1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
37 #include "parameters.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
54 class Output_data_plt_x86_64;
56 // The x86_64 target class.
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
63 class Target_x86_64 : public Sized_target<64, false>
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL)
76 // Scan the relocations to look for symbol adjustments.
78 scan_relocs(const General_options& options,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
84 const unsigned char* prelocs,
86 Output_section* output_section,
87 bool needs_special_offset_handling,
88 size_t local_symbol_count,
89 const unsigned char* plocal_symbols);
91 // Finalize the sections.
93 do_finalize_sections(Layout*);
95 // Return the value to use for a dynamic which requires special
98 do_dynsym_value(const Symbol*) const;
100 // Relocate a section.
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
106 Output_section* output_section,
107 bool needs_special_offset_handling,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
112 // Return a string used to fill a code section with nops.
114 do_code_fill(off_t length);
116 // Return whether SYM is defined by the ABI.
118 do_is_defined_by_abi(Symbol* sym) const
119 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
121 // Return the size of the GOT section.
125 gold_assert(this->got_ != NULL);
126 return this->got_->data_size();
130 // The class which scans relocations.
134 local(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
138 Output_section* output_section,
139 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140 const elfcpp::Sym<64, false>& lsym);
143 global(const General_options& options, Symbol_table* symtab,
144 Layout* layout, Target_x86_64* target,
145 Sized_relobj<64, false>* object,
146 unsigned int data_shndx,
147 Output_section* output_section,
148 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
152 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
155 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
159 // The class which implements relocation.
164 : skip_call_tls_get_addr_(false)
169 if (this->skip_call_tls_get_addr_)
171 // FIXME: This needs to specify the location somehow.
172 gold_error(_("missing expected TLS relocation"));
176 // Do a relocation. Return false if the caller should not issue
177 // any warnings about this relocation.
179 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180 const elfcpp::Rela<64, false>&,
181 unsigned int r_type, const Sized_symbol<64>*,
182 const Symbol_value<64>*,
183 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
187 // Do a TLS relocation.
189 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
190 const elfcpp::Rela<64, false>&,
191 unsigned int r_type, const Sized_symbol<64>*,
192 const Symbol_value<64>*,
193 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
195 // Do a TLS General-Dynamic to Local-Exec transition.
197 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
204 // Do a TLS Local-Dynamic to Local-Exec transition.
206 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
207 Output_segment* tls_segment,
208 const elfcpp::Rela<64, false>&, unsigned int r_type,
209 elfcpp::Elf_types<64>::Elf_Addr value,
213 // Do a TLS Initial-Exec to Local-Exec transition.
215 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
216 Output_segment* tls_segment,
217 const elfcpp::Rela<64, false>&, unsigned int r_type,
218 elfcpp::Elf_types<64>::Elf_Addr value,
222 // This is set if we should skip the next reloc, which should be a
223 // PLT32 reloc against ___tls_get_addr.
224 bool skip_call_tls_get_addr_;
227 // Adjust TLS relocation type based on the options and whether this
228 // is a local symbol.
229 static tls::Tls_optimization
230 optimize_tls_reloc(bool is_final, int r_type);
232 // Get the GOT section, creating it if necessary.
233 Output_data_got<64, false>*
234 got_section(Symbol_table*, Layout*);
236 // Get the GOT PLT section.
238 got_plt_section() const
240 gold_assert(this->got_plt_ != NULL);
241 return this->got_plt_;
244 // Create a PLT entry for a global symbol.
246 make_plt_entry(Symbol_table*, Layout*, Symbol*);
248 // Get the PLT section.
249 Output_data_plt_x86_64*
252 gold_assert(this->plt_ != NULL);
256 // Get the dynamic reloc section, creating it if necessary.
258 rela_dyn_section(Layout*);
260 // Return true if the symbol may need a COPY relocation.
261 // References from an executable object to non-function symbols
262 // defined in a dynamic object may need a COPY relocation.
264 may_need_copy_reloc(Symbol* gsym)
266 return (!parameters->output_is_shared()
267 && gsym->is_from_dynobj()
268 && gsym->type() != elfcpp::STT_FUNC);
271 // Copy a relocation against a global symbol.
273 copy_reloc(const General_options*, Symbol_table*, Layout*,
274 Sized_relobj<64, false>*, unsigned int,
275 Symbol*, const elfcpp::Rela<64, false>&);
277 // Information about this specific target which we pass to the
278 // general Target structure.
279 static const Target::Target_info x86_64_info;
282 Output_data_got<64, false>* got_;
284 Output_data_plt_x86_64* plt_;
285 // The GOT PLT section.
286 Output_data_space* got_plt_;
287 // The dynamic reloc section.
288 Reloc_section* rela_dyn_;
289 // Relocs saved to avoid a COPY reloc.
290 Copy_relocs<64, false>* copy_relocs_;
291 // Space for variables copied with a COPY reloc.
292 Output_data_space* dynbss_;
295 const Target::Target_info Target_x86_64::x86_64_info =
298 false, // is_big_endian
299 elfcpp::EM_X86_64, // machine_code
300 false, // has_make_symbol
301 false, // has_resolve
302 true, // has_code_fill
303 true, // is_default_stack_executable
304 "/lib/ld64.so.1", // program interpreter
305 0x400000, // default_text_segment_address
306 0x1000, // abi_pagesize
307 0x1000 // common_pagesize
310 // Get the GOT section, creating it if necessary.
312 Output_data_got<64, false>*
313 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
315 if (this->got_ == NULL)
317 gold_assert(symtab != NULL && layout != NULL);
319 this->got_ = new Output_data_got<64, false>();
321 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
322 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
325 // The old GNU linker creates a .got.plt section. We just
326 // create another set of data in the .got section. Note that we
327 // always create a PLT if we create a GOT, although the PLT
329 this->got_plt_ = new Output_data_space(8);
330 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
334 // The first three entries are reserved.
335 this->got_plt_->set_space_size(3 * 8);
337 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
338 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
340 0, 0, elfcpp::STT_OBJECT,
342 elfcpp::STV_HIDDEN, 0,
349 // Get the dynamic reloc section, creating it if necessary.
351 Target_x86_64::Reloc_section*
352 Target_x86_64::rela_dyn_section(Layout* layout)
354 if (this->rela_dyn_ == NULL)
356 gold_assert(layout != NULL);
357 this->rela_dyn_ = new Reloc_section();
358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
359 elfcpp::SHF_ALLOC, this->rela_dyn_);
361 return this->rela_dyn_;
364 // A class to handle the PLT data.
366 class Output_data_plt_x86_64 : public Output_section_data
369 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
371 Output_data_plt_x86_64(Layout*, Output_data_space*);
373 // Add an entry to the PLT.
375 add_entry(Symbol* gsym);
377 // Return the .rel.plt section data.
380 { return this->rel_; }
384 do_adjust_output_section(Output_section* os);
387 // The size of an entry in the PLT.
388 static const int plt_entry_size = 16;
390 // The first entry in the PLT.
391 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392 // procedure linkage table for both programs and shared objects."
393 static unsigned char first_plt_entry[plt_entry_size];
395 // Other entries in the PLT for an executable.
396 static unsigned char plt_entry[plt_entry_size];
398 // Set the final size.
400 do_set_address(uint64_t, off_t)
401 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
403 // Write out the PLT data.
405 do_write(Output_file*);
407 // The reloc section.
409 // The .got.plt section.
410 Output_data_space* got_plt_;
411 // The number of PLT entries.
415 // Create the PLT section. The ordinary .got section is an argument,
416 // since we need to refer to the start. We also create our own .got
417 // section just for PLT entries.
419 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
420 Output_data_space* got_plt)
421 : Output_section_data(8), got_plt_(got_plt), count_(0)
423 this->rel_ = new Reloc_section();
424 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
425 elfcpp::SHF_ALLOC, this->rel_);
429 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
431 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
432 // linker, and so do we.
436 // Add an entry to the PLT.
439 Output_data_plt_x86_64::add_entry(Symbol* gsym)
441 gold_assert(!gsym->has_plt_offset());
443 // Note that when setting the PLT offset we skip the initial
444 // reserved PLT entry.
445 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
449 off_t got_offset = this->got_plt_->data_size();
451 // Every PLT entry needs a GOT entry which points back to the PLT
452 // entry (this will be changed by the dynamic linker, normally
453 // lazily when the function is called).
454 this->got_plt_->set_space_size(got_offset + 8);
456 // Every PLT entry needs a reloc.
457 gsym->set_needs_dynsym_entry();
458 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
461 // Note that we don't need to save the symbol. The contents of the
462 // PLT are independent of which symbols are used. The symbols only
463 // appear in the relocations.
466 // The first entry in the PLT for an executable.
468 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
470 // From AMD64 ABI Draft 0.98, page 76
471 0xff, 0x35, // pushq contents of memory address
472 0, 0, 0, 0, // replaced with address of .got + 4
473 0xff, 0x25, // jmp indirect
474 0, 0, 0, 0, // replaced with address of .got + 8
475 0x90, 0x90, 0x90, 0x90 // noop (x4)
478 // Subsequent entries in the PLT for an executable.
480 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
482 // From AMD64 ABI Draft 0.98, page 76
483 0xff, 0x25, // jmpq indirect
484 0, 0, 0, 0, // replaced with address of symbol in .got
485 0x68, // pushq immediate
486 0, 0, 0, 0, // replaced with offset into relocation table
487 0xe9, // jmpq relative
488 0, 0, 0, 0 // replaced with offset to start of .plt
491 // Write out the PLT. This uses the hand-coded instructions above,
492 // and adjusts them as needed. This is specified by the AMD64 ABI.
495 Output_data_plt_x86_64::do_write(Output_file* of)
497 const off_t offset = this->offset();
498 const off_t oview_size = this->data_size();
499 unsigned char* const oview = of->get_output_view(offset, oview_size);
501 const off_t got_file_offset = this->got_plt_->offset();
502 const off_t got_size = this->got_plt_->data_size();
503 unsigned char* const got_view = of->get_output_view(got_file_offset,
506 unsigned char* pov = oview;
508 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
509 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
511 memcpy(pov, first_plt_entry, plt_entry_size);
512 if (!parameters->output_is_shared())
514 // We do a jmp relative to the PC at the end of this instruction.
515 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
516 - (plt_address + 6));
517 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
518 - (plt_address + 12));
520 pov += plt_entry_size;
522 unsigned char* got_pov = got_view;
524 memset(got_pov, 0, 24);
527 unsigned int plt_offset = plt_entry_size;
528 unsigned int got_offset = 24;
529 const unsigned int count = this->count_;
530 for (unsigned int plt_index = 0;
533 pov += plt_entry_size,
535 plt_offset += plt_entry_size,
538 // Set and adjust the PLT entry itself.
539 memcpy(pov, plt_entry, plt_entry_size);
540 if (parameters->output_is_shared())
541 // FIXME(csilvers): what's the right thing to write here?
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
544 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
545 (got_address + got_offset
546 - (plt_address + plt_offset
549 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
550 elfcpp::Swap<32, false>::writeval(pov + 12,
551 - (plt_offset + plt_entry_size));
553 // Set the entry in the GOT.
554 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
557 gold_assert(pov - oview == oview_size);
558 gold_assert(got_pov - got_view == got_size);
560 of->write_output_view(offset, oview_size, oview);
561 of->write_output_view(got_file_offset, got_size, got_view);
564 // Create a PLT entry for a global symbol.
567 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
570 if (gsym->has_plt_offset())
573 if (this->plt_ == NULL)
575 // Create the GOT sections first.
576 this->got_section(symtab, layout);
578 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
579 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
581 | elfcpp::SHF_EXECINSTR),
585 this->plt_->add_entry(gsym);
588 // Handle a relocation against a non-function symbol defined in a
589 // dynamic object. The traditional way to handle this is to generate
590 // a COPY relocation to copy the variable at runtime from the shared
591 // object into the executable's data segment. However, this is
592 // undesirable in general, as if the size of the object changes in the
593 // dynamic object, the executable will no longer work correctly. If
594 // this relocation is in a writable section, then we can create a
595 // dynamic reloc and the dynamic linker will resolve it to the correct
596 // address at runtime. However, we do not want do that if the
597 // relocation is in a read-only section, as it would prevent the
598 // readonly segment from being shared. And if we have to eventually
599 // generate a COPY reloc, then any dynamic relocations will be
600 // useless. So this means that if this is a writable section, we need
601 // to save the relocation until we see whether we have to create a
602 // COPY relocation for this symbol for any other relocation.
605 Target_x86_64::copy_reloc(const General_options* options,
606 Symbol_table* symtab,
608 Sized_relobj<64, false>* object,
609 unsigned int data_shndx, Symbol* gsym,
610 const elfcpp::Rela<64, false>& rela)
612 Sized_symbol<64>* ssym;
613 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
616 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
619 // So far we do not need a COPY reloc. Save this relocation.
620 // If it turns out that we never need a COPY reloc for this
621 // symbol, then we will emit the relocation.
622 if (this->copy_relocs_ == NULL)
623 this->copy_relocs_ = new Copy_relocs<64, false>();
624 this->copy_relocs_->save(ssym, object, data_shndx, rela);
628 // Allocate space for this symbol in the .bss section.
630 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
632 // There is no defined way to determine the required alignment
633 // of the symbol. We pick the alignment based on the size. We
634 // set an arbitrary maximum of 256.
636 for (align = 1; align < 512; align <<= 1)
637 if ((symsize & align) != 0)
640 if (this->dynbss_ == NULL)
642 this->dynbss_ = new Output_data_space(align);
643 layout->add_output_section_data(".bss",
646 | elfcpp::SHF_WRITE),
650 Output_data_space* dynbss = this->dynbss_;
652 if (align > dynbss->addralign())
653 dynbss->set_space_alignment(align);
655 off_t dynbss_size = dynbss->data_size();
656 dynbss_size = align_address(dynbss_size, align);
657 off_t offset = dynbss_size;
658 dynbss->set_space_size(dynbss_size + symsize);
660 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
662 // Add the COPY reloc.
663 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
664 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
669 // Optimize the TLS relocation type based on what we know about the
670 // symbol. IS_FINAL is true if the final address of this symbol is
671 // known at link time.
673 tls::Tls_optimization
674 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
676 // If we are generating a shared library, then we can't do anything
678 if (parameters->output_is_shared())
679 return tls::TLSOPT_NONE;
683 case elfcpp::R_X86_64_TLSGD:
684 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
685 case elfcpp::R_X86_64_TLSDESC_CALL:
686 // These are General-Dynamic which permits fully general TLS
687 // access. Since we know that we are generating an executable,
688 // we can convert this to Initial-Exec. If we also know that
689 // this is a local symbol, we can further switch to Local-Exec.
691 return tls::TLSOPT_TO_LE;
692 return tls::TLSOPT_TO_IE;
694 case elfcpp::R_X86_64_TLSLD:
695 // This is Local-Dynamic, which refers to a local symbol in the
696 // dynamic TLS block. Since we know that we generating an
697 // executable, we can switch to Local-Exec.
698 return tls::TLSOPT_TO_LE;
700 case elfcpp::R_X86_64_DTPOFF32:
701 case elfcpp::R_X86_64_DTPOFF64:
702 // Another Local-Dynamic reloc.
703 return tls::TLSOPT_TO_LE;
705 case elfcpp::R_X86_64_GOTTPOFF:
706 // These are Initial-Exec relocs which get the thread offset
707 // from the GOT. If we know that we are linking against the
708 // local symbol, we can switch to Local-Exec, which links the
709 // thread offset into the instruction.
711 return tls::TLSOPT_TO_LE;
712 return tls::TLSOPT_NONE;
714 case elfcpp::R_X86_64_TPOFF32:
715 // When we already have Local-Exec, there is nothing further we
717 return tls::TLSOPT_NONE;
724 // Report an unsupported relocation against a local symbol.
727 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
730 gold_error(_("%s: unsupported reloc %u against local symbol"),
731 object->name().c_str(), r_type);
734 // Scan a relocation for a local symbol.
737 Target_x86_64::Scan::local(const General_options&,
738 Symbol_table* symtab,
740 Target_x86_64* target,
741 Sized_relobj<64, false>* object,
742 unsigned int data_shndx,
744 const elfcpp::Rela<64, false>& reloc,
746 const elfcpp::Sym<64, false>&)
750 case elfcpp::R_X86_64_NONE:
751 case elfcpp::R_386_GNU_VTINHERIT:
752 case elfcpp::R_386_GNU_VTENTRY:
755 case elfcpp::R_X86_64_64:
756 // If building a shared library (or a position-independent
757 // executable), we need to create a dynamic relocation for
758 // this location. The relocation applied at link time will
759 // apply the link-time value, so we flag the location with
760 // an R_386_RELATIVE relocation so the dynamic loader can
761 // relocate it easily.
762 if (parameters->output_is_position_independent())
764 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
765 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
766 data_shndx, reloc.get_r_offset(), 0);
770 case elfcpp::R_X86_64_32:
771 case elfcpp::R_X86_64_32S:
772 case elfcpp::R_X86_64_16:
773 case elfcpp::R_X86_64_8:
774 // If building a shared library (or a position-independent
775 // executable), we need to create a dynamic relocation for
776 // this location. The relocation applied at link time will
777 // apply the link-time value, so we flag the location with
778 // an R_386_RELATIVE relocation so the dynamic loader can
779 // relocate it easily.
780 if (parameters->output_is_position_independent())
782 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
783 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
784 rela_dyn->add_local(object, r_sym, r_type, data_shndx,
785 reloc.get_r_offset(),
786 reloc.get_r_addend());
790 case elfcpp::R_X86_64_PC64:
791 case elfcpp::R_X86_64_PC32:
792 case elfcpp::R_X86_64_PC16:
793 case elfcpp::R_X86_64_PC8:
796 case elfcpp::R_X86_64_PLT32:
797 // Since we know this is a local symbol, we can handle this as a
801 case elfcpp::R_X86_64_GOTPC32:
802 case elfcpp::R_X86_64_GOTOFF64:
803 case elfcpp::R_X86_64_GOTPC64:
804 case elfcpp::R_X86_64_PLTOFF64:
805 // We need a GOT section.
806 target->got_section(symtab, layout);
807 // For PLTOFF64, we'd normally want a PLT section, but since we
808 // know this is a local symbol, no PLT is needed.
811 case elfcpp::R_X86_64_GOT64:
812 case elfcpp::R_X86_64_GOT32:
813 case elfcpp::R_X86_64_GOTPCREL64:
814 case elfcpp::R_X86_64_GOTPCREL:
815 case elfcpp::R_X86_64_GOTPLT64:
817 // The symbol requires a GOT entry.
818 Output_data_got<64, false>* got = target->got_section(symtab, layout);
819 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
820 if (got->add_local(object, r_sym))
822 // If we are generating a shared object, we need to add a
823 // dynamic RELATIVE relocation for this symbol.
824 if (parameters->output_is_position_independent())
826 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
827 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
829 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
830 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
831 data_shndx, reloc.get_r_offset(), 0);
834 // For GOTPLT64, we'd normally want a PLT section, but since
835 // we know this is a local symbol, no PLT is needed.
839 case elfcpp::R_X86_64_COPY:
840 case elfcpp::R_X86_64_GLOB_DAT:
841 case elfcpp::R_X86_64_JUMP_SLOT:
842 case elfcpp::R_X86_64_RELATIVE:
843 // These are outstanding tls relocs, which are unexpected when linking
844 case elfcpp::R_X86_64_TPOFF64:
845 case elfcpp::R_X86_64_DTPMOD64:
846 case elfcpp::R_X86_64_TLSDESC:
847 gold_error(_("%s: unexpected reloc %u in object file"),
848 object->name().c_str(), r_type);
851 // These are initial tls relocs, which are expected when linking
852 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
853 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
854 case elfcpp::R_X86_64_TLSDESC_CALL:
855 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
856 case elfcpp::R_X86_64_DTPOFF32:
857 case elfcpp::R_X86_64_DTPOFF64:
858 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
859 case elfcpp::R_X86_64_TPOFF32: // Local-exec
861 bool output_is_shared = parameters->output_is_shared();
862 const tls::Tls_optimization optimized_type
863 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
866 case elfcpp::R_X86_64_TLSGD: // General-dynamic
867 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
868 case elfcpp::R_X86_64_TLSDESC_CALL:
869 // FIXME: If not relaxing to LE, we need to generate
870 // DTPMOD64 and DTPOFF64 relocs.
871 if (optimized_type != tls::TLSOPT_TO_LE)
872 unsupported_reloc_local(object, r_type);
875 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
876 case elfcpp::R_X86_64_DTPOFF32:
877 case elfcpp::R_X86_64_DTPOFF64:
878 // FIXME: If not relaxing to LE, we need to generate a
880 if (optimized_type != tls::TLSOPT_TO_LE)
881 unsupported_reloc_local(object, r_type);
884 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
885 // FIXME: If not relaxing to LE, we need to generate a
887 if (optimized_type != tls::TLSOPT_TO_LE)
888 unsupported_reloc_local(object, r_type);
891 case elfcpp::R_X86_64_TPOFF32: // Local-exec
892 // FIXME: If generating a shared object, we need to copy
893 // this relocation into the object.
894 gold_assert(!output_is_shared);
903 case elfcpp::R_X86_64_SIZE32:
904 case elfcpp::R_X86_64_SIZE64:
906 gold_error(_("%s: unsupported reloc %u against local symbol"),
907 object->name().c_str(), r_type);
913 // Report an unsupported relocation against a global symbol.
916 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
920 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
921 object->name().c_str(), r_type, gsym->demangled_name().c_str());
924 // Scan a relocation for a global symbol.
927 Target_x86_64::Scan::global(const General_options& options,
928 Symbol_table* symtab,
930 Target_x86_64* target,
931 Sized_relobj<64, false>* object,
932 unsigned int data_shndx,
934 const elfcpp::Rela<64, false>& reloc,
940 case elfcpp::R_X86_64_NONE:
941 case elfcpp::R_386_GNU_VTINHERIT:
942 case elfcpp::R_386_GNU_VTENTRY:
945 case elfcpp::R_X86_64_64:
946 case elfcpp::R_X86_64_32:
947 case elfcpp::R_X86_64_32S:
948 case elfcpp::R_X86_64_16:
949 case elfcpp::R_X86_64_8:
951 // Make a PLT entry if necessary.
952 if (gsym->needs_plt_entry())
954 target->make_plt_entry(symtab, layout, gsym);
955 // Since this is not a PC-relative relocation, we may be
956 // taking the address of a function. In that case we need to
957 // set the entry in the dynamic symbol table to the address of
959 if (gsym->is_from_dynobj())
960 gsym->set_needs_dynsym_value();
962 // Make a dynamic relocation if necessary.
963 if (gsym->needs_dynamic_reloc(true, false))
965 if (target->may_need_copy_reloc(gsym))
967 target->copy_reloc(&options, symtab, layout, object, data_shndx,
970 else if (r_type == elfcpp::R_X86_64_64
971 && gsym->can_use_relative_reloc(false))
973 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
974 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
976 reloc.get_r_offset(), 0);
980 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
981 rela_dyn->add_global(gsym, r_type, object, data_shndx,
982 reloc.get_r_offset(),
983 reloc.get_r_addend());
989 case elfcpp::R_X86_64_PC64:
990 case elfcpp::R_X86_64_PC32:
991 case elfcpp::R_X86_64_PC16:
992 case elfcpp::R_X86_64_PC8:
994 // Make a PLT entry if necessary.
995 if (gsym->needs_plt_entry())
996 target->make_plt_entry(symtab, layout, gsym);
997 // Make a dynamic relocation if necessary.
998 bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
999 if (gsym->needs_dynamic_reloc(true, is_function_call))
1001 if (target->may_need_copy_reloc(gsym))
1003 target->copy_reloc(&options, symtab, layout, object, data_shndx,
1008 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1009 rela_dyn->add_global(gsym, r_type, object, data_shndx,
1010 reloc.get_r_offset(),
1011 reloc.get_r_addend());
1017 case elfcpp::R_X86_64_GOT64:
1018 case elfcpp::R_X86_64_GOT32:
1019 case elfcpp::R_X86_64_GOTPCREL64:
1020 case elfcpp::R_X86_64_GOTPCREL:
1021 case elfcpp::R_X86_64_GOTPLT64:
1023 // The symbol requires a GOT entry.
1024 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1025 if (got->add_global(gsym))
1027 // If this symbol is not fully resolved, we need to add a
1028 // dynamic relocation for it.
1029 if (!gsym->final_value_is_known())
1031 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1032 if (gsym->is_from_dynobj()
1033 || gsym->is_preemptible())
1034 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1035 gsym->got_offset(), 0);
1038 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1039 got, gsym->got_offset(), 0);
1040 // Make sure we write the link-time value to the GOT.
1041 gsym->set_needs_value_in_got();
1045 // For GOTPLT64, we also need a PLT entry (but only if the
1046 // symbol is not fully resolved).
1047 if (r_type == elfcpp::R_X86_64_GOTPLT64
1048 && !gsym->final_value_is_known())
1049 target->make_plt_entry(symtab, layout, gsym);
1053 case elfcpp::R_X86_64_PLT32:
1054 // If the symbol is fully resolved, this is just a PC32 reloc.
1055 // Otherwise we need a PLT entry.
1056 if (gsym->final_value_is_known())
1058 // If building a shared library, we can also skip the PLT entry
1059 // if the symbol is defined in the output file and is protected
1061 if (gsym->is_defined()
1062 && !gsym->is_from_dynobj()
1063 && !gsym->is_preemptible())
1065 target->make_plt_entry(symtab, layout, gsym);
1068 case elfcpp::R_X86_64_GOTPC32:
1069 case elfcpp::R_X86_64_GOTOFF64:
1070 case elfcpp::R_X86_64_GOTPC64:
1071 case elfcpp::R_X86_64_PLTOFF64:
1072 // We need a GOT section.
1073 target->got_section(symtab, layout);
1074 // For PLTOFF64, we also need a PLT entry (but only if the
1075 // symbol is not fully resolved).
1076 if (r_type == elfcpp::R_X86_64_PLTOFF64
1077 && !gsym->final_value_is_known())
1078 target->make_plt_entry(symtab, layout, gsym);
1081 case elfcpp::R_X86_64_COPY:
1082 case elfcpp::R_X86_64_GLOB_DAT:
1083 case elfcpp::R_X86_64_JUMP_SLOT:
1084 case elfcpp::R_X86_64_RELATIVE:
1085 // These are outstanding tls relocs, which are unexpected when linking
1086 case elfcpp::R_X86_64_TPOFF64:
1087 case elfcpp::R_X86_64_DTPMOD64:
1088 case elfcpp::R_X86_64_TLSDESC:
1089 gold_error(_("%s: unexpected reloc %u in object file"),
1090 object->name().c_str(), r_type);
1093 // These are initial tls relocs, which are expected for global()
1094 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1095 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1096 case elfcpp::R_X86_64_TLSDESC_CALL:
1097 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1098 case elfcpp::R_X86_64_DTPOFF32:
1099 case elfcpp::R_X86_64_DTPOFF64:
1100 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1101 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1103 const bool is_final = gsym->final_value_is_known();
1104 const tls::Tls_optimization optimized_type
1105 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1108 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1109 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1110 case elfcpp::R_X86_64_TLSDESC_CALL:
1111 // FIXME: If not relaxing to LE, we need to generate
1112 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1113 if (optimized_type != tls::TLSOPT_TO_LE)
1114 unsupported_reloc_global(object, r_type, gsym);
1117 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1118 case elfcpp::R_X86_64_DTPOFF32:
1119 case elfcpp::R_X86_64_DTPOFF64:
1120 // FIXME: If not relaxing to LE, we need to generate a
1122 if (optimized_type != tls::TLSOPT_TO_LE)
1123 unsupported_reloc_global(object, r_type, gsym);
1126 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1127 // FIXME: If not relaxing to LE, we need to generate a
1129 if (optimized_type != tls::TLSOPT_TO_LE)
1130 unsupported_reloc_global(object, r_type, gsym);
1133 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1134 // FIXME: If generating a shared object, we need to copy
1135 // this relocation into the object.
1136 gold_assert(is_final);
1145 case elfcpp::R_X86_64_SIZE32:
1146 case elfcpp::R_X86_64_SIZE64:
1148 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1149 object->name().c_str(), r_type,
1150 gsym->demangled_name().c_str());
1155 // Scan relocations for a section.
1158 Target_x86_64::scan_relocs(const General_options& options,
1159 Symbol_table* symtab,
1161 Sized_relobj<64, false>* object,
1162 unsigned int data_shndx,
1163 unsigned int sh_type,
1164 const unsigned char* prelocs,
1166 Output_section* output_section,
1167 bool needs_special_offset_handling,
1168 size_t local_symbol_count,
1169 const unsigned char* plocal_symbols)
1171 if (sh_type == elfcpp::SHT_REL)
1173 gold_error(_("%s: unsupported REL reloc section"),
1174 object->name().c_str());
1178 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1179 Target_x86_64::Scan>(
1189 needs_special_offset_handling,
1194 // Finalize the sections.
1197 Target_x86_64::do_finalize_sections(Layout* layout)
1199 // Fill in some more dynamic tags.
1200 Output_data_dynamic* const odyn = layout->dynamic_data();
1203 if (this->got_plt_ != NULL)
1204 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1206 if (this->plt_ != NULL)
1208 const Output_data* od = this->plt_->rel_plt();
1209 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1210 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1211 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1214 if (this->rela_dyn_ != NULL)
1216 const Output_data* od = this->rela_dyn_;
1217 odyn->add_section_address(elfcpp::DT_RELA, od);
1218 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1219 odyn->add_constant(elfcpp::DT_RELAENT,
1220 elfcpp::Elf_sizes<64>::rela_size);
1223 if (!parameters->output_is_shared())
1225 // The value of the DT_DEBUG tag is filled in by the dynamic
1226 // linker at run time, and used by the debugger.
1227 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1231 // Emit any relocs we saved in an attempt to avoid generating COPY
1233 if (this->copy_relocs_ == NULL)
1235 if (this->copy_relocs_->any_to_emit())
1237 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1238 this->copy_relocs_->emit(rela_dyn);
1240 delete this->copy_relocs_;
1241 this->copy_relocs_ = NULL;
1244 // Perform a relocation.
1247 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1248 Target_x86_64* target,
1250 const elfcpp::Rela<64, false>& rela,
1251 unsigned int r_type,
1252 const Sized_symbol<64>* gsym,
1253 const Symbol_value<64>* psymval,
1254 unsigned char* view,
1255 elfcpp::Elf_types<64>::Elf_Addr address,
1258 if (this->skip_call_tls_get_addr_)
1260 if (r_type != elfcpp::R_X86_64_PLT32
1262 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1264 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1265 _("missing expected TLS relocation"));
1269 this->skip_call_tls_get_addr_ = false;
1274 // Pick the value to use for symbols defined in shared objects.
1275 Symbol_value<64> symval;
1277 && (gsym->is_from_dynobj()
1278 || (parameters->output_is_shared()
1279 && gsym->is_preemptible()))
1280 && gsym->has_plt_offset())
1282 symval.set_output_value(target->plt_section()->address()
1283 + gsym->plt_offset());
1287 const Sized_relobj<64, false>* object = relinfo->object;
1288 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1290 // Get the GOT offset if needed.
1291 // The GOT pointer points to the end of the GOT section.
1292 // We need to subtract the size of the GOT section to get
1293 // the actual offset to use in the relocation.
1294 bool have_got_offset = false;
1295 unsigned int got_offset = 0;
1298 case elfcpp::R_X86_64_GOT32:
1299 case elfcpp::R_X86_64_GOT64:
1300 case elfcpp::R_X86_64_GOTPLT64:
1301 case elfcpp::R_X86_64_GOTPCREL:
1302 case elfcpp::R_X86_64_GOTPCREL64:
1305 gold_assert(gsym->has_got_offset());
1306 got_offset = gsym->got_offset() - target->got_size();
1310 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1311 got_offset = object->local_got_offset(r_sym) - target->got_size();
1313 have_got_offset = true;
1322 case elfcpp::R_X86_64_NONE:
1323 case elfcpp::R_386_GNU_VTINHERIT:
1324 case elfcpp::R_386_GNU_VTENTRY:
1327 case elfcpp::R_X86_64_64:
1328 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1331 case elfcpp::R_X86_64_PC64:
1332 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1336 case elfcpp::R_X86_64_32:
1337 // FIXME: we need to verify that value + addend fits into 32 bits:
1338 // uint64_t x = value + addend;
1339 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1340 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1341 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1344 case elfcpp::R_X86_64_32S:
1345 // FIXME: we need to verify that value + addend fits into 32 bits:
1346 // int64_t x = value + addend; // note this quantity is signed!
1347 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1348 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1351 case elfcpp::R_X86_64_PC32:
1352 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1356 case elfcpp::R_X86_64_16:
1357 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1360 case elfcpp::R_X86_64_PC16:
1361 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1365 case elfcpp::R_X86_64_8:
1366 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1369 case elfcpp::R_X86_64_PC8:
1370 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1374 case elfcpp::R_X86_64_PLT32:
1375 gold_assert(gsym == NULL
1376 || gsym->has_plt_offset()
1377 || gsym->final_value_is_known());
1378 // Note: while this code looks the same as for R_X86_64_PC32, it
1379 // behaves differently because psymval was set to point to
1380 // the PLT entry, rather than the symbol, in Scan::global().
1381 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1385 case elfcpp::R_X86_64_PLTOFF64:
1388 gold_assert(gsym->has_plt_offset()
1389 || gsym->final_value_is_known());
1390 elfcpp::Elf_types<64>::Elf_Addr got_address;
1391 got_address = target->got_section(NULL, NULL)->address();
1392 Relocate_functions<64, false>::rela64(view, object, psymval,
1393 addend - got_address);
1396 case elfcpp::R_X86_64_GOT32:
1397 gold_assert(have_got_offset);
1398 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1401 case elfcpp::R_X86_64_GOTPC32:
1404 elfcpp::Elf_types<64>::Elf_Addr value;
1405 value = target->got_plt_section()->address();
1406 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1410 case elfcpp::R_X86_64_GOT64:
1411 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1412 // Since we always add a PLT entry, this is equivalent.
1413 case elfcpp::R_X86_64_GOTPLT64:
1414 gold_assert(have_got_offset);
1415 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1418 case elfcpp::R_X86_64_GOTPC64:
1421 elfcpp::Elf_types<64>::Elf_Addr value;
1422 value = target->got_plt_section()->address();
1423 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1427 case elfcpp::R_X86_64_GOTOFF64:
1429 elfcpp::Elf_types<64>::Elf_Addr value;
1430 value = (psymval->value(object, 0)
1431 - target->got_plt_section()->address());
1432 Relocate_functions<64, false>::rela64(view, value, addend);
1436 case elfcpp::R_X86_64_GOTPCREL:
1438 gold_assert(have_got_offset);
1439 elfcpp::Elf_types<64>::Elf_Addr value;
1440 value = target->got_plt_section()->address() + got_offset;
1441 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1445 case elfcpp::R_X86_64_GOTPCREL64:
1447 gold_assert(have_got_offset);
1448 elfcpp::Elf_types<64>::Elf_Addr value;
1449 value = target->got_plt_section()->address() + got_offset;
1450 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1454 case elfcpp::R_X86_64_COPY:
1455 case elfcpp::R_X86_64_GLOB_DAT:
1456 case elfcpp::R_X86_64_JUMP_SLOT:
1457 case elfcpp::R_X86_64_RELATIVE:
1458 // These are outstanding tls relocs, which are unexpected when linking
1459 case elfcpp::R_X86_64_TPOFF64:
1460 case elfcpp::R_X86_64_DTPMOD64:
1461 case elfcpp::R_X86_64_TLSDESC:
1462 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1463 _("unexpected reloc %u in object file"),
1467 // These are initial tls relocs, which are expected when linking
1468 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1469 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1470 case elfcpp::R_X86_64_TLSDESC_CALL:
1471 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1472 case elfcpp::R_X86_64_DTPOFF32:
1473 case elfcpp::R_X86_64_DTPOFF64:
1474 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1475 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1476 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1477 address, view_size);
1480 case elfcpp::R_X86_64_SIZE32:
1481 case elfcpp::R_X86_64_SIZE64:
1483 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1484 _("unsupported reloc %u"),
1492 // Perform a TLS relocation.
1495 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1497 const elfcpp::Rela<64, false>& rela,
1498 unsigned int r_type,
1499 const Sized_symbol<64>* gsym,
1500 const Symbol_value<64>* psymval,
1501 unsigned char* view,
1502 elfcpp::Elf_types<64>::Elf_Addr,
1505 Output_segment* tls_segment = relinfo->layout->tls_segment();
1506 if (tls_segment == NULL)
1508 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1509 _("TLS reloc but no TLS segment"));
1513 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1515 const bool is_final = (gsym == NULL
1516 ? !parameters->output_is_position_independent()
1517 : gsym->final_value_is_known());
1518 const tls::Tls_optimization optimized_type
1519 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1522 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1523 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1524 case elfcpp::R_X86_64_TLSDESC_CALL:
1525 if (optimized_type == tls::TLSOPT_TO_LE)
1527 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1528 rela, r_type, value, view,
1532 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1533 _("unsupported reloc %u"), r_type);
1536 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1537 if (optimized_type == tls::TLSOPT_TO_LE)
1539 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1540 value, view, view_size);
1543 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1544 _("unsupported reloc %u"), r_type);
1547 case elfcpp::R_X86_64_DTPOFF32:
1548 if (optimized_type == tls::TLSOPT_TO_LE)
1549 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1551 value = value - tls_segment->vaddr();
1552 Relocate_functions<64, false>::rel32(view, value);
1555 case elfcpp::R_X86_64_DTPOFF64:
1556 if (optimized_type == tls::TLSOPT_TO_LE)
1557 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1559 value = value - tls_segment->vaddr();
1560 Relocate_functions<64, false>::rel64(view, value);
1563 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1564 if (optimized_type == tls::TLSOPT_TO_LE)
1566 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1567 rela, r_type, value, view,
1571 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1572 _("unsupported reloc type %u"),
1576 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1577 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1578 Relocate_functions<64, false>::rel32(view, value);
1583 // Do a relocation in which we convert a TLS General-Dynamic to a
1587 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1589 Output_segment* tls_segment,
1590 const elfcpp::Rela<64, false>& rela,
1592 elfcpp::Elf_types<64>::Elf_Addr value,
1593 unsigned char* view,
1596 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1597 // .word 0x6666; rex64; call __tls_get_addr
1598 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1600 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1601 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1603 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1604 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1605 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1606 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1608 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1610 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1611 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1613 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1615 this->skip_call_tls_get_addr_ = true;
1619 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1622 const elfcpp::Rela<64, false>& rela,
1624 elfcpp::Elf_types<64>::Elf_Addr,
1625 unsigned char* view,
1628 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1629 // ... leq foo@dtpoff(%rax),%reg
1630 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1632 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1633 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1635 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1636 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1638 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1640 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1642 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1644 this->skip_call_tls_get_addr_ = true;
1647 // Do a relocation in which we convert a TLS Initial-Exec to a
1651 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1653 Output_segment* tls_segment,
1654 const elfcpp::Rela<64, false>& rela,
1656 elfcpp::Elf_types<64>::Elf_Addr value,
1657 unsigned char* view,
1660 // We need to examine the opcodes to figure out which instruction we
1663 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1664 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1666 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1667 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1669 unsigned char op1 = view[-3];
1670 unsigned char op2 = view[-2];
1671 unsigned char op3 = view[-1];
1672 unsigned char reg = op3 >> 3;
1680 view[-1] = 0xc0 | reg;
1684 // Special handling for %rsp.
1688 view[-1] = 0xc0 | reg;
1696 view[-1] = 0x80 | reg | (reg << 3);
1699 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1700 Relocate_functions<64, false>::rela32(view, value, 0);
1703 // Relocate section data.
1706 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1707 unsigned int sh_type,
1708 const unsigned char* prelocs,
1710 Output_section* output_section,
1711 bool needs_special_offset_handling,
1712 unsigned char* view,
1713 elfcpp::Elf_types<64>::Elf_Addr address,
1716 gold_assert(sh_type == elfcpp::SHT_RELA);
1718 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1719 Target_x86_64::Relocate>(
1725 needs_special_offset_handling,
1731 // Return the value to use for a dynamic which requires special
1732 // treatment. This is how we support equality comparisons of function
1733 // pointers across shared library boundaries, as described in the
1734 // processor specific ABI supplement.
1737 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1739 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1740 return this->plt_section()->address() + gsym->plt_offset();
1743 // Return a string used to fill a code section with nops to take up
1744 // the specified length.
1747 Target_x86_64::do_code_fill(off_t length)
1751 // Build a jmpq instruction to skip over the bytes.
1752 unsigned char jmp[5];
1754 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1755 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1756 + std::string(length - 5, '\0'));
1759 // Nop sequences of various lengths.
1760 const char nop1[1] = { 0x90 }; // nop
1761 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1762 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1763 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1764 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1765 0x00 }; // leal 0(%esi,1),%esi
1766 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1768 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1770 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1771 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1772 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1773 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1775 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1776 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1778 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1779 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1781 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1782 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1783 0x00, 0x00, 0x00, 0x00 };
1784 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1785 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1786 0x27, 0x00, 0x00, 0x00,
1788 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1789 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1790 0xbc, 0x27, 0x00, 0x00,
1792 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1793 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1794 0x90, 0x90, 0x90, 0x90,
1797 const char* nops[16] = {
1799 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1800 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1803 return std::string(nops[length], length);
1806 // The selector for x86_64 object files.
1808 class Target_selector_x86_64 : public Target_selector
1811 Target_selector_x86_64()
1812 : Target_selector(elfcpp::EM_X86_64, 64, false)
1816 recognize(int machine, int osabi, int abiversion);
1819 Target_x86_64* target_;
1822 // Recognize an x86_64 object file when we already know that the machine
1823 // number is EM_X86_64.
1826 Target_selector_x86_64::recognize(int, int, int)
1828 if (this->target_ == NULL)
1829 this->target_ = new Target_x86_64();
1830 return this->target_;
1833 Target_selector_x86_64 target_selector_x86_64;
1835 } // End anonymous namespace.