Fix problem where mixed section types can cause internal error during a -r link.
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Get count of regular PLT entries.
183   unsigned int
184   regular_count() const
185   { return this->count_; }
186
187   // Return the total number of PLT entries.
188   unsigned int
189   entry_count() const
190   { return this->count_ + this->irelative_count_; }
191
192   // Return the offset of the first non-reserved PLT entry.
193   unsigned int
194   first_plt_entry_offset()
195   { return this->get_plt_entry_size(); }
196
197   // Return the size of a PLT entry.
198   unsigned int
199   get_plt_entry_size() const
200   { return this->do_get_plt_entry_size(); }
201
202   // Reserve a slot in the PLT for an existing symbol in an incremental update.
203   void
204   reserve_slot(unsigned int plt_index)
205   {
206     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
207                             (plt_index + 2) * this->get_plt_entry_size());
208   }
209
210   // Return the PLT address to use for a global symbol.
211   uint64_t
212   address_for_global(const Symbol* sym)
213   { return do_address_for_global(sym); }
214
215   // Return the PLT address to use for a local symbol.
216   uint64_t
217   address_for_local(const Relobj* obj, unsigned int symndx)
218   { return do_address_for_local(obj, symndx); }
219
220   // Add .eh_frame information for the PLT.
221   void
222   add_eh_frame(Layout* layout)
223   { this->do_add_eh_frame(layout); }
224
225  protected:
226   Output_data_got<64, false>*
227   got() const
228   { return this->got_; }
229
230   Output_data_got_plt_x86_64*
231   got_plt() const
232   { return this->got_plt_; }
233
234   Output_data_space*
235   got_irelative() const
236   { return this->got_irelative_; }
237
238   // Fill in the first PLT entry.
239   void
240   fill_first_plt_entry(unsigned char* pov,
241                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
242                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
243   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
244
245   // Fill in a normal PLT entry.  Returns the offset into the entry that
246   // should be the initial GOT slot value.
247   unsigned int
248   fill_plt_entry(unsigned char* pov,
249                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
250                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
251                  unsigned int got_offset,
252                  unsigned int plt_offset,
253                  unsigned int plt_index)
254   {
255     return this->do_fill_plt_entry(pov, got_address, plt_address,
256                                    got_offset, plt_offset, plt_index);
257   }
258
259   // Fill in the reserved TLSDESC PLT entry.
260   void
261   fill_tlsdesc_entry(unsigned char* pov,
262                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
263                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
264                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
265                      unsigned int tlsdesc_got_offset,
266                      unsigned int plt_offset)
267   {
268     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
269                                 tlsdesc_got_offset, plt_offset);
270   }
271
272   virtual unsigned int
273   do_get_plt_entry_size() const = 0;
274
275   virtual void
276   do_fill_first_plt_entry(unsigned char* pov,
277                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
278                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
279     = 0;
280
281   virtual unsigned int
282   do_fill_plt_entry(unsigned char* pov,
283                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
284                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
285                     unsigned int got_offset,
286                     unsigned int plt_offset,
287                     unsigned int plt_index) = 0;
288
289   virtual void
290   do_fill_tlsdesc_entry(unsigned char* pov,
291                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
292                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
293                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
294                         unsigned int tlsdesc_got_offset,
295                         unsigned int plt_offset) = 0;
296
297   // Return the PLT address to use for a global symbol.
298   virtual uint64_t
299   do_address_for_global(const Symbol* sym);
300
301   // Return the PLT address to use for a local symbol.
302   virtual uint64_t
303   do_address_for_local(const Relobj* obj, unsigned int symndx);
304
305   virtual void
306   do_add_eh_frame(Layout* layout) = 0;
307
308   void
309   do_adjust_output_section(Output_section* os);
310
311   // Write to a map file.
312   void
313   do_print_to_mapfile(Mapfile* mapfile) const
314   { mapfile->print_output_data(this, _("** PLT")); }
315
316   // The CIE of the .eh_frame unwind information for the PLT.
317   static const int plt_eh_frame_cie_size = 16;
318   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
319
320  private:
321   // Set the final size.
322   void
323   set_final_data_size();
324
325   // Write out the PLT data.
326   void
327   do_write(Output_file*);
328
329   // The reloc section.
330   Reloc_section* rel_;
331   // The TLSDESC relocs, if necessary.  These must follow the regular
332   // PLT relocs.
333   Reloc_section* tlsdesc_rel_;
334   // The IRELATIVE relocs, if necessary.  These must follow the
335   // regular PLT relocations and the TLSDESC relocations.
336   Reloc_section* irelative_rel_;
337   // The .got section.
338   Output_data_got<64, false>* got_;
339   // The .got.plt section.
340   Output_data_got_plt_x86_64* got_plt_;
341   // The part of the .got.plt section used for IRELATIVE relocs.
342   Output_data_space* got_irelative_;
343   // The number of PLT entries.
344   unsigned int count_;
345   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
346   // follow the regular PLT entries.
347   unsigned int irelative_count_;
348   // Offset of the reserved TLSDESC_GOT entry when needed.
349   unsigned int tlsdesc_got_offset_;
350   // List of available regions within the section, for incremental
351   // update links.
352   Free_list free_list_;
353 };
354
355 template<int size>
356 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
357 {
358  public:
359   Output_data_plt_x86_64_standard(Layout* layout,
360                                   Output_data_got<64, false>* got,
361                                   Output_data_got_plt_x86_64* got_plt,
362                                   Output_data_space* got_irelative)
363     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
364                                    got, got_plt, got_irelative)
365   { }
366
367   Output_data_plt_x86_64_standard(Layout* layout,
368                                   Output_data_got<64, false>* got,
369                                   Output_data_got_plt_x86_64* got_plt,
370                                   Output_data_space* got_irelative,
371                                   unsigned int plt_count)
372     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
373                                    got, got_plt, got_irelative,
374                                    plt_count)
375   { }
376
377  protected:
378   virtual unsigned int
379   do_get_plt_entry_size() const
380   { return plt_entry_size; }
381
382   virtual void
383   do_add_eh_frame(Layout* layout)
384   {
385     layout->add_eh_frame_for_plt(this,
386                                  this->plt_eh_frame_cie,
387                                  this->plt_eh_frame_cie_size,
388                                  plt_eh_frame_fde,
389                                  plt_eh_frame_fde_size);
390   }
391
392   virtual void
393   do_fill_first_plt_entry(unsigned char* pov,
394                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
395                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
396
397   virtual unsigned int
398   do_fill_plt_entry(unsigned char* pov,
399                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
400                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
401                     unsigned int got_offset,
402                     unsigned int plt_offset,
403                     unsigned int plt_index);
404
405   virtual void
406   do_fill_tlsdesc_entry(unsigned char* pov,
407                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
408                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
409                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
410                         unsigned int tlsdesc_got_offset,
411                         unsigned int plt_offset);
412
413  private:
414   // The size of an entry in the PLT.
415   static const int plt_entry_size = 16;
416
417   // The first entry in the PLT.
418   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
419   // procedure linkage table for both programs and shared objects."
420   static const unsigned char first_plt_entry[plt_entry_size];
421
422   // Other entries in the PLT for an executable.
423   static const unsigned char plt_entry[plt_entry_size];
424
425   // The reserved TLSDESC entry in the PLT for an executable.
426   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
427
428   // The .eh_frame unwind information for the PLT.
429   static const int plt_eh_frame_fde_size = 32;
430   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
431 };
432
433 class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
434 {
435  public:
436   Output_data_plt_x86_64_bnd(Layout* layout,
437                              Output_data_got<64, false>* got,
438                              Output_data_got_plt_x86_64* got_plt,
439                              Output_data_space* got_irelative)
440     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
441                                  got, got_plt, got_irelative),
442       aplt_offset_(0)
443   { }
444
445   Output_data_plt_x86_64_bnd(Layout* layout,
446                              Output_data_got<64, false>* got,
447                              Output_data_got_plt_x86_64* got_plt,
448                              Output_data_space* got_irelative,
449                              unsigned int plt_count)
450     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
451                                  got, got_plt, got_irelative,
452                                  plt_count),
453       aplt_offset_(0)
454   { }
455
456  protected:
457   virtual unsigned int
458   do_get_plt_entry_size() const
459   { return plt_entry_size; }
460
461   // Return the PLT address to use for a global symbol.
462   uint64_t
463   do_address_for_global(const Symbol*);
464
465   // Return the PLT address to use for a local symbol.
466   uint64_t
467   do_address_for_local(const Relobj*, unsigned int symndx);
468
469   virtual void
470   do_add_eh_frame(Layout* layout)
471   {
472     layout->add_eh_frame_for_plt(this,
473                                  this->plt_eh_frame_cie,
474                                  this->plt_eh_frame_cie_size,
475                                  plt_eh_frame_fde,
476                                  plt_eh_frame_fde_size);
477   }
478
479   virtual void
480   do_fill_first_plt_entry(unsigned char* pov,
481                           elfcpp::Elf_types<64>::Elf_Addr got_addr,
482                           elfcpp::Elf_types<64>::Elf_Addr plt_addr);
483
484   virtual unsigned int
485   do_fill_plt_entry(unsigned char* pov,
486                     elfcpp::Elf_types<64>::Elf_Addr got_address,
487                     elfcpp::Elf_types<64>::Elf_Addr plt_address,
488                     unsigned int got_offset,
489                     unsigned int plt_offset,
490                     unsigned int plt_index);
491
492   virtual void
493   do_fill_tlsdesc_entry(unsigned char* pov,
494                         elfcpp::Elf_types<64>::Elf_Addr got_address,
495                         elfcpp::Elf_types<64>::Elf_Addr plt_address,
496                         elfcpp::Elf_types<64>::Elf_Addr got_base,
497                         unsigned int tlsdesc_got_offset,
498                         unsigned int plt_offset);
499
500   void
501   fill_aplt_entry(unsigned char* pov,
502                   elfcpp::Elf_types<64>::Elf_Addr got_address,
503                   elfcpp::Elf_types<64>::Elf_Addr plt_address,
504                   unsigned int got_offset,
505                   unsigned int plt_offset,
506                   unsigned int plt_index);
507
508  private:
509   // Set the final size.
510   void
511   set_final_data_size();
512
513   // Write out the BND PLT data.
514   void
515   do_write(Output_file*);
516
517   // Offset of the Additional PLT (if using -z bndplt).
518   unsigned int aplt_offset_;
519
520   // The size of an entry in the PLT.
521   static const int plt_entry_size = 16;
522
523   // The size of an entry in the additional PLT.
524   static const int aplt_entry_size = 8;
525
526   // The first entry in the PLT.
527   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
528   // procedure linkage table for both programs and shared objects."
529   static const unsigned char first_plt_entry[plt_entry_size];
530
531   // Other entries in the PLT for an executable.
532   static const unsigned char plt_entry[plt_entry_size];
533
534   // Entries in the additional PLT.
535   static const unsigned char aplt_entry[aplt_entry_size];
536
537   // The reserved TLSDESC entry in the PLT for an executable.
538   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
539
540   // The .eh_frame unwind information for the PLT.
541   static const int plt_eh_frame_fde_size = 32;
542   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
543 };
544
545 template<int size>
546 class Lazy_view
547 {
548  public:
549   Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
550     : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
551   { }
552
553   inline unsigned char
554   operator[](size_t offset)
555   {
556     if (this->view_ == NULL)
557       this->view_ = this->object_->section_contents(this->data_shndx_,
558                                                     &this->view_size_,
559                                                     true);
560     if (offset >= this->view_size_)
561       return 0;
562     return this->view_[offset];
563   }
564
565  private:
566   Sized_relobj_file<size, false>* object_;
567   unsigned int data_shndx_;
568   const unsigned char* view_;
569   section_size_type view_size_;
570 };
571
572 // The x86_64 target class.
573 // See the ABI at
574 //   http://www.x86-64.org/documentation/abi.pdf
575 // TLS info comes from
576 //   http://people.redhat.com/drepper/tls.pdf
577 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
578
579 template<int size>
580 class Target_x86_64 : public Sized_target<size, false>
581 {
582  public:
583   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
584   // uses only Elf64_Rela relocation entries with explicit addends."
585   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
586
587   Target_x86_64(const Target::Target_info* info = &x86_64_info)
588     : Sized_target<size, false>(info),
589       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
590       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
591       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
592       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
593       tls_base_symbol_defined_(false)
594   { }
595
596   // Hook for a new output section.
597   void
598   do_new_output_section(Output_section*) const;
599
600   // Scan the relocations to look for symbol adjustments.
601   void
602   gc_process_relocs(Symbol_table* symtab,
603                     Layout* layout,
604                     Sized_relobj_file<size, false>* object,
605                     unsigned int data_shndx,
606                     unsigned int sh_type,
607                     const unsigned char* prelocs,
608                     size_t reloc_count,
609                     Output_section* output_section,
610                     bool needs_special_offset_handling,
611                     size_t local_symbol_count,
612                     const unsigned char* plocal_symbols);
613
614   // Scan the relocations to look for symbol adjustments.
615   void
616   scan_relocs(Symbol_table* symtab,
617               Layout* layout,
618               Sized_relobj_file<size, false>* object,
619               unsigned int data_shndx,
620               unsigned int sh_type,
621               const unsigned char* prelocs,
622               size_t reloc_count,
623               Output_section* output_section,
624               bool needs_special_offset_handling,
625               size_t local_symbol_count,
626               const unsigned char* plocal_symbols);
627
628   // Finalize the sections.
629   void
630   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
631
632   // Return the value to use for a dynamic which requires special
633   // treatment.
634   uint64_t
635   do_dynsym_value(const Symbol*) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, false>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, false>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Scan the relocs for --emit-relocs.
666   void
667   emit_relocs_scan(Symbol_table* symtab,
668                    Layout* layout,
669                    Sized_relobj_file<size, false>* object,
670                    unsigned int data_shndx,
671                    unsigned int sh_type,
672                    const unsigned char* prelocs,
673                    size_t reloc_count,
674                    Output_section* output_section,
675                    bool needs_special_offset_handling,
676                    size_t local_symbol_count,
677                    const unsigned char* plocal_syms,
678                    Relocatable_relocs* rr);
679
680   // Emit relocations for a section.
681   void
682   relocate_relocs(
683       const Relocate_info<size, false>*,
684       unsigned int sh_type,
685       const unsigned char* prelocs,
686       size_t reloc_count,
687       Output_section* output_section,
688       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
689       unsigned char* view,
690       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
691       section_size_type view_size,
692       unsigned char* reloc_view,
693       section_size_type reloc_view_size);
694
695   // Return a string used to fill a code section with nops.
696   std::string
697   do_code_fill(section_size_type length) const;
698
699   // Return whether SYM is defined by the ABI.
700   bool
701   do_is_defined_by_abi(const Symbol* sym) const
702   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
703
704   // Return the symbol index to use for a target specific relocation.
705   // The only target specific relocation is R_X86_64_TLSDESC for a
706   // local symbol, which is an absolute reloc.
707   unsigned int
708   do_reloc_symbol_index(void*, unsigned int r_type) const
709   {
710     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
711     return 0;
712   }
713
714   // Return the addend to use for a target specific relocation.
715   uint64_t
716   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
717
718   // Return the PLT section.
719   uint64_t
720   do_plt_address_for_global(const Symbol* gsym) const
721   { return this->plt_section()->address_for_global(gsym); }
722
723   uint64_t
724   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
725   { return this->plt_section()->address_for_local(relobj, symndx); }
726
727   // This function should be defined in targets that can use relocation
728   // types to determine (implemented in local_reloc_may_be_function_pointer
729   // and global_reloc_may_be_function_pointer)
730   // if a function's pointer is taken.  ICF uses this in safe mode to only
731   // fold those functions whose pointer is defintely not taken.  For x86_64
732   // pie binaries, safe ICF cannot be done by looking at only relocation
733   // types, and for certain cases (e.g. R_X86_64_PC32), the instruction
734   // opcode is checked as well to distinguish a function call from taking
735   // a function's pointer.
736   bool
737   do_can_check_for_function_pointers() const
738   { return true; }
739
740   // Return the base for a DW_EH_PE_datarel encoding.
741   uint64_t
742   do_ehframe_datarel_base() const;
743
744   // Adjust -fsplit-stack code which calls non-split-stack code.
745   void
746   do_calls_non_split(Relobj* object, unsigned int shndx,
747                      section_offset_type fnoffset, section_size_type fnsize,
748                      const unsigned char* prelocs, size_t reloc_count,
749                      unsigned char* view, section_size_type view_size,
750                      std::string* from, std::string* to) const;
751
752   // Return the size of the GOT section.
753   section_size_type
754   got_size() const
755   {
756     gold_assert(this->got_ != NULL);
757     return this->got_->data_size();
758   }
759
760   // Return the number of entries in the GOT.
761   unsigned int
762   got_entry_count() const
763   {
764     if (this->got_ == NULL)
765       return 0;
766     return this->got_size() / 8;
767   }
768
769   // Return the number of entries in the PLT.
770   unsigned int
771   plt_entry_count() const;
772
773   // Return the offset of the first non-reserved PLT entry.
774   unsigned int
775   first_plt_entry_offset() const;
776
777   // Return the size of each PLT entry.
778   unsigned int
779   plt_entry_size() const;
780
781   // Return the size of each GOT entry.
782   unsigned int
783   got_entry_size() const
784   { return 8; };
785
786   // Create the GOT section for an incremental update.
787   Output_data_got_base*
788   init_got_plt_for_update(Symbol_table* symtab,
789                           Layout* layout,
790                           unsigned int got_count,
791                           unsigned int plt_count);
792
793   // Reserve a GOT entry for a local symbol, and regenerate any
794   // necessary dynamic relocations.
795   void
796   reserve_local_got_entry(unsigned int got_index,
797                           Sized_relobj<size, false>* obj,
798                           unsigned int r_sym,
799                           unsigned int got_type);
800
801   // Reserve a GOT entry for a global symbol, and regenerate any
802   // necessary dynamic relocations.
803   void
804   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
805                            unsigned int got_type);
806
807   // Register an existing PLT entry for a global symbol.
808   void
809   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
810                             Symbol* gsym);
811
812   // Force a COPY relocation for a given symbol.
813   void
814   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
815
816   // Apply an incremental relocation.
817   void
818   apply_relocation(const Relocate_info<size, false>* relinfo,
819                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
820                    unsigned int r_type,
821                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
822                    const Symbol* gsym,
823                    unsigned char* view,
824                    typename elfcpp::Elf_types<size>::Elf_Addr address,
825                    section_size_type view_size);
826
827   // Add a new reloc argument, returning the index in the vector.
828   size_t
829   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
830   {
831     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
832     return this->tlsdesc_reloc_info_.size() - 1;
833   }
834
835   Output_data_plt_x86_64<size>*
836   make_data_plt(Layout* layout,
837                 Output_data_got<64, false>* got,
838                 Output_data_got_plt_x86_64* got_plt,
839                 Output_data_space* got_irelative)
840   {
841     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
842   }
843
844   Output_data_plt_x86_64<size>*
845   make_data_plt(Layout* layout,
846                 Output_data_got<64, false>* got,
847                 Output_data_got_plt_x86_64* got_plt,
848                 Output_data_space* got_irelative,
849                 unsigned int plt_count)
850   {
851     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
852                                   plt_count);
853   }
854
855   virtual Output_data_plt_x86_64<size>*
856   do_make_data_plt(Layout* layout,
857                    Output_data_got<64, false>* got,
858                    Output_data_got_plt_x86_64* got_plt,
859                    Output_data_space* got_irelative);
860
861   virtual Output_data_plt_x86_64<size>*
862   do_make_data_plt(Layout* layout,
863                    Output_data_got<64, false>* got,
864                    Output_data_got_plt_x86_64* got_plt,
865                    Output_data_space* got_irelative,
866                    unsigned int plt_count);
867
868  private:
869   // The class which scans relocations.
870   class Scan
871   {
872   public:
873     Scan()
874       : issued_non_pic_error_(false)
875     { }
876
877     static inline int
878     get_reference_flags(unsigned int r_type);
879
880     inline void
881     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
882           Sized_relobj_file<size, false>* object,
883           unsigned int data_shndx,
884           Output_section* output_section,
885           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
886           const elfcpp::Sym<size, false>& lsym,
887           bool is_discarded);
888
889     inline void
890     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
891            Sized_relobj_file<size, false>* object,
892            unsigned int data_shndx,
893            Output_section* output_section,
894            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
895            Symbol* gsym);
896
897     inline bool
898     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
899                                         Target_x86_64* target,
900                                         Sized_relobj_file<size, false>* object,
901                                         unsigned int data_shndx,
902                                         Output_section* output_section,
903                                         const elfcpp::Rela<size, false>& reloc,
904                                         unsigned int r_type,
905                                         const elfcpp::Sym<size, false>& lsym);
906
907     inline bool
908     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
909                                          Target_x86_64* target,
910                                          Sized_relobj_file<size, false>* object,
911                                          unsigned int data_shndx,
912                                          Output_section* output_section,
913                                          const elfcpp::Rela<size, false>& reloc,
914                                          unsigned int r_type,
915                                          Symbol* gsym);
916
917   private:
918     static void
919     unsupported_reloc_local(Sized_relobj_file<size, false>*,
920                             unsigned int r_type);
921
922     static void
923     unsupported_reloc_global(Sized_relobj_file<size, false>*,
924                              unsigned int r_type, Symbol*);
925
926     void
927     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
928
929     inline bool
930     possible_function_pointer_reloc(Sized_relobj_file<size, false>* src_obj,
931                                     unsigned int src_indx,
932                                     unsigned int r_offset,
933                                     unsigned int r_type);
934
935     bool
936     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
937                               unsigned int r_type);
938
939     // Whether we have issued an error about a non-PIC compilation.
940     bool issued_non_pic_error_;
941   };
942
943   // The class which implements relocation.
944   class Relocate
945   {
946    public:
947     Relocate()
948       : skip_call_tls_get_addr_(false)
949     { }
950
951     ~Relocate()
952     {
953       if (this->skip_call_tls_get_addr_)
954         {
955           // FIXME: This needs to specify the location somehow.
956           gold_error(_("missing expected TLS relocation"));
957         }
958     }
959
960     // Do a relocation.  Return false if the caller should not issue
961     // any warnings about this relocation.
962     inline bool
963     relocate(const Relocate_info<size, false>*, unsigned int,
964              Target_x86_64*, Output_section*, size_t, const unsigned char*,
965              const Sized_symbol<size>*, const Symbol_value<size>*,
966              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
967              section_size_type);
968
969    private:
970     // Do a TLS relocation.
971     inline void
972     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
973                  size_t relnum, const elfcpp::Rela<size, false>&,
974                  unsigned int r_type, const Sized_symbol<size>*,
975                  const Symbol_value<size>*,
976                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
977                  section_size_type);
978
979     // Do a TLS General-Dynamic to Initial-Exec transition.
980     inline void
981     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
982                  const elfcpp::Rela<size, false>&, unsigned int r_type,
983                  typename elfcpp::Elf_types<size>::Elf_Addr value,
984                  unsigned char* view,
985                  typename elfcpp::Elf_types<size>::Elf_Addr,
986                  section_size_type view_size);
987
988     // Do a TLS General-Dynamic to Local-Exec transition.
989     inline void
990     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
991                  Output_segment* tls_segment,
992                  const elfcpp::Rela<size, false>&, unsigned int r_type,
993                  typename elfcpp::Elf_types<size>::Elf_Addr value,
994                  unsigned char* view,
995                  section_size_type view_size);
996
997     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
998     inline void
999     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
1000                       const elfcpp::Rela<size, false>&, unsigned int r_type,
1001                       typename elfcpp::Elf_types<size>::Elf_Addr value,
1002                       unsigned char* view,
1003                       typename elfcpp::Elf_types<size>::Elf_Addr,
1004                       section_size_type view_size);
1005
1006     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
1007     inline void
1008     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1009                       Output_segment* tls_segment,
1010                       const elfcpp::Rela<size, false>&, unsigned int r_type,
1011                       typename elfcpp::Elf_types<size>::Elf_Addr value,
1012                       unsigned char* view,
1013                       section_size_type view_size);
1014
1015     // Do a TLS Local-Dynamic to Local-Exec transition.
1016     inline void
1017     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
1018                  Output_segment* tls_segment,
1019                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1020                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1021                  unsigned char* view,
1022                  section_size_type view_size);
1023
1024     // Do a TLS Initial-Exec to Local-Exec transition.
1025     static inline void
1026     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
1027                  Output_segment* tls_segment,
1028                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1029                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1030                  unsigned char* view,
1031                  section_size_type view_size);
1032
1033     // This is set if we should skip the next reloc, which should be a
1034     // PLT32 reloc against ___tls_get_addr.
1035     bool skip_call_tls_get_addr_;
1036   };
1037
1038   // Check if relocation against this symbol is a candidate for
1039   // conversion from
1040   // mov foo@GOTPCREL(%rip), %reg
1041   // to lea foo(%rip), %reg.
1042   template<class View_type>
1043   static inline bool
1044   can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
1045                          size_t r_offset, View_type* view)
1046   {
1047     gold_assert(gsym != NULL);
1048     // We cannot do the conversion unless it's one of these relocations.
1049     if (r_type != elfcpp::R_X86_64_GOTPCREL
1050         && r_type != elfcpp::R_X86_64_GOTPCRELX
1051         && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
1052       return false;
1053     // We cannot convert references to IFUNC symbols, or to symbols that
1054     // are not local to the current module.
1055     // We can't do predefined symbols because they may become undefined
1056     // (e.g., __ehdr_start when the headers aren't mapped to a segment).
1057     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1058         || gsym->is_undefined()
1059         || gsym->is_predefined()
1060         || gsym->is_from_dynobj()
1061         || gsym->is_preemptible())
1062       return false;
1063     // If we are building a shared object and the symbol is protected, we may
1064     // need to go through the GOT.
1065     if (parameters->options().shared()
1066         && gsym->visibility() == elfcpp::STV_PROTECTED)
1067       return false;
1068     // We cannot convert references to the _DYNAMIC symbol.
1069     if (strcmp(gsym->name(), "_DYNAMIC") == 0)
1070       return false;
1071     // Check for a MOV opcode.
1072     return (*view)[r_offset - 2] == 0x8b;
1073   }
1074
1075   // Convert
1076   // callq *foo@GOTPCRELX(%rip) to
1077   // addr32 callq foo
1078   // and jmpq *foo@GOTPCRELX(%rip) to
1079   // jmpq foo
1080   // nop
1081   template<class View_type>
1082   static inline bool
1083   can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
1084                               size_t r_offset, View_type* view)
1085   {
1086     gold_assert(gsym != NULL);
1087     // We cannot do the conversion unless it's a GOTPCRELX relocation.
1088     if (r_type != elfcpp::R_X86_64_GOTPCRELX)
1089       return false;
1090     // We cannot convert references to IFUNC symbols, or to symbols that
1091     // are not local to the current module.
1092     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1093         || gsym->is_undefined ()
1094         || gsym->is_from_dynobj()
1095         || gsym->is_preemptible())
1096       return false;
1097     // Check for a CALLQ or JMPQ opcode.
1098     return ((*view)[r_offset - 2] == 0xff
1099             && ((*view)[r_offset - 1] == 0x15
1100                 || (*view)[r_offset - 1] == 0x25));
1101   }
1102
1103   // Adjust TLS relocation type based on the options and whether this
1104   // is a local symbol.
1105   static tls::Tls_optimization
1106   optimize_tls_reloc(bool is_final, int r_type);
1107
1108   // Get the GOT section, creating it if necessary.
1109   Output_data_got<64, false>*
1110   got_section(Symbol_table*, Layout*);
1111
1112   // Get the GOT PLT section.
1113   Output_data_got_plt_x86_64*
1114   got_plt_section() const
1115   {
1116     gold_assert(this->got_plt_ != NULL);
1117     return this->got_plt_;
1118   }
1119
1120   // Get the GOT section for TLSDESC entries.
1121   Output_data_got<64, false>*
1122   got_tlsdesc_section() const
1123   {
1124     gold_assert(this->got_tlsdesc_ != NULL);
1125     return this->got_tlsdesc_;
1126   }
1127
1128   // Create the PLT section.
1129   void
1130   make_plt_section(Symbol_table* symtab, Layout* layout);
1131
1132   // Create a PLT entry for a global symbol.
1133   void
1134   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1135
1136   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
1137   void
1138   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1139                              Sized_relobj_file<size, false>* relobj,
1140                              unsigned int local_sym_index);
1141
1142   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1143   void
1144   define_tls_base_symbol(Symbol_table*, Layout*);
1145
1146   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1147   void
1148   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1149
1150   // Create a GOT entry for the TLS module index.
1151   unsigned int
1152   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1153                       Sized_relobj_file<size, false>* object);
1154
1155   // Get the PLT section.
1156   Output_data_plt_x86_64<size>*
1157   plt_section() const
1158   {
1159     gold_assert(this->plt_ != NULL);
1160     return this->plt_;
1161   }
1162
1163   // Get the dynamic reloc section, creating it if necessary.
1164   Reloc_section*
1165   rela_dyn_section(Layout*);
1166
1167   // Get the section to use for TLSDESC relocations.
1168   Reloc_section*
1169   rela_tlsdesc_section(Layout*) const;
1170
1171   // Get the section to use for IRELATIVE relocations.
1172   Reloc_section*
1173   rela_irelative_section(Layout*);
1174
1175   // Add a potential copy relocation.
1176   void
1177   copy_reloc(Symbol_table* symtab, Layout* layout,
1178              Sized_relobj_file<size, false>* object,
1179              unsigned int shndx, Output_section* output_section,
1180              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1181   {
1182     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1183     this->copy_relocs_.copy_reloc(symtab, layout,
1184                                   symtab->get_sized_symbol<size>(sym),
1185                                   object, shndx, output_section,
1186                                   r_type, reloc.get_r_offset(),
1187                                   reloc.get_r_addend(),
1188                                   this->rela_dyn_section(layout));
1189   }
1190
1191   // Information about this specific target which we pass to the
1192   // general Target structure.
1193   static const Target::Target_info x86_64_info;
1194
1195   // The types of GOT entries needed for this platform.
1196   // These values are exposed to the ABI in an incremental link.
1197   // Do not renumber existing values without changing the version
1198   // number of the .gnu_incremental_inputs section.
1199   enum Got_type
1200   {
1201     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
1202     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
1203     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
1204     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
1205   };
1206
1207   // This type is used as the argument to the target specific
1208   // relocation routines.  The only target specific reloc is
1209   // R_X86_64_TLSDESC against a local symbol.
1210   struct Tlsdesc_info
1211   {
1212     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1213       : object(a_object), r_sym(a_r_sym)
1214     { }
1215
1216     // The object in which the local symbol is defined.
1217     Sized_relobj_file<size, false>* object;
1218     // The local symbol index in the object.
1219     unsigned int r_sym;
1220   };
1221
1222   // The GOT section.
1223   Output_data_got<64, false>* got_;
1224   // The PLT section.
1225   Output_data_plt_x86_64<size>* plt_;
1226   // The GOT PLT section.
1227   Output_data_got_plt_x86_64* got_plt_;
1228   // The GOT section for IRELATIVE relocations.
1229   Output_data_space* got_irelative_;
1230   // The GOT section for TLSDESC relocations.
1231   Output_data_got<64, false>* got_tlsdesc_;
1232   // The _GLOBAL_OFFSET_TABLE_ symbol.
1233   Symbol* global_offset_table_;
1234   // The dynamic reloc section.
1235   Reloc_section* rela_dyn_;
1236   // The section to use for IRELATIVE relocs.
1237   Reloc_section* rela_irelative_;
1238   // Relocs saved to avoid a COPY reloc.
1239   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1240   // Offset of the GOT entry for the TLS module index.
1241   unsigned int got_mod_index_offset_;
1242   // We handle R_X86_64_TLSDESC against a local symbol as a target
1243   // specific relocation.  Here we store the object and local symbol
1244   // index for the relocation.
1245   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1246   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1247   bool tls_base_symbol_defined_;
1248 };
1249
1250 template<>
1251 const Target::Target_info Target_x86_64<64>::x86_64_info =
1252 {
1253   64,                   // size
1254   false,                // is_big_endian
1255   elfcpp::EM_X86_64,    // machine_code
1256   false,                // has_make_symbol
1257   false,                // has_resolve
1258   true,                 // has_code_fill
1259   true,                 // is_default_stack_executable
1260   true,                 // can_icf_inline_merge_sections
1261   '\0',                 // wrap_char
1262   "/lib/ld64.so.1",     // program interpreter
1263   0x400000,             // default_text_segment_address
1264   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1265   0x1000,               // common_pagesize (overridable by -z common-page-size)
1266   false,                // isolate_execinstr
1267   0,                    // rosegment_gap
1268   elfcpp::SHN_UNDEF,    // small_common_shndx
1269   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1270   0,                    // small_common_section_flags
1271   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1272   NULL,                 // attributes_section
1273   NULL,                 // attributes_vendor
1274   "_start",             // entry_symbol_name
1275   32,                   // hash_entry_size
1276   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
1277 };
1278
1279 template<>
1280 const Target::Target_info Target_x86_64<32>::x86_64_info =
1281 {
1282   32,                   // size
1283   false,                // is_big_endian
1284   elfcpp::EM_X86_64,    // machine_code
1285   false,                // has_make_symbol
1286   false,                // has_resolve
1287   true,                 // has_code_fill
1288   true,                 // is_default_stack_executable
1289   true,                 // can_icf_inline_merge_sections
1290   '\0',                 // wrap_char
1291   "/libx32/ldx32.so.1", // program interpreter
1292   0x400000,             // default_text_segment_address
1293   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1294   0x1000,               // common_pagesize (overridable by -z common-page-size)
1295   false,                // isolate_execinstr
1296   0,                    // rosegment_gap
1297   elfcpp::SHN_UNDEF,    // small_common_shndx
1298   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1299   0,                    // small_common_section_flags
1300   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1301   NULL,                 // attributes_section
1302   NULL,                 // attributes_vendor
1303   "_start",             // entry_symbol_name
1304   32,                   // hash_entry_size
1305   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
1306 };
1307
1308 // This is called when a new output section is created.  This is where
1309 // we handle the SHF_X86_64_LARGE.
1310
1311 template<int size>
1312 void
1313 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1314 {
1315   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1316     os->set_is_large_section();
1317 }
1318
1319 // Get the GOT section, creating it if necessary.
1320
1321 template<int size>
1322 Output_data_got<64, false>*
1323 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1324 {
1325   if (this->got_ == NULL)
1326     {
1327       gold_assert(symtab != NULL && layout != NULL);
1328
1329       // When using -z now, we can treat .got.plt as a relro section.
1330       // Without -z now, it is modified after program startup by lazy
1331       // PLT relocations.
1332       bool is_got_plt_relro = parameters->options().now();
1333       Output_section_order got_order = (is_got_plt_relro
1334                                         ? ORDER_RELRO
1335                                         : ORDER_RELRO_LAST);
1336       Output_section_order got_plt_order = (is_got_plt_relro
1337                                             ? ORDER_RELRO
1338                                             : ORDER_NON_RELRO_FIRST);
1339
1340       this->got_ = new Output_data_got<64, false>();
1341
1342       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1343                                       (elfcpp::SHF_ALLOC
1344                                        | elfcpp::SHF_WRITE),
1345                                       this->got_, got_order, true);
1346
1347       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1348       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1349                                       (elfcpp::SHF_ALLOC
1350                                        | elfcpp::SHF_WRITE),
1351                                       this->got_plt_, got_plt_order,
1352                                       is_got_plt_relro);
1353
1354       // The first three entries are reserved.
1355       this->got_plt_->set_current_data_size(3 * 8);
1356
1357       if (!is_got_plt_relro)
1358         {
1359           // Those bytes can go into the relro segment.
1360           layout->increase_relro(3 * 8);
1361         }
1362
1363       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1364       this->global_offset_table_ =
1365         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1366                                       Symbol_table::PREDEFINED,
1367                                       this->got_plt_,
1368                                       0, 0, elfcpp::STT_OBJECT,
1369                                       elfcpp::STB_LOCAL,
1370                                       elfcpp::STV_HIDDEN, 0,
1371                                       false, false);
1372
1373       // If there are any IRELATIVE relocations, they get GOT entries
1374       // in .got.plt after the jump slot entries.
1375       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1376       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1377                                       (elfcpp::SHF_ALLOC
1378                                        | elfcpp::SHF_WRITE),
1379                                       this->got_irelative_,
1380                                       got_plt_order, is_got_plt_relro);
1381
1382       // If there are any TLSDESC relocations, they get GOT entries in
1383       // .got.plt after the jump slot and IRELATIVE entries.
1384       this->got_tlsdesc_ = new Output_data_got<64, false>();
1385       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1386                                       (elfcpp::SHF_ALLOC
1387                                        | elfcpp::SHF_WRITE),
1388                                       this->got_tlsdesc_,
1389                                       got_plt_order, is_got_plt_relro);
1390     }
1391
1392   return this->got_;
1393 }
1394
1395 // Get the dynamic reloc section, creating it if necessary.
1396
1397 template<int size>
1398 typename Target_x86_64<size>::Reloc_section*
1399 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1400 {
1401   if (this->rela_dyn_ == NULL)
1402     {
1403       gold_assert(layout != NULL);
1404       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1405       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1406                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1407                                       ORDER_DYNAMIC_RELOCS, false);
1408     }
1409   return this->rela_dyn_;
1410 }
1411
1412 // Get the section to use for IRELATIVE relocs, creating it if
1413 // necessary.  These go in .rela.dyn, but only after all other dynamic
1414 // relocations.  They need to follow the other dynamic relocations so
1415 // that they can refer to global variables initialized by those
1416 // relocs.
1417
1418 template<int size>
1419 typename Target_x86_64<size>::Reloc_section*
1420 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1421 {
1422   if (this->rela_irelative_ == NULL)
1423     {
1424       // Make sure we have already created the dynamic reloc section.
1425       this->rela_dyn_section(layout);
1426       this->rela_irelative_ = new Reloc_section(false);
1427       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1428                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1429                                       ORDER_DYNAMIC_RELOCS, false);
1430       gold_assert(this->rela_dyn_->output_section()
1431                   == this->rela_irelative_->output_section());
1432     }
1433   return this->rela_irelative_;
1434 }
1435
1436 // Write the first three reserved words of the .got.plt section.
1437 // The remainder of the section is written while writing the PLT
1438 // in Output_data_plt_i386::do_write.
1439
1440 void
1441 Output_data_got_plt_x86_64::do_write(Output_file* of)
1442 {
1443   // The first entry in the GOT is the address of the .dynamic section
1444   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1445   // We saved space for them when we created the section in
1446   // Target_x86_64::got_section.
1447   const off_t got_file_offset = this->offset();
1448   gold_assert(this->data_size() >= 24);
1449   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1450   Output_section* dynamic = this->layout_->dynamic_section();
1451   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1452   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1453   memset(got_view + 8, 0, 16);
1454   of->write_output_view(got_file_offset, 24, got_view);
1455 }
1456
1457 // Initialize the PLT section.
1458
1459 template<int size>
1460 void
1461 Output_data_plt_x86_64<size>::init(Layout* layout)
1462 {
1463   this->rel_ = new Reloc_section(false);
1464   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1465                                   elfcpp::SHF_ALLOC, this->rel_,
1466                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1467 }
1468
1469 template<int size>
1470 void
1471 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1472 {
1473   os->set_entsize(this->get_plt_entry_size());
1474 }
1475
1476 // Add an entry to the PLT.
1477
1478 template<int size>
1479 void
1480 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1481                                         Symbol* gsym)
1482 {
1483   gold_assert(!gsym->has_plt_offset());
1484
1485   unsigned int plt_index;
1486   off_t plt_offset;
1487   section_offset_type got_offset;
1488
1489   unsigned int* pcount;
1490   unsigned int offset;
1491   unsigned int reserved;
1492   Output_section_data_build* got;
1493   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1494       && gsym->can_use_relative_reloc(false))
1495     {
1496       pcount = &this->irelative_count_;
1497       offset = 0;
1498       reserved = 0;
1499       got = this->got_irelative_;
1500     }
1501   else
1502     {
1503       pcount = &this->count_;
1504       offset = 1;
1505       reserved = 3;
1506       got = this->got_plt_;
1507     }
1508
1509   if (!this->is_data_size_valid())
1510     {
1511       // Note that when setting the PLT offset for a non-IRELATIVE
1512       // entry we skip the initial reserved PLT entry.
1513       plt_index = *pcount + offset;
1514       plt_offset = plt_index * this->get_plt_entry_size();
1515
1516       ++*pcount;
1517
1518       got_offset = (plt_index - offset + reserved) * 8;
1519       gold_assert(got_offset == got->current_data_size());
1520
1521       // Every PLT entry needs a GOT entry which points back to the PLT
1522       // entry (this will be changed by the dynamic linker, normally
1523       // lazily when the function is called).
1524       got->set_current_data_size(got_offset + 8);
1525     }
1526   else
1527     {
1528       // FIXME: This is probably not correct for IRELATIVE relocs.
1529
1530       // For incremental updates, find an available slot.
1531       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1532                                              this->get_plt_entry_size(), 0);
1533       if (plt_offset == -1)
1534         gold_fallback(_("out of patch space (PLT);"
1535                         " relink with --incremental-full"));
1536
1537       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1538       // can be calculated from the PLT index, adjusting for the three
1539       // reserved entries at the beginning of the GOT.
1540       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1541       got_offset = (plt_index - offset + reserved) * 8;
1542     }
1543
1544   gsym->set_plt_offset(plt_offset);
1545
1546   // Every PLT entry needs a reloc.
1547   this->add_relocation(symtab, layout, gsym, got_offset);
1548
1549   // Note that we don't need to save the symbol.  The contents of the
1550   // PLT are independent of which symbols are used.  The symbols only
1551   // appear in the relocations.
1552 }
1553
1554 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1555 // the PLT offset.
1556
1557 template<int size>
1558 unsigned int
1559 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1560     Symbol_table* symtab,
1561     Layout* layout,
1562     Sized_relobj_file<size, false>* relobj,
1563     unsigned int local_sym_index)
1564 {
1565   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1566   ++this->irelative_count_;
1567
1568   section_offset_type got_offset = this->got_irelative_->current_data_size();
1569
1570   // Every PLT entry needs a GOT entry which points back to the PLT
1571   // entry.
1572   this->got_irelative_->set_current_data_size(got_offset + 8);
1573
1574   // Every PLT entry needs a reloc.
1575   Reloc_section* rela = this->rela_irelative(symtab, layout);
1576   rela->add_symbolless_local_addend(relobj, local_sym_index,
1577                                     elfcpp::R_X86_64_IRELATIVE,
1578                                     this->got_irelative_, got_offset, 0);
1579
1580   return plt_offset;
1581 }
1582
1583 // Add the relocation for a PLT entry.
1584
1585 template<int size>
1586 void
1587 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1588                                              Layout* layout,
1589                                              Symbol* gsym,
1590                                              unsigned int got_offset)
1591 {
1592   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1593       && gsym->can_use_relative_reloc(false))
1594     {
1595       Reloc_section* rela = this->rela_irelative(symtab, layout);
1596       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1597                                          this->got_irelative_, got_offset, 0);
1598     }
1599   else
1600     {
1601       gsym->set_needs_dynsym_entry();
1602       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1603                              got_offset, 0);
1604     }
1605 }
1606
1607 // Return where the TLSDESC relocations should go, creating it if
1608 // necessary.  These follow the JUMP_SLOT relocations.
1609
1610 template<int size>
1611 typename Output_data_plt_x86_64<size>::Reloc_section*
1612 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1613 {
1614   if (this->tlsdesc_rel_ == NULL)
1615     {
1616       this->tlsdesc_rel_ = new Reloc_section(false);
1617       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1618                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1619                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1620       gold_assert(this->tlsdesc_rel_->output_section()
1621                   == this->rel_->output_section());
1622     }
1623   return this->tlsdesc_rel_;
1624 }
1625
1626 // Return where the IRELATIVE relocations should go in the PLT.  These
1627 // follow the JUMP_SLOT and the TLSDESC relocations.
1628
1629 template<int size>
1630 typename Output_data_plt_x86_64<size>::Reloc_section*
1631 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1632                                              Layout* layout)
1633 {
1634   if (this->irelative_rel_ == NULL)
1635     {
1636       // Make sure we have a place for the TLSDESC relocations, in
1637       // case we see any later on.
1638       this->rela_tlsdesc(layout);
1639       this->irelative_rel_ = new Reloc_section(false);
1640       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1641                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1642                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1643       gold_assert(this->irelative_rel_->output_section()
1644                   == this->rel_->output_section());
1645
1646       if (parameters->doing_static_link())
1647         {
1648           // A statically linked executable will only have a .rela.plt
1649           // section to hold R_X86_64_IRELATIVE relocs for
1650           // STT_GNU_IFUNC symbols.  The library will use these
1651           // symbols to locate the IRELATIVE relocs at program startup
1652           // time.
1653           symtab->define_in_output_data("__rela_iplt_start", NULL,
1654                                         Symbol_table::PREDEFINED,
1655                                         this->irelative_rel_, 0, 0,
1656                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1657                                         elfcpp::STV_HIDDEN, 0, false, true);
1658           symtab->define_in_output_data("__rela_iplt_end", NULL,
1659                                         Symbol_table::PREDEFINED,
1660                                         this->irelative_rel_, 0, 0,
1661                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1662                                         elfcpp::STV_HIDDEN, 0, true, true);
1663         }
1664     }
1665   return this->irelative_rel_;
1666 }
1667
1668 // Return the PLT address to use for a global symbol.
1669
1670 template<int size>
1671 uint64_t
1672 Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
1673 {
1674   uint64_t offset = 0;
1675   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1676       && gsym->can_use_relative_reloc(false))
1677     offset = (this->count_ + 1) * this->get_plt_entry_size();
1678   return this->address() + offset + gsym->plt_offset();
1679 }
1680
1681 // Return the PLT address to use for a local symbol.  These are always
1682 // IRELATIVE relocs.
1683
1684 template<int size>
1685 uint64_t
1686 Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
1687                                                    unsigned int r_sym)
1688 {
1689   return (this->address()
1690           + (this->count_ + 1) * this->get_plt_entry_size()
1691           + object->local_plt_offset(r_sym));
1692 }
1693
1694 // Set the final size.
1695 template<int size>
1696 void
1697 Output_data_plt_x86_64<size>::set_final_data_size()
1698 {
1699   // Number of regular and IFUNC PLT entries, plus the first entry.
1700   unsigned int count = this->count_ + this->irelative_count_ + 1;
1701   // Count the TLSDESC entry, if present.
1702   if (this->has_tlsdesc_entry())
1703     ++count;
1704   this->set_data_size(count * this->get_plt_entry_size());
1705 }
1706
1707 // The first entry in the PLT for an executable.
1708
1709 template<int size>
1710 const unsigned char
1711 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1712 {
1713   // From AMD64 ABI Draft 0.98, page 76
1714   0xff, 0x35,   // pushq contents of memory address
1715   0, 0, 0, 0,   // replaced with address of .got + 8
1716   0xff, 0x25,   // jmp indirect
1717   0, 0, 0, 0,   // replaced with address of .got + 16
1718   0x90, 0x90, 0x90, 0x90   // noop (x4)
1719 };
1720
1721 template<int size>
1722 void
1723 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1724     unsigned char* pov,
1725     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1726     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1727 {
1728   memcpy(pov, first_plt_entry, plt_entry_size);
1729   // We do a jmp relative to the PC at the end of this instruction.
1730   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1731                                               (got_address + 8
1732                                                - (plt_address + 6)));
1733   elfcpp::Swap<32, false>::writeval(pov + 8,
1734                                     (got_address + 16
1735                                      - (plt_address + 12)));
1736 }
1737
1738 // Subsequent entries in the PLT for an executable.
1739
1740 template<int size>
1741 const unsigned char
1742 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1743 {
1744   // From AMD64 ABI Draft 0.98, page 76
1745   0xff, 0x25,   // jmpq indirect
1746   0, 0, 0, 0,   // replaced with address of symbol in .got
1747   0x68,         // pushq immediate
1748   0, 0, 0, 0,   // replaced with offset into relocation table
1749   0xe9,         // jmpq relative
1750   0, 0, 0, 0    // replaced with offset to start of .plt
1751 };
1752
1753 template<int size>
1754 unsigned int
1755 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1756     unsigned char* pov,
1757     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1758     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1759     unsigned int got_offset,
1760     unsigned int plt_offset,
1761     unsigned int plt_index)
1762 {
1763   // Check PC-relative offset overflow in PLT entry.
1764   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1765                                    - (plt_address + plt_offset + 6));
1766   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1767     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1768                plt_index + 1);
1769
1770   memcpy(pov, plt_entry, plt_entry_size);
1771   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1772                                               plt_got_pcrel_offset);
1773
1774   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1775   elfcpp::Swap<32, false>::writeval(pov + 12,
1776                                     - (plt_offset + plt_entry_size));
1777
1778   return 6;
1779 }
1780
1781 // The reserved TLSDESC entry in the PLT for an executable.
1782
1783 template<int size>
1784 const unsigned char
1785 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1786 {
1787   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1788   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1789   0xff, 0x35,   // pushq x(%rip)
1790   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1791   0xff, 0x25,   // jmpq *y(%rip)
1792   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1793   0x0f, 0x1f,   // nop
1794   0x40, 0
1795 };
1796
1797 template<int size>
1798 void
1799 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1800     unsigned char* pov,
1801     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1802     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1803     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1804     unsigned int tlsdesc_got_offset,
1805     unsigned int plt_offset)
1806 {
1807   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1808   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1809                                               (got_address + 8
1810                                                - (plt_address + plt_offset
1811                                                   + 6)));
1812   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1813                                               (got_base
1814                                                + tlsdesc_got_offset
1815                                                - (plt_address + plt_offset
1816                                                   + 12)));
1817 }
1818
1819 // Return the APLT address to use for a global symbol (for -z bndplt).
1820
1821 uint64_t
1822 Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
1823 {
1824   uint64_t offset = this->aplt_offset_;
1825   // Convert the PLT offset into an APLT offset.
1826   unsigned int plt_offset = gsym->plt_offset();
1827   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1828       && gsym->can_use_relative_reloc(false))
1829     offset += this->regular_count() * aplt_entry_size;
1830   else
1831     plt_offset -= plt_entry_size;
1832   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
1833   return this->address() + offset + plt_offset;
1834 }
1835
1836 // Return the PLT address to use for a local symbol.  These are always
1837 // IRELATIVE relocs.
1838
1839 uint64_t
1840 Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
1841                                                  unsigned int r_sym)
1842 {
1843   // Convert the PLT offset into an APLT offset.
1844   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
1845                              / (plt_entry_size / aplt_entry_size));
1846   return (this->address()
1847           + this->aplt_offset_
1848           + this->regular_count() * aplt_entry_size
1849           + plt_offset);
1850 }
1851
1852 // Set the final size.
1853 void
1854 Output_data_plt_x86_64_bnd::set_final_data_size()
1855 {
1856   // Number of regular and IFUNC PLT entries.
1857   unsigned int count = this->entry_count();
1858   // Count the first entry and the TLSDESC entry, if present.
1859   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
1860   unsigned int plt_size = (count + extra) * plt_entry_size;
1861   // Offset of the APLT.
1862   this->aplt_offset_ = plt_size;
1863   // Size of the APLT.
1864   plt_size += count * aplt_entry_size;
1865   this->set_data_size(plt_size);
1866 }
1867
1868 // The first entry in the BND PLT.
1869
1870 const unsigned char
1871 Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
1872 {
1873   // From AMD64 ABI Draft 0.98, page 76
1874   0xff, 0x35,           // pushq contents of memory address
1875   0, 0, 0, 0,           // replaced with address of .got + 8
1876   0xf2, 0xff, 0x25,     // bnd jmp indirect
1877   0, 0, 0, 0,           // replaced with address of .got + 16
1878   0x0f, 0x1f, 0x00      // nop
1879 };
1880
1881 void
1882 Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
1883     unsigned char* pov,
1884     elfcpp::Elf_types<64>::Elf_Addr got_address,
1885     elfcpp::Elf_types<64>::Elf_Addr plt_address)
1886 {
1887   memcpy(pov, first_plt_entry, plt_entry_size);
1888   // We do a jmp relative to the PC at the end of this instruction.
1889   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1890                                               (got_address + 8
1891                                                - (plt_address + 6)));
1892   elfcpp::Swap<32, false>::writeval(pov + 9,
1893                                     (got_address + 16
1894                                      - (plt_address + 13)));
1895 }
1896
1897 // Subsequent entries in the BND PLT.
1898
1899 const unsigned char
1900 Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
1901 {
1902   // From AMD64 ABI Draft 0.99.8, page 139
1903   0x68,                         // pushq immediate
1904   0, 0, 0, 0,                   // replaced with offset into relocation table
1905   0xf2, 0xe9,                   // bnd jmpq relative
1906   0, 0, 0, 0,                   // replaced with offset to start of .plt
1907   0x0f, 0x1f, 0x44, 0, 0        // nop
1908 };
1909
1910 // Entries in the BND Additional PLT.
1911
1912 const unsigned char
1913 Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
1914 {
1915   // From AMD64 ABI Draft 0.99.8, page 139
1916   0xf2, 0xff, 0x25,     // bnd jmpq indirect
1917   0, 0, 0, 0,           // replaced with address of symbol in .got
1918   0x90,                 // nop
1919 };
1920
1921 unsigned int
1922 Output_data_plt_x86_64_bnd::do_fill_plt_entry(
1923     unsigned char* pov,
1924     elfcpp::Elf_types<64>::Elf_Addr,
1925     elfcpp::Elf_types<64>::Elf_Addr,
1926     unsigned int,
1927     unsigned int plt_offset,
1928     unsigned int plt_index)
1929 {
1930   memcpy(pov, plt_entry, plt_entry_size);
1931   elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
1932   elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
1933   return 0;
1934 }
1935
1936 void
1937 Output_data_plt_x86_64_bnd::fill_aplt_entry(
1938     unsigned char* pov,
1939     elfcpp::Elf_types<64>::Elf_Addr got_address,
1940     elfcpp::Elf_types<64>::Elf_Addr plt_address,
1941     unsigned int got_offset,
1942     unsigned int plt_offset,
1943     unsigned int plt_index)
1944 {
1945   // Check PC-relative offset overflow in PLT entry.
1946   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1947                                    - (plt_address + plt_offset + 7));
1948   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1949     gold_error(_("PC-relative offset overflow in APLT entry %d"),
1950                plt_index + 1);
1951
1952   memcpy(pov, aplt_entry, aplt_entry_size);
1953   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
1954 }
1955
1956 // The reserved TLSDESC entry in the PLT for an executable.
1957
1958 const unsigned char
1959 Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
1960 {
1961   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1962   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1963   0xff, 0x35,           // pushq x(%rip)
1964   0, 0, 0, 0,           // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1965   0xf2, 0xff, 0x25,     // jmpq *y(%rip)
1966   0, 0, 0, 0,           // replaced with offset of reserved TLSDESC_GOT entry
1967   0x0f, 0x1f, 0         // nop
1968 };
1969
1970 void
1971 Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
1972     unsigned char* pov,
1973     elfcpp::Elf_types<64>::Elf_Addr got_address,
1974     elfcpp::Elf_types<64>::Elf_Addr plt_address,
1975     elfcpp::Elf_types<64>::Elf_Addr got_base,
1976     unsigned int tlsdesc_got_offset,
1977     unsigned int plt_offset)
1978 {
1979   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1980   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1981                                               (got_address + 8
1982                                                - (plt_address + plt_offset
1983                                                   + 6)));
1984   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
1985                                               (got_base
1986                                                + tlsdesc_got_offset
1987                                                - (plt_address + plt_offset
1988                                                   + 13)));
1989 }
1990
1991 // The .eh_frame unwind information for the PLT.
1992
1993 template<int size>
1994 const unsigned char
1995 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1996 {
1997   1,                            // CIE version.
1998   'z',                          // Augmentation: augmentation size included.
1999   'R',                          // Augmentation: FDE encoding included.
2000   '\0',                         // End of augmentation string.
2001   1,                            // Code alignment factor.
2002   0x78,                         // Data alignment factor.
2003   16,                           // Return address column.
2004   1,                            // Augmentation size.
2005   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
2006    | elfcpp::DW_EH_PE_sdata4),
2007   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
2008   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
2009   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
2010   elfcpp::DW_CFA_nop
2011 };
2012
2013 template<int size>
2014 const unsigned char
2015 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2016 {
2017   0, 0, 0, 0,                           // Replaced with offset to .plt.
2018   0, 0, 0, 0,                           // Replaced with size of .plt.
2019   0,                                    // Augmentation size.
2020   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2021   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2022   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2023   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2024   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2025   11,                                   // Block length.
2026   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2027   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2028   elfcpp::DW_OP_lit15,                  // Push 0xf.
2029   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2030   elfcpp::DW_OP_lit11,                  // Push 0xb.
2031   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
2032   elfcpp::DW_OP_lit3,                   // Push 3.
2033   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
2034   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
2035   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2036   elfcpp::DW_CFA_nop,
2037   elfcpp::DW_CFA_nop,
2038   elfcpp::DW_CFA_nop
2039 };
2040
2041 // The .eh_frame unwind information for the BND PLT.
2042 const unsigned char
2043 Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2044 {
2045   0, 0, 0, 0,                           // Replaced with offset to .plt.
2046   0, 0, 0, 0,                           // Replaced with size of .plt.
2047   0,                                    // Augmentation size.
2048   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2049   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2050   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2051   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2052   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2053   11,                                   // Block length.
2054   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2055   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2056   elfcpp::DW_OP_lit15,                  // Push 0xf.
2057   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2058   elfcpp::DW_OP_lit5,                   // Push 5.
2059   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 5)
2060   elfcpp::DW_OP_lit3,                   // Push 3.
2061   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 5) << 3)
2062   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=5)<<3)+%rsp+8
2063   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2064   elfcpp::DW_CFA_nop,
2065   elfcpp::DW_CFA_nop,
2066   elfcpp::DW_CFA_nop
2067 };
2068
2069 // Write out the PLT.  This uses the hand-coded instructions above,
2070 // and adjusts them as needed.  This is specified by the AMD64 ABI.
2071
2072 template<int size>
2073 void
2074 Output_data_plt_x86_64<size>::do_write(Output_file* of)
2075 {
2076   const off_t offset = this->offset();
2077   const section_size_type oview_size =
2078     convert_to_section_size_type(this->data_size());
2079   unsigned char* const oview = of->get_output_view(offset, oview_size);
2080
2081   const off_t got_file_offset = this->got_plt_->offset();
2082   gold_assert(parameters->incremental_update()
2083               || (got_file_offset + this->got_plt_->data_size()
2084                   == this->got_irelative_->offset()));
2085   const section_size_type got_size =
2086     convert_to_section_size_type(this->got_plt_->data_size()
2087                                  + this->got_irelative_->data_size());
2088   unsigned char* const got_view = of->get_output_view(got_file_offset,
2089                                                       got_size);
2090
2091   unsigned char* pov = oview;
2092
2093   // The base address of the .plt section.
2094   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2095   // The base address of the .got section.
2096   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
2097   // The base address of the PLT portion of the .got section,
2098   // which is where the GOT pointer will point, and where the
2099   // three reserved GOT entries are located.
2100   typename elfcpp::Elf_types<size>::Elf_Addr got_address
2101     = this->got_plt_->address();
2102
2103   this->fill_first_plt_entry(pov, got_address, plt_address);
2104   pov += this->get_plt_entry_size();
2105
2106   // The first three entries in the GOT are reserved, and are written
2107   // by Output_data_got_plt_x86_64::do_write.
2108   unsigned char* got_pov = got_view + 24;
2109
2110   unsigned int plt_offset = this->get_plt_entry_size();
2111   unsigned int got_offset = 24;
2112   const unsigned int count = this->count_ + this->irelative_count_;
2113   for (unsigned int plt_index = 0;
2114        plt_index < count;
2115        ++plt_index,
2116          pov += this->get_plt_entry_size(),
2117          got_pov += 8,
2118          plt_offset += this->get_plt_entry_size(),
2119          got_offset += 8)
2120     {
2121       // Set and adjust the PLT entry itself.
2122       unsigned int lazy_offset = this->fill_plt_entry(pov,
2123                                                       got_address, plt_address,
2124                                                       got_offset, plt_offset,
2125                                                       plt_index);
2126
2127       // Set the entry in the GOT.
2128       elfcpp::Swap<64, false>::writeval(got_pov,
2129                                         plt_address + plt_offset + lazy_offset);
2130     }
2131
2132   if (this->has_tlsdesc_entry())
2133     {
2134       // Set and adjust the reserved TLSDESC PLT entry.
2135       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2136       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2137                                tlsdesc_got_offset, plt_offset);
2138       pov += this->get_plt_entry_size();
2139     }
2140
2141   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2142   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2143
2144   of->write_output_view(offset, oview_size, oview);
2145   of->write_output_view(got_file_offset, got_size, got_view);
2146 }
2147
2148 // Write out the BND PLT.
2149
2150 void
2151 Output_data_plt_x86_64_bnd::do_write(Output_file* of)
2152 {
2153   const off_t offset = this->offset();
2154   const section_size_type oview_size =
2155     convert_to_section_size_type(this->data_size());
2156   unsigned char* const oview = of->get_output_view(offset, oview_size);
2157
2158   Output_data_got<64, false>* got = this->got();
2159   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2160   Output_data_space* got_irelative = this->got_irelative();
2161
2162   const off_t got_file_offset = got_plt->offset();
2163   gold_assert(parameters->incremental_update()
2164               || (got_file_offset + got_plt->data_size()
2165                   == got_irelative->offset()));
2166   const section_size_type got_size =
2167     convert_to_section_size_type(got_plt->data_size()
2168                                  + got_irelative->data_size());
2169   unsigned char* const got_view = of->get_output_view(got_file_offset,
2170                                                       got_size);
2171
2172   unsigned char* pov = oview;
2173
2174   // The base address of the .plt section.
2175   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2176   // The base address of the .got section.
2177   elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2178   // The base address of the PLT portion of the .got section,
2179   // which is where the GOT pointer will point, and where the
2180   // three reserved GOT entries are located.
2181   elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2182
2183   this->fill_first_plt_entry(pov, got_address, plt_address);
2184   pov += plt_entry_size;
2185
2186   // The first three entries in the GOT are reserved, and are written
2187   // by Output_data_got_plt_x86_64::do_write.
2188   unsigned char* got_pov = got_view + 24;
2189
2190   unsigned int plt_offset = plt_entry_size;
2191   unsigned int got_offset = 24;
2192   const unsigned int count = this->entry_count();
2193   for (unsigned int plt_index = 0;
2194        plt_index < count;
2195        ++plt_index,
2196          pov += plt_entry_size,
2197          got_pov += 8,
2198          plt_offset += plt_entry_size,
2199          got_offset += 8)
2200     {
2201       // Set and adjust the PLT entry itself.
2202       unsigned int lazy_offset = this->fill_plt_entry(pov,
2203                                                       got_address, plt_address,
2204                                                       got_offset, plt_offset,
2205                                                       plt_index);
2206
2207       // Set the entry in the GOT.
2208       elfcpp::Swap<64, false>::writeval(got_pov,
2209                                         plt_address + plt_offset + lazy_offset);
2210     }
2211
2212   if (this->has_tlsdesc_entry())
2213     {
2214       // Set and adjust the reserved TLSDESC PLT entry.
2215       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2216       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2217                                tlsdesc_got_offset, plt_offset);
2218       pov += this->get_plt_entry_size();
2219     }
2220
2221   // Write the additional PLT.
2222   got_offset = 24;
2223   for (unsigned int plt_index = 0;
2224        plt_index < count;
2225        ++plt_index,
2226          pov += aplt_entry_size,
2227          plt_offset += aplt_entry_size,
2228          got_offset += 8)
2229     {
2230       // Set and adjust the PLT entry itself.
2231       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2232                             plt_offset, plt_index);
2233     }
2234
2235   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2236   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2237
2238   of->write_output_view(offset, oview_size, oview);
2239   of->write_output_view(got_file_offset, got_size, got_view);
2240 }
2241
2242 // Create the PLT section.
2243
2244 template<int size>
2245 void
2246 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
2247 {
2248   if (this->plt_ == NULL)
2249     {
2250       // Create the GOT sections first.
2251       this->got_section(symtab, layout);
2252
2253       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
2254                                        this->got_irelative_);
2255
2256       // Add unwind information if requested.
2257       if (parameters->options().ld_generated_unwind_info())
2258         this->plt_->add_eh_frame(layout);
2259
2260       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2261                                       (elfcpp::SHF_ALLOC
2262                                        | elfcpp::SHF_EXECINSTR),
2263                                       this->plt_, ORDER_PLT, false);
2264
2265       // Make the sh_info field of .rela.plt point to .plt.
2266       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2267       rela_plt_os->set_info_section(this->plt_->output_section());
2268     }
2269 }
2270
2271 template<>
2272 Output_data_plt_x86_64<32>*
2273 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2274                                     Output_data_got<64, false>* got,
2275                                     Output_data_got_plt_x86_64* got_plt,
2276                                     Output_data_space* got_irelative)
2277 {
2278   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2279                                                  got_irelative);
2280 }
2281
2282 template<>
2283 Output_data_plt_x86_64<64>*
2284 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2285                                     Output_data_got<64, false>* got,
2286                                     Output_data_got_plt_x86_64* got_plt,
2287                                     Output_data_space* got_irelative)
2288 {
2289   if (parameters->options().bndplt())
2290     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2291                                           got_irelative);
2292   else
2293     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2294                                                    got_irelative);
2295 }
2296
2297 template<>
2298 Output_data_plt_x86_64<32>*
2299 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2300                                     Output_data_got<64, false>* got,
2301                                     Output_data_got_plt_x86_64* got_plt,
2302                                     Output_data_space* got_irelative,
2303                                     unsigned int plt_count)
2304 {
2305   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2306                                                  got_irelative,
2307                                                  plt_count);
2308 }
2309
2310 template<>
2311 Output_data_plt_x86_64<64>*
2312 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2313                                     Output_data_got<64, false>* got,
2314                                     Output_data_got_plt_x86_64* got_plt,
2315                                     Output_data_space* got_irelative,
2316                                     unsigned int plt_count)
2317 {
2318   if (parameters->options().bndplt())
2319     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2320                                           got_irelative, plt_count);
2321   else
2322     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2323                                                    got_irelative,
2324                                                    plt_count);
2325 }
2326
2327 // Return the section for TLSDESC relocations.
2328
2329 template<int size>
2330 typename Target_x86_64<size>::Reloc_section*
2331 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
2332 {
2333   return this->plt_section()->rela_tlsdesc(layout);
2334 }
2335
2336 // Create a PLT entry for a global symbol.
2337
2338 template<int size>
2339 void
2340 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
2341                                     Symbol* gsym)
2342 {
2343   if (gsym->has_plt_offset())
2344     return;
2345
2346   if (this->plt_ == NULL)
2347     this->make_plt_section(symtab, layout);
2348
2349   this->plt_->add_entry(symtab, layout, gsym);
2350 }
2351
2352 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2353
2354 template<int size>
2355 void
2356 Target_x86_64<size>::make_local_ifunc_plt_entry(
2357     Symbol_table* symtab, Layout* layout,
2358     Sized_relobj_file<size, false>* relobj,
2359     unsigned int local_sym_index)
2360 {
2361   if (relobj->local_has_plt_offset(local_sym_index))
2362     return;
2363   if (this->plt_ == NULL)
2364     this->make_plt_section(symtab, layout);
2365   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2366                                                               relobj,
2367                                                               local_sym_index);
2368   relobj->set_local_plt_offset(local_sym_index, plt_offset);
2369 }
2370
2371 // Return the number of entries in the PLT.
2372
2373 template<int size>
2374 unsigned int
2375 Target_x86_64<size>::plt_entry_count() const
2376 {
2377   if (this->plt_ == NULL)
2378     return 0;
2379   return this->plt_->entry_count();
2380 }
2381
2382 // Return the offset of the first non-reserved PLT entry.
2383
2384 template<int size>
2385 unsigned int
2386 Target_x86_64<size>::first_plt_entry_offset() const
2387 {
2388   if (this->plt_ == NULL)
2389     return 0;
2390   return this->plt_->first_plt_entry_offset();
2391 }
2392
2393 // Return the size of each PLT entry.
2394
2395 template<int size>
2396 unsigned int
2397 Target_x86_64<size>::plt_entry_size() const
2398 {
2399   if (this->plt_ == NULL)
2400     return 0;
2401   return this->plt_->get_plt_entry_size();
2402 }
2403
2404 // Create the GOT and PLT sections for an incremental update.
2405
2406 template<int size>
2407 Output_data_got_base*
2408 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
2409                                        Layout* layout,
2410                                        unsigned int got_count,
2411                                        unsigned int plt_count)
2412 {
2413   gold_assert(this->got_ == NULL);
2414
2415   this->got_ = new Output_data_got<64, false>(got_count * 8);
2416   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2417                                   (elfcpp::SHF_ALLOC
2418                                    | elfcpp::SHF_WRITE),
2419                                   this->got_, ORDER_RELRO_LAST,
2420                                   true);
2421
2422   // Add the three reserved entries.
2423   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
2424   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2425                                   (elfcpp::SHF_ALLOC
2426                                    | elfcpp::SHF_WRITE),
2427                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
2428                                   false);
2429
2430   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2431   this->global_offset_table_ =
2432     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2433                                   Symbol_table::PREDEFINED,
2434                                   this->got_plt_,
2435                                   0, 0, elfcpp::STT_OBJECT,
2436                                   elfcpp::STB_LOCAL,
2437                                   elfcpp::STV_HIDDEN, 0,
2438                                   false, false);
2439
2440   // If there are any TLSDESC relocations, they get GOT entries in
2441   // .got.plt after the jump slot entries.
2442   // FIXME: Get the count for TLSDESC entries.
2443   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
2444   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2445                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2446                                   this->got_tlsdesc_,
2447                                   ORDER_NON_RELRO_FIRST, false);
2448
2449   // If there are any IRELATIVE relocations, they get GOT entries in
2450   // .got.plt after the jump slot and TLSDESC entries.
2451   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
2452   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2453                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2454                                   this->got_irelative_,
2455                                   ORDER_NON_RELRO_FIRST, false);
2456
2457   // Create the PLT section.
2458   this->plt_ = this->make_data_plt(layout, this->got_,
2459                                    this->got_plt_,
2460                                    this->got_irelative_,
2461                                    plt_count);
2462
2463   // Add unwind information if requested.
2464   if (parameters->options().ld_generated_unwind_info())
2465     this->plt_->add_eh_frame(layout);
2466
2467   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2468                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2469                                   this->plt_, ORDER_PLT, false);
2470
2471   // Make the sh_info field of .rela.plt point to .plt.
2472   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2473   rela_plt_os->set_info_section(this->plt_->output_section());
2474
2475   // Create the rela_dyn section.
2476   this->rela_dyn_section(layout);
2477
2478   return this->got_;
2479 }
2480
2481 // Reserve a GOT entry for a local symbol, and regenerate any
2482 // necessary dynamic relocations.
2483
2484 template<int size>
2485 void
2486 Target_x86_64<size>::reserve_local_got_entry(
2487     unsigned int got_index,
2488     Sized_relobj<size, false>* obj,
2489     unsigned int r_sym,
2490     unsigned int got_type)
2491 {
2492   unsigned int got_offset = got_index * 8;
2493   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2494
2495   this->got_->reserve_local(got_index, obj, r_sym, got_type);
2496   switch (got_type)
2497     {
2498     case GOT_TYPE_STANDARD:
2499       if (parameters->options().output_is_position_independent())
2500         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
2501                                      this->got_, got_offset, 0, false);
2502       break;
2503     case GOT_TYPE_TLS_OFFSET:
2504       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
2505                           this->got_, got_offset, 0);
2506       break;
2507     case GOT_TYPE_TLS_PAIR:
2508       this->got_->reserve_slot(got_index + 1);
2509       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
2510                           this->got_, got_offset, 0);
2511       break;
2512     case GOT_TYPE_TLS_DESC:
2513       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2514       // this->got_->reserve_slot(got_index + 1);
2515       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2516       //                               this->got_, got_offset, 0);
2517       break;
2518     default:
2519       gold_unreachable();
2520     }
2521 }
2522
2523 // Reserve a GOT entry for a global symbol, and regenerate any
2524 // necessary dynamic relocations.
2525
2526 template<int size>
2527 void
2528 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
2529                                               Symbol* gsym,
2530                                               unsigned int got_type)
2531 {
2532   unsigned int got_offset = got_index * 8;
2533   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2534
2535   this->got_->reserve_global(got_index, gsym, got_type);
2536   switch (got_type)
2537     {
2538     case GOT_TYPE_STANDARD:
2539       if (!gsym->final_value_is_known())
2540         {
2541           if (gsym->is_from_dynobj()
2542               || gsym->is_undefined()
2543               || gsym->is_preemptible()
2544               || gsym->type() == elfcpp::STT_GNU_IFUNC)
2545             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
2546                                  this->got_, got_offset, 0);
2547           else
2548             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2549                                           this->got_, got_offset, 0, false);
2550         }
2551       break;
2552     case GOT_TYPE_TLS_OFFSET:
2553       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
2554                                     this->got_, got_offset, 0, false);
2555       break;
2556     case GOT_TYPE_TLS_PAIR:
2557       this->got_->reserve_slot(got_index + 1);
2558       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
2559                                     this->got_, got_offset, 0, false);
2560       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
2561                                     this->got_, got_offset + 8, 0, false);
2562       break;
2563     case GOT_TYPE_TLS_DESC:
2564       this->got_->reserve_slot(got_index + 1);
2565       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
2566                                     this->got_, got_offset, 0, false);
2567       break;
2568     default:
2569       gold_unreachable();
2570     }
2571 }
2572
2573 // Register an existing PLT entry for a global symbol.
2574
2575 template<int size>
2576 void
2577 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2578                                                Layout* layout,
2579                                                unsigned int plt_index,
2580                                                Symbol* gsym)
2581 {
2582   gold_assert(this->plt_ != NULL);
2583   gold_assert(!gsym->has_plt_offset());
2584
2585   this->plt_->reserve_slot(plt_index);
2586
2587   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2588
2589   unsigned int got_offset = (plt_index + 3) * 8;
2590   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2591 }
2592
2593 // Force a COPY relocation for a given symbol.
2594
2595 template<int size>
2596 void
2597 Target_x86_64<size>::emit_copy_reloc(
2598     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2599 {
2600   this->copy_relocs_.emit_copy_reloc(symtab,
2601                                      symtab->get_sized_symbol<size>(sym),
2602                                      os,
2603                                      offset,
2604                                      this->rela_dyn_section(NULL));
2605 }
2606
2607 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2608
2609 template<int size>
2610 void
2611 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2612                                             Layout* layout)
2613 {
2614   if (this->tls_base_symbol_defined_)
2615     return;
2616
2617   Output_segment* tls_segment = layout->tls_segment();
2618   if (tls_segment != NULL)
2619     {
2620       bool is_exec = parameters->options().output_is_executable();
2621       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2622                                        Symbol_table::PREDEFINED,
2623                                        tls_segment, 0, 0,
2624                                        elfcpp::STT_TLS,
2625                                        elfcpp::STB_LOCAL,
2626                                        elfcpp::STV_HIDDEN, 0,
2627                                        (is_exec
2628                                         ? Symbol::SEGMENT_END
2629                                         : Symbol::SEGMENT_START),
2630                                        true);
2631     }
2632   this->tls_base_symbol_defined_ = true;
2633 }
2634
2635 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2636
2637 template<int size>
2638 void
2639 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2640                                              Layout* layout)
2641 {
2642   if (this->plt_ == NULL)
2643     this->make_plt_section(symtab, layout);
2644
2645   if (!this->plt_->has_tlsdesc_entry())
2646     {
2647       // Allocate the TLSDESC_GOT entry.
2648       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2649       unsigned int got_offset = got->add_constant(0);
2650
2651       // Allocate the TLSDESC_PLT entry.
2652       this->plt_->reserve_tlsdesc_entry(got_offset);
2653     }
2654 }
2655
2656 // Create a GOT entry for the TLS module index.
2657
2658 template<int size>
2659 unsigned int
2660 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2661                                          Sized_relobj_file<size, false>* object)
2662 {
2663   if (this->got_mod_index_offset_ == -1U)
2664     {
2665       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2666       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2667       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2668       unsigned int got_offset = got->add_constant(0);
2669       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2670                           got_offset, 0);
2671       got->add_constant(0);
2672       this->got_mod_index_offset_ = got_offset;
2673     }
2674   return this->got_mod_index_offset_;
2675 }
2676
2677 // Optimize the TLS relocation type based on what we know about the
2678 // symbol.  IS_FINAL is true if the final address of this symbol is
2679 // known at link time.
2680
2681 template<int size>
2682 tls::Tls_optimization
2683 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2684 {
2685   // If we are generating a shared library, then we can't do anything
2686   // in the linker.
2687   if (parameters->options().shared())
2688     return tls::TLSOPT_NONE;
2689
2690   switch (r_type)
2691     {
2692     case elfcpp::R_X86_64_TLSGD:
2693     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2694     case elfcpp::R_X86_64_TLSDESC_CALL:
2695       // These are General-Dynamic which permits fully general TLS
2696       // access.  Since we know that we are generating an executable,
2697       // we can convert this to Initial-Exec.  If we also know that
2698       // this is a local symbol, we can further switch to Local-Exec.
2699       if (is_final)
2700         return tls::TLSOPT_TO_LE;
2701       return tls::TLSOPT_TO_IE;
2702
2703     case elfcpp::R_X86_64_TLSLD:
2704       // This is Local-Dynamic, which refers to a local symbol in the
2705       // dynamic TLS block.  Since we know that we generating an
2706       // executable, we can switch to Local-Exec.
2707       return tls::TLSOPT_TO_LE;
2708
2709     case elfcpp::R_X86_64_DTPOFF32:
2710     case elfcpp::R_X86_64_DTPOFF64:
2711       // Another Local-Dynamic reloc.
2712       return tls::TLSOPT_TO_LE;
2713
2714     case elfcpp::R_X86_64_GOTTPOFF:
2715       // These are Initial-Exec relocs which get the thread offset
2716       // from the GOT.  If we know that we are linking against the
2717       // local symbol, we can switch to Local-Exec, which links the
2718       // thread offset into the instruction.
2719       if (is_final)
2720         return tls::TLSOPT_TO_LE;
2721       return tls::TLSOPT_NONE;
2722
2723     case elfcpp::R_X86_64_TPOFF32:
2724       // When we already have Local-Exec, there is nothing further we
2725       // can do.
2726       return tls::TLSOPT_NONE;
2727
2728     default:
2729       gold_unreachable();
2730     }
2731 }
2732
2733 // Get the Reference_flags for a particular relocation.
2734
2735 template<int size>
2736 int
2737 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2738 {
2739   switch (r_type)
2740     {
2741     case elfcpp::R_X86_64_NONE:
2742     case elfcpp::R_X86_64_GNU_VTINHERIT:
2743     case elfcpp::R_X86_64_GNU_VTENTRY:
2744     case elfcpp::R_X86_64_GOTPC32:
2745     case elfcpp::R_X86_64_GOTPC64:
2746       // No symbol reference.
2747       return 0;
2748
2749     case elfcpp::R_X86_64_64:
2750     case elfcpp::R_X86_64_32:
2751     case elfcpp::R_X86_64_32S:
2752     case elfcpp::R_X86_64_16:
2753     case elfcpp::R_X86_64_8:
2754       return Symbol::ABSOLUTE_REF;
2755
2756     case elfcpp::R_X86_64_PC64:
2757     case elfcpp::R_X86_64_PC32:
2758     case elfcpp::R_X86_64_PC32_BND:
2759     case elfcpp::R_X86_64_PC16:
2760     case elfcpp::R_X86_64_PC8:
2761     case elfcpp::R_X86_64_GOTOFF64:
2762       return Symbol::RELATIVE_REF;
2763
2764     case elfcpp::R_X86_64_PLT32:
2765     case elfcpp::R_X86_64_PLT32_BND:
2766     case elfcpp::R_X86_64_PLTOFF64:
2767       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2768
2769     case elfcpp::R_X86_64_GOT64:
2770     case elfcpp::R_X86_64_GOT32:
2771     case elfcpp::R_X86_64_GOTPCREL64:
2772     case elfcpp::R_X86_64_GOTPCREL:
2773     case elfcpp::R_X86_64_GOTPCRELX:
2774     case elfcpp::R_X86_64_REX_GOTPCRELX:
2775     case elfcpp::R_X86_64_GOTPLT64:
2776       // Absolute in GOT.
2777       return Symbol::ABSOLUTE_REF;
2778
2779     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2780     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2781     case elfcpp::R_X86_64_TLSDESC_CALL:
2782     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2783     case elfcpp::R_X86_64_DTPOFF32:
2784     case elfcpp::R_X86_64_DTPOFF64:
2785     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2786     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2787       return Symbol::TLS_REF;
2788
2789     case elfcpp::R_X86_64_COPY:
2790     case elfcpp::R_X86_64_GLOB_DAT:
2791     case elfcpp::R_X86_64_JUMP_SLOT:
2792     case elfcpp::R_X86_64_RELATIVE:
2793     case elfcpp::R_X86_64_IRELATIVE:
2794     case elfcpp::R_X86_64_TPOFF64:
2795     case elfcpp::R_X86_64_DTPMOD64:
2796     case elfcpp::R_X86_64_TLSDESC:
2797     case elfcpp::R_X86_64_SIZE32:
2798     case elfcpp::R_X86_64_SIZE64:
2799     default:
2800       // Not expected.  We will give an error later.
2801       return 0;
2802     }
2803 }
2804
2805 // Report an unsupported relocation against a local symbol.
2806
2807 template<int size>
2808 void
2809 Target_x86_64<size>::Scan::unsupported_reloc_local(
2810      Sized_relobj_file<size, false>* object,
2811      unsigned int r_type)
2812 {
2813   gold_error(_("%s: unsupported reloc %u against local symbol"),
2814              object->name().c_str(), r_type);
2815 }
2816
2817 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2818 // dynamic linker does not support it, issue an error.  The GNU linker
2819 // only issues a non-PIC error for an allocated read-only section.
2820 // Here we know the section is allocated, but we don't know that it is
2821 // read-only.  But we check for all the relocation types which the
2822 // glibc dynamic linker supports, so it seems appropriate to issue an
2823 // error even if the section is not read-only.  If GSYM is not NULL,
2824 // it is the symbol the relocation is against; if it is NULL, the
2825 // relocation is against a local symbol.
2826
2827 template<int size>
2828 void
2829 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2830                                          Symbol* gsym)
2831 {
2832   switch (r_type)
2833     {
2834       // These are the relocation types supported by glibc for x86_64
2835       // which should always work.
2836     case elfcpp::R_X86_64_RELATIVE:
2837     case elfcpp::R_X86_64_IRELATIVE:
2838     case elfcpp::R_X86_64_GLOB_DAT:
2839     case elfcpp::R_X86_64_JUMP_SLOT:
2840     case elfcpp::R_X86_64_DTPMOD64:
2841     case elfcpp::R_X86_64_DTPOFF64:
2842     case elfcpp::R_X86_64_TPOFF64:
2843     case elfcpp::R_X86_64_64:
2844     case elfcpp::R_X86_64_COPY:
2845       return;
2846
2847       // glibc supports these reloc types, but they can overflow.
2848     case elfcpp::R_X86_64_PC32:
2849     case elfcpp::R_X86_64_PC32_BND:
2850       // A PC relative reference is OK against a local symbol or if
2851       // the symbol is defined locally.
2852       if (gsym == NULL
2853           || (!gsym->is_from_dynobj()
2854               && !gsym->is_undefined()
2855               && !gsym->is_preemptible()))
2856         return;
2857       // Fall through.
2858     case elfcpp::R_X86_64_32:
2859       // R_X86_64_32 is OK for x32.
2860       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2861         return;
2862       if (this->issued_non_pic_error_)
2863         return;
2864       gold_assert(parameters->options().output_is_position_independent());
2865       if (gsym == NULL)
2866         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2867                         "overflow at runtime; recompile with -fPIC"));
2868       else
2869         {
2870           const char *r_name;
2871           switch (r_type)
2872             {
2873             case elfcpp::R_X86_64_32:
2874               r_name = "R_X86_64_32";
2875               break;
2876             case elfcpp::R_X86_64_PC32:
2877               r_name = "R_X86_64_PC32";
2878               break;
2879             case elfcpp::R_X86_64_PC32_BND:
2880               r_name = "R_X86_64_PC32_BND";
2881               break;
2882             default:
2883               gold_unreachable();
2884               break;
2885             }
2886           object->error(_("requires dynamic %s reloc against '%s' "
2887                           "which may overflow at runtime; recompile "
2888                           "with -fPIC"),
2889                         r_name, gsym->name());
2890         }
2891       this->issued_non_pic_error_ = true;
2892       return;
2893
2894     default:
2895       // This prevents us from issuing more than one error per reloc
2896       // section.  But we can still wind up issuing more than one
2897       // error per object file.
2898       if (this->issued_non_pic_error_)
2899         return;
2900       gold_assert(parameters->options().output_is_position_independent());
2901       object->error(_("requires unsupported dynamic reloc %u; "
2902                       "recompile with -fPIC"),
2903                     r_type);
2904       this->issued_non_pic_error_ = true;
2905       return;
2906
2907     case elfcpp::R_X86_64_NONE:
2908       gold_unreachable();
2909     }
2910 }
2911
2912 // Return whether we need to make a PLT entry for a relocation of the
2913 // given type against a STT_GNU_IFUNC symbol.
2914
2915 template<int size>
2916 bool
2917 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2918      Sized_relobj_file<size, false>* object,
2919      unsigned int r_type)
2920 {
2921   int flags = Scan::get_reference_flags(r_type);
2922   if (flags & Symbol::TLS_REF)
2923     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2924                object->name().c_str(), r_type);
2925   return flags != 0;
2926 }
2927
2928 // Scan a relocation for a local symbol.
2929
2930 template<int size>
2931 inline void
2932 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2933                                  Layout* layout,
2934                                  Target_x86_64<size>* target,
2935                                  Sized_relobj_file<size, false>* object,
2936                                  unsigned int data_shndx,
2937                                  Output_section* output_section,
2938                                  const elfcpp::Rela<size, false>& reloc,
2939                                  unsigned int r_type,
2940                                  const elfcpp::Sym<size, false>& lsym,
2941                                  bool is_discarded)
2942 {
2943   if (is_discarded)
2944     return;
2945
2946   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2947   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2948   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2949     {
2950       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2951       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2952     }
2953
2954   switch (r_type)
2955     {
2956     case elfcpp::R_X86_64_NONE:
2957     case elfcpp::R_X86_64_GNU_VTINHERIT:
2958     case elfcpp::R_X86_64_GNU_VTENTRY:
2959       break;
2960
2961     case elfcpp::R_X86_64_64:
2962       // If building a shared library (or a position-independent
2963       // executable), we need to create a dynamic relocation for this
2964       // location.  The relocation applied at link time will apply the
2965       // link-time value, so we flag the location with an
2966       // R_X86_64_RELATIVE relocation so the dynamic loader can
2967       // relocate it easily.
2968       if (parameters->options().output_is_position_independent())
2969         {
2970           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2971           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2972           rela_dyn->add_local_relative(object, r_sym,
2973                                        (size == 32
2974                                         ? elfcpp::R_X86_64_RELATIVE64
2975                                         : elfcpp::R_X86_64_RELATIVE),
2976                                        output_section, data_shndx,
2977                                        reloc.get_r_offset(),
2978                                        reloc.get_r_addend(), is_ifunc);
2979         }
2980       break;
2981
2982     case elfcpp::R_X86_64_32:
2983     case elfcpp::R_X86_64_32S:
2984     case elfcpp::R_X86_64_16:
2985     case elfcpp::R_X86_64_8:
2986       // If building a shared library (or a position-independent
2987       // executable), we need to create a dynamic relocation for this
2988       // location.  We can't use an R_X86_64_RELATIVE relocation
2989       // because that is always a 64-bit relocation.
2990       if (parameters->options().output_is_position_independent())
2991         {
2992           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2993           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2994             {
2995               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2996               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2997               rela_dyn->add_local_relative(object, r_sym,
2998                                            elfcpp::R_X86_64_RELATIVE,
2999                                            output_section, data_shndx,
3000                                            reloc.get_r_offset(),
3001                                            reloc.get_r_addend(), is_ifunc);
3002               break;
3003             }
3004
3005           this->check_non_pic(object, r_type, NULL);
3006
3007           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3008           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3009           if (lsym.get_st_type() != elfcpp::STT_SECTION)
3010             rela_dyn->add_local(object, r_sym, r_type, output_section,
3011                                 data_shndx, reloc.get_r_offset(),
3012                                 reloc.get_r_addend());
3013           else
3014             {
3015               gold_assert(lsym.get_st_value() == 0);
3016               unsigned int shndx = lsym.get_st_shndx();
3017               bool is_ordinary;
3018               shndx = object->adjust_sym_shndx(r_sym, shndx,
3019                                                &is_ordinary);
3020               if (!is_ordinary)
3021                 object->error(_("section symbol %u has bad shndx %u"),
3022                               r_sym, shndx);
3023               else
3024                 rela_dyn->add_local_section(object, shndx,
3025                                             r_type, output_section,
3026                                             data_shndx, reloc.get_r_offset(),
3027                                             reloc.get_r_addend());
3028             }
3029         }
3030       break;
3031
3032     case elfcpp::R_X86_64_PC64:
3033     case elfcpp::R_X86_64_PC32:
3034     case elfcpp::R_X86_64_PC32_BND:
3035     case elfcpp::R_X86_64_PC16:
3036     case elfcpp::R_X86_64_PC8:
3037       break;
3038
3039     case elfcpp::R_X86_64_PLT32:
3040     case elfcpp::R_X86_64_PLT32_BND:
3041       // Since we know this is a local symbol, we can handle this as a
3042       // PC32 reloc.
3043       break;
3044
3045     case elfcpp::R_X86_64_GOTPC32:
3046     case elfcpp::R_X86_64_GOTOFF64:
3047     case elfcpp::R_X86_64_GOTPC64:
3048     case elfcpp::R_X86_64_PLTOFF64:
3049       // We need a GOT section.
3050       target->got_section(symtab, layout);
3051       // For PLTOFF64, we'd normally want a PLT section, but since we
3052       // know this is a local symbol, no PLT is needed.
3053       break;
3054
3055     case elfcpp::R_X86_64_GOT64:
3056     case elfcpp::R_X86_64_GOT32:
3057     case elfcpp::R_X86_64_GOTPCREL64:
3058     case elfcpp::R_X86_64_GOTPCREL:
3059     case elfcpp::R_X86_64_GOTPCRELX:
3060     case elfcpp::R_X86_64_REX_GOTPCRELX:
3061     case elfcpp::R_X86_64_GOTPLT64:
3062       {
3063         // The symbol requires a GOT section.
3064         Output_data_got<64, false>* got = target->got_section(symtab, layout);
3065
3066         // If the relocation symbol isn't IFUNC,
3067         // and is local, then we will convert
3068         // mov foo@GOTPCREL(%rip), %reg
3069         // to lea foo(%rip), %reg.
3070         // in Relocate::relocate.
3071         if (!parameters->incremental()
3072             && (r_type == elfcpp::R_X86_64_GOTPCREL
3073                 || r_type == elfcpp::R_X86_64_GOTPCRELX
3074                 || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
3075             && reloc.get_r_offset() >= 2
3076             && !is_ifunc)
3077           {
3078             section_size_type stype;
3079             const unsigned char* view = object->section_contents(data_shndx,
3080                                                                  &stype, true);
3081             if (view[reloc.get_r_offset() - 2] == 0x8b)
3082               break;
3083           }
3084
3085         // The symbol requires a GOT entry.
3086         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3087
3088         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3089         // lets function pointers compare correctly with shared
3090         // libraries.  Otherwise we would need an IRELATIVE reloc.
3091         bool is_new;
3092         if (is_ifunc)
3093           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3094         else
3095           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3096         if (is_new)
3097           {
3098             // If we are generating a shared object, we need to add a
3099             // dynamic relocation for this symbol's GOT entry.
3100             if (parameters->options().output_is_position_independent())
3101               {
3102                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3103                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
3104                 if (r_type != elfcpp::R_X86_64_GOT32)
3105                   {
3106                     unsigned int got_offset =
3107                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3108                     rela_dyn->add_local_relative(object, r_sym,
3109                                                  elfcpp::R_X86_64_RELATIVE,
3110                                                  got, got_offset, 0, is_ifunc);
3111                   }
3112                 else
3113                   {
3114                     this->check_non_pic(object, r_type, NULL);
3115
3116                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3117                     rela_dyn->add_local(
3118                         object, r_sym, r_type, got,
3119                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
3120                   }
3121               }
3122           }
3123         // For GOTPLT64, we'd normally want a PLT section, but since
3124         // we know this is a local symbol, no PLT is needed.
3125       }
3126       break;
3127
3128     case elfcpp::R_X86_64_COPY:
3129     case elfcpp::R_X86_64_GLOB_DAT:
3130     case elfcpp::R_X86_64_JUMP_SLOT:
3131     case elfcpp::R_X86_64_RELATIVE:
3132     case elfcpp::R_X86_64_IRELATIVE:
3133       // These are outstanding tls relocs, which are unexpected when linking
3134     case elfcpp::R_X86_64_TPOFF64:
3135     case elfcpp::R_X86_64_DTPMOD64:
3136     case elfcpp::R_X86_64_TLSDESC:
3137       gold_error(_("%s: unexpected reloc %u in object file"),
3138                  object->name().c_str(), r_type);
3139       break;
3140
3141       // These are initial tls relocs, which are expected when linking
3142     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3143     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3144     case elfcpp::R_X86_64_TLSDESC_CALL:
3145     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3146     case elfcpp::R_X86_64_DTPOFF32:
3147     case elfcpp::R_X86_64_DTPOFF64:
3148     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3149     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3150       {
3151         bool output_is_shared = parameters->options().shared();
3152         const tls::Tls_optimization optimized_type
3153             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
3154                                                       r_type);
3155         switch (r_type)
3156           {
3157           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3158             if (optimized_type == tls::TLSOPT_NONE)
3159               {
3160                 // Create a pair of GOT entries for the module index and
3161                 // dtv-relative offset.
3162                 Output_data_got<64, false>* got
3163                     = target->got_section(symtab, layout);
3164                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3165                 unsigned int shndx = lsym.get_st_shndx();
3166                 bool is_ordinary;
3167                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
3168                 if (!is_ordinary)
3169                   object->error(_("local symbol %u has bad shndx %u"),
3170                               r_sym, shndx);
3171                 else
3172                   got->add_local_pair_with_rel(object, r_sym,
3173                                                shndx,
3174                                                GOT_TYPE_TLS_PAIR,
3175                                                target->rela_dyn_section(layout),
3176                                                elfcpp::R_X86_64_DTPMOD64);
3177               }
3178             else if (optimized_type != tls::TLSOPT_TO_LE)
3179               unsupported_reloc_local(object, r_type);
3180             break;
3181
3182           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3183             target->define_tls_base_symbol(symtab, layout);
3184             if (optimized_type == tls::TLSOPT_NONE)
3185               {
3186                 // Create reserved PLT and GOT entries for the resolver.
3187                 target->reserve_tlsdesc_entries(symtab, layout);
3188
3189                 // Generate a double GOT entry with an
3190                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
3191                 // is resolved lazily, so the GOT entry needs to be in
3192                 // an area in .got.plt, not .got.  Call got_section to
3193                 // make sure the section has been created.
3194                 target->got_section(symtab, layout);
3195                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3196                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3197                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
3198                   {
3199                     unsigned int got_offset = got->add_constant(0);
3200                     got->add_constant(0);
3201                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
3202                                                  got_offset);
3203                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
3204                     // We store the arguments we need in a vector, and
3205                     // use the index into the vector as the parameter
3206                     // to pass to the target specific routines.
3207                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
3208                     void* arg = reinterpret_cast<void*>(intarg);
3209                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3210                                             got, got_offset, 0);
3211                   }
3212               }
3213             else if (optimized_type != tls::TLSOPT_TO_LE)
3214               unsupported_reloc_local(object, r_type);
3215             break;
3216
3217           case elfcpp::R_X86_64_TLSDESC_CALL:
3218             break;
3219
3220           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3221             if (optimized_type == tls::TLSOPT_NONE)
3222               {
3223                 // Create a GOT entry for the module index.
3224                 target->got_mod_index_entry(symtab, layout, object);
3225               }
3226             else if (optimized_type != tls::TLSOPT_TO_LE)
3227               unsupported_reloc_local(object, r_type);
3228             break;
3229
3230           case elfcpp::R_X86_64_DTPOFF32:
3231           case elfcpp::R_X86_64_DTPOFF64:
3232             break;
3233
3234           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3235             layout->set_has_static_tls();
3236             if (optimized_type == tls::TLSOPT_NONE)
3237               {
3238                 // Create a GOT entry for the tp-relative offset.
3239                 Output_data_got<64, false>* got
3240                     = target->got_section(symtab, layout);
3241                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3242                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
3243                                         target->rela_dyn_section(layout),
3244                                         elfcpp::R_X86_64_TPOFF64);
3245               }
3246             else if (optimized_type != tls::TLSOPT_TO_LE)
3247               unsupported_reloc_local(object, r_type);
3248             break;
3249
3250           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3251             layout->set_has_static_tls();
3252             if (output_is_shared)
3253               unsupported_reloc_local(object, r_type);
3254             break;
3255
3256           default:
3257             gold_unreachable();
3258           }
3259       }
3260       break;
3261
3262     case elfcpp::R_X86_64_SIZE32:
3263     case elfcpp::R_X86_64_SIZE64:
3264     default:
3265       gold_error(_("%s: unsupported reloc %u against local symbol"),
3266                  object->name().c_str(), r_type);
3267       break;
3268     }
3269 }
3270
3271
3272 // Report an unsupported relocation against a global symbol.
3273
3274 template<int size>
3275 void
3276 Target_x86_64<size>::Scan::unsupported_reloc_global(
3277     Sized_relobj_file<size, false>* object,
3278     unsigned int r_type,
3279     Symbol* gsym)
3280 {
3281   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3282              object->name().c_str(), r_type, gsym->demangled_name().c_str());
3283 }
3284
3285 // Returns true if this relocation type could be that of a function pointer.
3286 template<int size>
3287 inline bool
3288 Target_x86_64<size>::Scan::possible_function_pointer_reloc(
3289     Sized_relobj_file<size, false>* src_obj,
3290     unsigned int src_indx,
3291     unsigned int r_offset,
3292     unsigned int r_type)
3293 {
3294   switch (r_type)
3295     {
3296     case elfcpp::R_X86_64_64:
3297     case elfcpp::R_X86_64_32:
3298     case elfcpp::R_X86_64_32S:
3299     case elfcpp::R_X86_64_16:
3300     case elfcpp::R_X86_64_8:
3301     case elfcpp::R_X86_64_GOT64:
3302     case elfcpp::R_X86_64_GOT32:
3303     case elfcpp::R_X86_64_GOTPCREL64:
3304     case elfcpp::R_X86_64_GOTPCREL:
3305     case elfcpp::R_X86_64_GOTPCRELX:
3306     case elfcpp::R_X86_64_REX_GOTPCRELX:
3307     case elfcpp::R_X86_64_GOTPLT64:
3308       {
3309         return true;
3310       }
3311     case elfcpp::R_X86_64_PC32:
3312       {
3313         // This relocation may be used both for function calls and
3314         // for taking address of a function. We distinguish between
3315         // them by checking the opcodes.
3316         uint64_t sh_flags = src_obj->section_flags(src_indx);
3317         bool is_executable = (sh_flags & elfcpp::SHF_EXECINSTR) != 0;
3318         if (is_executable)
3319           {
3320             section_size_type stype;
3321             const unsigned char* view = src_obj->section_contents(src_indx,
3322                                                                   &stype,
3323                                                                   true);
3324
3325             // call
3326             if (r_offset >= 1
3327                 && view[r_offset - 1] == 0xe8)
3328               return false;
3329
3330             // jmp
3331             if (r_offset >= 1
3332                 && view[r_offset - 1] == 0xe9)
3333               return false;
3334
3335             // jo/jno/jb/jnb/je/jne/jna/ja/js/jns/jp/jnp/jl/jge/jle/jg
3336             if (r_offset >= 2
3337                 && view[r_offset - 2] == 0x0f
3338                 && view[r_offset - 1] >= 0x80
3339                 && view[r_offset - 1] <= 0x8f)
3340               return false;
3341           }
3342
3343         // Be conservative and treat all others as function pointers.
3344         return true;
3345       }
3346     }
3347   return false;
3348 }
3349
3350 // For safe ICF, scan a relocation for a local symbol to check if it
3351 // corresponds to a function pointer being taken.  In that case mark
3352 // the function whose pointer was taken as not foldable.
3353
3354 template<int size>
3355 inline bool
3356 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
3357   Symbol_table* ,
3358   Layout* ,
3359   Target_x86_64<size>* ,
3360   Sized_relobj_file<size, false>* src_obj,
3361   unsigned int src_indx,
3362   Output_section* ,
3363   const elfcpp::Rela<size, false>& reloc,
3364   unsigned int r_type,
3365   const elfcpp::Sym<size, false>&)
3366 {
3367   // When building a shared library, do not fold any local symbols as it is
3368   // not possible to distinguish pointer taken versus a call by looking at
3369   // the relocation types.
3370   if (parameters->options().shared())
3371     return true;
3372
3373   return possible_function_pointer_reloc(src_obj, src_indx,
3374                                          reloc.get_r_offset(), r_type);
3375 }
3376
3377 // For safe ICF, scan a relocation for a global symbol to check if it
3378 // corresponds to a function pointer being taken.  In that case mark
3379 // the function whose pointer was taken as not foldable.
3380
3381 template<int size>
3382 inline bool
3383 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
3384   Symbol_table*,
3385   Layout* ,
3386   Target_x86_64<size>* ,
3387   Sized_relobj_file<size, false>* src_obj,
3388   unsigned int src_indx,
3389   Output_section* ,
3390   const elfcpp::Rela<size, false>& reloc,
3391   unsigned int r_type,
3392   Symbol* gsym)
3393 {
3394   // When building a shared library, do not fold symbols whose visibility
3395   // is hidden, internal or protected.
3396   if (parameters->options().shared()
3397       && (gsym->visibility() == elfcpp::STV_INTERNAL
3398           || gsym->visibility() == elfcpp::STV_PROTECTED
3399           || gsym->visibility() == elfcpp::STV_HIDDEN))
3400     return true;
3401
3402   return possible_function_pointer_reloc(src_obj, src_indx,
3403                                          reloc.get_r_offset(), r_type);
3404 }
3405
3406 // Scan a relocation for a global symbol.
3407
3408 template<int size>
3409 inline void
3410 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
3411                             Layout* layout,
3412                             Target_x86_64<size>* target,
3413                             Sized_relobj_file<size, false>* object,
3414                             unsigned int data_shndx,
3415                             Output_section* output_section,
3416                             const elfcpp::Rela<size, false>& reloc,
3417                             unsigned int r_type,
3418                             Symbol* gsym)
3419 {
3420   // A STT_GNU_IFUNC symbol may require a PLT entry.
3421   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3422       && this->reloc_needs_plt_for_ifunc(object, r_type))
3423     target->make_plt_entry(symtab, layout, gsym);
3424
3425   switch (r_type)
3426     {
3427     case elfcpp::R_X86_64_NONE:
3428     case elfcpp::R_X86_64_GNU_VTINHERIT:
3429     case elfcpp::R_X86_64_GNU_VTENTRY:
3430       break;
3431
3432     case elfcpp::R_X86_64_64:
3433     case elfcpp::R_X86_64_32:
3434     case elfcpp::R_X86_64_32S:
3435     case elfcpp::R_X86_64_16:
3436     case elfcpp::R_X86_64_8:
3437       {
3438         // Make a PLT entry if necessary.
3439         if (gsym->needs_plt_entry())
3440           {
3441             target->make_plt_entry(symtab, layout, gsym);
3442             // Since this is not a PC-relative relocation, we may be
3443             // taking the address of a function. In that case we need to
3444             // set the entry in the dynamic symbol table to the address of
3445             // the PLT entry.
3446             if (gsym->is_from_dynobj() && !parameters->options().shared())
3447               gsym->set_needs_dynsym_value();
3448           }
3449         // Make a dynamic relocation if necessary.
3450         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3451           {
3452             if (!parameters->options().output_is_position_independent()
3453                 && gsym->may_need_copy_reloc())
3454               {
3455                 target->copy_reloc(symtab, layout, object,
3456                                    data_shndx, output_section, gsym, reloc);
3457               }
3458             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
3459                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
3460                      && gsym->type() == elfcpp::STT_GNU_IFUNC
3461                      && gsym->can_use_relative_reloc(false)
3462                      && !gsym->is_from_dynobj()
3463                      && !gsym->is_undefined()
3464                      && !gsym->is_preemptible())
3465               {
3466                 // Use an IRELATIVE reloc for a locally defined
3467                 // STT_GNU_IFUNC symbol.  This makes a function
3468                 // address in a PIE executable match the address in a
3469                 // shared library that it links against.
3470                 Reloc_section* rela_dyn =
3471                   target->rela_irelative_section(layout);
3472                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
3473                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
3474                                                        output_section, object,
3475                                                        data_shndx,
3476                                                        reloc.get_r_offset(),
3477                                                        reloc.get_r_addend());
3478               }
3479             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
3480                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
3481                      && gsym->can_use_relative_reloc(false))
3482               {
3483                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3484                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
3485                                               output_section, object,
3486                                               data_shndx,
3487                                               reloc.get_r_offset(),
3488                                               reloc.get_r_addend(), false);
3489               }
3490             else
3491               {
3492                 this->check_non_pic(object, r_type, gsym);
3493                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3494                 rela_dyn->add_global(gsym, r_type, output_section, object,
3495                                      data_shndx, reloc.get_r_offset(),
3496                                      reloc.get_r_addend());
3497               }
3498           }
3499       }
3500       break;
3501
3502     case elfcpp::R_X86_64_PC64:
3503     case elfcpp::R_X86_64_PC32:
3504     case elfcpp::R_X86_64_PC32_BND:
3505     case elfcpp::R_X86_64_PC16:
3506     case elfcpp::R_X86_64_PC8:
3507       {
3508         // Make a PLT entry if necessary.
3509         if (gsym->needs_plt_entry())
3510           target->make_plt_entry(symtab, layout, gsym);
3511         // Make a dynamic relocation if necessary.
3512         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3513           {
3514             if (parameters->options().output_is_executable()
3515                 && gsym->may_need_copy_reloc())
3516               {
3517                 target->copy_reloc(symtab, layout, object,
3518                                    data_shndx, output_section, gsym, reloc);
3519               }
3520             else
3521               {
3522                 this->check_non_pic(object, r_type, gsym);
3523                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3524                 rela_dyn->add_global(gsym, r_type, output_section, object,
3525                                      data_shndx, reloc.get_r_offset(),
3526                                      reloc.get_r_addend());
3527               }
3528           }
3529       }
3530       break;
3531
3532     case elfcpp::R_X86_64_GOT64:
3533     case elfcpp::R_X86_64_GOT32:
3534     case elfcpp::R_X86_64_GOTPCREL64:
3535     case elfcpp::R_X86_64_GOTPCREL:
3536     case elfcpp::R_X86_64_GOTPCRELX:
3537     case elfcpp::R_X86_64_REX_GOTPCRELX:
3538     case elfcpp::R_X86_64_GOTPLT64:
3539       {
3540         // The symbol requires a GOT entry.
3541         Output_data_got<64, false>* got = target->got_section(symtab, layout);
3542
3543         // If we convert this from
3544         // mov foo@GOTPCREL(%rip), %reg
3545         // to lea foo(%rip), %reg.
3546         // OR
3547         // if we convert
3548         // (callq|jmpq) *foo@GOTPCRELX(%rip) to
3549         // (callq|jmpq) foo
3550         // in Relocate::relocate, then there is nothing to do here.
3551         // We cannot make these optimizations in incremental linking mode,
3552         // because we look at the opcode to decide whether or not to make
3553         // change, and during an incremental update, the change may have
3554         // already been applied.
3555
3556         Lazy_view<size> view(object, data_shndx);
3557         size_t r_offset = reloc.get_r_offset();
3558         if (!parameters->incremental()
3559             && r_offset >= 2
3560             && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
3561                                                            r_offset, &view))
3562           break;
3563
3564         if (!parameters->incremental()
3565             && r_offset >= 2
3566             && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
3567                                                                 r_offset,
3568                                                                 &view))
3569           break;
3570
3571         if (gsym->final_value_is_known())
3572           {
3573             // For a STT_GNU_IFUNC symbol we want the PLT address.
3574             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3575               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3576             else
3577               got->add_global(gsym, GOT_TYPE_STANDARD);
3578           }
3579         else
3580           {
3581             // If this symbol is not fully resolved, we need to add a
3582             // dynamic relocation for it.
3583             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3584
3585             // Use a GLOB_DAT rather than a RELATIVE reloc if:
3586             //
3587             // 1) The symbol may be defined in some other module.
3588             //
3589             // 2) We are building a shared library and this is a
3590             // protected symbol; using GLOB_DAT means that the dynamic
3591             // linker can use the address of the PLT in the main
3592             // executable when appropriate so that function address
3593             // comparisons work.
3594             //
3595             // 3) This is a STT_GNU_IFUNC symbol in position dependent
3596             // code, again so that function address comparisons work.
3597             if (gsym->is_from_dynobj()
3598                 || gsym->is_undefined()
3599                 || gsym->is_preemptible()
3600                 || (gsym->visibility() == elfcpp::STV_PROTECTED
3601                     && parameters->options().shared())
3602                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3603                     && parameters->options().output_is_position_independent()))
3604               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3605                                        elfcpp::R_X86_64_GLOB_DAT);
3606             else
3607               {
3608                 // For a STT_GNU_IFUNC symbol we want to write the PLT
3609                 // offset into the GOT, so that function pointer
3610                 // comparisons work correctly.
3611                 bool is_new;
3612                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3613                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3614                 else
3615                   {
3616                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3617                     // Tell the dynamic linker to use the PLT address
3618                     // when resolving relocations.
3619                     if (gsym->is_from_dynobj()
3620                         && !parameters->options().shared())
3621                       gsym->set_needs_dynsym_value();
3622                   }
3623                 if (is_new)
3624                   {
3625                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3626                     rela_dyn->add_global_relative(gsym,
3627                                                   elfcpp::R_X86_64_RELATIVE,
3628                                                   got, got_off, 0, false);
3629                   }
3630               }
3631           }
3632       }
3633       break;
3634
3635     case elfcpp::R_X86_64_PLT32:
3636     case elfcpp::R_X86_64_PLT32_BND:
3637       // If the symbol is fully resolved, this is just a PC32 reloc.
3638       // Otherwise we need a PLT entry.
3639       if (gsym->final_value_is_known())
3640         break;
3641       // If building a shared library, we can also skip the PLT entry
3642       // if the symbol is defined in the output file and is protected
3643       // or hidden.
3644       if (gsym->is_defined()
3645           && !gsym->is_from_dynobj()
3646           && !gsym->is_preemptible())
3647         break;
3648       target->make_plt_entry(symtab, layout, gsym);
3649       break;
3650
3651     case elfcpp::R_X86_64_GOTPC32:
3652     case elfcpp::R_X86_64_GOTOFF64:
3653     case elfcpp::R_X86_64_GOTPC64:
3654     case elfcpp::R_X86_64_PLTOFF64:
3655       // We need a GOT section.
3656       target->got_section(symtab, layout);
3657       // For PLTOFF64, we also need a PLT entry (but only if the
3658       // symbol is not fully resolved).
3659       if (r_type == elfcpp::R_X86_64_PLTOFF64
3660           && !gsym->final_value_is_known())
3661         target->make_plt_entry(symtab, layout, gsym);
3662       break;
3663
3664     case elfcpp::R_X86_64_COPY:
3665     case elfcpp::R_X86_64_GLOB_DAT:
3666     case elfcpp::R_X86_64_JUMP_SLOT:
3667     case elfcpp::R_X86_64_RELATIVE:
3668     case elfcpp::R_X86_64_IRELATIVE:
3669       // These are outstanding tls relocs, which are unexpected when linking
3670     case elfcpp::R_X86_64_TPOFF64:
3671     case elfcpp::R_X86_64_DTPMOD64:
3672     case elfcpp::R_X86_64_TLSDESC:
3673       gold_error(_("%s: unexpected reloc %u in object file"),
3674                  object->name().c_str(), r_type);
3675       break;
3676
3677       // These are initial tls relocs, which are expected for global()
3678     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3679     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3680     case elfcpp::R_X86_64_TLSDESC_CALL:
3681     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3682     case elfcpp::R_X86_64_DTPOFF32:
3683     case elfcpp::R_X86_64_DTPOFF64:
3684     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3685     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3686       {
3687         // For the Initial-Exec model, we can treat undef symbols as final
3688         // when building an executable.
3689         const bool is_final = (gsym->final_value_is_known() ||
3690                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3691                                 gsym->is_undefined() &&
3692                                 parameters->options().output_is_executable()));
3693         const tls::Tls_optimization optimized_type
3694             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3695         switch (r_type)
3696           {
3697           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3698             if (optimized_type == tls::TLSOPT_NONE)
3699               {
3700                 // Create a pair of GOT entries for the module index and
3701                 // dtv-relative offset.
3702                 Output_data_got<64, false>* got
3703                     = target->got_section(symtab, layout);
3704                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3705                                               target->rela_dyn_section(layout),
3706                                               elfcpp::R_X86_64_DTPMOD64,
3707                                               elfcpp::R_X86_64_DTPOFF64);
3708               }
3709             else if (optimized_type == tls::TLSOPT_TO_IE)
3710               {
3711                 // Create a GOT entry for the tp-relative offset.
3712                 Output_data_got<64, false>* got
3713                     = target->got_section(symtab, layout);
3714                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3715                                          target->rela_dyn_section(layout),
3716                                          elfcpp::R_X86_64_TPOFF64);
3717               }
3718             else if (optimized_type != tls::TLSOPT_TO_LE)
3719               unsupported_reloc_global(object, r_type, gsym);
3720             break;
3721
3722           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3723             target->define_tls_base_symbol(symtab, layout);
3724             if (optimized_type == tls::TLSOPT_NONE)
3725               {
3726                 // Create reserved PLT and GOT entries for the resolver.
3727                 target->reserve_tlsdesc_entries(symtab, layout);
3728
3729                 // Create a double GOT entry with an R_X86_64_TLSDESC
3730                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3731                 // lazily, so the GOT entry needs to be in an area in
3732                 // .got.plt, not .got.  Call got_section to make sure
3733                 // the section has been created.
3734                 target->got_section(symtab, layout);
3735                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3736                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3737                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3738                                               elfcpp::R_X86_64_TLSDESC, 0);
3739               }
3740             else if (optimized_type == tls::TLSOPT_TO_IE)
3741               {
3742                 // Create a GOT entry for the tp-relative offset.
3743                 Output_data_got<64, false>* got
3744                     = target->got_section(symtab, layout);
3745                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3746                                          target->rela_dyn_section(layout),
3747                                          elfcpp::R_X86_64_TPOFF64);
3748               }
3749             else if (optimized_type != tls::TLSOPT_TO_LE)
3750               unsupported_reloc_global(object, r_type, gsym);
3751             break;
3752
3753           case elfcpp::R_X86_64_TLSDESC_CALL:
3754             break;
3755
3756           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3757             if (optimized_type == tls::TLSOPT_NONE)
3758               {
3759                 // Create a GOT entry for the module index.
3760                 target->got_mod_index_entry(symtab, layout, object);
3761               }
3762             else if (optimized_type != tls::TLSOPT_TO_LE)
3763               unsupported_reloc_global(object, r_type, gsym);
3764             break;
3765
3766           case elfcpp::R_X86_64_DTPOFF32:
3767           case elfcpp::R_X86_64_DTPOFF64:
3768             break;
3769
3770           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3771             layout->set_has_static_tls();
3772             if (optimized_type == tls::TLSOPT_NONE)
3773               {
3774                 // Create a GOT entry for the tp-relative offset.
3775                 Output_data_got<64, false>* got
3776                     = target->got_section(symtab, layout);
3777                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3778                                          target->rela_dyn_section(layout),
3779                                          elfcpp::R_X86_64_TPOFF64);
3780               }
3781             else if (optimized_type != tls::TLSOPT_TO_LE)
3782               unsupported_reloc_global(object, r_type, gsym);
3783             break;
3784
3785           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3786             layout->set_has_static_tls();
3787             if (parameters->options().shared())
3788               unsupported_reloc_global(object, r_type, gsym);
3789             break;
3790
3791           default:
3792             gold_unreachable();
3793           }
3794       }
3795       break;
3796
3797     case elfcpp::R_X86_64_SIZE32:
3798     case elfcpp::R_X86_64_SIZE64:
3799     default:
3800       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3801                  object->name().c_str(), r_type,
3802                  gsym->demangled_name().c_str());
3803       break;
3804     }
3805 }
3806
3807 template<int size>
3808 void
3809 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3810                                        Layout* layout,
3811                                        Sized_relobj_file<size, false>* object,
3812                                        unsigned int data_shndx,
3813                                        unsigned int sh_type,
3814                                        const unsigned char* prelocs,
3815                                        size_t reloc_count,
3816                                        Output_section* output_section,
3817                                        bool needs_special_offset_handling,
3818                                        size_t local_symbol_count,
3819                                        const unsigned char* plocal_symbols)
3820 {
3821   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3822       Classify_reloc;
3823
3824   if (sh_type == elfcpp::SHT_REL)
3825     {
3826       return;
3827     }
3828
3829    gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
3830                            Classify_reloc>(
3831     symtab,
3832     layout,
3833     this,
3834     object,
3835     data_shndx,
3836     prelocs,
3837     reloc_count,
3838     output_section,
3839     needs_special_offset_handling,
3840     local_symbol_count,
3841     plocal_symbols);
3842
3843 }
3844 // Scan relocations for a section.
3845
3846 template<int size>
3847 void
3848 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3849                                  Layout* layout,
3850                                  Sized_relobj_file<size, false>* object,
3851                                  unsigned int data_shndx,
3852                                  unsigned int sh_type,
3853                                  const unsigned char* prelocs,
3854                                  size_t reloc_count,
3855                                  Output_section* output_section,
3856                                  bool needs_special_offset_handling,
3857                                  size_t local_symbol_count,
3858                                  const unsigned char* plocal_symbols)
3859 {
3860   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3861       Classify_reloc;
3862
3863   if (sh_type == elfcpp::SHT_REL)
3864     {
3865       gold_error(_("%s: unsupported REL reloc section"),
3866                  object->name().c_str());
3867       return;
3868     }
3869
3870   gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
3871     symtab,
3872     layout,
3873     this,
3874     object,
3875     data_shndx,
3876     prelocs,
3877     reloc_count,
3878     output_section,
3879     needs_special_offset_handling,
3880     local_symbol_count,
3881     plocal_symbols);
3882 }
3883
3884 // Finalize the sections.
3885
3886 template<int size>
3887 void
3888 Target_x86_64<size>::do_finalize_sections(
3889     Layout* layout,
3890     const Input_objects*,
3891     Symbol_table* symtab)
3892 {
3893   const Reloc_section* rel_plt = (this->plt_ == NULL
3894                                   ? NULL
3895                                   : this->plt_->rela_plt());
3896   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3897                                   this->rela_dyn_, true, false);
3898
3899   // Fill in some more dynamic tags.
3900   Output_data_dynamic* const odyn = layout->dynamic_data();
3901   if (odyn != NULL)
3902     {
3903       if (this->plt_ != NULL
3904           && this->plt_->output_section() != NULL
3905           && this->plt_->has_tlsdesc_entry())
3906         {
3907           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3908           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3909           this->got_->finalize_data_size();
3910           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3911                                         this->plt_, plt_offset);
3912           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3913                                         this->got_, got_offset);
3914         }
3915     }
3916
3917   // Emit any relocs we saved in an attempt to avoid generating COPY
3918   // relocs.
3919   if (this->copy_relocs_.any_saved_relocs())
3920     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3921
3922   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3923   // the .got.plt section.
3924   Symbol* sym = this->global_offset_table_;
3925   if (sym != NULL)
3926     {
3927       uint64_t data_size = this->got_plt_->current_data_size();
3928       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3929     }
3930
3931   if (parameters->doing_static_link()
3932       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3933     {
3934       // If linking statically, make sure that the __rela_iplt symbols
3935       // were defined if necessary, even if we didn't create a PLT.
3936       static const Define_symbol_in_segment syms[] =
3937         {
3938           {
3939             "__rela_iplt_start",        // name
3940             elfcpp::PT_LOAD,            // segment_type
3941             elfcpp::PF_W,               // segment_flags_set
3942             elfcpp::PF(0),              // segment_flags_clear
3943             0,                          // value
3944             0,                          // size
3945             elfcpp::STT_NOTYPE,         // type
3946             elfcpp::STB_GLOBAL,         // binding
3947             elfcpp::STV_HIDDEN,         // visibility
3948             0,                          // nonvis
3949             Symbol::SEGMENT_START,      // offset_from_base
3950             true                        // only_if_ref
3951           },
3952           {
3953             "__rela_iplt_end",          // name
3954             elfcpp::PT_LOAD,            // segment_type
3955             elfcpp::PF_W,               // segment_flags_set
3956             elfcpp::PF(0),              // segment_flags_clear
3957             0,                          // value
3958             0,                          // size
3959             elfcpp::STT_NOTYPE,         // type
3960             elfcpp::STB_GLOBAL,         // binding
3961             elfcpp::STV_HIDDEN,         // visibility
3962             0,                          // nonvis
3963             Symbol::SEGMENT_START,      // offset_from_base
3964             true                        // only_if_ref
3965           }
3966         };
3967
3968       symtab->define_symbols(layout, 2, syms,
3969                              layout->script_options()->saw_sections_clause());
3970     }
3971 }
3972
3973 // For x32, we need to handle PC-relative relocations using full 64-bit
3974 // arithmetic, so that we can detect relocation overflows properly.
3975 // This class overrides the pcrela32_check methods from the defaults in
3976 // Relocate_functions in reloc.h.
3977
3978 template<int size>
3979 class X86_64_relocate_functions : public Relocate_functions<size, false>
3980 {
3981  public:
3982   typedef Relocate_functions<size, false> Base;
3983
3984   // Do a simple PC relative relocation with the addend in the
3985   // relocation.
3986   static inline typename Base::Reloc_status
3987   pcrela32_check(unsigned char* view,
3988                  typename elfcpp::Elf_types<64>::Elf_Addr value,
3989                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3990                  typename elfcpp::Elf_types<64>::Elf_Addr address)
3991   {
3992     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3993     Valtype* wv = reinterpret_cast<Valtype*>(view);
3994     value = value + addend - address;
3995     elfcpp::Swap<32, false>::writeval(wv, value);
3996     return (Bits<32>::has_overflow(value)
3997             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3998   }
3999
4000   // Do a simple PC relative relocation with a Symbol_value with the
4001   // addend in the relocation.
4002   static inline typename Base::Reloc_status
4003   pcrela32_check(unsigned char* view,
4004                  const Sized_relobj_file<size, false>* object,
4005                  const Symbol_value<size>* psymval,
4006                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
4007                  typename elfcpp::Elf_types<64>::Elf_Addr address)
4008   {
4009     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
4010     Valtype* wv = reinterpret_cast<Valtype*>(view);
4011     typename elfcpp::Elf_types<64>::Elf_Addr value;
4012     if (addend >= 0)
4013       value = psymval->value(object, addend);
4014     else
4015       {
4016         // For negative addends, get the symbol value without
4017         // the addend, then add the addend using 64-bit arithmetic.
4018         value = psymval->value(object, 0);
4019         value += addend;
4020       }
4021     value -= address;
4022     elfcpp::Swap<32, false>::writeval(wv, value);
4023     return (Bits<32>::has_overflow(value)
4024             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
4025   }
4026 };
4027
4028 // Perform a relocation.
4029
4030 template<int size>
4031 inline bool
4032 Target_x86_64<size>::Relocate::relocate(
4033     const Relocate_info<size, false>* relinfo,
4034     unsigned int,
4035     Target_x86_64<size>* target,
4036     Output_section*,
4037     size_t relnum,
4038     const unsigned char* preloc,
4039     const Sized_symbol<size>* gsym,
4040     const Symbol_value<size>* psymval,
4041     unsigned char* view,
4042     typename elfcpp::Elf_types<size>::Elf_Addr address,
4043     section_size_type view_size)
4044 {
4045   typedef X86_64_relocate_functions<size> Reloc_funcs;
4046   const elfcpp::Rela<size, false> rela(preloc);
4047   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4048
4049   if (this->skip_call_tls_get_addr_)
4050     {
4051       if ((r_type != elfcpp::R_X86_64_PLT32
4052            && r_type != elfcpp::R_X86_64_GOTPCREL
4053            && r_type != elfcpp::R_X86_64_GOTPCRELX
4054            && r_type != elfcpp::R_X86_64_PLT32_BND
4055            && r_type != elfcpp::R_X86_64_PC32_BND
4056            && r_type != elfcpp::R_X86_64_PC32)
4057           || gsym == NULL
4058           || strcmp(gsym->name(), "__tls_get_addr") != 0)
4059         {
4060           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4061                                  _("missing expected TLS relocation"));
4062           this->skip_call_tls_get_addr_ = false;
4063         }
4064       else
4065         {
4066           this->skip_call_tls_get_addr_ = false;
4067           return false;
4068         }
4069     }
4070
4071   if (view == NULL)
4072     return true;
4073
4074   const Sized_relobj_file<size, false>* object = relinfo->object;
4075
4076   // Pick the value to use for symbols defined in the PLT.
4077   Symbol_value<size> symval;
4078   if (gsym != NULL
4079       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4080     {
4081       symval.set_output_value(target->plt_address_for_global(gsym));
4082       psymval = &symval;
4083     }
4084   else if (gsym == NULL && psymval->is_ifunc_symbol())
4085     {
4086       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4087       if (object->local_has_plt_offset(r_sym))
4088         {
4089           symval.set_output_value(target->plt_address_for_local(object, r_sym));
4090           psymval = &symval;
4091         }
4092     }
4093
4094   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4095
4096   // Get the GOT offset if needed.
4097   // The GOT pointer points to the end of the GOT section.
4098   // We need to subtract the size of the GOT section to get
4099   // the actual offset to use in the relocation.
4100   bool have_got_offset = false;
4101   // Since the actual offset is always negative, we use signed int to
4102   // support 64-bit GOT relocations.
4103   int got_offset = 0;
4104   switch (r_type)
4105     {
4106     case elfcpp::R_X86_64_GOT32:
4107     case elfcpp::R_X86_64_GOT64:
4108     case elfcpp::R_X86_64_GOTPLT64:
4109     case elfcpp::R_X86_64_GOTPCREL64:
4110       if (gsym != NULL)
4111         {
4112           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4113           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4114         }
4115       else
4116         {
4117           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4118           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4119           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4120                         - target->got_size());
4121         }
4122       have_got_offset = true;
4123       break;
4124
4125     default:
4126       break;
4127     }
4128
4129   typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
4130
4131   switch (r_type)
4132     {
4133     case elfcpp::R_X86_64_NONE:
4134     case elfcpp::R_X86_64_GNU_VTINHERIT:
4135     case elfcpp::R_X86_64_GNU_VTENTRY:
4136       break;
4137
4138     case elfcpp::R_X86_64_64:
4139       Reloc_funcs::rela64(view, object, psymval, addend);
4140       break;
4141
4142     case elfcpp::R_X86_64_PC64:
4143       Reloc_funcs::pcrela64(view, object, psymval, addend,
4144                                               address);
4145       break;
4146
4147     case elfcpp::R_X86_64_32:
4148       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4149                                           Reloc_funcs::CHECK_UNSIGNED);
4150       break;
4151
4152     case elfcpp::R_X86_64_32S:
4153       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4154                                           Reloc_funcs::CHECK_SIGNED);
4155       break;
4156
4157     case elfcpp::R_X86_64_PC32:
4158     case elfcpp::R_X86_64_PC32_BND:
4159       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4160                                             address);
4161       break;
4162
4163     case elfcpp::R_X86_64_16:
4164       Reloc_funcs::rela16(view, object, psymval, addend);
4165       break;
4166
4167     case elfcpp::R_X86_64_PC16:
4168       Reloc_funcs::pcrela16(view, object, psymval, addend, address);
4169       break;
4170
4171     case elfcpp::R_X86_64_8:
4172       Reloc_funcs::rela8(view, object, psymval, addend);
4173       break;
4174
4175     case elfcpp::R_X86_64_PC8:
4176       Reloc_funcs::pcrela8(view, object, psymval, addend, address);
4177       break;
4178
4179     case elfcpp::R_X86_64_PLT32:
4180     case elfcpp::R_X86_64_PLT32_BND:
4181       gold_assert(gsym == NULL
4182                   || gsym->has_plt_offset()
4183                   || gsym->final_value_is_known()
4184                   || (gsym->is_defined()
4185                       && !gsym->is_from_dynobj()
4186                       && !gsym->is_preemptible()));
4187       // Note: while this code looks the same as for R_X86_64_PC32, it
4188       // behaves differently because psymval was set to point to
4189       // the PLT entry, rather than the symbol, in Scan::global().
4190       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4191                                             address);
4192       break;
4193
4194     case elfcpp::R_X86_64_PLTOFF64:
4195       {
4196         gold_assert(gsym);
4197         gold_assert(gsym->has_plt_offset()
4198                     || gsym->final_value_is_known());
4199         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
4200         // This is the address of GLOBAL_OFFSET_TABLE.
4201         got_address = target->got_plt_section()->address();
4202         Reloc_funcs::rela64(view, object, psymval, addend - got_address);
4203       }
4204       break;
4205
4206     case elfcpp::R_X86_64_GOT32:
4207       gold_assert(have_got_offset);
4208       Reloc_funcs::rela32(view, got_offset, addend);
4209       break;
4210
4211     case elfcpp::R_X86_64_GOTPC32:
4212       {
4213         gold_assert(gsym);
4214         typename elfcpp::Elf_types<size>::Elf_Addr value;
4215         value = target->got_plt_section()->address();
4216         Reloc_funcs::pcrela32_check(view, value, addend, address);
4217       }
4218       break;
4219
4220     case elfcpp::R_X86_64_GOT64:
4221     case elfcpp::R_X86_64_GOTPLT64:
4222       // R_X86_64_GOTPLT64 is obsolete and treated the same as
4223       // GOT64.
4224       gold_assert(have_got_offset);
4225       Reloc_funcs::rela64(view, got_offset, addend);
4226       break;
4227
4228     case elfcpp::R_X86_64_GOTPC64:
4229       {
4230         gold_assert(gsym);
4231         typename elfcpp::Elf_types<size>::Elf_Addr value;
4232         value = target->got_plt_section()->address();
4233         Reloc_funcs::pcrela64(view, value, addend, address);
4234       }
4235       break;
4236
4237     case elfcpp::R_X86_64_GOTOFF64:
4238       {
4239         typename elfcpp::Elf_types<size>::Elf_Addr value;
4240         value = (psymval->value(object, 0)
4241                  - target->got_plt_section()->address());
4242         Reloc_funcs::rela64(view, value, addend);
4243       }
4244       break;
4245
4246     case elfcpp::R_X86_64_GOTPCREL:
4247     case elfcpp::R_X86_64_GOTPCRELX:
4248     case elfcpp::R_X86_64_REX_GOTPCRELX:
4249       {
4250       // Convert
4251       // mov foo@GOTPCREL(%rip), %reg
4252       // to lea foo(%rip), %reg.
4253       // if possible.
4254       if (!parameters->incremental()
4255           && ((gsym == NULL
4256                && rela.get_r_offset() >= 2
4257                && view[-2] == 0x8b
4258                && !psymval->is_ifunc_symbol())
4259               || (gsym != NULL
4260                   && rela.get_r_offset() >= 2
4261                   && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4262                                                                  0, &view))))
4263         {
4264           view[-2] = 0x8d;
4265           Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4266         }
4267       // Convert
4268       // callq *foo@GOTPCRELX(%rip) to
4269       // addr32 callq foo
4270       // and jmpq *foo@GOTPCRELX(%rip) to
4271       // jmpq foo
4272       // nop
4273       else if (!parameters->incremental()
4274                && gsym != NULL
4275                && rela.get_r_offset() >= 2
4276                && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
4277                                                                    r_type,
4278                                                                    0, &view))
4279         {
4280           if (view[-1] == 0x15)
4281             {
4282               // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
4283               // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
4284               view[-2] = 0x67;
4285               view[-1] = 0xe8;
4286               // Convert GOTPCRELX to 32-bit pc relative reloc.
4287               Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4288             }
4289           else
4290             {
4291               // Convert jmpq *foo@GOTPCRELX(%rip) to
4292               // jmpq foo
4293               // nop
4294               // The opcode of direct jmpq is 0xe9.
4295               view[-2] = 0xe9;
4296               // The opcode of nop is 0x90.
4297               view[3] = 0x90;
4298               // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq is rip
4299               // relative and since the instruction following the jmpq is now
4300               // the nop, offset the address by 1 byte.  The start of the
4301               // relocation also moves ahead by 1 byte.
4302               Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
4303                                     address - 1);
4304             }
4305         }
4306       else
4307         {
4308           if (gsym != NULL)
4309             {
4310               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4311               got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4312                             - target->got_size());
4313             }
4314           else
4315             {
4316               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4317               gold_assert(object->local_has_got_offset(r_sym,
4318                                                        GOT_TYPE_STANDARD));
4319               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4320                             - target->got_size());
4321             }
4322           typename elfcpp::Elf_types<size>::Elf_Addr value;
4323           value = target->got_plt_section()->address() + got_offset;
4324           Reloc_funcs::pcrela32_check(view, value, addend, address);
4325         }
4326       }
4327       break;
4328
4329     case elfcpp::R_X86_64_GOTPCREL64:
4330       {
4331         gold_assert(have_got_offset);
4332         typename elfcpp::Elf_types<size>::Elf_Addr value;
4333         value = target->got_plt_section()->address() + got_offset;
4334         Reloc_funcs::pcrela64(view, value, addend, address);
4335       }
4336       break;
4337
4338     case elfcpp::R_X86_64_COPY:
4339     case elfcpp::R_X86_64_GLOB_DAT:
4340     case elfcpp::R_X86_64_JUMP_SLOT:
4341     case elfcpp::R_X86_64_RELATIVE:
4342     case elfcpp::R_X86_64_IRELATIVE:
4343       // These are outstanding tls relocs, which are unexpected when linking
4344     case elfcpp::R_X86_64_TPOFF64:
4345     case elfcpp::R_X86_64_DTPMOD64:
4346     case elfcpp::R_X86_64_TLSDESC:
4347       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4348                              _("unexpected reloc %u in object file"),
4349                              r_type);
4350       break;
4351
4352       // These are initial tls relocs, which are expected when linking
4353     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4354     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4355     case elfcpp::R_X86_64_TLSDESC_CALL:
4356     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4357     case elfcpp::R_X86_64_DTPOFF32:
4358     case elfcpp::R_X86_64_DTPOFF64:
4359     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4360     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4361       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
4362                          view, address, view_size);
4363       break;
4364
4365     case elfcpp::R_X86_64_SIZE32:
4366     case elfcpp::R_X86_64_SIZE64:
4367     default:
4368       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4369                              _("unsupported reloc %u"),
4370                              r_type);
4371       break;
4372     }
4373
4374   if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
4375     {
4376       if (gsym == NULL)
4377         {
4378           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4379           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4380                                  _("relocation overflow: "
4381                                    "reference to local symbol %u in %s"),
4382                                  r_sym, object->name().c_str());
4383         }
4384       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
4385         {
4386           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4387                                  _("relocation overflow: "
4388                                    "reference to '%s' defined in %s"),
4389                                  gsym->name(),
4390                                  gsym->object()->name().c_str());
4391         }
4392       else
4393         {
4394           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4395                                  _("relocation overflow: reference to '%s'"),
4396                                  gsym->name());
4397         }
4398     }
4399
4400   return true;
4401 }
4402
4403 // Perform a TLS relocation.
4404
4405 template<int size>
4406 inline void
4407 Target_x86_64<size>::Relocate::relocate_tls(
4408     const Relocate_info<size, false>* relinfo,
4409     Target_x86_64<size>* target,
4410     size_t relnum,
4411     const elfcpp::Rela<size, false>& rela,
4412     unsigned int r_type,
4413     const Sized_symbol<size>* gsym,
4414     const Symbol_value<size>* psymval,
4415     unsigned char* view,
4416     typename elfcpp::Elf_types<size>::Elf_Addr address,
4417     section_size_type view_size)
4418 {
4419   Output_segment* tls_segment = relinfo->layout->tls_segment();
4420
4421   const Sized_relobj_file<size, false>* object = relinfo->object;
4422   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4423   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
4424   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
4425
4426   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
4427
4428   const bool is_final = (gsym == NULL
4429                          ? !parameters->options().shared()
4430                          : gsym->final_value_is_known());
4431   tls::Tls_optimization optimized_type
4432       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
4433   switch (r_type)
4434     {
4435     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4436       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4437         {
4438           // If this code sequence is used in a non-executable section,
4439           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
4440           // on the assumption that it's being used by itself in a debug
4441           // section.  Therefore, in the unlikely event that the code
4442           // sequence appears in a non-executable section, we simply
4443           // leave it unoptimized.
4444           optimized_type = tls::TLSOPT_NONE;
4445         }
4446       if (optimized_type == tls::TLSOPT_TO_LE)
4447         {
4448           if (tls_segment == NULL)
4449             {
4450               gold_assert(parameters->errors()->error_count() > 0
4451                           || issue_undefined_symbol_error(gsym));
4452               return;
4453             }
4454           this->tls_gd_to_le(relinfo, relnum, tls_segment,
4455                              rela, r_type, value, view,
4456                              view_size);
4457           break;
4458         }
4459       else
4460         {
4461           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
4462                                    ? GOT_TYPE_TLS_OFFSET
4463                                    : GOT_TYPE_TLS_PAIR);
4464           unsigned int got_offset;
4465           if (gsym != NULL)
4466             {
4467               gold_assert(gsym->has_got_offset(got_type));
4468               got_offset = gsym->got_offset(got_type) - target->got_size();
4469             }
4470           else
4471             {
4472               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4473               gold_assert(object->local_has_got_offset(r_sym, got_type));
4474               got_offset = (object->local_got_offset(r_sym, got_type)
4475                             - target->got_size());
4476             }
4477           if (optimized_type == tls::TLSOPT_TO_IE)
4478             {
4479               value = target->got_plt_section()->address() + got_offset;
4480               this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
4481                                  value, view, address, view_size);
4482               break;
4483             }
4484           else if (optimized_type == tls::TLSOPT_NONE)
4485             {
4486               // Relocate the field with the offset of the pair of GOT
4487               // entries.
4488               value = target->got_plt_section()->address() + got_offset;
4489               Relocate_functions<size, false>::pcrela32(view, value, addend,
4490                                                         address);
4491               break;
4492             }
4493         }
4494       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4495                              _("unsupported reloc %u"), r_type);
4496       break;
4497
4498     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4499     case elfcpp::R_X86_64_TLSDESC_CALL:
4500       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4501         {
4502           // See above comment for R_X86_64_TLSGD.
4503           optimized_type = tls::TLSOPT_NONE;
4504         }
4505       if (optimized_type == tls::TLSOPT_TO_LE)
4506         {
4507           if (tls_segment == NULL)
4508             {
4509               gold_assert(parameters->errors()->error_count() > 0
4510                           || issue_undefined_symbol_error(gsym));
4511               return;
4512             }
4513           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
4514                                   rela, r_type, value, view,
4515                                   view_size);
4516           break;
4517         }
4518       else
4519         {
4520           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
4521                                    ? GOT_TYPE_TLS_OFFSET
4522                                    : GOT_TYPE_TLS_DESC);
4523           unsigned int got_offset = 0;
4524           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
4525               && optimized_type == tls::TLSOPT_NONE)
4526             {
4527               // We created GOT entries in the .got.tlsdesc portion of
4528               // the .got.plt section, but the offset stored in the
4529               // symbol is the offset within .got.tlsdesc.
4530               got_offset = (target->got_size()
4531                             + target->got_plt_section()->data_size());
4532             }
4533           if (gsym != NULL)
4534             {
4535               gold_assert(gsym->has_got_offset(got_type));
4536               got_offset += gsym->got_offset(got_type) - target->got_size();
4537             }
4538           else
4539             {
4540               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4541               gold_assert(object->local_has_got_offset(r_sym, got_type));
4542               got_offset += (object->local_got_offset(r_sym, got_type)
4543                              - target->got_size());
4544             }
4545           if (optimized_type == tls::TLSOPT_TO_IE)
4546             {
4547               value = target->got_plt_section()->address() + got_offset;
4548               this->tls_desc_gd_to_ie(relinfo, relnum,
4549                                       rela, r_type, value, view, address,
4550                                       view_size);
4551               break;
4552             }
4553           else if (optimized_type == tls::TLSOPT_NONE)
4554             {
4555               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4556                 {
4557                   // Relocate the field with the offset of the pair of GOT
4558                   // entries.
4559                   value = target->got_plt_section()->address() + got_offset;
4560                   Relocate_functions<size, false>::pcrela32(view, value, addend,
4561                                                             address);
4562                 }
4563               break;
4564             }
4565         }
4566       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4567                              _("unsupported reloc %u"), r_type);
4568       break;
4569
4570     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4571       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4572         {
4573           // See above comment for R_X86_64_TLSGD.
4574           optimized_type = tls::TLSOPT_NONE;
4575         }
4576       if (optimized_type == tls::TLSOPT_TO_LE)
4577         {
4578           if (tls_segment == NULL)
4579             {
4580               gold_assert(parameters->errors()->error_count() > 0
4581                           || issue_undefined_symbol_error(gsym));
4582               return;
4583             }
4584           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
4585                              value, view, view_size);
4586           break;
4587         }
4588       else if (optimized_type == tls::TLSOPT_NONE)
4589         {
4590           // Relocate the field with the offset of the GOT entry for
4591           // the module index.
4592           unsigned int got_offset;
4593           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
4594                         - target->got_size());
4595           value = target->got_plt_section()->address() + got_offset;
4596           Relocate_functions<size, false>::pcrela32(view, value, addend,
4597                                                     address);
4598           break;
4599         }
4600       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4601                              _("unsupported reloc %u"), r_type);
4602       break;
4603
4604     case elfcpp::R_X86_64_DTPOFF32:
4605       // This relocation type is used in debugging information.
4606       // In that case we need to not optimize the value.  If the
4607       // section is not executable, then we assume we should not
4608       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
4609       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
4610       // R_X86_64_TLSLD.
4611       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4612         {
4613           if (tls_segment == NULL)
4614             {
4615               gold_assert(parameters->errors()->error_count() > 0
4616                           || issue_undefined_symbol_error(gsym));
4617               return;
4618             }
4619           value -= tls_segment->memsz();
4620         }
4621       Relocate_functions<size, false>::rela32(view, value, addend);
4622       break;
4623
4624     case elfcpp::R_X86_64_DTPOFF64:
4625       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
4626       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4627         {
4628           if (tls_segment == NULL)
4629             {
4630               gold_assert(parameters->errors()->error_count() > 0
4631                           || issue_undefined_symbol_error(gsym));
4632               return;
4633             }
4634           value -= tls_segment->memsz();
4635         }
4636       Relocate_functions<size, false>::rela64(view, value, addend);
4637       break;
4638
4639     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4640       if (gsym != NULL
4641           && gsym->is_undefined()
4642           && parameters->options().output_is_executable())
4643         {
4644           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4645                                                       NULL, rela,
4646                                                       r_type, value, view,
4647                                                       view_size);
4648           break;
4649         }
4650       else if (optimized_type == tls::TLSOPT_TO_LE)
4651         {
4652           if (tls_segment == NULL)
4653             {
4654               gold_assert(parameters->errors()->error_count() > 0
4655                           || issue_undefined_symbol_error(gsym));
4656               return;
4657             }
4658           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4659                                                       tls_segment, rela,
4660                                                       r_type, value, view,
4661                                                       view_size);
4662           break;
4663         }
4664       else if (optimized_type == tls::TLSOPT_NONE)
4665         {
4666           // Relocate the field with the offset of the GOT entry for
4667           // the tp-relative offset of the symbol.
4668           unsigned int got_offset;
4669           if (gsym != NULL)
4670             {
4671               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
4672               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
4673                             - target->got_size());
4674             }
4675           else
4676             {
4677               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4678               gold_assert(object->local_has_got_offset(r_sym,
4679                                                        GOT_TYPE_TLS_OFFSET));
4680               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
4681                             - target->got_size());
4682             }
4683           value = target->got_plt_section()->address() + got_offset;
4684           Relocate_functions<size, false>::pcrela32(view, value, addend,
4685                                                     address);
4686           break;
4687         }
4688       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4689                              _("unsupported reloc type %u"),
4690                              r_type);
4691       break;
4692
4693     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4694       if (tls_segment == NULL)
4695         {
4696           gold_assert(parameters->errors()->error_count() > 0
4697                       || issue_undefined_symbol_error(gsym));
4698           return;
4699         }
4700       value -= tls_segment->memsz();
4701       Relocate_functions<size, false>::rela32(view, value, addend);
4702       break;
4703     }
4704 }
4705
4706 // Do a relocation in which we convert a TLS General-Dynamic to an
4707 // Initial-Exec.
4708
4709 template<int size>
4710 inline void
4711 Target_x86_64<size>::Relocate::tls_gd_to_ie(
4712     const Relocate_info<size, false>* relinfo,
4713     size_t relnum,
4714     const elfcpp::Rela<size, false>& rela,
4715     unsigned int,
4716     typename elfcpp::Elf_types<size>::Elf_Addr value,
4717     unsigned char* view,
4718     typename elfcpp::Elf_types<size>::Elf_Addr address,
4719     section_size_type view_size)
4720 {
4721   // For SIZE == 64:
4722   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4723   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4724   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4725   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4726   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4727   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4728   // For SIZE == 32:
4729   //    leaq foo@tlsgd(%rip),%rdi;
4730   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4731   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4732   //    leaq foo@tlsgd(%rip),%rdi;
4733   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4734   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4735
4736   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4737   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4738                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
4739                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
4740
4741   if (size == 64)
4742     {
4743       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4744                        -4);
4745       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4746                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4747       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4748              16);
4749     }
4750   else
4751     {
4752       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4753                        -3);
4754       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4755                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4756       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4757              15);
4758     }
4759
4760   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4761   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4762                                             address);
4763
4764   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4765   // We can skip it.
4766   this->skip_call_tls_get_addr_ = true;
4767 }
4768
4769 // Do a relocation in which we convert a TLS General-Dynamic to a
4770 // Local-Exec.
4771
4772 template<int size>
4773 inline void
4774 Target_x86_64<size>::Relocate::tls_gd_to_le(
4775     const Relocate_info<size, false>* relinfo,
4776     size_t relnum,
4777     Output_segment* tls_segment,
4778     const elfcpp::Rela<size, false>& rela,
4779     unsigned int,
4780     typename elfcpp::Elf_types<size>::Elf_Addr value,
4781     unsigned char* view,
4782     section_size_type view_size)
4783 {
4784   // For SIZE == 64:
4785   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4786   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4787   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4788   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4789   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4790   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4791   // For SIZE == 32:
4792   //    leaq foo@tlsgd(%rip),%rdi;
4793   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4794   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4795   //    leaq foo@tlsgd(%rip),%rdi;
4796   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4797   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4798
4799   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4800   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4801                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
4802                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
4803
4804   if (size == 64)
4805     {
4806       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4807                        -4);
4808       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4809                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4810       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4811              16);
4812     }
4813   else
4814     {
4815       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4816                        -3);
4817       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4818                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4819
4820       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4821              15);
4822     }
4823
4824   value -= tls_segment->memsz();
4825   Relocate_functions<size, false>::rela32(view + 8, value, 0);
4826
4827   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4828   // We can skip it.
4829   this->skip_call_tls_get_addr_ = true;
4830 }
4831
4832 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4833
4834 template<int size>
4835 inline void
4836 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4837     const Relocate_info<size, false>* relinfo,
4838     size_t relnum,
4839     const elfcpp::Rela<size, false>& rela,
4840     unsigned int r_type,
4841     typename elfcpp::Elf_types<size>::Elf_Addr value,
4842     unsigned char* view,
4843     typename elfcpp::Elf_types<size>::Elf_Addr address,
4844     section_size_type view_size)
4845 {
4846   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4847     {
4848       // leaq foo@tlsdesc(%rip), %rax
4849       // ==> movq foo@gottpoff(%rip), %rax
4850       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4851       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4852       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4853                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4854       view[-2] = 0x8b;
4855       const elfcpp::Elf_Xword addend = rela.get_r_addend();
4856       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4857     }
4858   else
4859     {
4860       // call *foo@tlscall(%rax)
4861       // ==> nop; nop
4862       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4863       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4864       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4865                      view[0] == 0xff && view[1] == 0x10);
4866       view[0] = 0x66;
4867       view[1] = 0x90;
4868     }
4869 }
4870
4871 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4872
4873 template<int size>
4874 inline void
4875 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4876     const Relocate_info<size, false>* relinfo,
4877     size_t relnum,
4878     Output_segment* tls_segment,
4879     const elfcpp::Rela<size, false>& rela,
4880     unsigned int r_type,
4881     typename elfcpp::Elf_types<size>::Elf_Addr value,
4882     unsigned char* view,
4883     section_size_type view_size)
4884 {
4885   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4886     {
4887       // leaq foo@tlsdesc(%rip), %rax
4888       // ==> movq foo@tpoff, %rax
4889       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4890       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4891       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4892                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4893       view[-2] = 0xc7;
4894       view[-1] = 0xc0;
4895       value -= tls_segment->memsz();
4896       Relocate_functions<size, false>::rela32(view, value, 0);
4897     }
4898   else
4899     {
4900       // call *foo@tlscall(%rax)
4901       // ==> nop; nop
4902       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4903       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4904       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4905                      view[0] == 0xff && view[1] == 0x10);
4906       view[0] = 0x66;
4907       view[1] = 0x90;
4908     }
4909 }
4910
4911 template<int size>
4912 inline void
4913 Target_x86_64<size>::Relocate::tls_ld_to_le(
4914     const Relocate_info<size, false>* relinfo,
4915     size_t relnum,
4916     Output_segment*,
4917     const elfcpp::Rela<size, false>& rela,
4918     unsigned int,
4919     typename elfcpp::Elf_types<size>::Elf_Addr,
4920     unsigned char* view,
4921     section_size_type view_size)
4922 {
4923   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4924   // For SIZE == 64:
4925   // ... leq foo@dtpoff(%rax),%reg
4926   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4927   // For SIZE == 32:
4928   // ... leq foo@dtpoff(%rax),%reg
4929   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4930   // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
4931   // For SIZE == 64:
4932   // ... leq foo@dtpoff(%rax),%reg
4933   // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4934   // For SIZE == 32:
4935   // ... leq foo@dtpoff(%rax),%reg
4936   // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4937
4938   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4939   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4940
4941   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4942                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4943
4944   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4945                  view[4] == 0xe8 || view[4] == 0xff);
4946
4947   if (view[4] == 0xe8)
4948     {
4949       if (size == 64)
4950         memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4951       else
4952         memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4953     }
4954   else
4955     {
4956       if (size == 64)
4957         memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
4958                13);
4959       else
4960         memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
4961                13);
4962     }
4963
4964   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4965   // We can skip it.
4966   this->skip_call_tls_get_addr_ = true;
4967 }
4968
4969 // Do a relocation in which we convert a TLS Initial-Exec to a
4970 // Local-Exec.
4971
4972 template<int size>
4973 inline void
4974 Target_x86_64<size>::Relocate::tls_ie_to_le(
4975     const Relocate_info<size, false>* relinfo,
4976     size_t relnum,
4977     Output_segment* tls_segment,
4978     const elfcpp::Rela<size, false>& rela,
4979     unsigned int,
4980     typename elfcpp::Elf_types<size>::Elf_Addr value,
4981     unsigned char* view,
4982     section_size_type view_size)
4983 {
4984   // We need to examine the opcodes to figure out which instruction we
4985   // are looking at.
4986
4987   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4988   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4989
4990   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4991   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4992
4993   unsigned char op1 = view[-3];
4994   unsigned char op2 = view[-2];
4995   unsigned char op3 = view[-1];
4996   unsigned char reg = op3 >> 3;
4997
4998   if (op2 == 0x8b)
4999     {
5000       // movq
5001       if (op1 == 0x4c)
5002         view[-3] = 0x49;
5003       else if (size == 32 && op1 == 0x44)
5004         view[-3] = 0x41;
5005       view[-2] = 0xc7;
5006       view[-1] = 0xc0 | reg;
5007     }
5008   else if (reg == 4)
5009     {
5010       // Special handling for %rsp.
5011       if (op1 == 0x4c)
5012         view[-3] = 0x49;
5013       else if (size == 32 && op1 == 0x44)
5014         view[-3] = 0x41;
5015       view[-2] = 0x81;
5016       view[-1] = 0xc0 | reg;
5017     }
5018   else
5019     {
5020       // addq
5021       if (op1 == 0x4c)
5022         view[-3] = 0x4d;
5023       else if (size == 32 && op1 == 0x44)
5024         view[-3] = 0x45;
5025       view[-2] = 0x8d;
5026       view[-1] = 0x80 | reg | (reg << 3);
5027     }
5028
5029   if (tls_segment != NULL)
5030     value -= tls_segment->memsz();
5031   Relocate_functions<size, false>::rela32(view, value, 0);
5032 }
5033
5034 // Relocate section data.
5035
5036 template<int size>
5037 void
5038 Target_x86_64<size>::relocate_section(
5039     const Relocate_info<size, false>* relinfo,
5040     unsigned int sh_type,
5041     const unsigned char* prelocs,
5042     size_t reloc_count,
5043     Output_section* output_section,
5044     bool needs_special_offset_handling,
5045     unsigned char* view,
5046     typename elfcpp::Elf_types<size>::Elf_Addr address,
5047     section_size_type view_size,
5048     const Reloc_symbol_changes* reloc_symbol_changes)
5049 {
5050   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5051       Classify_reloc;
5052
5053   gold_assert(sh_type == elfcpp::SHT_RELA);
5054
5055   gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
5056                          gold::Default_comdat_behavior, Classify_reloc>(
5057     relinfo,
5058     this,
5059     prelocs,
5060     reloc_count,
5061     output_section,
5062     needs_special_offset_handling,
5063     view,
5064     address,
5065     view_size,
5066     reloc_symbol_changes);
5067 }
5068
5069 // Apply an incremental relocation.  Incremental relocations always refer
5070 // to global symbols.
5071
5072 template<int size>
5073 void
5074 Target_x86_64<size>::apply_relocation(
5075     const Relocate_info<size, false>* relinfo,
5076     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
5077     unsigned int r_type,
5078     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
5079     const Symbol* gsym,
5080     unsigned char* view,
5081     typename elfcpp::Elf_types<size>::Elf_Addr address,
5082     section_size_type view_size)
5083 {
5084   gold::apply_relocation<size, false, Target_x86_64<size>,
5085                          typename Target_x86_64<size>::Relocate>(
5086     relinfo,
5087     this,
5088     r_offset,
5089     r_type,
5090     r_addend,
5091     gsym,
5092     view,
5093     address,
5094     view_size);
5095 }
5096
5097 // Scan the relocs during a relocatable link.
5098
5099 template<int size>
5100 void
5101 Target_x86_64<size>::scan_relocatable_relocs(
5102     Symbol_table* symtab,
5103     Layout* layout,
5104     Sized_relobj_file<size, false>* object,
5105     unsigned int data_shndx,
5106     unsigned int sh_type,
5107     const unsigned char* prelocs,
5108     size_t reloc_count,
5109     Output_section* output_section,
5110     bool needs_special_offset_handling,
5111     size_t local_symbol_count,
5112     const unsigned char* plocal_symbols,
5113     Relocatable_relocs* rr)
5114 {
5115   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5116       Classify_reloc;
5117   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
5118       Scan_relocatable_relocs;
5119
5120   gold_assert(sh_type == elfcpp::SHT_RELA);
5121
5122   gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
5123     symtab,
5124     layout,
5125     object,
5126     data_shndx,
5127     prelocs,
5128     reloc_count,
5129     output_section,
5130     needs_special_offset_handling,
5131     local_symbol_count,
5132     plocal_symbols,
5133     rr);
5134 }
5135
5136 // Scan the relocs for --emit-relocs.
5137
5138 template<int size>
5139 void
5140 Target_x86_64<size>::emit_relocs_scan(
5141     Symbol_table* symtab,
5142     Layout* layout,
5143     Sized_relobj_file<size, false>* object,
5144     unsigned int data_shndx,
5145     unsigned int sh_type,
5146     const unsigned char* prelocs,
5147     size_t reloc_count,
5148     Output_section* output_section,
5149     bool needs_special_offset_handling,
5150     size_t local_symbol_count,
5151     const unsigned char* plocal_syms,
5152     Relocatable_relocs* rr)
5153 {
5154   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5155       Classify_reloc;
5156   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
5157       Emit_relocs_strategy;
5158
5159   gold_assert(sh_type == elfcpp::SHT_RELA);
5160
5161   gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
5162     symtab,
5163     layout,
5164     object,
5165     data_shndx,
5166     prelocs,
5167     reloc_count,
5168     output_section,
5169     needs_special_offset_handling,
5170     local_symbol_count,
5171     plocal_syms,
5172     rr);
5173 }
5174
5175 // Relocate a section during a relocatable link.
5176
5177 template<int size>
5178 void
5179 Target_x86_64<size>::relocate_relocs(
5180     const Relocate_info<size, false>* relinfo,
5181     unsigned int sh_type,
5182     const unsigned char* prelocs,
5183     size_t reloc_count,
5184     Output_section* output_section,
5185     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5186     unsigned char* view,
5187     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
5188     section_size_type view_size,
5189     unsigned char* reloc_view,
5190     section_size_type reloc_view_size)
5191 {
5192   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5193       Classify_reloc;
5194
5195   gold_assert(sh_type == elfcpp::SHT_RELA);
5196
5197   gold::relocate_relocs<size, false, Classify_reloc>(
5198     relinfo,
5199     prelocs,
5200     reloc_count,
5201     output_section,
5202     offset_in_output_section,
5203     view,
5204     view_address,
5205     view_size,
5206     reloc_view,
5207     reloc_view_size);
5208 }
5209
5210 // Return the value to use for a dynamic which requires special
5211 // treatment.  This is how we support equality comparisons of function
5212 // pointers across shared library boundaries, as described in the
5213 // processor specific ABI supplement.
5214
5215 template<int size>
5216 uint64_t
5217 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
5218 {
5219   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5220   return this->plt_address_for_global(gsym);
5221 }
5222
5223 // Return a string used to fill a code section with nops to take up
5224 // the specified length.
5225
5226 template<int size>
5227 std::string
5228 Target_x86_64<size>::do_code_fill(section_size_type length) const
5229 {
5230   if (length >= 16)
5231     {
5232       // Build a jmpq instruction to skip over the bytes.
5233       unsigned char jmp[5];
5234       jmp[0] = 0xe9;
5235       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
5236       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
5237               + std::string(length - 5, static_cast<char>(0x90)));
5238     }
5239
5240   // Nop sequences of various lengths.
5241   const char nop1[1] = { '\x90' };                 // nop
5242   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
5243   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
5244   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
5245                          '\x00'};
5246   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
5247                          '\x00', '\x00' };
5248   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
5249                          '\x44', '\x00', '\x00' };
5250   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
5251                          '\x00', '\x00', '\x00',
5252                          '\x00' };
5253   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
5254                          '\x00', '\x00', '\x00',
5255                          '\x00', '\x00' };
5256   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
5257                          '\x84', '\x00', '\x00',
5258                          '\x00', '\x00', '\x00' };
5259   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5260                            '\x1f', '\x84', '\x00',
5261                            '\x00', '\x00', '\x00',
5262                            '\x00' };
5263   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
5264                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5265                            '\x00', '\x00', '\x00',
5266                            '\x00', '\x00' };
5267   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
5268                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5269                            '\x84', '\x00', '\x00',
5270                            '\x00', '\x00', '\x00' };
5271   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
5272                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5273                            '\x1f', '\x84', '\x00',
5274                            '\x00', '\x00', '\x00',
5275                            '\x00' };
5276   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
5277                            '\x66', '\x66', '\x2e', // data16
5278                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5279                            '\x00', '\x00', '\x00',
5280                            '\x00', '\x00' };
5281   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
5282                            '\x66', '\x66', '\x66', // data16; data16
5283                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5284                            '\x84', '\x00', '\x00',
5285                            '\x00', '\x00', '\x00' };
5286
5287   const char* nops[16] = {
5288     NULL,
5289     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
5290     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
5291   };
5292
5293   return std::string(nops[length], length);
5294 }
5295
5296 // Return the addend to use for a target specific relocation.  The
5297 // only target specific relocation is R_X86_64_TLSDESC for a local
5298 // symbol.  We want to set the addend is the offset of the local
5299 // symbol in the TLS segment.
5300
5301 template<int size>
5302 uint64_t
5303 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
5304                                      uint64_t) const
5305 {
5306   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
5307   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5308   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5309   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5310   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5311   gold_assert(psymval->is_tls_symbol());
5312   // The value of a TLS symbol is the offset in the TLS segment.
5313   return psymval->value(ti.object, 0);
5314 }
5315
5316 // Return the value to use for the base of a DW_EH_PE_datarel offset
5317 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
5318 // assembler can not write out the difference between two labels in
5319 // different sections, so instead of using a pc-relative value they
5320 // use an offset from the GOT.
5321
5322 template<int size>
5323 uint64_t
5324 Target_x86_64<size>::do_ehframe_datarel_base() const
5325 {
5326   gold_assert(this->global_offset_table_ != NULL);
5327   Symbol* sym = this->global_offset_table_;
5328   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
5329   return ssym->value();
5330 }
5331
5332 // FNOFFSET in section SHNDX in OBJECT is the start of a function
5333 // compiled with -fsplit-stack.  The function calls non-split-stack
5334 // code.  We have to change the function so that it always ensures
5335 // that it has enough stack space to run some random function.
5336
5337 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
5338 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
5339 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
5340
5341 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
5342 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
5343 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
5344
5345 template<int size>
5346 void
5347 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
5348                                         section_offset_type fnoffset,
5349                                         section_size_type fnsize,
5350                                         const unsigned char*,
5351                                         size_t,
5352                                         unsigned char* view,
5353                                         section_size_type view_size,
5354                                         std::string* from,
5355                                         std::string* to) const
5356 {
5357   const char* const cmp_insn = reinterpret_cast<const char*>
5358       (size == 32 ? cmp_insn_32 : cmp_insn_64);
5359   const char* const lea_r10_insn = reinterpret_cast<const char*>
5360       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
5361   const char* const lea_r11_insn = reinterpret_cast<const char*>
5362       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
5363
5364   const size_t cmp_insn_len =
5365       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
5366   const size_t lea_r10_insn_len =
5367       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
5368   const size_t lea_r11_insn_len =
5369       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
5370   const size_t nop_len = (size == 32 ? 7 : 8);
5371
5372   // The function starts with a comparison of the stack pointer and a
5373   // field in the TCB.  This is followed by a jump.
5374
5375   // cmp %fs:NN,%rsp
5376   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
5377       && fnsize > nop_len + 1)
5378     {
5379       // We will call __morestack if the carry flag is set after this
5380       // comparison.  We turn the comparison into an stc instruction
5381       // and some nops.
5382       view[fnoffset] = '\xf9';
5383       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
5384     }
5385   // lea NN(%rsp),%r10
5386   // lea NN(%rsp),%r11
5387   else if ((this->match_view(view, view_size, fnoffset,
5388                              lea_r10_insn, lea_r10_insn_len)
5389             || this->match_view(view, view_size, fnoffset,
5390                                 lea_r11_insn, lea_r11_insn_len))
5391            && fnsize > 8)
5392     {
5393       // This is loading an offset from the stack pointer for a
5394       // comparison.  The offset is negative, so we decrease the
5395       // offset by the amount of space we need for the stack.  This
5396       // means we will avoid calling __morestack if there happens to
5397       // be plenty of space on the stack already.
5398       unsigned char* pval = view + fnoffset + 4;
5399       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
5400       val -= parameters->options().split_stack_adjust_size();
5401       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
5402     }
5403   else
5404     {
5405       if (!object->has_no_split_stack())
5406         object->error(_("failed to match split-stack sequence at "
5407                         "section %u offset %0zx"),
5408                       shndx, static_cast<size_t>(fnoffset));
5409       return;
5410     }
5411
5412   // We have to change the function so that it calls
5413   // __morestack_non_split instead of __morestack.  The former will
5414   // allocate additional stack space.
5415   *from = "__morestack";
5416   *to = "__morestack_non_split";
5417 }
5418
5419 // The selector for x86_64 object files.  Note this is never instantiated
5420 // directly.  It's only used in Target_selector_x86_64_nacl, below.
5421
5422 template<int size>
5423 class Target_selector_x86_64 : public Target_selector_freebsd
5424 {
5425 public:
5426   Target_selector_x86_64()
5427     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
5428                               (size == 64
5429                                ? "elf64-x86-64" : "elf32-x86-64"),
5430                               (size == 64
5431                                ? "elf64-x86-64-freebsd"
5432                                : "elf32-x86-64-freebsd"),
5433                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
5434   { }
5435
5436   Target*
5437   do_instantiate_target()
5438   { return new Target_x86_64<size>(); }
5439
5440 };
5441
5442 // NaCl variant.  It uses different PLT contents.
5443
5444 template<int size>
5445 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
5446 {
5447  public:
5448   Output_data_plt_x86_64_nacl(Layout* layout,
5449                               Output_data_got<64, false>* got,
5450                               Output_data_got_plt_x86_64* got_plt,
5451                               Output_data_space* got_irelative)
5452     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
5453                                    got, got_plt, got_irelative)
5454   { }
5455
5456   Output_data_plt_x86_64_nacl(Layout* layout,
5457                               Output_data_got<64, false>* got,
5458                               Output_data_got_plt_x86_64* got_plt,
5459                               Output_data_space* got_irelative,
5460                               unsigned int plt_count)
5461     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
5462                                    got, got_plt, got_irelative,
5463                                    plt_count)
5464   { }
5465
5466  protected:
5467   virtual unsigned int
5468   do_get_plt_entry_size() const
5469   { return plt_entry_size; }
5470
5471   virtual void
5472   do_add_eh_frame(Layout* layout)
5473   {
5474     layout->add_eh_frame_for_plt(this,
5475                                  this->plt_eh_frame_cie,
5476                                  this->plt_eh_frame_cie_size,
5477                                  plt_eh_frame_fde,
5478                                  plt_eh_frame_fde_size);
5479   }
5480
5481   virtual void
5482   do_fill_first_plt_entry(unsigned char* pov,
5483                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
5484                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
5485
5486   virtual unsigned int
5487   do_fill_plt_entry(unsigned char* pov,
5488                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5489                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5490                     unsigned int got_offset,
5491                     unsigned int plt_offset,
5492                     unsigned int plt_index);
5493
5494   virtual void
5495   do_fill_tlsdesc_entry(unsigned char* pov,
5496                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5497                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5498                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5499                         unsigned int tlsdesc_got_offset,
5500                         unsigned int plt_offset);
5501
5502  private:
5503   // The size of an entry in the PLT.
5504   static const int plt_entry_size = 64;
5505
5506   // The first entry in the PLT.
5507   static const unsigned char first_plt_entry[plt_entry_size];
5508
5509   // Other entries in the PLT for an executable.
5510   static const unsigned char plt_entry[plt_entry_size];
5511
5512   // The reserved TLSDESC entry in the PLT for an executable.
5513   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
5514
5515   // The .eh_frame unwind information for the PLT.
5516   static const int plt_eh_frame_fde_size = 32;
5517   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
5518 };
5519
5520 template<int size>
5521 class Target_x86_64_nacl : public Target_x86_64<size>
5522 {
5523  public:
5524   Target_x86_64_nacl()
5525     : Target_x86_64<size>(&x86_64_nacl_info)
5526   { }
5527
5528   virtual Output_data_plt_x86_64<size>*
5529   do_make_data_plt(Layout* layout,
5530                    Output_data_got<64, false>* got,
5531                    Output_data_got_plt_x86_64* got_plt,
5532                    Output_data_space* got_irelative)
5533   {
5534     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
5535                                                  got_irelative);
5536   }
5537
5538   virtual Output_data_plt_x86_64<size>*
5539   do_make_data_plt(Layout* layout,
5540                    Output_data_got<64, false>* got,
5541                    Output_data_got_plt_x86_64* got_plt,
5542                    Output_data_space* got_irelative,
5543                    unsigned int plt_count)
5544   {
5545     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
5546                                                  got_irelative,
5547                                                  plt_count);
5548   }
5549
5550   virtual std::string
5551   do_code_fill(section_size_type length) const;
5552
5553  private:
5554   static const Target::Target_info x86_64_nacl_info;
5555 };
5556
5557 template<>
5558 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
5559 {
5560   64,                   // size
5561   false,                // is_big_endian
5562   elfcpp::EM_X86_64,    // machine_code
5563   false,                // has_make_symbol
5564   false,                // has_resolve
5565   true,                 // has_code_fill
5566   true,                 // is_default_stack_executable
5567   true,                 // can_icf_inline_merge_sections
5568   '\0',                 // wrap_char
5569   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
5570   0x20000,              // default_text_segment_address
5571   0x10000,              // abi_pagesize (overridable by -z max-page-size)
5572   0x10000,              // common_pagesize (overridable by -z common-page-size)
5573   true,                 // isolate_execinstr
5574   0x10000000,           // rosegment_gap
5575   elfcpp::SHN_UNDEF,    // small_common_shndx
5576   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
5577   0,                    // small_common_section_flags
5578   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
5579   NULL,                 // attributes_section
5580   NULL,                 // attributes_vendor
5581   "_start",             // entry_symbol_name
5582   32,                   // hash_entry_size
5583   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
5584 };
5585
5586 template<>
5587 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
5588 {
5589   32,                   // size
5590   false,                // is_big_endian
5591   elfcpp::EM_X86_64,    // machine_code
5592   false,                // has_make_symbol
5593   false,                // has_resolve
5594   true,                 // has_code_fill
5595   true,                 // is_default_stack_executable
5596   true,                 // can_icf_inline_merge_sections
5597   '\0',                 // wrap_char
5598   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
5599   0x20000,              // default_text_segment_address
5600   0x10000,              // abi_pagesize (overridable by -z max-page-size)
5601   0x10000,              // common_pagesize (overridable by -z common-page-size)
5602   true,                 // isolate_execinstr
5603   0x10000000,           // rosegment_gap
5604   elfcpp::SHN_UNDEF,    // small_common_shndx
5605   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
5606   0,                    // small_common_section_flags
5607   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
5608   NULL,                 // attributes_section
5609   NULL,                 // attributes_vendor
5610   "_start",             // entry_symbol_name
5611   32,                   // hash_entry_size
5612   elfcpp::SHT_X86_64_UNWIND,    // unwind_section_type
5613 };
5614
5615 #define NACLMASK        0xe0            // 32-byte alignment mask.
5616
5617 // The first entry in the PLT.
5618
5619 template<int size>
5620 const unsigned char
5621 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
5622 {
5623   0xff, 0x35,                         // pushq contents of memory address
5624   0, 0, 0, 0,                         // replaced with address of .got + 8
5625   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
5626   0, 0, 0, 0,                         // replaced with address of .got + 16
5627   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
5628   0x4d, 0x01, 0xfb,                   // add %r15, %r11
5629   0x41, 0xff, 0xe3,                   // jmpq *%r11
5630
5631   // 9-byte nop sequence to pad out to the next 32-byte boundary.
5632   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
5633
5634   // 32 bytes of nop to pad out to the standard size
5635   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5636   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5637   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5638   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5639   0x66,                                  // excess data32 prefix
5640   0x90                                   // nop
5641 };
5642
5643 template<int size>
5644 void
5645 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
5646     unsigned char* pov,
5647     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5648     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
5649 {
5650   memcpy(pov, first_plt_entry, plt_entry_size);
5651   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5652                                               (got_address + 8
5653                                                - (plt_address + 2 + 4)));
5654   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5655                                               (got_address + 16
5656                                                - (plt_address + 9 + 4)));
5657 }
5658
5659 // Subsequent entries in the PLT.
5660
5661 template<int size>
5662 const unsigned char
5663 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
5664 {
5665   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
5666   0, 0, 0, 0,                    // replaced with address of symbol in .got
5667   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
5668   0x4d, 0x01, 0xfb,              // add %r15, %r11
5669   0x41, 0xff, 0xe3,              // jmpq *%r11
5670
5671   // 15-byte nop sequence to pad out to the next 32-byte boundary.
5672   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5673   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5674
5675   // Lazy GOT entries point here (32-byte aligned).
5676   0x68,                       // pushq immediate
5677   0, 0, 0, 0,                 // replaced with index into relocation table
5678   0xe9,                       // jmp relative
5679   0, 0, 0, 0,                 // replaced with offset to start of .plt0
5680
5681   // 22 bytes of nop to pad out to the standard size.
5682   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5683   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5684   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
5685 };
5686
5687 template<int size>
5688 unsigned int
5689 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
5690     unsigned char* pov,
5691     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5692     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5693     unsigned int got_offset,
5694     unsigned int plt_offset,
5695     unsigned int plt_index)
5696 {
5697   memcpy(pov, plt_entry, plt_entry_size);
5698   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
5699                                               (got_address + got_offset
5700                                                - (plt_address + plt_offset
5701                                                   + 3 + 4)));
5702
5703   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
5704   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
5705                                               - (plt_offset + 38 + 4));
5706
5707   return 32;
5708 }
5709
5710 // The reserved TLSDESC entry in the PLT.
5711
5712 template<int size>
5713 const unsigned char
5714 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
5715 {
5716   0xff, 0x35,                   // pushq x(%rip)
5717   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
5718   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
5719   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
5720   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
5721   0x4d, 0x01, 0xfb,             // add %r15, %r11
5722   0x41, 0xff, 0xe3,             // jmpq *%r11
5723
5724   // 41 bytes of nop to pad out to the standard size.
5725   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5726   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5727   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5728   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5729   0x66, 0x66,                            // excess data32 prefixes
5730   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5731 };
5732
5733 template<int size>
5734 void
5735 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
5736     unsigned char* pov,
5737     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5738     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5739     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5740     unsigned int tlsdesc_got_offset,
5741     unsigned int plt_offset)
5742 {
5743   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
5744   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5745                                               (got_address + 8
5746                                                - (plt_address + plt_offset
5747                                                   + 2 + 4)));
5748   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5749                                               (got_base
5750                                                + tlsdesc_got_offset
5751                                                - (plt_address + plt_offset
5752                                                   + 9 + 4)));
5753 }
5754
5755 // The .eh_frame unwind information for the PLT.
5756
5757 template<int size>
5758 const unsigned char
5759 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5760 {
5761   0, 0, 0, 0,                           // Replaced with offset to .plt.
5762   0, 0, 0, 0,                           // Replaced with size of .plt.
5763   0,                                    // Augmentation size.
5764   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
5765   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
5766   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
5767   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
5768   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
5769   13,                                   // Block length.
5770   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
5771   elfcpp::DW_OP_breg16, 0,              // Push %rip.
5772   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
5773   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
5774   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
5775   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
5776   elfcpp::DW_OP_lit3,                   // Push 3.
5777   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
5778   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5779   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
5780   elfcpp::DW_CFA_nop
5781 };
5782
5783 // Return a string used to fill a code section with nops.
5784 // For NaCl, long NOPs are only valid if they do not cross
5785 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5786 template<int size>
5787 std::string
5788 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5789 {
5790   return std::string(length, static_cast<char>(0x90));
5791 }
5792
5793 // The selector for x86_64-nacl object files.
5794
5795 template<int size>
5796 class Target_selector_x86_64_nacl
5797   : public Target_selector_nacl<Target_selector_x86_64<size>,
5798                                 Target_x86_64_nacl<size> >
5799 {
5800  public:
5801   Target_selector_x86_64_nacl()
5802     : Target_selector_nacl<Target_selector_x86_64<size>,
5803                            Target_x86_64_nacl<size> >("x86-64",
5804                                                       size == 64
5805                                                       ? "elf64-x86-64-nacl"
5806                                                       : "elf32-x86-64-nacl",
5807                                                       size == 64
5808                                                       ? "elf_x86_64_nacl"
5809                                                       : "elf32_x86_64_nacl")
5810   { }
5811 };
5812
5813 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5814 Target_selector_x86_64_nacl<32> target_selector_x32;
5815
5816 } // End anonymous namespace.