation"));
1721         }
1722       else
1723         {
1724           this->skip_call_tls_get_addr_ = false;
1725           return false;
1726         }
1727     }
1728
1729   // Pick the value to use for symbols defined in shared objects.
1730   Symbol_value<64> symval;
1731   if (gsym != NULL
1732       && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1733                               || r_type == elfcpp::R_X86_64_PC32
1734                               || r_type == elfcpp::R_X86_64_PC16
1735                               || r_type == elfcpp::R_X86_64_PC8))
1736     {
1737       symval.set_output_value(target->plt_section()->address()
1738                               + gsym->plt_offset());
1739       psymval = &symval;
1740     }
1741
1742   const Sized_relobj<64, false>* object = relinfo->object;
1743   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1744
1745   // Get the GOT offset if needed.
1746   // The GOT pointer points to the end of the GOT section.
1747   // We need to subtract the size of the GOT section to get
1748   // the actual offset to use in the relocation.
1749   bool have_got_offset = false;
1750   unsigned int got_offset = 0;
1751   switch (r_type)
1752     {
1753     case elfcpp::R_X86_64_GOT32:
1754     case elfcpp::R_X86_64_GOT64:
1755     case elfcpp::R_X86_64_GOTPLT64:
1756     case elfcpp::R_X86_64_GOTPCREL:
1757     case elfcpp::R_X86_64_GOTPCREL64:
1758       if (gsym != NULL)
1759         {
1760           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1761           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1762         }
1763       else
1764         {
1765           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1766           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1767           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1768                         - target->got_size());
1769         }
1770       have_got_offset = true;
1771       break;
1772
1773     default:
1774       break;
1775     }
1776
1777   switch (r_type)
1778     {
1779     case elfcpp::R_X86_64_NONE:
1780     case elfcpp::R_386_GNU_VTINHERIT:
1781     case elfcpp::R_386_GNU_VTENTRY:
1782       break;
1783
1784     case elfcpp::R_X86_64_64:
1785       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1786       break;
1787
1788     case elfcpp::R_X86_64_PC64:
1789       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1790                                               address);
1791       break;
1792
1793     case elfcpp::R_X86_64_32:
1794       // FIXME: we need to verify that value + addend fits into 32 bits:
1795       //    uint64_t x = value + addend;
1796       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1797       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1798       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1799       break;
1800
1801     case elfcpp::R_X86_64_32S:
1802       // FIXME: we need to verify that value + addend fits into 32 bits:
1803       //    int64_t x = value + addend;   // note this quantity is signed!
1804       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1805       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1806       break;
1807
1808     case elfcpp::R_X86_64_PC32:
1809       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1810                                               address);
1811       break;
1812
1813     case elfcpp::R_X86_64_16:
1814       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1815       break;
1816
1817     case elfcpp::R_X86_64_PC16:
1818       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1819                                               address);
1820       break;
1821
1822     case elfcpp::R_X86_64_8:
1823       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1824       break;
1825
1826     case elfcpp::R_X86_64_PC8:
1827       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1828                                              address);
1829       break;
1830
1831     case elfcpp::R_X86_64_PLT32:
1832       gold_assert(gsym == NULL
1833                   || gsym->has_plt_offset()
1834                   || gsym->final_value_is_known()
1835                   || (gsym->is_defined()
1836                       && !gsym->is_from_dynobj()
1837                       && !gsym->is_preemptible()));
1838       // Note: while this code looks the same as for R_X86_64_PC32, it
1839       // behaves differently because psymval was set to point to
1840       // the PLT entry, rather than the symbol, in Scan::global().
1841       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1842                                               address);
1843       break;
1844
1845     case elfcpp::R_X86_64_PLTOFF64:
1846       {
1847         gold_assert(gsym);
1848         gold_assert(gsym->has_plt_offset()
1849                     || gsym->final_value_is_known());
1850         elfcpp::Elf_types<64>::Elf_Addr got_address;
1851         got_address = target->got_section(NULL, NULL)->address();
1852         Relocate_functions<64, false>::rela64(view, object, psymval,
1853                                               addend - got_address);
1854       }
1855
1856     case elfcpp::R_X86_64_GOT32:
1857       gold_assert(have_got_offset);
1858       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1859       break;
1860
1861     case elfcpp::R_X86_64_GOTPC32:
1862       {
1863         gold_assert(gsym);
1864         elfcpp::Elf_types<64>::Elf_Addr value;
1865         value = target->got_plt_section()->address();
1866         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1867       }
1868       break;
1869
1870     case elfcpp::R_X86_64_GOT64:
1871       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1872       // Since we always add a PLT entry, this is equivalent.
1873     case elfcpp::R_X86_64_GOTPLT64:
1874       gold_assert(have_got_offset);
1875       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1876       break;
1877
1878     case elfcpp::R_X86_64_GOTPC64:
1879       {
1880         gold_assert(gsym);
1881         elfcpp::Elf_types<64>::Elf_Addr value;
1882         value = target->got_plt_section()->address();
1883         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1884       }
1885       break;
1886
1887     case elfcpp::R_X86_64_GOTOFF64:
1888       {
1889         elfcpp::Elf_types<64>::Elf_Addr value;
1890         value = (psymval->value(object, 0)
1891                  - target->got_plt_section()->address());
1892         Relocate_functions<64, false>::rela64(view, value, addend);
1893       }
1894       break;
1895
1896     case elfcpp::R_X86_64_GOTPCREL:
1897       {
1898         gold_assert(have_got_offset);
1899         elfcpp::Elf_types<64>::Elf_Addr value;
1900         value = target->got_plt_section()->address() + got_offset;
1901         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1902       }
1903       break;
1904
1905     case elfcpp::R_X86_64_GOTPCREL64:
1906       {
1907         gold_assert(have_got_offset);
1908         elfcpp::Elf_types<64>::Elf_Addr value;
1909         value = target->got_plt_section()->address() + got_offset;
1910         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1911       }
1912       break;
1913
1914     case elfcpp::R_X86_64_COPY:
1915     case elfcpp::R_X86_64_GLOB_DAT:
1916     case elfcpp::R_X86_64_JUMP_SLOT:
1917     case elfcpp::R_X86_64_RELATIVE:
1918       // These are outstanding tls relocs, which are unexpected when linking
1919     case elfcpp::R_X86_64_TPOFF64:
1920     case elfcpp::R_X86_64_DTPMOD64:
1921     case elfcpp::R_X86_64_TLSDESC:
1922       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1923                              _("unexpected reloc %u in object file"),
1924                              r_type);
1925       break;
1926
1927       // These are initial tls relocs, which are expected when linking
1928     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1929     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1930     case elfcpp::R_X86_64_TLSDESC_CALL:
1931     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1932     case elfcpp::R_X86_64_DTPOFF32:
1933     case elfcpp::R_X86_64_DTPOFF64:
1934     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1935     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1936       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1937                          view, address, view_size);
1938       break;
1939
1940     case elfcpp::R_X86_64_SIZE32:
1941     case elfcpp::R_X86_64_SIZE64:
1942     default:
1943       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1944                              _("unsupported reloc %u"),
1945                              r_type);
1946       break;
1947     }
1948
1949   return true;
1950 }
1951
1952 // Perform a TLS relocation.
1953
1954 inline void
1955 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1956                                       Target_x86_64* target,
1957                                       size_t relnum,
1958                                       const elfcpp::Rela<64, false>& rela,
1959                                       unsigned int r_type,
1960                                       const Sized_symbol<64>* gsym,
1961                                       const Symbol_value<64>* psymval,
1962                                       unsigned char* view,
1963                                       elfcpp::Elf_types<64>::Elf_Addr address,
1964                                       section_size_type view_size)
1965 {
1966   Output_segment* tls_segment = relinfo->layout->tls_segment();
1967
1968   const Sized_relobj<64, false>* object = relinfo->object;
1969   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1970
1971   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1972
1973   const bool is_final = (gsym == NULL
1974                          ? !parameters->options().output_is_position_independent()
1975                          : gsym->final_value_is_known());
1976   const tls::Tls_optimization optimized_type
1977       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1978   switch (r_type)
1979     {
1980     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1981       this->saw_tls_block_reloc_ = true;
1982       if (optimized_type == tls::TLSOPT_TO_LE)
1983         {
1984           gold_assert(tls_segment != NULL);
1985           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1986                              rela, r_type, value, view,
1987                              view_size);
1988           break;
1989         }
1990       else
1991         {
1992           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1993                                    ? GOT_TYPE_TLS_OFFSET
1994                                    : GOT_TYPE_TLS_PAIR);
1995           unsigned int got_offset;
1996           if (gsym != NULL)
1997             {
1998               gold_assert(gsym->has_got_offset(got_type));
1999               got_offset = gsym->got_offset(got_type) - target->got_size();
2000             }
2001           else
2002             {
2003               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2004               gold_assert(object->local_has_got_offset(r_sym, got_type));
2005               got_offset = (object->local_got_offset(r_sym, got_type)
2006                             - target->got_size());
2007             }
2008           if (optimized_type == tls::TLSOPT_TO_IE)
2009             {
2010               gold_assert(tls_segment != NULL);
2011               value = target->got_plt_section()->address() + got_offset;
2012               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2013                                  value, view, address, view_size);
2014               break;
2015             }
2016           else if (optimized_type == tls::TLSOPT_NONE)
2017             {
2018               // Relocate the field with the offset of the pair of GOT
2019               // entries.
2020               value = target->got_plt_section()->address() + got_offset;
2021               Relocate_functions<64, false>::pcrela32(view, value, addend,
2022                                                       address);
2023               break;
2024             }
2025         }
2026       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2027                              _("unsupported reloc %u"), r_type);
2028       break;
2029
2030     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2031     case elfcpp::R_X86_64_TLSDESC_CALL:
2032       this->saw_tls_block_reloc_ = true;
2033       if (optimized_type == tls::TLSOPT_TO_LE)
2034         {
2035           gold_assert(tls_segment != NULL);
2036           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2037                                   rela, r_type, value, view,
2038                                   view_size);
2039           break;
2040         }
2041       else
2042         {
2043           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2044                                    ? GOT_TYPE_TLS_OFFSET
2045                                    : GOT_TYPE_TLS_DESC);
2046           unsigned int got_offset;
2047           if (gsym != NULL)
2048             {
2049               gold_assert(gsym->has_got_offset(got_type));
2050               got_offset = gsym->got_offset(got_type) - target->got_size();
2051             }
2052           else
2053             {
2054               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2055               gold_assert(object->local_has_got_offset(r_sym, got_type));
2056               got_offset = (object->local_got_offset(r_sym, got_type)
2057                             - target->got_size());
2058             }
2059           if (optimized_type == tls::TLSOPT_TO_IE)
2060             {
2061               gold_assert(tls_segment != NULL);
2062               value = target->got_plt_section()->address() + got_offset;
2063               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2064                                       rela, r_type, value, view, address,
2065                                       view_size);
2066               break;
2067             }
2068           else if (optimized_type == tls::TLSOPT_NONE)
2069             {
2070               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2071                 {
2072                   // Relocate the field with the offset of the pair of GOT
2073                   // entries.
2074                   value = target->got_plt_section()->address() + got_offset;
2075                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2076                                                           address);
2077                 }
2078               break;
2079             }
2080         }
2081       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2082                              _("unsupported reloc %u"), r_type);
2083       break;
2084
2085     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2086       this->saw_tls_block_reloc_ = true;
2087       if (optimized_type == tls::TLSOPT_TO_LE)
2088         {
2089           gold_assert(tls_segment != NULL);
2090           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2091                              value, view, view_size);
2092           break;
2093         }
2094       else if (optimized_type == tls::TLSOPT_NONE)
2095         {
2096           // Relocate the field with the offset of the GOT entry for
2097           // the module index.
2098           unsigned int got_offset;
2099           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2100                         - target->got_size());
2101           value = target->got_plt_section()->address() + got_offset;
2102           Relocate_functions<64, false>::pcrela32(view, value, addend,
2103                                                   address);
2104           break;
2105         }
2106       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2107                              _("unsupported reloc %u"), r_type);
2108       break;
2109
2110     case elfcpp::R_X86_64_DTPOFF32:
2111       if (optimized_type == tls::TLSOPT_TO_LE)
2112         {
2113           // This relocation type is used in debugging information.
2114           // In that case we need to not optimize the value.  If we
2115           // haven't seen a TLSLD reloc, then we assume we should not
2116           // optimize this reloc.
2117           if (this->saw_tls_block_reloc_)
2118             {
2119               gold_assert(tls_segment != NULL);
2120               value -= tls_segment->memsz();
2121             }
2122         }
2123       Relocate_functions<64, false>::rela32(view, value, addend);
2124       break;
2125
2126     case elfcpp::R_X86_64_DTPOFF64:
2127       if (optimized_type == tls::TLSOPT_TO_LE)
2128         {
2129           // See R_X86_64_DTPOFF32, just above, for why we test this.
2130           if (this->saw_tls_block_reloc_)
2131             {
2132               gold_assert(tls_segment != NULL);
2133               value -= tls_segment->memsz();
2134             }
2135         }
2136       Relocate_functions<64, false>::rela64(view, value, addend);
2137       break;
2138
2139     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2140       if (optimized_type == tls::TLSOPT_TO_LE)
2141         {
2142           gold_assert(tls_segment != NULL);
2143           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2144                                                 rela, r_type, value, view,
2145                                                 view_size);
2146           break;
2147         }
2148       else if (optimized_type == tls::TLSOPT_NONE)
2149         {
2150           // Relocate the field with the offset of the GOT entry for
2151           // the tp-relative offset of the symbol.
2152           unsigned int got_offset;
2153           if (gsym != NULL)
2154             {
2155               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2156               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2157                             - target->got_size());
2158             }
2159           else
2160             {
2161               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2162               gold_assert(object->local_has_got_offset(r_sym,
2163                                                        GOT_TYPE_TLS_OFFSET));
2164               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2165                             - target->got_size());
2166             }
2167           value = target->got_plt_section()->address() + got_offset;
2168           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2169           break;
2170         }
2171       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2172                              _("unsupported reloc type %u"),
2173                              r_type);
2174       break;
2175
2176     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2177       value -= tls_segment->memsz();
2178       Relocate_functions<64, false>::rela32(view, value, addend);
2179       break;
2180     }
2181 }
2182
2183 // Do a relocation in which we convert a TLS General-Dynamic to an
2184 // Initial-Exec.
2185
2186 inline void
2187 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2188                                       size_t relnum,
2189                                       Output_segment*,
2190                                       const elfcpp::Rela<64, false>& rela,
2191                                       unsigned int,
2192                                       elfcpp::Elf_types<64>::Elf_Addr value,
2193                                       unsigned char* view,
2194                                       elfcpp::Elf_types<64>::Elf_Addr address,
2195                                       section_size_type view_size)
2196 {
2197   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2198   // .word 0x6666; rex64; call __tls_get_addr
2199   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2200
2201   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2202   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2203
2204   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2205                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2206   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2207                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2208
2209   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2210
2211   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2212   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2213
2214   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2215   // We can skip it.
2216   this->skip_call_tls_get_addr_ = true;
2217 }
2218
2219 // Do a relocation in which we convert a TLS General-Dynamic to a
2220 // Local-Exec.
2221
2222 inline void
2223 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2224                                       size_t relnum,
2225                                       Output_segment* tls_segment,
2226                                       const elfcpp::Rela<64, false>& rela,
2227                                       unsigned int,
2228                                       elfcpp::Elf_types<64>::Elf_Addr value,
2229                                       unsigned char* view,
2230                                       section_size_type view_size)
2231 {
2232   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2233   // .word 0x6666; rex64; call __tls_get_addr
2234   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2235
2236   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2237   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2238
2239   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2240                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2241   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2242                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2243
2244   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2245
2246   value -= tls_segment->memsz();
2247   Relocate_functions<64, false>::rela32(view + 8, value, 0);
2248
2249   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2250   // We can skip it.
2251   this->skip_call_tls_get_addr_ = true;
2252 }
2253
2254 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2255
2256 inline void
2257 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2258     const Relocate_info<64, false>* relinfo,
2259     size_t relnum,
2260     Output_segment*,
2261     const elfcpp::Rela<64, false>& rela,
2262     unsigned int r_type,
2263     elfcpp::Elf_types<64>::Elf_Addr value,
2264     unsigned char* view,
2265     elfcpp::Elf_types<64>::Elf_Addr address,
2266     section_size_type view_size)
2267 {
2268   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2269     {
2270       // leaq foo@tlsdesc(%rip), %rax
2271       // ==> movq foo@gottpoff(%rip), %rax
2272       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2273       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2274       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2275                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2276       view[-2] = 0x8b;
2277       const elfcpp::Elf_Xword addend = rela.get_r_addend();
2278       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2279     }
2280   else
2281     {
2282       // call *foo@tlscall(%rax)
2283       // ==> nop; nop
2284       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2285       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2286       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2287                      view[0] == 0xff && view[1] == 0x10);
2288       view[0] = 0x66;
2289       view[1] = 0x90;
2290     }
2291 }
2292
2293 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2294
2295 inline void
2296 Target_x86_64::Relocate::tls_desc_gd_to_le(
2297     const Relocate_info<64, false>* relinfo,
2298     size_t relnum,
2299     Output_segment* tls_segment,
2300     const elfcpp::Rela<64, false>& rela,
2301     unsigned int r_type,
2302     elfcpp::Elf_types<64>::Elf_Addr value,
2303     unsigned char* view,
2304     section_size_type view_size)
2305 {
2306   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2307     {
2308       // leaq foo@tlsdesc(%rip), %rax
2309       // ==> movq foo@tpoff, %rax
2310       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2311       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2312       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2313                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2314       view[-2] = 0xc7;
2315       view[-1] = 0xc0;
2316       value -= tls_segment->memsz();
2317       Relocate_functions<64, false>::rela32(view, value, 0);
2318     }
2319   else
2320     {
2321       // call *foo@tlscall(%rax)
2322       // ==> nop; nop
2323       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2324       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2325       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2326                      view[0] == 0xff && view[1] == 0x10);
2327       view[0] = 0x66;
2328       view[1] = 0x90;
2329     }
2330 }
2331
2332 inline void
2333 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2334                                       size_t relnum,
2335                                       Output_segment*,
2336                                       const elfcpp::Rela<64, false>& rela,
2337                                       unsigned int,
2338                                       elfcpp::Elf_types<64>::Elf_Addr,
2339                                       unsigned char* view,
2340                                       section_size_type view_size)
2341 {
2342   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2343   // ... leq foo@dtpoff(%rax),%reg
2344   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2345
2346   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2347   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2348
2349   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2350                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2351
2352   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2353
2354   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2355
2356   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2357   // We can skip it.
2358   this->skip_call_tls_get_addr_ = true;
2359 }
2360
2361 // Do a relocation in which we convert a TLS Initial-Exec to a
2362 // Local-Exec.
2363
2364 inline void
2365 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2366                                       size_t relnum,
2367                                       Output_segment* tls_segment,
2368                                       const elfcpp::Rela<64, false>& rela,
2369                                       unsigned int,
2370                                       elfcpp::Elf_types<64>::Elf_Addr value,
2371                                       unsigned char* view,
2372                                       section_size_type view_size)
2373 {
2374   // We need to examine the opcodes to figure out which instruction we
2375   // are looking at.
2376
2377   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
2378   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
2379
2380   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2381   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2382
2383   unsigned char op1 = view[-3];
2384   unsigned char op2 = view[-2];
2385   unsigned char op3 = view[-1];
2386   unsigned char reg = op3 >> 3;
2387
2388   if (op2 == 0x8b)
2389     {
2390       // movq
2391       if (op1 == 0x4c)
2392         view[-3] = 0x49;
2393       view[-2] = 0xc7;
2394       view[-1] = 0xc0 | reg;
2395     }
2396   else if (reg == 4)
2397     {
2398       // Special handling for %rsp.
2399       if (op1 == 0x4c)
2400         view[-3] = 0x49;
2401       view[-2] = 0x81;
2402       view[-1] = 0xc0 | reg;
2403     }
2404   else
2405     {
2406       // addq
2407       if (op1 == 0x4c)
2408         view[-3] = 0x4d;
2409       view[-2] = 0x8d;
2410       view[-1] = 0x80 | reg | (reg << 3);
2411     }
2412
2413   value -= tls_segment->memsz();
2414   Relocate_functions<64, false>::rela32(view, value, 0);
2415 }
2416
2417 // Relocate section data.
2418
2419 void
2420 Target_x86_64::relocate_section(
2421     const Relocate_info<64, false>* relinfo,
2422     unsigned int sh_type,
2423     const unsigned char* prelocs,
2424     size_t reloc_count,
2425     Output_section* output_section,
2426     bool needs_special_offset_handling,
2427     unsigned char* view,
2428     elfcpp::Elf_types<64>::Elf_Addr address,
2429     section_size_type view_size,
2430     const Reloc_symbol_changes* reloc_symbol_changes)
2431 {
2432   gold_assert(sh_type == elfcpp::SHT_RELA);
2433
2434   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2435                          Target_x86_64::Relocate>(
2436     relinfo,
2437     this,
2438     prelocs,
2439     reloc_count,
2440     output_section,
2441     needs_special_offset_handling,
2442     view,
2443     address,
2444     view_size,
2445     reloc_symbol_changes);
2446 }
2447
2448 // Return the size of a relocation while scanning during a relocatable
2449 // link.
2450
2451 unsigned int
2452 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2453     unsigned int r_type,
2454     Relobj* object)
2455 {
2456   switch (r_type)
2457     {
2458     case elfcpp::R_X86_64_NONE:
2459     case elfcpp::R_386_GNU_VTINHERIT:
2460     case elfcpp::R_386_GNU_VTENTRY:
2461     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2462     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2463     case elfcpp::R_X86_64_TLSDESC_CALL:
2464     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2465     case elfcpp::R_X86_64_DTPOFF32:
2466     case elfcpp::R_X86_64_DTPOFF64:
2467     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2468     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2469       return 0;
2470
2471     case elfcpp::R_X86_64_64:
2472     case elfcpp::R_X86_64_PC64:
2473     case elfcpp::R_X86_64_GOTOFF64:
2474     case elfcpp::R_X86_64_GOTPC64:
2475     case elfcpp::R_X86_64_PLTOFF64:
2476     case elfcpp::R_X86_64_GOT64:
2477     case elfcpp::R_X86_64_GOTPCREL64:
2478     case elfcpp::R_X86_64_GOTPCREL:
2479     case elfcpp::R_X86_64_GOTPLT64:
2480       return 8;
2481
2482     case elfcpp::R_X86_64_32:
2483     case elfcpp::R_X86_64_32S:
2484     case elfcpp::R_X86_64_PC32:
2485     case elfcpp::R_X86_64_PLT32:
2486     case elfcpp::R_X86_64_GOTPC32:
2487     case elfcpp::R_X86_64_GOT32:
2488       return 4;
2489
2490     case elfcpp::R_X86_64_16:
2491     case elfcpp::R_X86_64_PC16:
2492       return 2;
2493
2494     case elfcpp::R_X86_64_8:
2495     case elfcpp::R_X86_64_PC8:
2496       return 1;
2497
2498     case elfcpp::R_X86_64_COPY:
2499     case elfcpp::R_X86_64_GLOB_DAT:
2500     case elfcpp::R_X86_64_JUMP_SLOT:
2501     case elfcpp::R_X86_64_RELATIVE:
2502       // These are outstanding tls relocs, which are unexpected when linking
2503     case elfcpp::R_X86_64_TPOFF64:
2504     case elfcpp::R_X86_64_DTPMOD64:
2505     case elfcpp::R_X86_64_TLSDESC:
2506       object->error(_("unexpected reloc %u in object file"), r_type);
2507       return 0;
2508
2509     case elfcpp::R_X86_64_SIZE32:
2510     case elfcpp::R_X86_64_SIZE64:
2511     default:
2512       object->error(_("unsupported reloc %u against local symbol"), r_type);
2513       return 0;
2514     }
2515 }
2516
2517 // Scan the relocs during a relocatable link.
2518
2519 void
2520 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
2521                                        Layout* layout,
2522                                        Sized_relobj<64, false>* object,
2523                                        unsigned int data_shndx,
2524                                        unsigned int sh_type,
2525                                        const unsigned char* prelocs,
2526                                        size_t reloc_count,
2527                                        Output_section* output_section,
2528                                        bool needs_special_offset_handling,
2529                                        size_t local_symbol_count,
2530                                        const unsigned char* plocal_symbols,
2531                                        Relocatable_relocs* rr)
2532 {
2533   gold_assert(sh_type == elfcpp::SHT_RELA);
2534
2535   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2536     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2537
2538   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2539       Scan_relocatable_relocs>(
2540     symtab,
2541     layout,
2542     object,
2543     data_shndx,
2544     prelocs,
2545     reloc_count,
2546     output_section,
2547     needs_special_offset_handling,
2548     local_symbol_count,
2549     plocal_symbols,
2550     rr);
2551 }
2552
2553 // Relocate a section during a relocatable link.
2554
2555 void
2556 Target_x86_64::relocate_for_relocatable(
2557     const Relocate_info<64, false>* relinfo,
2558     unsigned int sh_type,
2559     const unsigned char* prelocs,
2560     size_t reloc_count,
2561     Output_section* output_section,
2562     off_t offset_in_output_section,
2563     const Relocatable_relocs* rr,
2564     unsigned char* view,
2565     elfcpp::Elf_types<64>::Elf_Addr view_address,
2566     section_size_type view_size,
2567     unsigned char* reloc_view,
2568     section_size_type reloc_view_size)
2569 {
2570   gold_assert(sh_type == elfcpp::SHT_RELA);
2571
2572   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2573     relinfo,
2574     prelocs,
2575     reloc_count,
2576     output_section,
2577     offset_in_output_section,
2578     rr,
2579     view,
2580     view_address,
2581     view_size,
2582     reloc_view,
2583     reloc_view_size);
2584 }
2585
2586 // Return the value to use for a dynamic which requires special
2587 // treatment.  This is how we support equality comparisons of function
2588 // pointers across shared library boundaries, as described in the
2589 // processor specific ABI supplement.
2590
2591 uint64_t
2592 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2593 {
2594   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2595   return this->plt_section()->address() + gsym->plt_offset();
2596 }
2597
2598 // Return a string used to fill a code section with nops to take up
2599 // the specified length.
2600
2601 std::string
2602 Target_x86_64::do_code_fill(section_size_type length) const
2603 {
2604   if (length >= 16)
2605     {
2606       // Build a jmpq instruction to skip over the bytes.
2607       unsigned char jmp[5];
2608       jmp[0] = 0xe9;
2609       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2610       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2611               + std::string(length - 5, '\0'));
2612     }
2613
2614   // Nop sequences of various lengths.
2615   const char nop1[1] = { 0x90 };                   // nop
2616   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2617   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
2618   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
2619   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
2620                          0x00 };
2621   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
2622                          0x00, 0x00 };
2623   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
2624                          0x00, 0x00, 0x00 };
2625   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
2626                          0x00, 0x00, 0x00, 0x00 };
2627   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
2628                          0x00, 0x00, 0x00, 0x00,
2629                          0x00 };
2630   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2631                            0x84, 0x00, 0x00, 0x00,
2632                            0x00, 0x00 };
2633   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2634                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2635                            0x00, 0x00, 0x00 };
2636   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2637                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2638                            0x00, 0x00, 0x00, 0x00 };
2639   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2640                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2641                            0x00, 0x00, 0x00, 0x00,
2642                            0x00 };
2643   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2644                            0x66, 0x2e, 0x0f, 0x1f, // data16
2645                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2646                            0x00, 0x00 };
2647   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2648                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
2649                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2650                            0x00, 0x00, 0x00 };
2651
2652   const char* nops[16] = {
2653     NULL,
2654     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2655     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2656   };
2657
2658   return std::string(nops[length], length);
2659 }
2660
2661 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2662 // compiled with -fstack-split.  The function calls non-stack-split
2663 // code.  We have to change the function so that it always ensures
2664 // that it has enough stack space to run some random function.
2665
2666 void
2667 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2668                                   section_offset_type fnoffset,
2669                                   section_size_type fnsize,
2670                                   unsigned char* view,
2671                                   section_size_type view_size,
2672                                   std::string* from,
2673                                   std::string* to) const
2674 {
2675   // The function starts with a comparison of the stack pointer and a
2676   // field in the TCB.  This is followed by a jump.
2677
2678   // cmp %fs:NN,%rsp
2679   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2680       && fnsize > 9)
2681     {
2682       // We will call __morestack if the carry flag is set after this
2683       // comparison.  We turn the comparison into an stc instruction
2684       // and some nops.
2685       view[fnoffset] = '\xf9';
2686       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2687     }
2688   // lea NN(%rsp),%r10
2689   // lea NN(%rsp),%r11
2690   else if ((this->match_view(view, view_size, fnoffset,
2691                              "\x4c\x8d\x94\x24", 4)
2692             || this->match_view(view, view_size, fnoffset,
2693                                 "\x4c\x8d\x9c\x24", 4))
2694            && fnsize > 8)
2695     {
2696       // This is loading an offset from the stack pointer for a
2697       // comparison.  The offset is negative, so we decrease the
2698       // offset by the amount of space we need for the stack.  This
2699       // means we will avoid calling __morestack if there happens to
2700       // be plenty of space on the stack already.
2701       unsigned char* pval = view + fnoffset + 4;
2702       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2703       val -= parameters->options().split_stack_adjust_size();
2704       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2705     }
2706   else
2707     {
2708       if (!object->has_no_split_stack())
2709         object->error(_("failed to match split-stack sequence at "
2710                         "section %u offset %0zx"),
2711                       shndx, static_cast<size_t>(fnoffset));
2712       return;
2713     }
2714
2715   // We have to change the function so that it calls
2716   // __morestack_non_split instead of __morestack.  The former will
2717   // allocate additional stack space.
2718   *from = "__morestack";
2719   *to = "__morestack_non_split";
2720 }
2721
2722 // The selector for x86_64 object files.
2723
2724 class Target_selector_x86_64 : public Target_selector_freebsd
2725 {
2726 public:
2727   Target_selector_x86_64()
2728     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2729                               "elf64-x86-64-freebsd")
2730   { }
2731
2732   Target*
2733   do_instantiate_target()
2734   { return new Target_x86_64(); }
2735
2736 };
2737
2738 Target_selector_x86_64 target_selector_x86_64;
2739
2740 } // End anonymous namespace.