Check PC-relative offset overflow in PLT entry
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Return the number of PLT entries.
183   unsigned int
184   entry_count() const
185   { return this->count_ + this->irelative_count_; }
186
187   // Return the offset of the first non-reserved PLT entry.
188   unsigned int
189   first_plt_entry_offset()
190   { return this->get_plt_entry_size(); }
191
192   // Return the size of a PLT entry.
193   unsigned int
194   get_plt_entry_size() const
195   { return this->do_get_plt_entry_size(); }
196
197   // Reserve a slot in the PLT for an existing symbol in an incremental update.
198   void
199   reserve_slot(unsigned int plt_index)
200   {
201     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202                             (plt_index + 2) * this->get_plt_entry_size());
203   }
204
205   // Return the PLT address to use for a global symbol.
206   uint64_t
207   address_for_global(const Symbol*);
208
209   // Return the PLT address to use for a local symbol.
210   uint64_t
211   address_for_local(const Relobj*, unsigned int symndx);
212
213   // Add .eh_frame information for the PLT.
214   void
215   add_eh_frame(Layout* layout)
216   { this->do_add_eh_frame(layout); }
217
218  protected:
219   // Fill in the first PLT entry.
220   void
221   fill_first_plt_entry(unsigned char* pov,
222                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226   // Fill in a normal PLT entry.  Returns the offset into the entry that
227   // should be the initial GOT slot value.
228   unsigned int
229   fill_plt_entry(unsigned char* pov,
230                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232                  unsigned int got_offset,
233                  unsigned int plt_offset,
234                  unsigned int plt_index)
235   {
236     return this->do_fill_plt_entry(pov, got_address, plt_address,
237                                    got_offset, plt_offset, plt_index);
238   }
239
240   // Fill in the reserved TLSDESC PLT entry.
241   void
242   fill_tlsdesc_entry(unsigned char* pov,
243                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246                      unsigned int tlsdesc_got_offset,
247                      unsigned int plt_offset)
248   {
249     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250                                 tlsdesc_got_offset, plt_offset);
251   }
252
253   virtual unsigned int
254   do_get_plt_entry_size() const = 0;
255
256   virtual void
257   do_fill_first_plt_entry(unsigned char* pov,
258                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260     = 0;
261
262   virtual unsigned int
263   do_fill_plt_entry(unsigned char* pov,
264                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266                     unsigned int got_offset,
267                     unsigned int plt_offset,
268                     unsigned int plt_index) = 0;
269
270   virtual void
271   do_fill_tlsdesc_entry(unsigned char* pov,
272                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275                         unsigned int tlsdesc_got_offset,
276                         unsigned int plt_offset) = 0;
277
278   virtual void
279   do_add_eh_frame(Layout* layout) = 0;
280
281   void
282   do_adjust_output_section(Output_section* os);
283
284   // Write to a map file.
285   void
286   do_print_to_mapfile(Mapfile* mapfile) const
287   { mapfile->print_output_data(this, _("** PLT")); }
288
289   // The CIE of the .eh_frame unwind information for the PLT.
290   static const int plt_eh_frame_cie_size = 16;
291   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293  private:
294   // Set the final size.
295   void
296   set_final_data_size();
297
298   // Write out the PLT data.
299   void
300   do_write(Output_file*);
301
302   // The reloc section.
303   Reloc_section* rel_;
304   // The TLSDESC relocs, if necessary.  These must follow the regular
305   // PLT relocs.
306   Reloc_section* tlsdesc_rel_;
307   // The IRELATIVE relocs, if necessary.  These must follow the
308   // regular PLT relocations and the TLSDESC relocations.
309   Reloc_section* irelative_rel_;
310   // The .got section.
311   Output_data_got<64, false>* got_;
312   // The .got.plt section.
313   Output_data_got_plt_x86_64* got_plt_;
314   // The part of the .got.plt section used for IRELATIVE relocs.
315   Output_data_space* got_irelative_;
316   // The number of PLT entries.
317   unsigned int count_;
318   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
319   // follow the regular PLT entries.
320   unsigned int irelative_count_;
321   // Offset of the reserved TLSDESC_GOT entry when needed.
322   unsigned int tlsdesc_got_offset_;
323   // List of available regions within the section, for incremental
324   // update links.
325   Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331  public:
332   Output_data_plt_x86_64_standard(Layout* layout,
333                                   Output_data_got<64, false>* got,
334                                   Output_data_got_plt_x86_64* got_plt,
335                                   Output_data_space* got_irelative)
336     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337                                    got, got_plt, got_irelative)
338   { }
339
340   Output_data_plt_x86_64_standard(Layout* layout,
341                                   Output_data_got<64, false>* got,
342                                   Output_data_got_plt_x86_64* got_plt,
343                                   Output_data_space* got_irelative,
344                                   unsigned int plt_count)
345     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346                                    got, got_plt, got_irelative,
347                                    plt_count)
348   { }
349
350  protected:
351   virtual unsigned int
352   do_get_plt_entry_size() const
353   { return plt_entry_size; }
354
355   virtual void
356   do_add_eh_frame(Layout* layout)
357   {
358     layout->add_eh_frame_for_plt(this,
359                                  this->plt_eh_frame_cie,
360                                  this->plt_eh_frame_cie_size,
361                                  plt_eh_frame_fde,
362                                  plt_eh_frame_fde_size);
363   }
364
365   virtual void
366   do_fill_first_plt_entry(unsigned char* pov,
367                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370   virtual unsigned int
371   do_fill_plt_entry(unsigned char* pov,
372                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374                     unsigned int got_offset,
375                     unsigned int plt_offset,
376                     unsigned int plt_index);
377
378   virtual void
379   do_fill_tlsdesc_entry(unsigned char* pov,
380                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383                         unsigned int tlsdesc_got_offset,
384                         unsigned int plt_offset);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT.
391   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392   // procedure linkage table for both programs and shared objects."
393   static const unsigned char first_plt_entry[plt_entry_size];
394
395   // Other entries in the PLT for an executable.
396   static const unsigned char plt_entry[plt_entry_size];
397
398   // The reserved TLSDESC entry in the PLT for an executable.
399   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401   // The .eh_frame unwind information for the PLT.
402   static const int plt_eh_frame_fde_size = 32;
403   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 //   http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 //   http://people.redhat.com/drepper/tls.pdf
411 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416  public:
417   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418   // uses only Elf64_Rela relocation entries with explicit addends."
419   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421   Target_x86_64(const Target::Target_info* info = &x86_64_info)
422     : Sized_target<size, false>(info),
423       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427       tls_base_symbol_defined_(false)
428   { }
429
430   // Hook for a new output section.
431   void
432   do_new_output_section(Output_section*) const;
433
434   // Scan the relocations to look for symbol adjustments.
435   void
436   gc_process_relocs(Symbol_table* symtab,
437                     Layout* layout,
438                     Sized_relobj_file<size, false>* object,
439                     unsigned int data_shndx,
440                     unsigned int sh_type,
441                     const unsigned char* prelocs,
442                     size_t reloc_count,
443                     Output_section* output_section,
444                     bool needs_special_offset_handling,
445                     size_t local_symbol_count,
446                     const unsigned char* plocal_symbols);
447
448   // Scan the relocations to look for symbol adjustments.
449   void
450   scan_relocs(Symbol_table* symtab,
451               Layout* layout,
452               Sized_relobj_file<size, false>* object,
453               unsigned int data_shndx,
454               unsigned int sh_type,
455               const unsigned char* prelocs,
456               size_t reloc_count,
457               Output_section* output_section,
458               bool needs_special_offset_handling,
459               size_t local_symbol_count,
460               const unsigned char* plocal_symbols);
461
462   // Finalize the sections.
463   void
464   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466   // Return the value to use for a dynamic which requires special
467   // treatment.
468   uint64_t
469   do_dynsym_value(const Symbol*) const;
470
471   // Relocate a section.
472   void
473   relocate_section(const Relocate_info<size, false>*,
474                    unsigned int sh_type,
475                    const unsigned char* prelocs,
476                    size_t reloc_count,
477                    Output_section* output_section,
478                    bool needs_special_offset_handling,
479                    unsigned char* view,
480                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481                    section_size_type view_size,
482                    const Reloc_symbol_changes*);
483
484   // Scan the relocs during a relocatable link.
485   void
486   scan_relocatable_relocs(Symbol_table* symtab,
487                           Layout* layout,
488                           Sized_relobj_file<size, false>* object,
489                           unsigned int data_shndx,
490                           unsigned int sh_type,
491                           const unsigned char* prelocs,
492                           size_t reloc_count,
493                           Output_section* output_section,
494                           bool needs_special_offset_handling,
495                           size_t local_symbol_count,
496                           const unsigned char* plocal_symbols,
497                           Relocatable_relocs*);
498
499   // Emit relocations for a section.
500   void
501   relocate_relocs(
502       const Relocate_info<size, false>*,
503       unsigned int sh_type,
504       const unsigned char* prelocs,
505       size_t reloc_count,
506       Output_section* output_section,
507       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
508       const Relocatable_relocs*,
509       unsigned char* view,
510       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
511       section_size_type view_size,
512       unsigned char* reloc_view,
513       section_size_type reloc_view_size);
514
515   // Return a string used to fill a code section with nops.
516   std::string
517   do_code_fill(section_size_type length) const;
518
519   // Return whether SYM is defined by the ABI.
520   bool
521   do_is_defined_by_abi(const Symbol* sym) const
522   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
523
524   // Return the symbol index to use for a target specific relocation.
525   // The only target specific relocation is R_X86_64_TLSDESC for a
526   // local symbol, which is an absolute reloc.
527   unsigned int
528   do_reloc_symbol_index(void*, unsigned int r_type) const
529   {
530     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
531     return 0;
532   }
533
534   // Return the addend to use for a target specific relocation.
535   uint64_t
536   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
537
538   // Return the PLT section.
539   uint64_t
540   do_plt_address_for_global(const Symbol* gsym) const
541   { return this->plt_section()->address_for_global(gsym); }
542
543   uint64_t
544   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
545   { return this->plt_section()->address_for_local(relobj, symndx); }
546
547   // This function should be defined in targets that can use relocation
548   // types to determine (implemented in local_reloc_may_be_function_pointer
549   // and global_reloc_may_be_function_pointer)
550   // if a function's pointer is taken.  ICF uses this in safe mode to only
551   // fold those functions whose pointer is defintely not taken.  For x86_64
552   // pie binaries, safe ICF cannot be done by looking at relocation types.
553   bool
554   do_can_check_for_function_pointers() const
555   { return !parameters->options().pie(); }
556
557   // Return the base for a DW_EH_PE_datarel encoding.
558   uint64_t
559   do_ehframe_datarel_base() const;
560
561   // Adjust -fsplit-stack code which calls non-split-stack code.
562   void
563   do_calls_non_split(Relobj* object, unsigned int shndx,
564                      section_offset_type fnoffset, section_size_type fnsize,
565                      unsigned char* view, section_size_type view_size,
566                      std::string* from, std::string* to) const;
567
568   // Return the size of the GOT section.
569   section_size_type
570   got_size() const
571   {
572     gold_assert(this->got_ != NULL);
573     return this->got_->data_size();
574   }
575
576   // Return the number of entries in the GOT.
577   unsigned int
578   got_entry_count() const
579   {
580     if (this->got_ == NULL)
581       return 0;
582     return this->got_size() / 8;
583   }
584
585   // Return the number of entries in the PLT.
586   unsigned int
587   plt_entry_count() const;
588
589   // Return the offset of the first non-reserved PLT entry.
590   unsigned int
591   first_plt_entry_offset() const;
592
593   // Return the size of each PLT entry.
594   unsigned int
595   plt_entry_size() const;
596
597   // Create the GOT section for an incremental update.
598   Output_data_got_base*
599   init_got_plt_for_update(Symbol_table* symtab,
600                           Layout* layout,
601                           unsigned int got_count,
602                           unsigned int plt_count);
603
604   // Reserve a GOT entry for a local symbol, and regenerate any
605   // necessary dynamic relocations.
606   void
607   reserve_local_got_entry(unsigned int got_index,
608                           Sized_relobj<size, false>* obj,
609                           unsigned int r_sym,
610                           unsigned int got_type);
611
612   // Reserve a GOT entry for a global symbol, and regenerate any
613   // necessary dynamic relocations.
614   void
615   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
616                            unsigned int got_type);
617
618   // Register an existing PLT entry for a global symbol.
619   void
620   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
621                             Symbol* gsym);
622
623   // Force a COPY relocation for a given symbol.
624   void
625   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
626
627   // Apply an incremental relocation.
628   void
629   apply_relocation(const Relocate_info<size, false>* relinfo,
630                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
631                    unsigned int r_type,
632                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
633                    const Symbol* gsym,
634                    unsigned char* view,
635                    typename elfcpp::Elf_types<size>::Elf_Addr address,
636                    section_size_type view_size);
637
638   // Add a new reloc argument, returning the index in the vector.
639   size_t
640   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
641   {
642     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
643     return this->tlsdesc_reloc_info_.size() - 1;
644   }
645
646   Output_data_plt_x86_64<size>*
647   make_data_plt(Layout* layout,
648                 Output_data_got<64, false>* got,
649                 Output_data_got_plt_x86_64* got_plt,
650                 Output_data_space* got_irelative)
651   {
652     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
653   }
654
655   Output_data_plt_x86_64<size>*
656   make_data_plt(Layout* layout,
657                 Output_data_got<64, false>* got,
658                 Output_data_got_plt_x86_64* got_plt,
659                 Output_data_space* got_irelative,
660                 unsigned int plt_count)
661   {
662     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
663                                   plt_count);
664   }
665
666   virtual Output_data_plt_x86_64<size>*
667   do_make_data_plt(Layout* layout,
668                    Output_data_got<64, false>* got,
669                    Output_data_got_plt_x86_64* got_plt,
670                    Output_data_space* got_irelative)
671   {
672     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
673                                                      got_irelative);
674   }
675
676   virtual Output_data_plt_x86_64<size>*
677   do_make_data_plt(Layout* layout,
678                    Output_data_got<64, false>* got,
679                    Output_data_got_plt_x86_64* got_plt,
680                    Output_data_space* got_irelative,
681                    unsigned int plt_count)
682   {
683     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
684                                                      got_irelative,
685                                                      plt_count);
686   }
687
688  private:
689   // The class which scans relocations.
690   class Scan
691   {
692   public:
693     Scan()
694       : issued_non_pic_error_(false)
695     { }
696
697     static inline int
698     get_reference_flags(unsigned int r_type);
699
700     inline void
701     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
702           Sized_relobj_file<size, false>* object,
703           unsigned int data_shndx,
704           Output_section* output_section,
705           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
706           const elfcpp::Sym<size, false>& lsym,
707           bool is_discarded);
708
709     inline void
710     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
711            Sized_relobj_file<size, false>* object,
712            unsigned int data_shndx,
713            Output_section* output_section,
714            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
715            Symbol* gsym);
716
717     inline bool
718     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
719                                         Target_x86_64* target,
720                                         Sized_relobj_file<size, false>* object,
721                                         unsigned int data_shndx,
722                                         Output_section* output_section,
723                                         const elfcpp::Rela<size, false>& reloc,
724                                         unsigned int r_type,
725                                         const elfcpp::Sym<size, false>& lsym);
726
727     inline bool
728     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
729                                          Target_x86_64* target,
730                                          Sized_relobj_file<size, false>* object,
731                                          unsigned int data_shndx,
732                                          Output_section* output_section,
733                                          const elfcpp::Rela<size, false>& reloc,
734                                          unsigned int r_type,
735                                          Symbol* gsym);
736
737   private:
738     static void
739     unsupported_reloc_local(Sized_relobj_file<size, false>*,
740                             unsigned int r_type);
741
742     static void
743     unsupported_reloc_global(Sized_relobj_file<size, false>*,
744                              unsigned int r_type, Symbol*);
745
746     void
747     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
748
749     inline bool
750     possible_function_pointer_reloc(unsigned int r_type);
751
752     bool
753     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
754                               unsigned int r_type);
755
756     // Whether we have issued an error about a non-PIC compilation.
757     bool issued_non_pic_error_;
758   };
759
760   // The class which implements relocation.
761   class Relocate
762   {
763    public:
764     Relocate()
765       : skip_call_tls_get_addr_(false)
766     { }
767
768     ~Relocate()
769     {
770       if (this->skip_call_tls_get_addr_)
771         {
772           // FIXME: This needs to specify the location somehow.
773           gold_error(_("missing expected TLS relocation"));
774         }
775     }
776
777     // Do a relocation.  Return false if the caller should not issue
778     // any warnings about this relocation.
779     inline bool
780     relocate(const Relocate_info<size, false>*, Target_x86_64*,
781              Output_section*,
782              size_t relnum, const elfcpp::Rela<size, false>&,
783              unsigned int r_type, const Sized_symbol<size>*,
784              const Symbol_value<size>*,
785              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
786              section_size_type);
787
788    private:
789     // Do a TLS relocation.
790     inline void
791     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
792                  size_t relnum, const elfcpp::Rela<size, false>&,
793                  unsigned int r_type, const Sized_symbol<size>*,
794                  const Symbol_value<size>*,
795                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
796                  section_size_type);
797
798     // Do a TLS General-Dynamic to Initial-Exec transition.
799     inline void
800     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
801                  Output_segment* tls_segment,
802                  const elfcpp::Rela<size, false>&, unsigned int r_type,
803                  typename elfcpp::Elf_types<size>::Elf_Addr value,
804                  unsigned char* view,
805                  typename elfcpp::Elf_types<size>::Elf_Addr,
806                  section_size_type view_size);
807
808     // Do a TLS General-Dynamic to Local-Exec transition.
809     inline void
810     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
811                  Output_segment* tls_segment,
812                  const elfcpp::Rela<size, false>&, unsigned int r_type,
813                  typename elfcpp::Elf_types<size>::Elf_Addr value,
814                  unsigned char* view,
815                  section_size_type view_size);
816
817     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
818     inline void
819     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
820                       Output_segment* tls_segment,
821                       const elfcpp::Rela<size, false>&, unsigned int r_type,
822                       typename elfcpp::Elf_types<size>::Elf_Addr value,
823                       unsigned char* view,
824                       typename elfcpp::Elf_types<size>::Elf_Addr,
825                       section_size_type view_size);
826
827     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
828     inline void
829     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
830                       Output_segment* tls_segment,
831                       const elfcpp::Rela<size, false>&, unsigned int r_type,
832                       typename elfcpp::Elf_types<size>::Elf_Addr value,
833                       unsigned char* view,
834                       section_size_type view_size);
835
836     // Do a TLS Local-Dynamic to Local-Exec transition.
837     inline void
838     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
839                  Output_segment* tls_segment,
840                  const elfcpp::Rela<size, false>&, unsigned int r_type,
841                  typename elfcpp::Elf_types<size>::Elf_Addr value,
842                  unsigned char* view,
843                  section_size_type view_size);
844
845     // Do a TLS Initial-Exec to Local-Exec transition.
846     static inline void
847     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
848                  Output_segment* tls_segment,
849                  const elfcpp::Rela<size, false>&, unsigned int r_type,
850                  typename elfcpp::Elf_types<size>::Elf_Addr value,
851                  unsigned char* view,
852                  section_size_type view_size);
853
854     // This is set if we should skip the next reloc, which should be a
855     // PLT32 reloc against ___tls_get_addr.
856     bool skip_call_tls_get_addr_;
857   };
858
859   // A class which returns the size required for a relocation type,
860   // used while scanning relocs during a relocatable link.
861   class Relocatable_size_for_reloc
862   {
863    public:
864     unsigned int
865     get_size_for_reloc(unsigned int, Relobj*);
866   };
867
868   // Adjust TLS relocation type based on the options and whether this
869   // is a local symbol.
870   static tls::Tls_optimization
871   optimize_tls_reloc(bool is_final, int r_type);
872
873   // Get the GOT section, creating it if necessary.
874   Output_data_got<64, false>*
875   got_section(Symbol_table*, Layout*);
876
877   // Get the GOT PLT section.
878   Output_data_got_plt_x86_64*
879   got_plt_section() const
880   {
881     gold_assert(this->got_plt_ != NULL);
882     return this->got_plt_;
883   }
884
885   // Get the GOT section for TLSDESC entries.
886   Output_data_got<64, false>*
887   got_tlsdesc_section() const
888   {
889     gold_assert(this->got_tlsdesc_ != NULL);
890     return this->got_tlsdesc_;
891   }
892
893   // Create the PLT section.
894   void
895   make_plt_section(Symbol_table* symtab, Layout* layout);
896
897   // Create a PLT entry for a global symbol.
898   void
899   make_plt_entry(Symbol_table*, Layout*, Symbol*);
900
901   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
902   void
903   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
904                              Sized_relobj_file<size, false>* relobj,
905                              unsigned int local_sym_index);
906
907   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
908   void
909   define_tls_base_symbol(Symbol_table*, Layout*);
910
911   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
912   void
913   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
914
915   // Create a GOT entry for the TLS module index.
916   unsigned int
917   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
918                       Sized_relobj_file<size, false>* object);
919
920   // Get the PLT section.
921   Output_data_plt_x86_64<size>*
922   plt_section() const
923   {
924     gold_assert(this->plt_ != NULL);
925     return this->plt_;
926   }
927
928   // Get the dynamic reloc section, creating it if necessary.
929   Reloc_section*
930   rela_dyn_section(Layout*);
931
932   // Get the section to use for TLSDESC relocations.
933   Reloc_section*
934   rela_tlsdesc_section(Layout*) const;
935
936   // Get the section to use for IRELATIVE relocations.
937   Reloc_section*
938   rela_irelative_section(Layout*);
939
940   // Add a potential copy relocation.
941   void
942   copy_reloc(Symbol_table* symtab, Layout* layout,
943              Sized_relobj_file<size, false>* object,
944              unsigned int shndx, Output_section* output_section,
945              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
946   {
947     this->copy_relocs_.copy_reloc(symtab, layout,
948                                   symtab->get_sized_symbol<size>(sym),
949                                   object, shndx, output_section,
950                                   reloc, this->rela_dyn_section(layout));
951   }
952
953   // Information about this specific target which we pass to the
954   // general Target structure.
955   static const Target::Target_info x86_64_info;
956
957   // The types of GOT entries needed for this platform.
958   // These values are exposed to the ABI in an incremental link.
959   // Do not renumber existing values without changing the version
960   // number of the .gnu_incremental_inputs section.
961   enum Got_type
962   {
963     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
964     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
965     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
966     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
967   };
968
969   // This type is used as the argument to the target specific
970   // relocation routines.  The only target specific reloc is
971   // R_X86_64_TLSDESC against a local symbol.
972   struct Tlsdesc_info
973   {
974     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
975       : object(a_object), r_sym(a_r_sym)
976     { }
977
978     // The object in which the local symbol is defined.
979     Sized_relobj_file<size, false>* object;
980     // The local symbol index in the object.
981     unsigned int r_sym;
982   };
983
984   // The GOT section.
985   Output_data_got<64, false>* got_;
986   // The PLT section.
987   Output_data_plt_x86_64<size>* plt_;
988   // The GOT PLT section.
989   Output_data_got_plt_x86_64* got_plt_;
990   // The GOT section for IRELATIVE relocations.
991   Output_data_space* got_irelative_;
992   // The GOT section for TLSDESC relocations.
993   Output_data_got<64, false>* got_tlsdesc_;
994   // The _GLOBAL_OFFSET_TABLE_ symbol.
995   Symbol* global_offset_table_;
996   // The dynamic reloc section.
997   Reloc_section* rela_dyn_;
998   // The section to use for IRELATIVE relocs.
999   Reloc_section* rela_irelative_;
1000   // Relocs saved to avoid a COPY reloc.
1001   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1002   // Offset of the GOT entry for the TLS module index.
1003   unsigned int got_mod_index_offset_;
1004   // We handle R_X86_64_TLSDESC against a local symbol as a target
1005   // specific relocation.  Here we store the object and local symbol
1006   // index for the relocation.
1007   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1008   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1009   bool tls_base_symbol_defined_;
1010 };
1011
1012 template<>
1013 const Target::Target_info Target_x86_64<64>::x86_64_info =
1014 {
1015   64,                   // size
1016   false,                // is_big_endian
1017   elfcpp::EM_X86_64,    // machine_code
1018   false,                // has_make_symbol
1019   false,                // has_resolve
1020   true,                 // has_code_fill
1021   true,                 // is_default_stack_executable
1022   true,                 // can_icf_inline_merge_sections
1023   '\0',                 // wrap_char
1024   "/lib/ld64.so.1",     // program interpreter
1025   0x400000,             // default_text_segment_address
1026   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1027   0x1000,               // common_pagesize (overridable by -z common-page-size)
1028   false,                // isolate_execinstr
1029   0,                    // rosegment_gap
1030   elfcpp::SHN_UNDEF,    // small_common_shndx
1031   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1032   0,                    // small_common_section_flags
1033   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1034   NULL,                 // attributes_section
1035   NULL,                 // attributes_vendor
1036   "_start"              // entry_symbol_name
1037 };
1038
1039 template<>
1040 const Target::Target_info Target_x86_64<32>::x86_64_info =
1041 {
1042   32,                   // size
1043   false,                // is_big_endian
1044   elfcpp::EM_X86_64,    // machine_code
1045   false,                // has_make_symbol
1046   false,                // has_resolve
1047   true,                 // has_code_fill
1048   true,                 // is_default_stack_executable
1049   true,                 // can_icf_inline_merge_sections
1050   '\0',                 // wrap_char
1051   "/libx32/ldx32.so.1", // program interpreter
1052   0x400000,             // default_text_segment_address
1053   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1054   0x1000,               // common_pagesize (overridable by -z common-page-size)
1055   false,                // isolate_execinstr
1056   0,                    // rosegment_gap
1057   elfcpp::SHN_UNDEF,    // small_common_shndx
1058   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1059   0,                    // small_common_section_flags
1060   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1061   NULL,                 // attributes_section
1062   NULL,                 // attributes_vendor
1063   "_start"              // entry_symbol_name
1064 };
1065
1066 // This is called when a new output section is created.  This is where
1067 // we handle the SHF_X86_64_LARGE.
1068
1069 template<int size>
1070 void
1071 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1072 {
1073   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1074     os->set_is_large_section();
1075 }
1076
1077 // Get the GOT section, creating it if necessary.
1078
1079 template<int size>
1080 Output_data_got<64, false>*
1081 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1082 {
1083   if (this->got_ == NULL)
1084     {
1085       gold_assert(symtab != NULL && layout != NULL);
1086
1087       // When using -z now, we can treat .got.plt as a relro section.
1088       // Without -z now, it is modified after program startup by lazy
1089       // PLT relocations.
1090       bool is_got_plt_relro = parameters->options().now();
1091       Output_section_order got_order = (is_got_plt_relro
1092                                         ? ORDER_RELRO
1093                                         : ORDER_RELRO_LAST);
1094       Output_section_order got_plt_order = (is_got_plt_relro
1095                                             ? ORDER_RELRO
1096                                             : ORDER_NON_RELRO_FIRST);
1097
1098       this->got_ = new Output_data_got<64, false>();
1099
1100       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1101                                       (elfcpp::SHF_ALLOC
1102                                        | elfcpp::SHF_WRITE),
1103                                       this->got_, got_order, true);
1104
1105       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1106       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1107                                       (elfcpp::SHF_ALLOC
1108                                        | elfcpp::SHF_WRITE),
1109                                       this->got_plt_, got_plt_order,
1110                                       is_got_plt_relro);
1111
1112       // The first three entries are reserved.
1113       this->got_plt_->set_current_data_size(3 * 8);
1114
1115       if (!is_got_plt_relro)
1116         {
1117           // Those bytes can go into the relro segment.
1118           layout->increase_relro(3 * 8);
1119         }
1120
1121       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1122       this->global_offset_table_ =
1123         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1124                                       Symbol_table::PREDEFINED,
1125                                       this->got_plt_,
1126                                       0, 0, elfcpp::STT_OBJECT,
1127                                       elfcpp::STB_LOCAL,
1128                                       elfcpp::STV_HIDDEN, 0,
1129                                       false, false);
1130
1131       // If there are any IRELATIVE relocations, they get GOT entries
1132       // in .got.plt after the jump slot entries.
1133       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1134       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1135                                       (elfcpp::SHF_ALLOC
1136                                        | elfcpp::SHF_WRITE),
1137                                       this->got_irelative_,
1138                                       got_plt_order, is_got_plt_relro);
1139
1140       // If there are any TLSDESC relocations, they get GOT entries in
1141       // .got.plt after the jump slot and IRELATIVE entries.
1142       this->got_tlsdesc_ = new Output_data_got<64, false>();
1143       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1144                                       (elfcpp::SHF_ALLOC
1145                                        | elfcpp::SHF_WRITE),
1146                                       this->got_tlsdesc_,
1147                                       got_plt_order, is_got_plt_relro);
1148     }
1149
1150   return this->got_;
1151 }
1152
1153 // Get the dynamic reloc section, creating it if necessary.
1154
1155 template<int size>
1156 typename Target_x86_64<size>::Reloc_section*
1157 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1158 {
1159   if (this->rela_dyn_ == NULL)
1160     {
1161       gold_assert(layout != NULL);
1162       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1163       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1164                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1165                                       ORDER_DYNAMIC_RELOCS, false);
1166     }
1167   return this->rela_dyn_;
1168 }
1169
1170 // Get the section to use for IRELATIVE relocs, creating it if
1171 // necessary.  These go in .rela.dyn, but only after all other dynamic
1172 // relocations.  They need to follow the other dynamic relocations so
1173 // that they can refer to global variables initialized by those
1174 // relocs.
1175
1176 template<int size>
1177 typename Target_x86_64<size>::Reloc_section*
1178 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1179 {
1180   if (this->rela_irelative_ == NULL)
1181     {
1182       // Make sure we have already created the dynamic reloc section.
1183       this->rela_dyn_section(layout);
1184       this->rela_irelative_ = new Reloc_section(false);
1185       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1186                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1187                                       ORDER_DYNAMIC_RELOCS, false);
1188       gold_assert(this->rela_dyn_->output_section()
1189                   == this->rela_irelative_->output_section());
1190     }
1191   return this->rela_irelative_;
1192 }
1193
1194 // Write the first three reserved words of the .got.plt section.
1195 // The remainder of the section is written while writing the PLT
1196 // in Output_data_plt_i386::do_write.
1197
1198 void
1199 Output_data_got_plt_x86_64::do_write(Output_file* of)
1200 {
1201   // The first entry in the GOT is the address of the .dynamic section
1202   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1203   // We saved space for them when we created the section in
1204   // Target_x86_64::got_section.
1205   const off_t got_file_offset = this->offset();
1206   gold_assert(this->data_size() >= 24);
1207   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1208   Output_section* dynamic = this->layout_->dynamic_section();
1209   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1210   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1211   memset(got_view + 8, 0, 16);
1212   of->write_output_view(got_file_offset, 24, got_view);
1213 }
1214
1215 // Initialize the PLT section.
1216
1217 template<int size>
1218 void
1219 Output_data_plt_x86_64<size>::init(Layout* layout)
1220 {
1221   this->rel_ = new Reloc_section(false);
1222   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1223                                   elfcpp::SHF_ALLOC, this->rel_,
1224                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1225 }
1226
1227 template<int size>
1228 void
1229 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1230 {
1231   os->set_entsize(this->get_plt_entry_size());
1232 }
1233
1234 // Add an entry to the PLT.
1235
1236 template<int size>
1237 void
1238 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1239                                         Symbol* gsym)
1240 {
1241   gold_assert(!gsym->has_plt_offset());
1242
1243   unsigned int plt_index;
1244   off_t plt_offset;
1245   section_offset_type got_offset;
1246
1247   unsigned int* pcount;
1248   unsigned int offset;
1249   unsigned int reserved;
1250   Output_section_data_build* got;
1251   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1252       && gsym->can_use_relative_reloc(false))
1253     {
1254       pcount = &this->irelative_count_;
1255       offset = 0;
1256       reserved = 0;
1257       got = this->got_irelative_;
1258     }
1259   else
1260     {
1261       pcount = &this->count_;
1262       offset = 1;
1263       reserved = 3;
1264       got = this->got_plt_;
1265     }
1266
1267   if (!this->is_data_size_valid())
1268     {
1269       // Note that when setting the PLT offset for a non-IRELATIVE
1270       // entry we skip the initial reserved PLT entry.
1271       plt_index = *pcount + offset;
1272       plt_offset = plt_index * this->get_plt_entry_size();
1273
1274       ++*pcount;
1275
1276       got_offset = (plt_index - offset + reserved) * 8;
1277       gold_assert(got_offset == got->current_data_size());
1278
1279       // Every PLT entry needs a GOT entry which points back to the PLT
1280       // entry (this will be changed by the dynamic linker, normally
1281       // lazily when the function is called).
1282       got->set_current_data_size(got_offset + 8);
1283     }
1284   else
1285     {
1286       // FIXME: This is probably not correct for IRELATIVE relocs.
1287
1288       // For incremental updates, find an available slot.
1289       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1290                                              this->get_plt_entry_size(), 0);
1291       if (plt_offset == -1)
1292         gold_fallback(_("out of patch space (PLT);"
1293                         " relink with --incremental-full"));
1294
1295       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1296       // can be calculated from the PLT index, adjusting for the three
1297       // reserved entries at the beginning of the GOT.
1298       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1299       got_offset = (plt_index - offset + reserved) * 8;
1300     }
1301
1302   gsym->set_plt_offset(plt_offset);
1303
1304   // Every PLT entry needs a reloc.
1305   this->add_relocation(symtab, layout, gsym, got_offset);
1306
1307   // Note that we don't need to save the symbol.  The contents of the
1308   // PLT are independent of which symbols are used.  The symbols only
1309   // appear in the relocations.
1310 }
1311
1312 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1313 // the PLT offset.
1314
1315 template<int size>
1316 unsigned int
1317 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1318     Symbol_table* symtab,
1319     Layout* layout,
1320     Sized_relobj_file<size, false>* relobj,
1321     unsigned int local_sym_index)
1322 {
1323   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1324   ++this->irelative_count_;
1325
1326   section_offset_type got_offset = this->got_irelative_->current_data_size();
1327
1328   // Every PLT entry needs a GOT entry which points back to the PLT
1329   // entry.
1330   this->got_irelative_->set_current_data_size(got_offset + 8);
1331
1332   // Every PLT entry needs a reloc.
1333   Reloc_section* rela = this->rela_irelative(symtab, layout);
1334   rela->add_symbolless_local_addend(relobj, local_sym_index,
1335                                     elfcpp::R_X86_64_IRELATIVE,
1336                                     this->got_irelative_, got_offset, 0);
1337
1338   return plt_offset;
1339 }
1340
1341 // Add the relocation for a PLT entry.
1342
1343 template<int size>
1344 void
1345 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1346                                              Layout* layout,
1347                                              Symbol* gsym,
1348                                              unsigned int got_offset)
1349 {
1350   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1351       && gsym->can_use_relative_reloc(false))
1352     {
1353       Reloc_section* rela = this->rela_irelative(symtab, layout);
1354       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1355                                          this->got_irelative_, got_offset, 0);
1356     }
1357   else
1358     {
1359       gsym->set_needs_dynsym_entry();
1360       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1361                              got_offset, 0);
1362     }
1363 }
1364
1365 // Return where the TLSDESC relocations should go, creating it if
1366 // necessary.  These follow the JUMP_SLOT relocations.
1367
1368 template<int size>
1369 typename Output_data_plt_x86_64<size>::Reloc_section*
1370 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1371 {
1372   if (this->tlsdesc_rel_ == NULL)
1373     {
1374       this->tlsdesc_rel_ = new Reloc_section(false);
1375       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1376                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1377                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1378       gold_assert(this->tlsdesc_rel_->output_section()
1379                   == this->rel_->output_section());
1380     }
1381   return this->tlsdesc_rel_;
1382 }
1383
1384 // Return where the IRELATIVE relocations should go in the PLT.  These
1385 // follow the JUMP_SLOT and the TLSDESC relocations.
1386
1387 template<int size>
1388 typename Output_data_plt_x86_64<size>::Reloc_section*
1389 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1390                                              Layout* layout)
1391 {
1392   if (this->irelative_rel_ == NULL)
1393     {
1394       // Make sure we have a place for the TLSDESC relocations, in
1395       // case we see any later on.
1396       this->rela_tlsdesc(layout);
1397       this->irelative_rel_ = new Reloc_section(false);
1398       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1399                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1400                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1401       gold_assert(this->irelative_rel_->output_section()
1402                   == this->rel_->output_section());
1403
1404       if (parameters->doing_static_link())
1405         {
1406           // A statically linked executable will only have a .rela.plt
1407           // section to hold R_X86_64_IRELATIVE relocs for
1408           // STT_GNU_IFUNC symbols.  The library will use these
1409           // symbols to locate the IRELATIVE relocs at program startup
1410           // time.
1411           symtab->define_in_output_data("__rela_iplt_start", NULL,
1412                                         Symbol_table::PREDEFINED,
1413                                         this->irelative_rel_, 0, 0,
1414                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1415                                         elfcpp::STV_HIDDEN, 0, false, true);
1416           symtab->define_in_output_data("__rela_iplt_end", NULL,
1417                                         Symbol_table::PREDEFINED,
1418                                         this->irelative_rel_, 0, 0,
1419                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1420                                         elfcpp::STV_HIDDEN, 0, true, true);
1421         }
1422     }
1423   return this->irelative_rel_;
1424 }
1425
1426 // Return the PLT address to use for a global symbol.
1427
1428 template<int size>
1429 uint64_t
1430 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1431 {
1432   uint64_t offset = 0;
1433   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1434       && gsym->can_use_relative_reloc(false))
1435     offset = (this->count_ + 1) * this->get_plt_entry_size();
1436   return this->address() + offset + gsym->plt_offset();
1437 }
1438
1439 // Return the PLT address to use for a local symbol.  These are always
1440 // IRELATIVE relocs.
1441
1442 template<int size>
1443 uint64_t
1444 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1445                                                 unsigned int r_sym)
1446 {
1447   return (this->address()
1448           + (this->count_ + 1) * this->get_plt_entry_size()
1449           + object->local_plt_offset(r_sym));
1450 }
1451
1452 // Set the final size.
1453 template<int size>
1454 void
1455 Output_data_plt_x86_64<size>::set_final_data_size()
1456 {
1457   unsigned int count = this->count_ + this->irelative_count_;
1458   if (this->has_tlsdesc_entry())
1459     ++count;
1460   this->set_data_size((count + 1) * this->get_plt_entry_size());
1461 }
1462
1463 // The first entry in the PLT for an executable.
1464
1465 template<int size>
1466 const unsigned char
1467 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1468 {
1469   // From AMD64 ABI Draft 0.98, page 76
1470   0xff, 0x35,   // pushq contents of memory address
1471   0, 0, 0, 0,   // replaced with address of .got + 8
1472   0xff, 0x25,   // jmp indirect
1473   0, 0, 0, 0,   // replaced with address of .got + 16
1474   0x90, 0x90, 0x90, 0x90   // noop (x4)
1475 };
1476
1477 template<int size>
1478 void
1479 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1480     unsigned char* pov,
1481     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1482     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1483 {
1484   memcpy(pov, first_plt_entry, plt_entry_size);
1485   // We do a jmp relative to the PC at the end of this instruction.
1486   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1487                                               (got_address + 8
1488                                                - (plt_address + 6)));
1489   elfcpp::Swap<32, false>::writeval(pov + 8,
1490                                     (got_address + 16
1491                                      - (plt_address + 12)));
1492 }
1493
1494 // Subsequent entries in the PLT for an executable.
1495
1496 template<int size>
1497 const unsigned char
1498 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1499 {
1500   // From AMD64 ABI Draft 0.98, page 76
1501   0xff, 0x25,   // jmpq indirect
1502   0, 0, 0, 0,   // replaced with address of symbol in .got
1503   0x68,         // pushq immediate
1504   0, 0, 0, 0,   // replaced with offset into relocation table
1505   0xe9,         // jmpq relative
1506   0, 0, 0, 0    // replaced with offset to start of .plt
1507 };
1508
1509 template<int size>
1510 unsigned int
1511 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1512     unsigned char* pov,
1513     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1514     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1515     unsigned int got_offset,
1516     unsigned int plt_offset,
1517     unsigned int plt_index)
1518 {
1519   // Check PC-relative offset overflow in PLT entry.
1520   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1521                                    - (plt_address + plt_offset + 6));
1522   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1523     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1524                plt_index + 1);
1525
1526   memcpy(pov, plt_entry, plt_entry_size);
1527   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1528                                               plt_got_pcrel_offset);
1529
1530   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1531   elfcpp::Swap<32, false>::writeval(pov + 12,
1532                                     - (plt_offset + plt_entry_size));
1533
1534   return 6;
1535 }
1536
1537 // The reserved TLSDESC entry in the PLT for an executable.
1538
1539 template<int size>
1540 const unsigned char
1541 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1542 {
1543   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1544   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1545   0xff, 0x35,   // pushq x(%rip)
1546   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1547   0xff, 0x25,   // jmpq *y(%rip)
1548   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1549   0x0f, 0x1f,   // nop
1550   0x40, 0
1551 };
1552
1553 template<int size>
1554 void
1555 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1556     unsigned char* pov,
1557     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1558     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1559     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1560     unsigned int tlsdesc_got_offset,
1561     unsigned int plt_offset)
1562 {
1563   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1564   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1565                                               (got_address + 8
1566                                                - (plt_address + plt_offset
1567                                                   + 6)));
1568   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1569                                               (got_base
1570                                                + tlsdesc_got_offset
1571                                                - (plt_address + plt_offset
1572                                                   + 12)));
1573 }
1574
1575 // The .eh_frame unwind information for the PLT.
1576
1577 template<int size>
1578 const unsigned char
1579 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1580 {
1581   1,                            // CIE version.
1582   'z',                          // Augmentation: augmentation size included.
1583   'R',                          // Augmentation: FDE encoding included.
1584   '\0',                         // End of augmentation string.
1585   1,                            // Code alignment factor.
1586   0x78,                         // Data alignment factor.
1587   16,                           // Return address column.
1588   1,                            // Augmentation size.
1589   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1590    | elfcpp::DW_EH_PE_sdata4),
1591   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1592   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1593   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1594   elfcpp::DW_CFA_nop
1595 };
1596
1597 template<int size>
1598 const unsigned char
1599 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1600 {
1601   0, 0, 0, 0,                           // Replaced with offset to .plt.
1602   0, 0, 0, 0,                           // Replaced with size of .plt.
1603   0,                                    // Augmentation size.
1604   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1605   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1606   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1607   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1608   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1609   11,                                   // Block length.
1610   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1611   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1612   elfcpp::DW_OP_lit15,                  // Push 0xf.
1613   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1614   elfcpp::DW_OP_lit11,                  // Push 0xb.
1615   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1616   elfcpp::DW_OP_lit3,                   // Push 3.
1617   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1618   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1619   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1620   elfcpp::DW_CFA_nop,
1621   elfcpp::DW_CFA_nop,
1622   elfcpp::DW_CFA_nop
1623 };
1624
1625 // Write out the PLT.  This uses the hand-coded instructions above,
1626 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1627
1628 template<int size>
1629 void
1630 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1631 {
1632   const off_t offset = this->offset();
1633   const section_size_type oview_size =
1634     convert_to_section_size_type(this->data_size());
1635   unsigned char* const oview = of->get_output_view(offset, oview_size);
1636
1637   const off_t got_file_offset = this->got_plt_->offset();
1638   gold_assert(parameters->incremental_update()
1639               || (got_file_offset + this->got_plt_->data_size()
1640                   == this->got_irelative_->offset()));
1641   const section_size_type got_size =
1642     convert_to_section_size_type(this->got_plt_->data_size()
1643                                  + this->got_irelative_->data_size());
1644   unsigned char* const got_view = of->get_output_view(got_file_offset,
1645                                                       got_size);
1646
1647   unsigned char* pov = oview;
1648
1649   // The base address of the .plt section.
1650   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1651   // The base address of the .got section.
1652   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1653   // The base address of the PLT portion of the .got section,
1654   // which is where the GOT pointer will point, and where the
1655   // three reserved GOT entries are located.
1656   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1657     = this->got_plt_->address();
1658
1659   this->fill_first_plt_entry(pov, got_address, plt_address);
1660   pov += this->get_plt_entry_size();
1661
1662   // The first three entries in the GOT are reserved, and are written
1663   // by Output_data_got_plt_x86_64::do_write.
1664   unsigned char* got_pov = got_view + 24;
1665
1666   unsigned int plt_offset = this->get_plt_entry_size();
1667   unsigned int got_offset = 24;
1668   const unsigned int count = this->count_ + this->irelative_count_;
1669   for (unsigned int plt_index = 0;
1670        plt_index < count;
1671        ++plt_index,
1672          pov += this->get_plt_entry_size(),
1673          got_pov += 8,
1674          plt_offset += this->get_plt_entry_size(),
1675          got_offset += 8)
1676     {
1677       // Set and adjust the PLT entry itself.
1678       unsigned int lazy_offset = this->fill_plt_entry(pov,
1679                                                       got_address, plt_address,
1680                                                       got_offset, plt_offset,
1681                                                       plt_index);
1682
1683       // Set the entry in the GOT.
1684       elfcpp::Swap<64, false>::writeval(got_pov,
1685                                         plt_address + plt_offset + lazy_offset);
1686     }
1687
1688   if (this->has_tlsdesc_entry())
1689     {
1690       // Set and adjust the reserved TLSDESC PLT entry.
1691       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1692       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1693                                tlsdesc_got_offset, plt_offset);
1694       pov += this->get_plt_entry_size();
1695     }
1696
1697   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1698   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1699
1700   of->write_output_view(offset, oview_size, oview);
1701   of->write_output_view(got_file_offset, got_size, got_view);
1702 }
1703
1704 // Create the PLT section.
1705
1706 template<int size>
1707 void
1708 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1709 {
1710   if (this->plt_ == NULL)
1711     {
1712       // Create the GOT sections first.
1713       this->got_section(symtab, layout);
1714
1715       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1716                                        this->got_irelative_);
1717
1718       // Add unwind information if requested.
1719       if (parameters->options().ld_generated_unwind_info())
1720         this->plt_->add_eh_frame(layout);
1721
1722       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1723                                       (elfcpp::SHF_ALLOC
1724                                        | elfcpp::SHF_EXECINSTR),
1725                                       this->plt_, ORDER_PLT, false);
1726
1727       // Make the sh_info field of .rela.plt point to .plt.
1728       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1729       rela_plt_os->set_info_section(this->plt_->output_section());
1730     }
1731 }
1732
1733 // Return the section for TLSDESC relocations.
1734
1735 template<int size>
1736 typename Target_x86_64<size>::Reloc_section*
1737 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1738 {
1739   return this->plt_section()->rela_tlsdesc(layout);
1740 }
1741
1742 // Create a PLT entry for a global symbol.
1743
1744 template<int size>
1745 void
1746 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1747                                     Symbol* gsym)
1748 {
1749   if (gsym->has_plt_offset())
1750     return;
1751
1752   if (this->plt_ == NULL)
1753     this->make_plt_section(symtab, layout);
1754
1755   this->plt_->add_entry(symtab, layout, gsym);
1756 }
1757
1758 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1759
1760 template<int size>
1761 void
1762 Target_x86_64<size>::make_local_ifunc_plt_entry(
1763     Symbol_table* symtab, Layout* layout,
1764     Sized_relobj_file<size, false>* relobj,
1765     unsigned int local_sym_index)
1766 {
1767   if (relobj->local_has_plt_offset(local_sym_index))
1768     return;
1769   if (this->plt_ == NULL)
1770     this->make_plt_section(symtab, layout);
1771   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1772                                                               relobj,
1773                                                               local_sym_index);
1774   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1775 }
1776
1777 // Return the number of entries in the PLT.
1778
1779 template<int size>
1780 unsigned int
1781 Target_x86_64<size>::plt_entry_count() const
1782 {
1783   if (this->plt_ == NULL)
1784     return 0;
1785   return this->plt_->entry_count();
1786 }
1787
1788 // Return the offset of the first non-reserved PLT entry.
1789
1790 template<int size>
1791 unsigned int
1792 Target_x86_64<size>::first_plt_entry_offset() const
1793 {
1794   return this->plt_->first_plt_entry_offset();
1795 }
1796
1797 // Return the size of each PLT entry.
1798
1799 template<int size>
1800 unsigned int
1801 Target_x86_64<size>::plt_entry_size() const
1802 {
1803   return this->plt_->get_plt_entry_size();
1804 }
1805
1806 // Create the GOT and PLT sections for an incremental update.
1807
1808 template<int size>
1809 Output_data_got_base*
1810 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1811                                        Layout* layout,
1812                                        unsigned int got_count,
1813                                        unsigned int plt_count)
1814 {
1815   gold_assert(this->got_ == NULL);
1816
1817   this->got_ = new Output_data_got<64, false>(got_count * 8);
1818   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1819                                   (elfcpp::SHF_ALLOC
1820                                    | elfcpp::SHF_WRITE),
1821                                   this->got_, ORDER_RELRO_LAST,
1822                                   true);
1823
1824   // Add the three reserved entries.
1825   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1826   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1827                                   (elfcpp::SHF_ALLOC
1828                                    | elfcpp::SHF_WRITE),
1829                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1830                                   false);
1831
1832   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1833   this->global_offset_table_ =
1834     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1835                                   Symbol_table::PREDEFINED,
1836                                   this->got_plt_,
1837                                   0, 0, elfcpp::STT_OBJECT,
1838                                   elfcpp::STB_LOCAL,
1839                                   elfcpp::STV_HIDDEN, 0,
1840                                   false, false);
1841
1842   // If there are any TLSDESC relocations, they get GOT entries in
1843   // .got.plt after the jump slot entries.
1844   // FIXME: Get the count for TLSDESC entries.
1845   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1846   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1847                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1848                                   this->got_tlsdesc_,
1849                                   ORDER_NON_RELRO_FIRST, false);
1850
1851   // If there are any IRELATIVE relocations, they get GOT entries in
1852   // .got.plt after the jump slot and TLSDESC entries.
1853   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1854   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1855                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1856                                   this->got_irelative_,
1857                                   ORDER_NON_RELRO_FIRST, false);
1858
1859   // Create the PLT section.
1860   this->plt_ = this->make_data_plt(layout, this->got_,
1861                                    this->got_plt_,
1862                                    this->got_irelative_,
1863                                    plt_count);
1864
1865   // Add unwind information if requested.
1866   if (parameters->options().ld_generated_unwind_info())
1867     this->plt_->add_eh_frame(layout);
1868
1869   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1870                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1871                                   this->plt_, ORDER_PLT, false);
1872
1873   // Make the sh_info field of .rela.plt point to .plt.
1874   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1875   rela_plt_os->set_info_section(this->plt_->output_section());
1876
1877   // Create the rela_dyn section.
1878   this->rela_dyn_section(layout);
1879
1880   return this->got_;
1881 }
1882
1883 // Reserve a GOT entry for a local symbol, and regenerate any
1884 // necessary dynamic relocations.
1885
1886 template<int size>
1887 void
1888 Target_x86_64<size>::reserve_local_got_entry(
1889     unsigned int got_index,
1890     Sized_relobj<size, false>* obj,
1891     unsigned int r_sym,
1892     unsigned int got_type)
1893 {
1894   unsigned int got_offset = got_index * 8;
1895   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1896
1897   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1898   switch (got_type)
1899     {
1900     case GOT_TYPE_STANDARD:
1901       if (parameters->options().output_is_position_independent())
1902         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1903                                      this->got_, got_offset, 0, false);
1904       break;
1905     case GOT_TYPE_TLS_OFFSET:
1906       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1907                           this->got_, got_offset, 0);
1908       break;
1909     case GOT_TYPE_TLS_PAIR:
1910       this->got_->reserve_slot(got_index + 1);
1911       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1912                           this->got_, got_offset, 0);
1913       break;
1914     case GOT_TYPE_TLS_DESC:
1915       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1916       // this->got_->reserve_slot(got_index + 1);
1917       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1918       //                               this->got_, got_offset, 0);
1919       break;
1920     default:
1921       gold_unreachable();
1922     }
1923 }
1924
1925 // Reserve a GOT entry for a global symbol, and regenerate any
1926 // necessary dynamic relocations.
1927
1928 template<int size>
1929 void
1930 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1931                                               Symbol* gsym,
1932                                               unsigned int got_type)
1933 {
1934   unsigned int got_offset = got_index * 8;
1935   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1936
1937   this->got_->reserve_global(got_index, gsym, got_type);
1938   switch (got_type)
1939     {
1940     case GOT_TYPE_STANDARD:
1941       if (!gsym->final_value_is_known())
1942         {
1943           if (gsym->is_from_dynobj()
1944               || gsym->is_undefined()
1945               || gsym->is_preemptible()
1946               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1947             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1948                                  this->got_, got_offset, 0);
1949           else
1950             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1951                                           this->got_, got_offset, 0, false);
1952         }
1953       break;
1954     case GOT_TYPE_TLS_OFFSET:
1955       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1956                                     this->got_, got_offset, 0, false);
1957       break;
1958     case GOT_TYPE_TLS_PAIR:
1959       this->got_->reserve_slot(got_index + 1);
1960       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1961                                     this->got_, got_offset, 0, false);
1962       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1963                                     this->got_, got_offset + 8, 0, false);
1964       break;
1965     case GOT_TYPE_TLS_DESC:
1966       this->got_->reserve_slot(got_index + 1);
1967       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1968                                     this->got_, got_offset, 0, false);
1969       break;
1970     default:
1971       gold_unreachable();
1972     }
1973 }
1974
1975 // Register an existing PLT entry for a global symbol.
1976
1977 template<int size>
1978 void
1979 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
1980                                                Layout* layout,
1981                                                unsigned int plt_index,
1982                                                Symbol* gsym)
1983 {
1984   gold_assert(this->plt_ != NULL);
1985   gold_assert(!gsym->has_plt_offset());
1986
1987   this->plt_->reserve_slot(plt_index);
1988
1989   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1990
1991   unsigned int got_offset = (plt_index + 3) * 8;
1992   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1993 }
1994
1995 // Force a COPY relocation for a given symbol.
1996
1997 template<int size>
1998 void
1999 Target_x86_64<size>::emit_copy_reloc(
2000     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2001 {
2002   this->copy_relocs_.emit_copy_reloc(symtab,
2003                                      symtab->get_sized_symbol<size>(sym),
2004                                      os,
2005                                      offset,
2006                                      this->rela_dyn_section(NULL));
2007 }
2008
2009 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2010
2011 template<int size>
2012 void
2013 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2014                                             Layout* layout)
2015 {
2016   if (this->tls_base_symbol_defined_)
2017     return;
2018
2019   Output_segment* tls_segment = layout->tls_segment();
2020   if (tls_segment != NULL)
2021     {
2022       bool is_exec = parameters->options().output_is_executable();
2023       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2024                                        Symbol_table::PREDEFINED,
2025                                        tls_segment, 0, 0,
2026                                        elfcpp::STT_TLS,
2027                                        elfcpp::STB_LOCAL,
2028                                        elfcpp::STV_HIDDEN, 0,
2029                                        (is_exec
2030                                         ? Symbol::SEGMENT_END
2031                                         : Symbol::SEGMENT_START),
2032                                        true);
2033     }
2034   this->tls_base_symbol_defined_ = true;
2035 }
2036
2037 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2038
2039 template<int size>
2040 void
2041 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2042                                              Layout* layout)
2043 {
2044   if (this->plt_ == NULL)
2045     this->make_plt_section(symtab, layout);
2046
2047   if (!this->plt_->has_tlsdesc_entry())
2048     {
2049       // Allocate the TLSDESC_GOT entry.
2050       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2051       unsigned int got_offset = got->add_constant(0);
2052
2053       // Allocate the TLSDESC_PLT entry.
2054       this->plt_->reserve_tlsdesc_entry(got_offset);
2055     }
2056 }
2057
2058 // Create a GOT entry for the TLS module index.
2059
2060 template<int size>
2061 unsigned int
2062 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2063                                          Sized_relobj_file<size, false>* object)
2064 {
2065   if (this->got_mod_index_offset_ == -1U)
2066     {
2067       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2068       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2069       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2070       unsigned int got_offset = got->add_constant(0);
2071       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2072                           got_offset, 0);
2073       got->add_constant(0);
2074       this->got_mod_index_offset_ = got_offset;
2075     }
2076   return this->got_mod_index_offset_;
2077 }
2078
2079 // Optimize the TLS relocation type based on what we know about the
2080 // symbol.  IS_FINAL is true if the final address of this symbol is
2081 // known at link time.
2082
2083 template<int size>
2084 tls::Tls_optimization
2085 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2086 {
2087   // If we are generating a shared library, then we can't do anything
2088   // in the linker.
2089   if (parameters->options().shared())
2090     return tls::TLSOPT_NONE;
2091
2092   switch (r_type)
2093     {
2094     case elfcpp::R_X86_64_TLSGD:
2095     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2096     case elfcpp::R_X86_64_TLSDESC_CALL:
2097       // These are General-Dynamic which permits fully general TLS
2098       // access.  Since we know that we are generating an executable,
2099       // we can convert this to Initial-Exec.  If we also know that
2100       // this is a local symbol, we can further switch to Local-Exec.
2101       if (is_final)
2102         return tls::TLSOPT_TO_LE;
2103       return tls::TLSOPT_TO_IE;
2104
2105     case elfcpp::R_X86_64_TLSLD:
2106       // This is Local-Dynamic, which refers to a local symbol in the
2107       // dynamic TLS block.  Since we know that we generating an
2108       // executable, we can switch to Local-Exec.
2109       return tls::TLSOPT_TO_LE;
2110
2111     case elfcpp::R_X86_64_DTPOFF32:
2112     case elfcpp::R_X86_64_DTPOFF64:
2113       // Another Local-Dynamic reloc.
2114       return tls::TLSOPT_TO_LE;
2115
2116     case elfcpp::R_X86_64_GOTTPOFF:
2117       // These are Initial-Exec relocs which get the thread offset
2118       // from the GOT.  If we know that we are linking against the
2119       // local symbol, we can switch to Local-Exec, which links the
2120       // thread offset into the instruction.
2121       if (is_final)
2122         return tls::TLSOPT_TO_LE;
2123       return tls::TLSOPT_NONE;
2124
2125     case elfcpp::R_X86_64_TPOFF32:
2126       // When we already have Local-Exec, there is nothing further we
2127       // can do.
2128       return tls::TLSOPT_NONE;
2129
2130     default:
2131       gold_unreachable();
2132     }
2133 }
2134
2135 // Get the Reference_flags for a particular relocation.
2136
2137 template<int size>
2138 int
2139 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2140 {
2141   switch (r_type)
2142     {
2143     case elfcpp::R_X86_64_NONE:
2144     case elfcpp::R_X86_64_GNU_VTINHERIT:
2145     case elfcpp::R_X86_64_GNU_VTENTRY:
2146     case elfcpp::R_X86_64_GOTPC32:
2147     case elfcpp::R_X86_64_GOTPC64:
2148       // No symbol reference.
2149       return 0;
2150
2151     case elfcpp::R_X86_64_64:
2152     case elfcpp::R_X86_64_32:
2153     case elfcpp::R_X86_64_32S:
2154     case elfcpp::R_X86_64_16:
2155     case elfcpp::R_X86_64_8:
2156       return Symbol::ABSOLUTE_REF;
2157
2158     case elfcpp::R_X86_64_PC64:
2159     case elfcpp::R_X86_64_PC32:
2160     case elfcpp::R_X86_64_PC32_BND:
2161     case elfcpp::R_X86_64_PC16:
2162     case elfcpp::R_X86_64_PC8:
2163     case elfcpp::R_X86_64_GOTOFF64:
2164       return Symbol::RELATIVE_REF;
2165
2166     case elfcpp::R_X86_64_PLT32:
2167     case elfcpp::R_X86_64_PLT32_BND:
2168     case elfcpp::R_X86_64_PLTOFF64:
2169       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2170
2171     case elfcpp::R_X86_64_GOT64:
2172     case elfcpp::R_X86_64_GOT32:
2173     case elfcpp::R_X86_64_GOTPCREL64:
2174     case elfcpp::R_X86_64_GOTPCREL:
2175     case elfcpp::R_X86_64_GOTPLT64:
2176       // Absolute in GOT.
2177       return Symbol::ABSOLUTE_REF;
2178
2179     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2180     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2181     case elfcpp::R_X86_64_TLSDESC_CALL:
2182     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2183     case elfcpp::R_X86_64_DTPOFF32:
2184     case elfcpp::R_X86_64_DTPOFF64:
2185     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2186     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2187       return Symbol::TLS_REF;
2188
2189     case elfcpp::R_X86_64_COPY:
2190     case elfcpp::R_X86_64_GLOB_DAT:
2191     case elfcpp::R_X86_64_JUMP_SLOT:
2192     case elfcpp::R_X86_64_RELATIVE:
2193     case elfcpp::R_X86_64_IRELATIVE:
2194     case elfcpp::R_X86_64_TPOFF64:
2195     case elfcpp::R_X86_64_DTPMOD64:
2196     case elfcpp::R_X86_64_TLSDESC:
2197     case elfcpp::R_X86_64_SIZE32:
2198     case elfcpp::R_X86_64_SIZE64:
2199     default:
2200       // Not expected.  We will give an error later.
2201       return 0;
2202     }
2203 }
2204
2205 // Report an unsupported relocation against a local symbol.
2206
2207 template<int size>
2208 void
2209 Target_x86_64<size>::Scan::unsupported_reloc_local(
2210      Sized_relobj_file<size, false>* object,
2211      unsigned int r_type)
2212 {
2213   gold_error(_("%s: unsupported reloc %u against local symbol"),
2214              object->name().c_str(), r_type);
2215 }
2216
2217 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2218 // dynamic linker does not support it, issue an error.  The GNU linker
2219 // only issues a non-PIC error for an allocated read-only section.
2220 // Here we know the section is allocated, but we don't know that it is
2221 // read-only.  But we check for all the relocation types which the
2222 // glibc dynamic linker supports, so it seems appropriate to issue an
2223 // error even if the section is not read-only.  If GSYM is not NULL,
2224 // it is the symbol the relocation is against; if it is NULL, the
2225 // relocation is against a local symbol.
2226
2227 template<int size>
2228 void
2229 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2230                                          Symbol* gsym)
2231 {
2232   switch (r_type)
2233     {
2234       // These are the relocation types supported by glibc for x86_64
2235       // which should always work.
2236     case elfcpp::R_X86_64_RELATIVE:
2237     case elfcpp::R_X86_64_IRELATIVE:
2238     case elfcpp::R_X86_64_GLOB_DAT:
2239     case elfcpp::R_X86_64_JUMP_SLOT:
2240     case elfcpp::R_X86_64_DTPMOD64:
2241     case elfcpp::R_X86_64_DTPOFF64:
2242     case elfcpp::R_X86_64_TPOFF64:
2243     case elfcpp::R_X86_64_64:
2244     case elfcpp::R_X86_64_COPY:
2245       return;
2246
2247       // glibc supports these reloc types, but they can overflow.
2248     case elfcpp::R_X86_64_PC32:
2249     case elfcpp::R_X86_64_PC32_BND:
2250       // A PC relative reference is OK against a local symbol or if
2251       // the symbol is defined locally.
2252       if (gsym == NULL
2253           || (!gsym->is_from_dynobj()
2254               && !gsym->is_undefined()
2255               && !gsym->is_preemptible()))
2256         return;
2257       /* Fall through.  */
2258     case elfcpp::R_X86_64_32:
2259       // R_X86_64_32 is OK for x32.
2260       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2261         return;
2262       if (this->issued_non_pic_error_)
2263         return;
2264       gold_assert(parameters->options().output_is_position_independent());
2265       if (gsym == NULL)
2266         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2267                         "overflow at runtime; recompile with -fPIC"));
2268       else
2269         {
2270           const char *r_name;
2271           switch (r_type)
2272             {
2273             case elfcpp::R_X86_64_32:
2274               r_name = "R_X86_64_32";
2275               break;
2276             case elfcpp::R_X86_64_PC32:
2277               r_name = "R_X86_64_PC32";
2278               break;
2279             case elfcpp::R_X86_64_PC32_BND:
2280               r_name = "R_X86_64_PC32_BND";
2281               break;
2282             default:
2283               gold_unreachable();
2284               break;
2285             }
2286           object->error(_("requires dynamic %s reloc against '%s' "
2287                           "which may overflow at runtime; recompile "
2288                           "with -fPIC"),
2289                         r_name, gsym->name());
2290         }
2291       this->issued_non_pic_error_ = true;
2292       return;
2293
2294     default:
2295       // This prevents us from issuing more than one error per reloc
2296       // section.  But we can still wind up issuing more than one
2297       // error per object file.
2298       if (this->issued_non_pic_error_)
2299         return;
2300       gold_assert(parameters->options().output_is_position_independent());
2301       object->error(_("requires unsupported dynamic reloc %u; "
2302                       "recompile with -fPIC"),
2303                     r_type);
2304       this->issued_non_pic_error_ = true;
2305       return;
2306
2307     case elfcpp::R_X86_64_NONE:
2308       gold_unreachable();
2309     }
2310 }
2311
2312 // Return whether we need to make a PLT entry for a relocation of the
2313 // given type against a STT_GNU_IFUNC symbol.
2314
2315 template<int size>
2316 bool
2317 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2318      Sized_relobj_file<size, false>* object,
2319      unsigned int r_type)
2320 {
2321   int flags = Scan::get_reference_flags(r_type);
2322   if (flags & Symbol::TLS_REF)
2323     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2324                object->name().c_str(), r_type);
2325   return flags != 0;
2326 }
2327
2328 // Scan a relocation for a local symbol.
2329
2330 template<int size>
2331 inline void
2332 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2333                                  Layout* layout,
2334                                  Target_x86_64<size>* target,
2335                                  Sized_relobj_file<size, false>* object,
2336                                  unsigned int data_shndx,
2337                                  Output_section* output_section,
2338                                  const elfcpp::Rela<size, false>& reloc,
2339                                  unsigned int r_type,
2340                                  const elfcpp::Sym<size, false>& lsym,
2341                                  bool is_discarded)
2342 {
2343   if (is_discarded)
2344     return;
2345
2346   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2347   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2348   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2349     {
2350       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2351       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2352     }
2353
2354   switch (r_type)
2355     {
2356     case elfcpp::R_X86_64_NONE:
2357     case elfcpp::R_X86_64_GNU_VTINHERIT:
2358     case elfcpp::R_X86_64_GNU_VTENTRY:
2359       break;
2360
2361     case elfcpp::R_X86_64_64:
2362       // If building a shared library (or a position-independent
2363       // executable), we need to create a dynamic relocation for this
2364       // location.  The relocation applied at link time will apply the
2365       // link-time value, so we flag the location with an
2366       // R_X86_64_RELATIVE relocation so the dynamic loader can
2367       // relocate it easily.
2368       if (parameters->options().output_is_position_independent())
2369         {
2370           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2371           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2372           rela_dyn->add_local_relative(object, r_sym,
2373                                        (size == 32
2374                                         ? elfcpp::R_X86_64_RELATIVE64
2375                                         : elfcpp::R_X86_64_RELATIVE),
2376                                        output_section, data_shndx,
2377                                        reloc.get_r_offset(),
2378                                        reloc.get_r_addend(), is_ifunc);
2379         }
2380       break;
2381
2382     case elfcpp::R_X86_64_32:
2383     case elfcpp::R_X86_64_32S:
2384     case elfcpp::R_X86_64_16:
2385     case elfcpp::R_X86_64_8:
2386       // If building a shared library (or a position-independent
2387       // executable), we need to create a dynamic relocation for this
2388       // location.  We can't use an R_X86_64_RELATIVE relocation
2389       // because that is always a 64-bit relocation.
2390       if (parameters->options().output_is_position_independent())
2391         {
2392           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2393           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2394             {
2395               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2396               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2397               rela_dyn->add_local_relative(object, r_sym,
2398                                            elfcpp::R_X86_64_RELATIVE,
2399                                            output_section, data_shndx,
2400                                            reloc.get_r_offset(),
2401                                            reloc.get_r_addend(), is_ifunc);
2402               break;
2403             }
2404
2405           this->check_non_pic(object, r_type, NULL);
2406
2407           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2408           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2409           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2410             rela_dyn->add_local(object, r_sym, r_type, output_section,
2411                                 data_shndx, reloc.get_r_offset(),
2412                                 reloc.get_r_addend());
2413           else
2414             {
2415               gold_assert(lsym.get_st_value() == 0);
2416               unsigned int shndx = lsym.get_st_shndx();
2417               bool is_ordinary;
2418               shndx = object->adjust_sym_shndx(r_sym, shndx,
2419                                                &is_ordinary);
2420               if (!is_ordinary)
2421                 object->error(_("section symbol %u has bad shndx %u"),
2422                               r_sym, shndx);
2423               else
2424                 rela_dyn->add_local_section(object, shndx,
2425                                             r_type, output_section,
2426                                             data_shndx, reloc.get_r_offset(),
2427                                             reloc.get_r_addend());
2428             }
2429         }
2430       break;
2431
2432     case elfcpp::R_X86_64_PC64:
2433     case elfcpp::R_X86_64_PC32:
2434     case elfcpp::R_X86_64_PC32_BND:
2435     case elfcpp::R_X86_64_PC16:
2436     case elfcpp::R_X86_64_PC8:
2437       break;
2438
2439     case elfcpp::R_X86_64_PLT32:
2440     case elfcpp::R_X86_64_PLT32_BND:
2441       // Since we know this is a local symbol, we can handle this as a
2442       // PC32 reloc.
2443       break;
2444
2445     case elfcpp::R_X86_64_GOTPC32:
2446     case elfcpp::R_X86_64_GOTOFF64:
2447     case elfcpp::R_X86_64_GOTPC64:
2448     case elfcpp::R_X86_64_PLTOFF64:
2449       // We need a GOT section.
2450       target->got_section(symtab, layout);
2451       // For PLTOFF64, we'd normally want a PLT section, but since we
2452       // know this is a local symbol, no PLT is needed.
2453       break;
2454
2455     case elfcpp::R_X86_64_GOT64:
2456     case elfcpp::R_X86_64_GOT32:
2457     case elfcpp::R_X86_64_GOTPCREL64:
2458     case elfcpp::R_X86_64_GOTPCREL:
2459     case elfcpp::R_X86_64_GOTPLT64:
2460       {
2461         // The symbol requires a GOT entry.
2462         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2463         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2464
2465         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2466         // lets function pointers compare correctly with shared
2467         // libraries.  Otherwise we would need an IRELATIVE reloc.
2468         bool is_new;
2469         if (is_ifunc)
2470           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2471         else
2472           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2473         if (is_new)
2474           {
2475             // If we are generating a shared object, we need to add a
2476             // dynamic relocation for this symbol's GOT entry.
2477             if (parameters->options().output_is_position_independent())
2478               {
2479                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2480                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2481                 if (r_type != elfcpp::R_X86_64_GOT32)
2482                   {
2483                     unsigned int got_offset =
2484                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2485                     rela_dyn->add_local_relative(object, r_sym,
2486                                                  elfcpp::R_X86_64_RELATIVE,
2487                                                  got, got_offset, 0, is_ifunc);
2488                   }
2489                 else
2490                   {
2491                     this->check_non_pic(object, r_type, NULL);
2492
2493                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2494                     rela_dyn->add_local(
2495                         object, r_sym, r_type, got,
2496                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2497                   }
2498               }
2499           }
2500         // For GOTPLT64, we'd normally want a PLT section, but since
2501         // we know this is a local symbol, no PLT is needed.
2502       }
2503       break;
2504
2505     case elfcpp::R_X86_64_COPY:
2506     case elfcpp::R_X86_64_GLOB_DAT:
2507     case elfcpp::R_X86_64_JUMP_SLOT:
2508     case elfcpp::R_X86_64_RELATIVE:
2509     case elfcpp::R_X86_64_IRELATIVE:
2510       // These are outstanding tls relocs, which are unexpected when linking
2511     case elfcpp::R_X86_64_TPOFF64:
2512     case elfcpp::R_X86_64_DTPMOD64:
2513     case elfcpp::R_X86_64_TLSDESC:
2514       gold_error(_("%s: unexpected reloc %u in object file"),
2515                  object->name().c_str(), r_type);
2516       break;
2517
2518       // These are initial tls relocs, which are expected when linking
2519     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2520     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2521     case elfcpp::R_X86_64_TLSDESC_CALL:
2522     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2523     case elfcpp::R_X86_64_DTPOFF32:
2524     case elfcpp::R_X86_64_DTPOFF64:
2525     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2526     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2527       {
2528         bool output_is_shared = parameters->options().shared();
2529         const tls::Tls_optimization optimized_type
2530             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2531                                                       r_type);
2532         switch (r_type)
2533           {
2534           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2535             if (optimized_type == tls::TLSOPT_NONE)
2536               {
2537                 // Create a pair of GOT entries for the module index and
2538                 // dtv-relative offset.
2539                 Output_data_got<64, false>* got
2540                     = target->got_section(symtab, layout);
2541                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2542                 unsigned int shndx = lsym.get_st_shndx();
2543                 bool is_ordinary;
2544                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2545                 if (!is_ordinary)
2546                   object->error(_("local symbol %u has bad shndx %u"),
2547                               r_sym, shndx);
2548                 else
2549                   got->add_local_pair_with_rel(object, r_sym,
2550                                                shndx,
2551                                                GOT_TYPE_TLS_PAIR,
2552                                                target->rela_dyn_section(layout),
2553                                                elfcpp::R_X86_64_DTPMOD64);
2554               }
2555             else if (optimized_type != tls::TLSOPT_TO_LE)
2556               unsupported_reloc_local(object, r_type);
2557             break;
2558
2559           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2560             target->define_tls_base_symbol(symtab, layout);
2561             if (optimized_type == tls::TLSOPT_NONE)
2562               {
2563                 // Create reserved PLT and GOT entries for the resolver.
2564                 target->reserve_tlsdesc_entries(symtab, layout);
2565
2566                 // Generate a double GOT entry with an
2567                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2568                 // is resolved lazily, so the GOT entry needs to be in
2569                 // an area in .got.plt, not .got.  Call got_section to
2570                 // make sure the section has been created.
2571                 target->got_section(symtab, layout);
2572                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2573                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2574                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2575                   {
2576                     unsigned int got_offset = got->add_constant(0);
2577                     got->add_constant(0);
2578                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2579                                                  got_offset);
2580                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2581                     // We store the arguments we need in a vector, and
2582                     // use the index into the vector as the parameter
2583                     // to pass to the target specific routines.
2584                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2585                     void* arg = reinterpret_cast<void*>(intarg);
2586                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2587                                             got, got_offset, 0);
2588                   }
2589               }
2590             else if (optimized_type != tls::TLSOPT_TO_LE)
2591               unsupported_reloc_local(object, r_type);
2592             break;
2593
2594           case elfcpp::R_X86_64_TLSDESC_CALL:
2595             break;
2596
2597           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2598             if (optimized_type == tls::TLSOPT_NONE)
2599               {
2600                 // Create a GOT entry for the module index.
2601                 target->got_mod_index_entry(symtab, layout, object);
2602               }
2603             else if (optimized_type != tls::TLSOPT_TO_LE)
2604               unsupported_reloc_local(object, r_type);
2605             break;
2606
2607           case elfcpp::R_X86_64_DTPOFF32:
2608           case elfcpp::R_X86_64_DTPOFF64:
2609             break;
2610
2611           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2612             layout->set_has_static_tls();
2613             if (optimized_type == tls::TLSOPT_NONE)
2614               {
2615                 // Create a GOT entry for the tp-relative offset.
2616                 Output_data_got<64, false>* got
2617                     = target->got_section(symtab, layout);
2618                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2619                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2620                                         target->rela_dyn_section(layout),
2621                                         elfcpp::R_X86_64_TPOFF64);
2622               }
2623             else if (optimized_type != tls::TLSOPT_TO_LE)
2624               unsupported_reloc_local(object, r_type);
2625             break;
2626
2627           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2628             layout->set_has_static_tls();
2629             if (output_is_shared)
2630               unsupported_reloc_local(object, r_type);
2631             break;
2632
2633           default:
2634             gold_unreachable();
2635           }
2636       }
2637       break;
2638
2639     case elfcpp::R_X86_64_SIZE32:
2640     case elfcpp::R_X86_64_SIZE64:
2641     default:
2642       gold_error(_("%s: unsupported reloc %u against local symbol"),
2643                  object->name().c_str(), r_type);
2644       break;
2645     }
2646 }
2647
2648
2649 // Report an unsupported relocation against a global symbol.
2650
2651 template<int size>
2652 void
2653 Target_x86_64<size>::Scan::unsupported_reloc_global(
2654     Sized_relobj_file<size, false>* object,
2655     unsigned int r_type,
2656     Symbol* gsym)
2657 {
2658   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2659              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2660 }
2661
2662 // Returns true if this relocation type could be that of a function pointer.
2663 template<int size>
2664 inline bool
2665 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2666 {
2667   switch (r_type)
2668     {
2669     case elfcpp::R_X86_64_64:
2670     case elfcpp::R_X86_64_32:
2671     case elfcpp::R_X86_64_32S:
2672     case elfcpp::R_X86_64_16:
2673     case elfcpp::R_X86_64_8:
2674     case elfcpp::R_X86_64_GOT64:
2675     case elfcpp::R_X86_64_GOT32:
2676     case elfcpp::R_X86_64_GOTPCREL64:
2677     case elfcpp::R_X86_64_GOTPCREL:
2678     case elfcpp::R_X86_64_GOTPLT64:
2679       {
2680         return true;
2681       }
2682     }
2683   return false;
2684 }
2685
2686 // For safe ICF, scan a relocation for a local symbol to check if it
2687 // corresponds to a function pointer being taken.  In that case mark
2688 // the function whose pointer was taken as not foldable.
2689
2690 template<int size>
2691 inline bool
2692 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2693   Symbol_table* ,
2694   Layout* ,
2695   Target_x86_64<size>* ,
2696   Sized_relobj_file<size, false>* ,
2697   unsigned int ,
2698   Output_section* ,
2699   const elfcpp::Rela<size, false>& ,
2700   unsigned int r_type,
2701   const elfcpp::Sym<size, false>&)
2702 {
2703   // When building a shared library, do not fold any local symbols as it is
2704   // not possible to distinguish pointer taken versus a call by looking at
2705   // the relocation types.
2706   return (parameters->options().shared()
2707           || possible_function_pointer_reloc(r_type));
2708 }
2709
2710 // For safe ICF, scan a relocation for a global symbol to check if it
2711 // corresponds to a function pointer being taken.  In that case mark
2712 // the function whose pointer was taken as not foldable.
2713
2714 template<int size>
2715 inline bool
2716 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2717   Symbol_table*,
2718   Layout* ,
2719   Target_x86_64<size>* ,
2720   Sized_relobj_file<size, false>* ,
2721   unsigned int ,
2722   Output_section* ,
2723   const elfcpp::Rela<size, false>& ,
2724   unsigned int r_type,
2725   Symbol* gsym)
2726 {
2727   // When building a shared library, do not fold symbols whose visibility
2728   // is hidden, internal or protected.
2729   return ((parameters->options().shared()
2730            && (gsym->visibility() == elfcpp::STV_INTERNAL
2731                || gsym->visibility() == elfcpp::STV_PROTECTED
2732                || gsym->visibility() == elfcpp::STV_HIDDEN))
2733           || possible_function_pointer_reloc(r_type));
2734 }
2735
2736 // Scan a relocation for a global symbol.
2737
2738 template<int size>
2739 inline void
2740 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2741                             Layout* layout,
2742                             Target_x86_64<size>* target,
2743                             Sized_relobj_file<size, false>* object,
2744                             unsigned int data_shndx,
2745                             Output_section* output_section,
2746                             const elfcpp::Rela<size, false>& reloc,
2747                             unsigned int r_type,
2748                             Symbol* gsym)
2749 {
2750   // A STT_GNU_IFUNC symbol may require a PLT entry.
2751   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2752       && this->reloc_needs_plt_for_ifunc(object, r_type))
2753     target->make_plt_entry(symtab, layout, gsym);
2754
2755   switch (r_type)
2756     {
2757     case elfcpp::R_X86_64_NONE:
2758     case elfcpp::R_X86_64_GNU_VTINHERIT:
2759     case elfcpp::R_X86_64_GNU_VTENTRY:
2760       break;
2761
2762     case elfcpp::R_X86_64_64:
2763     case elfcpp::R_X86_64_32:
2764     case elfcpp::R_X86_64_32S:
2765     case elfcpp::R_X86_64_16:
2766     case elfcpp::R_X86_64_8:
2767       {
2768         // Make a PLT entry if necessary.
2769         if (gsym->needs_plt_entry())
2770           {
2771             target->make_plt_entry(symtab, layout, gsym);
2772             // Since this is not a PC-relative relocation, we may be
2773             // taking the address of a function. In that case we need to
2774             // set the entry in the dynamic symbol table to the address of
2775             // the PLT entry.
2776             if (gsym->is_from_dynobj() && !parameters->options().shared())
2777               gsym->set_needs_dynsym_value();
2778           }
2779         // Make a dynamic relocation if necessary.
2780         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2781           {
2782             if (!parameters->options().output_is_position_independent()
2783                 && gsym->may_need_copy_reloc())
2784               {
2785                 target->copy_reloc(symtab, layout, object,
2786                                    data_shndx, output_section, gsym, reloc);
2787               }
2788             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2789                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2790                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2791                      && gsym->can_use_relative_reloc(false)
2792                      && !gsym->is_from_dynobj()
2793                      && !gsym->is_undefined()
2794                      && !gsym->is_preemptible())
2795               {
2796                 // Use an IRELATIVE reloc for a locally defined
2797                 // STT_GNU_IFUNC symbol.  This makes a function
2798                 // address in a PIE executable match the address in a
2799                 // shared library that it links against.
2800                 Reloc_section* rela_dyn =
2801                   target->rela_irelative_section(layout);
2802                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2803                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2804                                                        output_section, object,
2805                                                        data_shndx,
2806                                                        reloc.get_r_offset(),
2807                                                        reloc.get_r_addend());
2808               }
2809             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2810                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2811                      && gsym->can_use_relative_reloc(false))
2812               {
2813                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2814                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2815                                               output_section, object,
2816                                               data_shndx,
2817                                               reloc.get_r_offset(),
2818                                               reloc.get_r_addend(), false);
2819               }
2820             else
2821               {
2822                 this->check_non_pic(object, r_type, gsym);
2823                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2824                 rela_dyn->add_global(gsym, r_type, output_section, object,
2825                                      data_shndx, reloc.get_r_offset(),
2826                                      reloc.get_r_addend());
2827               }
2828           }
2829       }
2830       break;
2831
2832     case elfcpp::R_X86_64_PC64:
2833     case elfcpp::R_X86_64_PC32:
2834     case elfcpp::R_X86_64_PC32_BND:
2835     case elfcpp::R_X86_64_PC16:
2836     case elfcpp::R_X86_64_PC8:
2837       {
2838         // Make a PLT entry if necessary.
2839         if (gsym->needs_plt_entry())
2840           target->make_plt_entry(symtab, layout, gsym);
2841         // Make a dynamic relocation if necessary.
2842         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2843           {
2844             if (parameters->options().output_is_executable()
2845                 && gsym->may_need_copy_reloc())
2846               {
2847                 target->copy_reloc(symtab, layout, object,
2848                                    data_shndx, output_section, gsym, reloc);
2849               }
2850             else
2851               {
2852                 this->check_non_pic(object, r_type, gsym);
2853                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2854                 rela_dyn->add_global(gsym, r_type, output_section, object,
2855                                      data_shndx, reloc.get_r_offset(),
2856                                      reloc.get_r_addend());
2857               }
2858           }
2859       }
2860       break;
2861
2862     case elfcpp::R_X86_64_GOT64:
2863     case elfcpp::R_X86_64_GOT32:
2864     case elfcpp::R_X86_64_GOTPCREL64:
2865     case elfcpp::R_X86_64_GOTPCREL:
2866     case elfcpp::R_X86_64_GOTPLT64:
2867       {
2868         // The symbol requires a GOT entry.
2869         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2870         if (gsym->final_value_is_known())
2871           {
2872             // For a STT_GNU_IFUNC symbol we want the PLT address.
2873             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2874               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2875             else
2876               got->add_global(gsym, GOT_TYPE_STANDARD);
2877           }
2878         else
2879           {
2880             // If this symbol is not fully resolved, we need to add a
2881             // dynamic relocation for it.
2882             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2883
2884             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2885             //
2886             // 1) The symbol may be defined in some other module.
2887             //
2888             // 2) We are building a shared library and this is a
2889             // protected symbol; using GLOB_DAT means that the dynamic
2890             // linker can use the address of the PLT in the main
2891             // executable when appropriate so that function address
2892             // comparisons work.
2893             //
2894             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2895             // code, again so that function address comparisons work.
2896             if (gsym->is_from_dynobj()
2897                 || gsym->is_undefined()
2898                 || gsym->is_preemptible()
2899                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2900                     && parameters->options().shared())
2901                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2902                     && parameters->options().output_is_position_independent()))
2903               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2904                                        elfcpp::R_X86_64_GLOB_DAT);
2905             else
2906               {
2907                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2908                 // offset into the GOT, so that function pointer
2909                 // comparisons work correctly.
2910                 bool is_new;
2911                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2912                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2913                 else
2914                   {
2915                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2916                     // Tell the dynamic linker to use the PLT address
2917                     // when resolving relocations.
2918                     if (gsym->is_from_dynobj()
2919                         && !parameters->options().shared())
2920                       gsym->set_needs_dynsym_value();
2921                   }
2922                 if (is_new)
2923                   {
2924                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2925                     rela_dyn->add_global_relative(gsym,
2926                                                   elfcpp::R_X86_64_RELATIVE,
2927                                                   got, got_off, 0, false);
2928                   }
2929               }
2930           }
2931       }
2932       break;
2933
2934     case elfcpp::R_X86_64_PLT32:
2935     case elfcpp::R_X86_64_PLT32_BND:
2936       // If the symbol is fully resolved, this is just a PC32 reloc.
2937       // Otherwise we need a PLT entry.
2938       if (gsym->final_value_is_known())
2939         break;
2940       // If building a shared library, we can also skip the PLT entry
2941       // if the symbol is defined in the output file and is protected
2942       // or hidden.
2943       if (gsym->is_defined()
2944           && !gsym->is_from_dynobj()
2945           && !gsym->is_preemptible())
2946         break;
2947       target->make_plt_entry(symtab, layout, gsym);
2948       break;
2949
2950     case elfcpp::R_X86_64_GOTPC32:
2951     case elfcpp::R_X86_64_GOTOFF64:
2952     case elfcpp::R_X86_64_GOTPC64:
2953     case elfcpp::R_X86_64_PLTOFF64:
2954       // We need a GOT section.
2955       target->got_section(symtab, layout);
2956       // For PLTOFF64, we also need a PLT entry (but only if the
2957       // symbol is not fully resolved).
2958       if (r_type == elfcpp::R_X86_64_PLTOFF64
2959           && !gsym->final_value_is_known())
2960         target->make_plt_entry(symtab, layout, gsym);
2961       break;
2962
2963     case elfcpp::R_X86_64_COPY:
2964     case elfcpp::R_X86_64_GLOB_DAT:
2965     case elfcpp::R_X86_64_JUMP_SLOT:
2966     case elfcpp::R_X86_64_RELATIVE:
2967     case elfcpp::R_X86_64_IRELATIVE:
2968       // These are outstanding tls relocs, which are unexpected when linking
2969     case elfcpp::R_X86_64_TPOFF64:
2970     case elfcpp::R_X86_64_DTPMOD64:
2971     case elfcpp::R_X86_64_TLSDESC:
2972       gold_error(_("%s: unexpected reloc %u in object file"),
2973                  object->name().c_str(), r_type);
2974       break;
2975
2976       // These are initial tls relocs, which are expected for global()
2977     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2978     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2979     case elfcpp::R_X86_64_TLSDESC_CALL:
2980     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2981     case elfcpp::R_X86_64_DTPOFF32:
2982     case elfcpp::R_X86_64_DTPOFF64:
2983     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2984     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2985       {
2986         const bool is_final = gsym->final_value_is_known();
2987         const tls::Tls_optimization optimized_type
2988             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
2989         switch (r_type)
2990           {
2991           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2992             if (optimized_type == tls::TLSOPT_NONE)
2993               {
2994                 // Create a pair of GOT entries for the module index and
2995                 // dtv-relative offset.
2996                 Output_data_got<64, false>* got
2997                     = target->got_section(symtab, layout);
2998                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2999                                               target->rela_dyn_section(layout),
3000                                               elfcpp::R_X86_64_DTPMOD64,
3001                                               elfcpp::R_X86_64_DTPOFF64);
3002               }
3003             else if (optimized_type == tls::TLSOPT_TO_IE)
3004               {
3005                 // Create a GOT entry for the tp-relative offset.
3006                 Output_data_got<64, false>* got
3007                     = target->got_section(symtab, layout);
3008                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3009                                          target->rela_dyn_section(layout),
3010                                          elfcpp::R_X86_64_TPOFF64);
3011               }
3012             else if (optimized_type != tls::TLSOPT_TO_LE)
3013               unsupported_reloc_global(object, r_type, gsym);
3014             break;
3015
3016           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3017             target->define_tls_base_symbol(symtab, layout);
3018             if (optimized_type == tls::TLSOPT_NONE)
3019               {
3020                 // Create reserved PLT and GOT entries for the resolver.
3021                 target->reserve_tlsdesc_entries(symtab, layout);
3022
3023                 // Create a double GOT entry with an R_X86_64_TLSDESC
3024                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3025                 // lazily, so the GOT entry needs to be in an area in
3026                 // .got.plt, not .got.  Call got_section to make sure
3027                 // the section has been created.
3028                 target->got_section(symtab, layout);
3029                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3030                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3031                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3032                                               elfcpp::R_X86_64_TLSDESC, 0);
3033               }
3034             else if (optimized_type == tls::TLSOPT_TO_IE)
3035               {
3036                 // Create a GOT entry for the tp-relative offset.
3037                 Output_data_got<64, false>* got
3038                     = target->got_section(symtab, layout);
3039                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3040                                          target->rela_dyn_section(layout),
3041                                          elfcpp::R_X86_64_TPOFF64);
3042               }
3043             else if (optimized_type != tls::TLSOPT_TO_LE)
3044               unsupported_reloc_global(object, r_type, gsym);
3045             break;
3046
3047           case elfcpp::R_X86_64_TLSDESC_CALL:
3048             break;
3049
3050           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3051             if (optimized_type == tls::TLSOPT_NONE)
3052               {
3053                 // Create a GOT entry for the module index.
3054                 target->got_mod_index_entry(symtab, layout, object);
3055               }
3056             else if (optimized_type != tls::TLSOPT_TO_LE)
3057               unsupported_reloc_global(object, r_type, gsym);
3058             break;
3059
3060           case elfcpp::R_X86_64_DTPOFF32:
3061           case elfcpp::R_X86_64_DTPOFF64:
3062             break;
3063
3064           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3065             layout->set_has_static_tls();
3066             if (optimized_type == tls::TLSOPT_NONE)
3067               {
3068                 // Create a GOT entry for the tp-relative offset.
3069                 Output_data_got<64, false>* got
3070                     = target->got_section(symtab, layout);
3071                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3072                                          target->rela_dyn_section(layout),
3073                                          elfcpp::R_X86_64_TPOFF64);
3074               }
3075             else if (optimized_type != tls::TLSOPT_TO_LE)
3076               unsupported_reloc_global(object, r_type, gsym);
3077             break;
3078
3079           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3080             layout->set_has_static_tls();
3081             if (parameters->options().shared())
3082               unsupported_reloc_global(object, r_type, gsym);
3083             break;
3084
3085           default:
3086             gold_unreachable();
3087           }
3088       }
3089       break;
3090
3091     case elfcpp::R_X86_64_SIZE32:
3092     case elfcpp::R_X86_64_SIZE64:
3093     default:
3094       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3095                  object->name().c_str(), r_type,
3096                  gsym->demangled_name().c_str());
3097       break;
3098     }
3099 }
3100
3101 template<int size>
3102 void
3103 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3104                                        Layout* layout,
3105                                        Sized_relobj_file<size, false>* object,
3106                                        unsigned int data_shndx,
3107                                        unsigned int sh_type,
3108                                        const unsigned char* prelocs,
3109                                        size_t reloc_count,
3110                                        Output_section* output_section,
3111                                        bool needs_special_offset_handling,
3112                                        size_t local_symbol_count,
3113                                        const unsigned char* plocal_symbols)
3114 {
3115
3116   if (sh_type == elfcpp::SHT_REL)
3117     {
3118       return;
3119     }
3120
3121    gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3122                            typename Target_x86_64<size>::Scan,
3123                            typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3124     symtab,
3125     layout,
3126     this,
3127     object,
3128     data_shndx,
3129     prelocs,
3130     reloc_count,
3131     output_section,
3132     needs_special_offset_handling,
3133     local_symbol_count,
3134     plocal_symbols);
3135
3136 }
3137 // Scan relocations for a section.
3138
3139 template<int size>
3140 void
3141 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3142                                  Layout* layout,
3143                                  Sized_relobj_file<size, false>* object,
3144                                  unsigned int data_shndx,
3145                                  unsigned int sh_type,
3146                                  const unsigned char* prelocs,
3147                                  size_t reloc_count,
3148                                  Output_section* output_section,
3149                                  bool needs_special_offset_handling,
3150                                  size_t local_symbol_count,
3151                                  const unsigned char* plocal_symbols)
3152 {
3153   if (sh_type == elfcpp::SHT_REL)
3154     {
3155       gold_error(_("%s: unsupported REL reloc section"),
3156                  object->name().c_str());
3157       return;
3158     }
3159
3160   gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3161       typename Target_x86_64<size>::Scan>(
3162     symtab,
3163     layout,
3164     this,
3165     object,
3166     data_shndx,
3167     prelocs,
3168     reloc_count,
3169     output_section,
3170     needs_special_offset_handling,
3171     local_symbol_count,
3172     plocal_symbols);
3173 }
3174
3175 // Finalize the sections.
3176
3177 template<int size>
3178 void
3179 Target_x86_64<size>::do_finalize_sections(
3180     Layout* layout,
3181     const Input_objects*,
3182     Symbol_table* symtab)
3183 {
3184   const Reloc_section* rel_plt = (this->plt_ == NULL
3185                                   ? NULL
3186                                   : this->plt_->rela_plt());
3187   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3188                                   this->rela_dyn_, true, false);
3189
3190   // Fill in some more dynamic tags.
3191   Output_data_dynamic* const odyn = layout->dynamic_data();
3192   if (odyn != NULL)
3193     {
3194       if (this->plt_ != NULL
3195           && this->plt_->output_section() != NULL
3196           && this->plt_->has_tlsdesc_entry())
3197         {
3198           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3199           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3200           this->got_->finalize_data_size();
3201           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3202                                         this->plt_, plt_offset);
3203           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3204                                         this->got_, got_offset);
3205         }
3206     }
3207
3208   // Emit any relocs we saved in an attempt to avoid generating COPY
3209   // relocs.
3210   if (this->copy_relocs_.any_saved_relocs())
3211     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3212
3213   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3214   // the .got.plt section.
3215   Symbol* sym = this->global_offset_table_;
3216   if (sym != NULL)
3217     {
3218       uint64_t data_size = this->got_plt_->current_data_size();
3219       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3220     }
3221
3222   if (parameters->doing_static_link()
3223       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3224     {
3225       // If linking statically, make sure that the __rela_iplt symbols
3226       // were defined if necessary, even if we didn't create a PLT.
3227       static const Define_symbol_in_segment syms[] =
3228         {
3229           {
3230             "__rela_iplt_start",        // name
3231             elfcpp::PT_LOAD,            // segment_type
3232             elfcpp::PF_W,               // segment_flags_set
3233             elfcpp::PF(0),              // segment_flags_clear
3234             0,                          // value
3235             0,                          // size
3236             elfcpp::STT_NOTYPE,         // type
3237             elfcpp::STB_GLOBAL,         // binding
3238             elfcpp::STV_HIDDEN,         // visibility
3239             0,                          // nonvis
3240             Symbol::SEGMENT_START,      // offset_from_base
3241             true                        // only_if_ref
3242           },
3243           {
3244             "__rela_iplt_end",          // name
3245             elfcpp::PT_LOAD,            // segment_type
3246             elfcpp::PF_W,               // segment_flags_set
3247             elfcpp::PF(0),              // segment_flags_clear
3248             0,                          // value
3249             0,                          // size
3250             elfcpp::STT_NOTYPE,         // type
3251             elfcpp::STB_GLOBAL,         // binding
3252             elfcpp::STV_HIDDEN,         // visibility
3253             0,                          // nonvis
3254             Symbol::SEGMENT_START,      // offset_from_base
3255             true                        // only_if_ref
3256           }
3257         };
3258
3259       symtab->define_symbols(layout, 2, syms,
3260                              layout->script_options()->saw_sections_clause());
3261     }
3262 }
3263
3264 // Perform a relocation.
3265
3266 template<int size>
3267 inline bool
3268 Target_x86_64<size>::Relocate::relocate(
3269     const Relocate_info<size, false>* relinfo,
3270     Target_x86_64<size>* target,
3271     Output_section*,
3272     size_t relnum,
3273     const elfcpp::Rela<size, false>& rela,
3274     unsigned int r_type,
3275     const Sized_symbol<size>* gsym,
3276     const Symbol_value<size>* psymval,
3277     unsigned char* view,
3278     typename elfcpp::Elf_types<size>::Elf_Addr address,
3279     section_size_type view_size)
3280 {
3281   if (this->skip_call_tls_get_addr_)
3282     {
3283       if ((r_type != elfcpp::R_X86_64_PLT32
3284            && r_type != elfcpp::R_X86_64_PLT32_BND
3285            && r_type != elfcpp::R_X86_64_PC32_BND
3286            && r_type != elfcpp::R_X86_64_PC32)
3287           || gsym == NULL
3288           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3289         {
3290           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3291                                  _("missing expected TLS relocation"));
3292         }
3293       else
3294         {
3295           this->skip_call_tls_get_addr_ = false;
3296           return false;
3297         }
3298     }
3299
3300   if (view == NULL)
3301     return true;
3302
3303   const Sized_relobj_file<size, false>* object = relinfo->object;
3304
3305   // Pick the value to use for symbols defined in the PLT.
3306   Symbol_value<size> symval;
3307   if (gsym != NULL
3308       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3309     {
3310       symval.set_output_value(target->plt_address_for_global(gsym));
3311       psymval = &symval;
3312     }
3313   else if (gsym == NULL && psymval->is_ifunc_symbol())
3314     {
3315       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3316       if (object->local_has_plt_offset(r_sym))
3317         {
3318           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3319           psymval = &symval;
3320         }
3321     }
3322
3323   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3324
3325   // Get the GOT offset if needed.
3326   // The GOT pointer points to the end of the GOT section.
3327   // We need to subtract the size of the GOT section to get
3328   // the actual offset to use in the relocation.
3329   bool have_got_offset = false;
3330   // Since the actual offset is always negative, we use signed int to
3331   // support 64-bit GOT relocations.
3332   int got_offset = 0;
3333   switch (r_type)
3334     {
3335     case elfcpp::R_X86_64_GOT32:
3336     case elfcpp::R_X86_64_GOT64:
3337     case elfcpp::R_X86_64_GOTPLT64:
3338     case elfcpp::R_X86_64_GOTPCREL:
3339     case elfcpp::R_X86_64_GOTPCREL64:
3340       if (gsym != NULL)
3341         {
3342           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3343           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3344         }
3345       else
3346         {
3347           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3348           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3349           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3350                         - target->got_size());
3351         }
3352       have_got_offset = true;
3353       break;
3354
3355     default:
3356       break;
3357     }
3358
3359   switch (r_type)
3360     {
3361     case elfcpp::R_X86_64_NONE:
3362     case elfcpp::R_X86_64_GNU_VTINHERIT:
3363     case elfcpp::R_X86_64_GNU_VTENTRY:
3364       break;
3365
3366     case elfcpp::R_X86_64_64:
3367       Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3368       break;
3369
3370     case elfcpp::R_X86_64_PC64:
3371       Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3372                                               address);
3373       break;
3374
3375     case elfcpp::R_X86_64_32:
3376       // FIXME: we need to verify that value + addend fits into 32 bits:
3377       //    uint64_t x = value + addend;
3378       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3379       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3380       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3381       break;
3382
3383     case elfcpp::R_X86_64_32S:
3384       // FIXME: we need to verify that value + addend fits into 32 bits:
3385       //    int64_t x = value + addend;   // note this quantity is signed!
3386       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
3387       Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3388       break;
3389
3390     case elfcpp::R_X86_64_PC32:
3391     case elfcpp::R_X86_64_PC32_BND:
3392       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3393                                                 address);
3394       break;
3395
3396     case elfcpp::R_X86_64_16:
3397       Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3398       break;
3399
3400     case elfcpp::R_X86_64_PC16:
3401       Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3402                                                 address);
3403       break;
3404
3405     case elfcpp::R_X86_64_8:
3406       Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3407       break;
3408
3409     case elfcpp::R_X86_64_PC8:
3410       Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3411                                                address);
3412       break;
3413
3414     case elfcpp::R_X86_64_PLT32:
3415     case elfcpp::R_X86_64_PLT32_BND:
3416       gold_assert(gsym == NULL
3417                   || gsym->has_plt_offset()
3418                   || gsym->final_value_is_known()
3419                   || (gsym->is_defined()
3420                       && !gsym->is_from_dynobj()
3421                       && !gsym->is_preemptible()));
3422       // Note: while this code looks the same as for R_X86_64_PC32, it
3423       // behaves differently because psymval was set to point to
3424       // the PLT entry, rather than the symbol, in Scan::global().
3425       Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3426                                                 address);
3427       break;
3428
3429     case elfcpp::R_X86_64_PLTOFF64:
3430       {
3431         gold_assert(gsym);
3432         gold_assert(gsym->has_plt_offset()
3433                     || gsym->final_value_is_known());
3434         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3435         // This is the address of GLOBAL_OFFSET_TABLE.
3436         got_address = target->got_plt_section()->address();
3437         Relocate_functions<size, false>::rela64(view, object, psymval,
3438                                                 addend - got_address);
3439       }
3440       break;
3441
3442     case elfcpp::R_X86_64_GOT32:
3443       gold_assert(have_got_offset);
3444       Relocate_functions<size, false>::rela32(view, got_offset, addend);
3445       break;
3446
3447     case elfcpp::R_X86_64_GOTPC32:
3448       {
3449         gold_assert(gsym);
3450         typename elfcpp::Elf_types<size>::Elf_Addr value;
3451         value = target->got_plt_section()->address();
3452         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3453       }
3454       break;
3455
3456     case elfcpp::R_X86_64_GOT64:
3457     case elfcpp::R_X86_64_GOTPLT64:
3458       // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3459       // GOT64.
3460       gold_assert(have_got_offset);
3461       Relocate_functions<size, false>::rela64(view, got_offset, addend);
3462       break;
3463
3464     case elfcpp::R_X86_64_GOTPC64:
3465       {
3466         gold_assert(gsym);
3467         typename elfcpp::Elf_types<size>::Elf_Addr value;
3468         value = target->got_plt_section()->address();
3469         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3470       }
3471       break;
3472
3473     case elfcpp::R_X86_64_GOTOFF64:
3474       {
3475         typename elfcpp::Elf_types<size>::Elf_Addr value;
3476         value = (psymval->value(object, 0)
3477                  - target->got_plt_section()->address());
3478         Relocate_functions<size, false>::rela64(view, value, addend);
3479       }
3480       break;
3481
3482     case elfcpp::R_X86_64_GOTPCREL:
3483       {
3484         gold_assert(have_got_offset);
3485         typename elfcpp::Elf_types<size>::Elf_Addr value;
3486         value = target->got_plt_section()->address() + got_offset;
3487         Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3488       }
3489       break;
3490
3491     case elfcpp::R_X86_64_GOTPCREL64:
3492       {
3493         gold_assert(have_got_offset);
3494         typename elfcpp::Elf_types<size>::Elf_Addr value;
3495         value = target->got_plt_section()->address() + got_offset;
3496         Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3497       }
3498       break;
3499
3500     case elfcpp::R_X86_64_COPY:
3501     case elfcpp::R_X86_64_GLOB_DAT:
3502     case elfcpp::R_X86_64_JUMP_SLOT:
3503     case elfcpp::R_X86_64_RELATIVE:
3504     case elfcpp::R_X86_64_IRELATIVE:
3505       // These are outstanding tls relocs, which are unexpected when linking
3506     case elfcpp::R_X86_64_TPOFF64:
3507     case elfcpp::R_X86_64_DTPMOD64:
3508     case elfcpp::R_X86_64_TLSDESC:
3509       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3510                              _("unexpected reloc %u in object file"),
3511                              r_type);
3512       break;
3513
3514       // These are initial tls relocs, which are expected when linking
3515     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3516     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3517     case elfcpp::R_X86_64_TLSDESC_CALL:
3518     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3519     case elfcpp::R_X86_64_DTPOFF32:
3520     case elfcpp::R_X86_64_DTPOFF64:
3521     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3522     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3523       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3524                          view, address, view_size);
3525       break;
3526
3527     case elfcpp::R_X86_64_SIZE32:
3528     case elfcpp::R_X86_64_SIZE64:
3529     default:
3530       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3531                              _("unsupported reloc %u"),
3532                              r_type);
3533       break;
3534     }
3535
3536   return true;
3537 }
3538
3539 // Perform a TLS relocation.
3540
3541 template<int size>
3542 inline void
3543 Target_x86_64<size>::Relocate::relocate_tls(
3544     const Relocate_info<size, false>* relinfo,
3545     Target_x86_64<size>* target,
3546     size_t relnum,
3547     const elfcpp::Rela<size, false>& rela,
3548     unsigned int r_type,
3549     const Sized_symbol<size>* gsym,
3550     const Symbol_value<size>* psymval,
3551     unsigned char* view,
3552     typename elfcpp::Elf_types<size>::Elf_Addr address,
3553     section_size_type view_size)
3554 {
3555   Output_segment* tls_segment = relinfo->layout->tls_segment();
3556
3557   const Sized_relobj_file<size, false>* object = relinfo->object;
3558   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3559   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3560   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3561
3562   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3563
3564   const bool is_final = (gsym == NULL
3565                          ? !parameters->options().shared()
3566                          : gsym->final_value_is_known());
3567   tls::Tls_optimization optimized_type
3568       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3569   switch (r_type)
3570     {
3571     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3572       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3573         {
3574           // If this code sequence is used in a non-executable section,
3575           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3576           // on the assumption that it's being used by itself in a debug
3577           // section.  Therefore, in the unlikely event that the code
3578           // sequence appears in a non-executable section, we simply
3579           // leave it unoptimized.
3580           optimized_type = tls::TLSOPT_NONE;
3581         }
3582       if (optimized_type == tls::TLSOPT_TO_LE)
3583         {
3584           if (tls_segment == NULL)
3585             {
3586               gold_assert(parameters->errors()->error_count() > 0
3587                           || issue_undefined_symbol_error(gsym));
3588               return;
3589             }
3590           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3591                              rela, r_type, value, view,
3592                              view_size);
3593           break;
3594         }
3595       else
3596         {
3597           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3598                                    ? GOT_TYPE_TLS_OFFSET
3599                                    : GOT_TYPE_TLS_PAIR);
3600           unsigned int got_offset;
3601           if (gsym != NULL)
3602             {
3603               gold_assert(gsym->has_got_offset(got_type));
3604               got_offset = gsym->got_offset(got_type) - target->got_size();
3605             }
3606           else
3607             {
3608               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3609               gold_assert(object->local_has_got_offset(r_sym, got_type));
3610               got_offset = (object->local_got_offset(r_sym, got_type)
3611                             - target->got_size());
3612             }
3613           if (optimized_type == tls::TLSOPT_TO_IE)
3614             {
3615               value = target->got_plt_section()->address() + got_offset;
3616               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3617                                  value, view, address, view_size);
3618               break;
3619             }
3620           else if (optimized_type == tls::TLSOPT_NONE)
3621             {
3622               // Relocate the field with the offset of the pair of GOT
3623               // entries.
3624               value = target->got_plt_section()->address() + got_offset;
3625               Relocate_functions<size, false>::pcrela32(view, value, addend,
3626                                                         address);
3627               break;
3628             }
3629         }
3630       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3631                              _("unsupported reloc %u"), r_type);
3632       break;
3633
3634     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3635     case elfcpp::R_X86_64_TLSDESC_CALL:
3636       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3637         {
3638           // See above comment for R_X86_64_TLSGD.
3639           optimized_type = tls::TLSOPT_NONE;
3640         }
3641       if (optimized_type == tls::TLSOPT_TO_LE)
3642         {
3643           if (tls_segment == NULL)
3644             {
3645               gold_assert(parameters->errors()->error_count() > 0
3646                           || issue_undefined_symbol_error(gsym));
3647               return;
3648             }
3649           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3650                                   rela, r_type, value, view,
3651                                   view_size);
3652           break;
3653         }
3654       else
3655         {
3656           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3657                                    ? GOT_TYPE_TLS_OFFSET
3658                                    : GOT_TYPE_TLS_DESC);
3659           unsigned int got_offset = 0;
3660           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3661               && optimized_type == tls::TLSOPT_NONE)
3662             {
3663               // We created GOT entries in the .got.tlsdesc portion of
3664               // the .got.plt section, but the offset stored in the
3665               // symbol is the offset within .got.tlsdesc.
3666               got_offset = (target->got_size()
3667                             + target->got_plt_section()->data_size());
3668             }
3669           if (gsym != NULL)
3670             {
3671               gold_assert(gsym->has_got_offset(got_type));
3672               got_offset += gsym->got_offset(got_type) - target->got_size();
3673             }
3674           else
3675             {
3676               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3677               gold_assert(object->local_has_got_offset(r_sym, got_type));
3678               got_offset += (object->local_got_offset(r_sym, got_type)
3679                              - target->got_size());
3680             }
3681           if (optimized_type == tls::TLSOPT_TO_IE)
3682             {
3683               if (tls_segment == NULL)
3684                 {
3685                   gold_assert(parameters->errors()->error_count() > 0
3686                               || issue_undefined_symbol_error(gsym));
3687                   return;
3688                 }
3689               value = target->got_plt_section()->address() + got_offset;
3690               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3691                                       rela, r_type, value, view, address,
3692                                       view_size);
3693               break;
3694             }
3695           else if (optimized_type == tls::TLSOPT_NONE)
3696             {
3697               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3698                 {
3699                   // Relocate the field with the offset of the pair of GOT
3700                   // entries.
3701                   value = target->got_plt_section()->address() + got_offset;
3702                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3703                                                             address);
3704                 }
3705               break;
3706             }
3707         }
3708       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3709                              _("unsupported reloc %u"), r_type);
3710       break;
3711
3712     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3713       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3714         {
3715           // See above comment for R_X86_64_TLSGD.
3716           optimized_type = tls::TLSOPT_NONE;
3717         }
3718       if (optimized_type == tls::TLSOPT_TO_LE)
3719         {
3720           if (tls_segment == NULL)
3721             {
3722               gold_assert(parameters->errors()->error_count() > 0
3723                           || issue_undefined_symbol_error(gsym));
3724               return;
3725             }
3726           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3727                              value, view, view_size);
3728           break;
3729         }
3730       else if (optimized_type == tls::TLSOPT_NONE)
3731         {
3732           // Relocate the field with the offset of the GOT entry for
3733           // the module index.
3734           unsigned int got_offset;
3735           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3736                         - target->got_size());
3737           value = target->got_plt_section()->address() + got_offset;
3738           Relocate_functions<size, false>::pcrela32(view, value, addend,
3739                                                     address);
3740           break;
3741         }
3742       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3743                              _("unsupported reloc %u"), r_type);
3744       break;
3745
3746     case elfcpp::R_X86_64_DTPOFF32:
3747       // This relocation type is used in debugging information.
3748       // In that case we need to not optimize the value.  If the
3749       // section is not executable, then we assume we should not
3750       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3751       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3752       // R_X86_64_TLSLD.
3753       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3754         {
3755           if (tls_segment == NULL)
3756             {
3757               gold_assert(parameters->errors()->error_count() > 0
3758                           || issue_undefined_symbol_error(gsym));
3759               return;
3760             }
3761           value -= tls_segment->memsz();
3762         }
3763       Relocate_functions<size, false>::rela32(view, value, addend);
3764       break;
3765
3766     case elfcpp::R_X86_64_DTPOFF64:
3767       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3768       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3769         {
3770           if (tls_segment == NULL)
3771             {
3772               gold_assert(parameters->errors()->error_count() > 0
3773                           || issue_undefined_symbol_error(gsym));
3774               return;
3775             }
3776           value -= tls_segment->memsz();
3777         }
3778       Relocate_functions<size, false>::rela64(view, value, addend);
3779       break;
3780
3781     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3782       if (optimized_type == tls::TLSOPT_TO_LE)
3783         {
3784           if (tls_segment == NULL)
3785             {
3786               gold_assert(parameters->errors()->error_count() > 0
3787                           || issue_undefined_symbol_error(gsym));
3788               return;
3789             }
3790           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3791                                                       tls_segment, rela,
3792                                                       r_type, value, view,
3793                                                       view_size);
3794           break;
3795         }
3796       else if (optimized_type == tls::TLSOPT_NONE)
3797         {
3798           // Relocate the field with the offset of the GOT entry for
3799           // the tp-relative offset of the symbol.
3800           unsigned int got_offset;
3801           if (gsym != NULL)
3802             {
3803               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3804               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3805                             - target->got_size());
3806             }
3807           else
3808             {
3809               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3810               gold_assert(object->local_has_got_offset(r_sym,
3811                                                        GOT_TYPE_TLS_OFFSET));
3812               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3813                             - target->got_size());
3814             }
3815           value = target->got_plt_section()->address() + got_offset;
3816           Relocate_functions<size, false>::pcrela32(view, value, addend,
3817                                                     address);
3818           break;
3819         }
3820       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3821                              _("unsupported reloc type %u"),
3822                              r_type);
3823       break;
3824
3825     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3826       if (tls_segment == NULL)
3827         {
3828           gold_assert(parameters->errors()->error_count() > 0
3829                       || issue_undefined_symbol_error(gsym));
3830           return;
3831         }
3832       value -= tls_segment->memsz();
3833       Relocate_functions<size, false>::rela32(view, value, addend);
3834       break;
3835     }
3836 }
3837
3838 // Do a relocation in which we convert a TLS General-Dynamic to an
3839 // Initial-Exec.
3840
3841 template<int size>
3842 inline void
3843 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3844     const Relocate_info<size, false>* relinfo,
3845     size_t relnum,
3846     Output_segment*,
3847     const elfcpp::Rela<size, false>& rela,
3848     unsigned int,
3849     typename elfcpp::Elf_types<size>::Elf_Addr value,
3850     unsigned char* view,
3851     typename elfcpp::Elf_types<size>::Elf_Addr address,
3852     section_size_type view_size)
3853 {
3854   // For SIZE == 64:
3855   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3856   //    .word 0x6666; rex64; call __tls_get_addr
3857   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3858   // For SIZE == 32:
3859   //    leaq foo@tlsgd(%rip),%rdi;
3860   //    .word 0x6666; rex64; call __tls_get_addr
3861   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3862
3863   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3864   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3865                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3866
3867   if (size == 64)
3868     {
3869       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3870                        -4);
3871       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3872                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3873       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3874              16);
3875     }
3876   else
3877     {
3878       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3879                        -3);
3880       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3881                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3882       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3883              15);
3884     }
3885
3886   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3887   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
3888                                             address);
3889
3890   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3891   // We can skip it.
3892   this->skip_call_tls_get_addr_ = true;
3893 }
3894
3895 // Do a relocation in which we convert a TLS General-Dynamic to a
3896 // Local-Exec.
3897
3898 template<int size>
3899 inline void
3900 Target_x86_64<size>::Relocate::tls_gd_to_le(
3901     const Relocate_info<size, false>* relinfo,
3902     size_t relnum,
3903     Output_segment* tls_segment,
3904     const elfcpp::Rela<size, false>& rela,
3905     unsigned int,
3906     typename elfcpp::Elf_types<size>::Elf_Addr value,
3907     unsigned char* view,
3908     section_size_type view_size)
3909 {
3910   // For SIZE == 64:
3911   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3912   //    .word 0x6666; rex64; call __tls_get_addr
3913   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3914   // For SIZE == 32:
3915   //    leaq foo@tlsgd(%rip),%rdi;
3916   //    .word 0x6666; rex64; call __tls_get_addr
3917   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
3918
3919   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3920   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3921                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3922
3923   if (size == 64)
3924     {
3925       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3926                        -4);
3927       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3928                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3929       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3930              16);
3931     }
3932   else
3933     {
3934       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3935                        -3);
3936       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3937                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3938
3939       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
3940              15);
3941     }
3942
3943   value -= tls_segment->memsz();
3944   Relocate_functions<size, false>::rela32(view + 8, value, 0);
3945
3946   // The next reloc should be a PLT32 reloc against __tls_get_addr.
3947   // We can skip it.
3948   this->skip_call_tls_get_addr_ = true;
3949 }
3950
3951 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3952
3953 template<int size>
3954 inline void
3955 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
3956     const Relocate_info<size, false>* relinfo,
3957     size_t relnum,
3958     Output_segment*,
3959     const elfcpp::Rela<size, false>& rela,
3960     unsigned int r_type,
3961     typename elfcpp::Elf_types<size>::Elf_Addr value,
3962     unsigned char* view,
3963     typename elfcpp::Elf_types<size>::Elf_Addr address,
3964     section_size_type view_size)
3965 {
3966   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3967     {
3968       // leaq foo@tlsdesc(%rip), %rax
3969       // ==> movq foo@gottpoff(%rip), %rax
3970       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3971       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3972       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3973                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3974       view[-2] = 0x8b;
3975       const elfcpp::Elf_Xword addend = rela.get_r_addend();
3976       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3977     }
3978   else
3979     {
3980       // call *foo@tlscall(%rax)
3981       // ==> nop; nop
3982       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3983       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3984       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3985                      view[0] == 0xff && view[1] == 0x10);
3986       view[0] = 0x66;
3987       view[1] = 0x90;
3988     }
3989 }
3990
3991 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3992
3993 template<int size>
3994 inline void
3995 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
3996     const Relocate_info<size, false>* relinfo,
3997     size_t relnum,
3998     Output_segment* tls_segment,
3999     const elfcpp::Rela<size, false>& rela,
4000     unsigned int r_type,
4001     typename elfcpp::Elf_types<size>::Elf_Addr value,
4002     unsigned char* view,
4003     section_size_type view_size)
4004 {
4005   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4006     {
4007       // leaq foo@tlsdesc(%rip), %rax
4008       // ==> movq foo@tpoff, %rax
4009       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4010       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4011       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4012                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4013       view[-2] = 0xc7;
4014       view[-1] = 0xc0;
4015       value -= tls_segment->memsz();
4016       Relocate_functions<size, false>::rela32(view, value, 0);
4017     }
4018   else
4019     {
4020       // call *foo@tlscall(%rax)
4021       // ==> nop; nop
4022       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4023       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4024       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4025                      view[0] == 0xff && view[1] == 0x10);
4026       view[0] = 0x66;
4027       view[1] = 0x90;
4028     }
4029 }
4030
4031 template<int size>
4032 inline void
4033 Target_x86_64<size>::Relocate::tls_ld_to_le(
4034     const Relocate_info<size, false>* relinfo,
4035     size_t relnum,
4036     Output_segment*,
4037     const elfcpp::Rela<size, false>& rela,
4038     unsigned int,
4039     typename elfcpp::Elf_types<size>::Elf_Addr,
4040     unsigned char* view,
4041     section_size_type view_size)
4042 {
4043   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4044   // For SIZE == 64:
4045   // ... leq foo@dtpoff(%rax),%reg
4046   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4047   // For SIZE == 32:
4048   // ... leq foo@dtpoff(%rax),%reg
4049   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4050
4051   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4052   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4053
4054   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4055                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4056
4057   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4058
4059   if (size == 64)
4060     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4061   else
4062     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4063
4064   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4065   // We can skip it.
4066   this->skip_call_tls_get_addr_ = true;
4067 }
4068
4069 // Do a relocation in which we convert a TLS Initial-Exec to a
4070 // Local-Exec.
4071
4072 template<int size>
4073 inline void
4074 Target_x86_64<size>::Relocate::tls_ie_to_le(
4075     const Relocate_info<size, false>* relinfo,
4076     size_t relnum,
4077     Output_segment* tls_segment,
4078     const elfcpp::Rela<size, false>& rela,
4079     unsigned int,
4080     typename elfcpp::Elf_types<size>::Elf_Addr value,
4081     unsigned char* view,
4082     section_size_type view_size)
4083 {
4084   // We need to examine the opcodes to figure out which instruction we
4085   // are looking at.
4086
4087   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4088   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4089
4090   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4091   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4092
4093   unsigned char op1 = view[-3];
4094   unsigned char op2 = view[-2];
4095   unsigned char op3 = view[-1];
4096   unsigned char reg = op3 >> 3;
4097
4098   if (op2 == 0x8b)
4099     {
4100       // movq
4101       if (op1 == 0x4c)
4102         view[-3] = 0x49;
4103       view[-2] = 0xc7;
4104       view[-1] = 0xc0 | reg;
4105     }
4106   else if (reg == 4)
4107     {
4108       // Special handling for %rsp.
4109       if (op1 == 0x4c)
4110         view[-3] = 0x49;
4111       view[-2] = 0x81;
4112       view[-1] = 0xc0 | reg;
4113     }
4114   else
4115     {
4116       // addq
4117       if (op1 == 0x4c)
4118         view[-3] = 0x4d;
4119       view[-2] = 0x8d;
4120       view[-1] = 0x80 | reg | (reg << 3);
4121     }
4122
4123   value -= tls_segment->memsz();
4124   Relocate_functions<size, false>::rela32(view, value, 0);
4125 }
4126
4127 // Relocate section data.
4128
4129 template<int size>
4130 void
4131 Target_x86_64<size>::relocate_section(
4132     const Relocate_info<size, false>* relinfo,
4133     unsigned int sh_type,
4134     const unsigned char* prelocs,
4135     size_t reloc_count,
4136     Output_section* output_section,
4137     bool needs_special_offset_handling,
4138     unsigned char* view,
4139     typename elfcpp::Elf_types<size>::Elf_Addr address,
4140     section_size_type view_size,
4141     const Reloc_symbol_changes* reloc_symbol_changes)
4142 {
4143   gold_assert(sh_type == elfcpp::SHT_RELA);
4144
4145   gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4146                          typename Target_x86_64<size>::Relocate,
4147                          gold::Default_comdat_behavior>(
4148     relinfo,
4149     this,
4150     prelocs,
4151     reloc_count,
4152     output_section,
4153     needs_special_offset_handling,
4154     view,
4155     address,
4156     view_size,
4157     reloc_symbol_changes);
4158 }
4159
4160 // Apply an incremental relocation.  Incremental relocations always refer
4161 // to global symbols.
4162
4163 template<int size>
4164 void
4165 Target_x86_64<size>::apply_relocation(
4166     const Relocate_info<size, false>* relinfo,
4167     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4168     unsigned int r_type,
4169     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4170     const Symbol* gsym,
4171     unsigned char* view,
4172     typename elfcpp::Elf_types<size>::Elf_Addr address,
4173     section_size_type view_size)
4174 {
4175   gold::apply_relocation<size, false, Target_x86_64<size>,
4176                          typename Target_x86_64<size>::Relocate>(
4177     relinfo,
4178     this,
4179     r_offset,
4180     r_type,
4181     r_addend,
4182     gsym,
4183     view,
4184     address,
4185     view_size);
4186 }
4187
4188 // Return the size of a relocation while scanning during a relocatable
4189 // link.
4190
4191 template<int size>
4192 unsigned int
4193 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4194     unsigned int r_type,
4195     Relobj* object)
4196 {
4197   switch (r_type)
4198     {
4199     case elfcpp::R_X86_64_NONE:
4200     case elfcpp::R_X86_64_GNU_VTINHERIT:
4201     case elfcpp::R_X86_64_GNU_VTENTRY:
4202     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4203     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4204     case elfcpp::R_X86_64_TLSDESC_CALL:
4205     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4206     case elfcpp::R_X86_64_DTPOFF32:
4207     case elfcpp::R_X86_64_DTPOFF64:
4208     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4209     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4210       return 0;
4211
4212     case elfcpp::R_X86_64_64:
4213     case elfcpp::R_X86_64_PC64:
4214     case elfcpp::R_X86_64_GOTOFF64:
4215     case elfcpp::R_X86_64_GOTPC64:
4216     case elfcpp::R_X86_64_PLTOFF64:
4217     case elfcpp::R_X86_64_GOT64:
4218     case elfcpp::R_X86_64_GOTPCREL64:
4219     case elfcpp::R_X86_64_GOTPCREL:
4220     case elfcpp::R_X86_64_GOTPLT64:
4221       return 8;
4222
4223     case elfcpp::R_X86_64_32:
4224     case elfcpp::R_X86_64_32S:
4225     case elfcpp::R_X86_64_PC32:
4226     case elfcpp::R_X86_64_PC32_BND:
4227     case elfcpp::R_X86_64_PLT32:
4228     case elfcpp::R_X86_64_PLT32_BND:
4229     case elfcpp::R_X86_64_GOTPC32:
4230     case elfcpp::R_X86_64_GOT32:
4231       return 4;
4232
4233     case elfcpp::R_X86_64_16:
4234     case elfcpp::R_X86_64_PC16:
4235       return 2;
4236
4237     case elfcpp::R_X86_64_8:
4238     case elfcpp::R_X86_64_PC8:
4239       return 1;
4240
4241     case elfcpp::R_X86_64_COPY:
4242     case elfcpp::R_X86_64_GLOB_DAT:
4243     case elfcpp::R_X86_64_JUMP_SLOT:
4244     case elfcpp::R_X86_64_RELATIVE:
4245     case elfcpp::R_X86_64_IRELATIVE:
4246       // These are outstanding tls relocs, which are unexpected when linking
4247     case elfcpp::R_X86_64_TPOFF64:
4248     case elfcpp::R_X86_64_DTPMOD64:
4249     case elfcpp::R_X86_64_TLSDESC:
4250       object->error(_("unexpected reloc %u in object file"), r_type);
4251       return 0;
4252
4253     case elfcpp::R_X86_64_SIZE32:
4254     case elfcpp::R_X86_64_SIZE64:
4255     default:
4256       object->error(_("unsupported reloc %u against local symbol"), r_type);
4257       return 0;
4258     }
4259 }
4260
4261 // Scan the relocs during a relocatable link.
4262
4263 template<int size>
4264 void
4265 Target_x86_64<size>::scan_relocatable_relocs(
4266     Symbol_table* symtab,
4267     Layout* layout,
4268     Sized_relobj_file<size, false>* object,
4269     unsigned int data_shndx,
4270     unsigned int sh_type,
4271     const unsigned char* prelocs,
4272     size_t reloc_count,
4273     Output_section* output_section,
4274     bool needs_special_offset_handling,
4275     size_t local_symbol_count,
4276     const unsigned char* plocal_symbols,
4277     Relocatable_relocs* rr)
4278 {
4279   gold_assert(sh_type == elfcpp::SHT_RELA);
4280
4281   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4282     Relocatable_size_for_reloc> Scan_relocatable_relocs;
4283
4284   gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4285       Scan_relocatable_relocs>(
4286     symtab,
4287     layout,
4288     object,
4289     data_shndx,
4290     prelocs,
4291     reloc_count,
4292     output_section,
4293     needs_special_offset_handling,
4294     local_symbol_count,
4295     plocal_symbols,
4296     rr);
4297 }
4298
4299 // Relocate a section during a relocatable link.
4300
4301 template<int size>
4302 void
4303 Target_x86_64<size>::relocate_relocs(
4304     const Relocate_info<size, false>* relinfo,
4305     unsigned int sh_type,
4306     const unsigned char* prelocs,
4307     size_t reloc_count,
4308     Output_section* output_section,
4309     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4310     const Relocatable_relocs* rr,
4311     unsigned char* view,
4312     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4313     section_size_type view_size,
4314     unsigned char* reloc_view,
4315     section_size_type reloc_view_size)
4316 {
4317   gold_assert(sh_type == elfcpp::SHT_RELA);
4318
4319   gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4320     relinfo,
4321     prelocs,
4322     reloc_count,
4323     output_section,
4324     offset_in_output_section,
4325     rr,
4326     view,
4327     view_address,
4328     view_size,
4329     reloc_view,
4330     reloc_view_size);
4331 }
4332
4333 // Return the value to use for a dynamic which requires special
4334 // treatment.  This is how we support equality comparisons of function
4335 // pointers across shared library boundaries, as described in the
4336 // processor specific ABI supplement.
4337
4338 template<int size>
4339 uint64_t
4340 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4341 {
4342   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4343   return this->plt_address_for_global(gsym);
4344 }
4345
4346 // Return a string used to fill a code section with nops to take up
4347 // the specified length.
4348
4349 template<int size>
4350 std::string
4351 Target_x86_64<size>::do_code_fill(section_size_type length) const
4352 {
4353   if (length >= 16)
4354     {
4355       // Build a jmpq instruction to skip over the bytes.
4356       unsigned char jmp[5];
4357       jmp[0] = 0xe9;
4358       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4359       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4360               + std::string(length - 5, static_cast<char>(0x90)));
4361     }
4362
4363   // Nop sequences of various lengths.
4364   const char nop1[1] = { '\x90' };                 // nop
4365   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4366   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4367   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4368                          '\x00'};
4369   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4370                          '\x00', '\x00' };
4371   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4372                          '\x44', '\x00', '\x00' };
4373   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4374                          '\x00', '\x00', '\x00',
4375                          '\x00' };
4376   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4377                          '\x00', '\x00', '\x00',
4378                          '\x00', '\x00' };
4379   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4380                          '\x84', '\x00', '\x00',
4381                          '\x00', '\x00', '\x00' };
4382   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4383                            '\x1f', '\x84', '\x00',
4384                            '\x00', '\x00', '\x00',
4385                            '\x00' };
4386   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4387                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4388                            '\x00', '\x00', '\x00',
4389                            '\x00', '\x00' };
4390   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4391                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4392                            '\x84', '\x00', '\x00',
4393                            '\x00', '\x00', '\x00' };
4394   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4395                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4396                            '\x1f', '\x84', '\x00',
4397                            '\x00', '\x00', '\x00',
4398                            '\x00' };
4399   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4400                            '\x66', '\x66', '\x2e', // data16
4401                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4402                            '\x00', '\x00', '\x00',
4403                            '\x00', '\x00' };
4404   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4405                            '\x66', '\x66', '\x66', // data16; data16
4406                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4407                            '\x84', '\x00', '\x00',
4408                            '\x00', '\x00', '\x00' };
4409
4410   const char* nops[16] = {
4411     NULL,
4412     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4413     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4414   };
4415
4416   return std::string(nops[length], length);
4417 }
4418
4419 // Return the addend to use for a target specific relocation.  The
4420 // only target specific relocation is R_X86_64_TLSDESC for a local
4421 // symbol.  We want to set the addend is the offset of the local
4422 // symbol in the TLS segment.
4423
4424 template<int size>
4425 uint64_t
4426 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4427                                      uint64_t) const
4428 {
4429   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4430   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4431   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4432   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4433   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4434   gold_assert(psymval->is_tls_symbol());
4435   // The value of a TLS symbol is the offset in the TLS segment.
4436   return psymval->value(ti.object, 0);
4437 }
4438
4439 // Return the value to use for the base of a DW_EH_PE_datarel offset
4440 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4441 // assembler can not write out the difference between two labels in
4442 // different sections, so instead of using a pc-relative value they
4443 // use an offset from the GOT.
4444
4445 template<int size>
4446 uint64_t
4447 Target_x86_64<size>::do_ehframe_datarel_base() const
4448 {
4449   gold_assert(this->global_offset_table_ != NULL);
4450   Symbol* sym = this->global_offset_table_;
4451   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4452   return ssym->value();
4453 }
4454
4455 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4456 // compiled with -fsplit-stack.  The function calls non-split-stack
4457 // code.  We have to change the function so that it always ensures
4458 // that it has enough stack space to run some random function.
4459
4460 template<int size>
4461 void
4462 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4463                                         section_offset_type fnoffset,
4464                                         section_size_type fnsize,
4465                                         unsigned char* view,
4466                                         section_size_type view_size,
4467                                         std::string* from,
4468                                         std::string* to) const
4469 {
4470   // The function starts with a comparison of the stack pointer and a
4471   // field in the TCB.  This is followed by a jump.
4472
4473   // cmp %fs:NN,%rsp
4474   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
4475       && fnsize > 9)
4476     {
4477       // We will call __morestack if the carry flag is set after this
4478       // comparison.  We turn the comparison into an stc instruction
4479       // and some nops.
4480       view[fnoffset] = '\xf9';
4481       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
4482     }
4483   // lea NN(%rsp),%r10
4484   // lea NN(%rsp),%r11
4485   else if ((this->match_view(view, view_size, fnoffset,
4486                              "\x4c\x8d\x94\x24", 4)
4487             || this->match_view(view, view_size, fnoffset,
4488                                 "\x4c\x8d\x9c\x24", 4))
4489            && fnsize > 8)
4490     {
4491       // This is loading an offset from the stack pointer for a
4492       // comparison.  The offset is negative, so we decrease the
4493       // offset by the amount of space we need for the stack.  This
4494       // means we will avoid calling __morestack if there happens to
4495       // be plenty of space on the stack already.
4496       unsigned char* pval = view + fnoffset + 4;
4497       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4498       val -= parameters->options().split_stack_adjust_size();
4499       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4500     }
4501   else
4502     {
4503       if (!object->has_no_split_stack())
4504         object->error(_("failed to match split-stack sequence at "
4505                         "section %u offset %0zx"),
4506                       shndx, static_cast<size_t>(fnoffset));
4507       return;
4508     }
4509
4510   // We have to change the function so that it calls
4511   // __morestack_non_split instead of __morestack.  The former will
4512   // allocate additional stack space.
4513   *from = "__morestack";
4514   *to = "__morestack_non_split";
4515 }
4516
4517 // The selector for x86_64 object files.  Note this is never instantiated
4518 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4519
4520 template<int size>
4521 class Target_selector_x86_64 : public Target_selector_freebsd
4522 {
4523 public:
4524   Target_selector_x86_64()
4525     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4526                               (size == 64
4527                                ? "elf64-x86-64" : "elf32-x86-64"),
4528                               (size == 64
4529                                ? "elf64-x86-64-freebsd"
4530                                : "elf32-x86-64-freebsd"),
4531                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4532   { }
4533
4534   Target*
4535   do_instantiate_target()
4536   { return new Target_x86_64<size>(); }
4537
4538 };
4539
4540 // NaCl variant.  It uses different PLT contents.
4541
4542 template<int size>
4543 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4544 {
4545  public:
4546   Output_data_plt_x86_64_nacl(Layout* layout,
4547                               Output_data_got<64, false>* got,
4548                               Output_data_got_plt_x86_64* got_plt,
4549                               Output_data_space* got_irelative)
4550     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4551                                    got, got_plt, got_irelative)
4552   { }
4553
4554   Output_data_plt_x86_64_nacl(Layout* layout,
4555                               Output_data_got<64, false>* got,
4556                               Output_data_got_plt_x86_64* got_plt,
4557                               Output_data_space* got_irelative,
4558                               unsigned int plt_count)
4559     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4560                                    got, got_plt, got_irelative,
4561                                    plt_count)
4562   { }
4563
4564  protected:
4565   virtual unsigned int
4566   do_get_plt_entry_size() const
4567   { return plt_entry_size; }
4568
4569   virtual void
4570   do_add_eh_frame(Layout* layout)
4571   {
4572     layout->add_eh_frame_for_plt(this,
4573                                  this->plt_eh_frame_cie,
4574                                  this->plt_eh_frame_cie_size,
4575                                  plt_eh_frame_fde,
4576                                  plt_eh_frame_fde_size);
4577   }
4578
4579   virtual void
4580   do_fill_first_plt_entry(unsigned char* pov,
4581                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4582                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4583
4584   virtual unsigned int
4585   do_fill_plt_entry(unsigned char* pov,
4586                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4587                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4588                     unsigned int got_offset,
4589                     unsigned int plt_offset,
4590                     unsigned int plt_index);
4591
4592   virtual void
4593   do_fill_tlsdesc_entry(unsigned char* pov,
4594                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4595                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4596                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4597                         unsigned int tlsdesc_got_offset,
4598                         unsigned int plt_offset);
4599
4600  private:
4601   // The size of an entry in the PLT.
4602   static const int plt_entry_size = 64;
4603
4604   // The first entry in the PLT.
4605   static const unsigned char first_plt_entry[plt_entry_size];
4606
4607   // Other entries in the PLT for an executable.
4608   static const unsigned char plt_entry[plt_entry_size];
4609
4610   // The reserved TLSDESC entry in the PLT for an executable.
4611   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4612
4613   // The .eh_frame unwind information for the PLT.
4614   static const int plt_eh_frame_fde_size = 32;
4615   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4616 };
4617
4618 template<int size>
4619 class Target_x86_64_nacl : public Target_x86_64<size>
4620 {
4621  public:
4622   Target_x86_64_nacl()
4623     : Target_x86_64<size>(&x86_64_nacl_info)
4624   { }
4625
4626   virtual Output_data_plt_x86_64<size>*
4627   do_make_data_plt(Layout* layout,
4628                    Output_data_got<64, false>* got,
4629                    Output_data_got_plt_x86_64* got_plt,
4630                    Output_data_space* got_irelative)
4631   {
4632     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4633                                                  got_irelative);
4634   }
4635
4636   virtual Output_data_plt_x86_64<size>*
4637   do_make_data_plt(Layout* layout,
4638                    Output_data_got<64, false>* got,
4639                    Output_data_got_plt_x86_64* got_plt,
4640                    Output_data_space* got_irelative,
4641                    unsigned int plt_count)
4642   {
4643     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4644                                                  got_irelative,
4645                                                  plt_count);
4646   }
4647
4648   virtual std::string
4649   do_code_fill(section_size_type length) const;
4650
4651  private:
4652   static const Target::Target_info x86_64_nacl_info;
4653 };
4654
4655 template<>
4656 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4657 {
4658   64,                   // size
4659   false,                // is_big_endian
4660   elfcpp::EM_X86_64,    // machine_code
4661   false,                // has_make_symbol
4662   false,                // has_resolve
4663   true,                 // has_code_fill
4664   true,                 // is_default_stack_executable
4665   true,                 // can_icf_inline_merge_sections
4666   '\0',                 // wrap_char
4667   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4668   0x20000,              // default_text_segment_address
4669   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4670   0x10000,              // common_pagesize (overridable by -z common-page-size)
4671   true,                 // isolate_execinstr
4672   0x10000000,           // rosegment_gap
4673   elfcpp::SHN_UNDEF,    // small_common_shndx
4674   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4675   0,                    // small_common_section_flags
4676   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4677   NULL,                 // attributes_section
4678   NULL,                 // attributes_vendor
4679   "_start"              // entry_symbol_name
4680 };
4681
4682 template<>
4683 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4684 {
4685   32,                   // size
4686   false,                // is_big_endian
4687   elfcpp::EM_X86_64,    // machine_code
4688   false,                // has_make_symbol
4689   false,                // has_resolve
4690   true,                 // has_code_fill
4691   true,                 // is_default_stack_executable
4692   true,                 // can_icf_inline_merge_sections
4693   '\0',                 // wrap_char
4694   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4695   0x20000,              // default_text_segment_address
4696   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4697   0x10000,              // common_pagesize (overridable by -z common-page-size)
4698   true,                 // isolate_execinstr
4699   0x10000000,           // rosegment_gap
4700   elfcpp::SHN_UNDEF,    // small_common_shndx
4701   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4702   0,                    // small_common_section_flags
4703   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4704   NULL,                 // attributes_section
4705   NULL,                 // attributes_vendor
4706   "_start"              // entry_symbol_name
4707 };
4708
4709 #define NACLMASK        0xe0            // 32-byte alignment mask.
4710
4711 // The first entry in the PLT.
4712
4713 template<int size>
4714 const unsigned char
4715 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4716 {
4717   0xff, 0x35,                         // pushq contents of memory address
4718   0, 0, 0, 0,                         // replaced with address of .got + 8
4719   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4720   0, 0, 0, 0,                         // replaced with address of .got + 16
4721   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4722   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4723   0x41, 0xff, 0xe3,                   // jmpq *%r11
4724
4725   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4726   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4727
4728   // 32 bytes of nop to pad out to the standard size
4729   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4730   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4731   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4732   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4733   0x66,                                  // excess data32 prefix
4734   0x90                                   // nop
4735 };
4736
4737 template<int size>
4738 void
4739 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4740     unsigned char* pov,
4741     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4742     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4743 {
4744   memcpy(pov, first_plt_entry, plt_entry_size);
4745   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4746                                               (got_address + 8
4747                                                - (plt_address + 2 + 4)));
4748   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4749                                               (got_address + 16
4750                                                - (plt_address + 9 + 4)));
4751 }
4752
4753 // Subsequent entries in the PLT.
4754
4755 template<int size>
4756 const unsigned char
4757 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4758 {
4759   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4760   0, 0, 0, 0,                    // replaced with address of symbol in .got
4761   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4762   0x4d, 0x01, 0xfb,              // add %r15, %r11
4763   0x41, 0xff, 0xe3,              // jmpq *%r11
4764
4765   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4766   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4767   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4768
4769   // Lazy GOT entries point here (32-byte aligned).
4770   0x68,                       // pushq immediate
4771   0, 0, 0, 0,                 // replaced with index into relocation table
4772   0xe9,                       // jmp relative
4773   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4774
4775   // 22 bytes of nop to pad out to the standard size.
4776   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4777   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4778   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4779 };
4780
4781 template<int size>
4782 unsigned int
4783 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4784     unsigned char* pov,
4785     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4786     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4787     unsigned int got_offset,
4788     unsigned int plt_offset,
4789     unsigned int plt_index)
4790 {
4791   memcpy(pov, plt_entry, plt_entry_size);
4792   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4793                                               (got_address + got_offset
4794                                                - (plt_address + plt_offset
4795                                                   + 3 + 4)));
4796
4797   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4798   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4799                                               - (plt_offset + 38 + 4));
4800
4801   return 32;
4802 }
4803
4804 // The reserved TLSDESC entry in the PLT.
4805
4806 template<int size>
4807 const unsigned char
4808 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4809 {
4810   0xff, 0x35,                   // pushq x(%rip)
4811   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4812   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
4813   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
4814   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
4815   0x4d, 0x01, 0xfb,             // add %r15, %r11
4816   0x41, 0xff, 0xe3,             // jmpq *%r11
4817
4818   // 41 bytes of nop to pad out to the standard size.
4819   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4820   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4821   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4822   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4823   0x66, 0x66,                            // excess data32 prefixes
4824   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4825 };
4826
4827 template<int size>
4828 void
4829 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4830     unsigned char* pov,
4831     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4832     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4833     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4834     unsigned int tlsdesc_got_offset,
4835     unsigned int plt_offset)
4836 {
4837   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4838   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4839                                               (got_address + 8
4840                                                - (plt_address + plt_offset
4841                                                   + 2 + 4)));
4842   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4843                                               (got_base
4844                                                + tlsdesc_got_offset
4845                                                - (plt_address + plt_offset
4846                                                   + 9 + 4)));
4847 }
4848
4849 // The .eh_frame unwind information for the PLT.
4850
4851 template<int size>
4852 const unsigned char
4853 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4854 {
4855   0, 0, 0, 0,                           // Replaced with offset to .plt.
4856   0, 0, 0, 0,                           // Replaced with size of .plt.
4857   0,                                    // Augmentation size.
4858   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
4859   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
4860   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
4861   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
4862   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
4863   13,                                   // Block length.
4864   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
4865   elfcpp::DW_OP_breg16, 0,              // Push %rip.
4866   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
4867   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
4868   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
4869   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
4870   elfcpp::DW_OP_lit3,                   // Push 3.
4871   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
4872   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
4873   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
4874   elfcpp::DW_CFA_nop
4875 };
4876
4877 // Return a string used to fill a code section with nops.
4878 // For NaCl, long NOPs are only valid if they do not cross
4879 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4880 template<int size>
4881 std::string
4882 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
4883 {
4884   return std::string(length, static_cast<char>(0x90));
4885 }
4886
4887 // The selector for x86_64-nacl object files.
4888
4889 template<int size>
4890 class Target_selector_x86_64_nacl
4891   : public Target_selector_nacl<Target_selector_x86_64<size>,
4892                                 Target_x86_64_nacl<size> >
4893 {
4894  public:
4895   Target_selector_x86_64_nacl()
4896     : Target_selector_nacl<Target_selector_x86_64<size>,
4897                            Target_x86_64_nacl<size> >("x86-64",
4898                                                       size == 64
4899                                                       ? "elf64-x86-64-nacl"
4900                                                       : "elf32-x86-64-nacl",
4901                                                       size == 64
4902                                                       ? "elf_x86_64_nacl"
4903                                                       : "elf32_x86_64_nacl")
4904   { }
4905 };
4906
4907 Target_selector_x86_64_nacl<64> target_selector_x86_64;
4908 Target_selector_x86_64_nacl<32> target_selector_x32;
4909
4910 } // End anonymous namespace.