Fix typos in gold.
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42 #include "icf.h"
43
44 namespace
45 {
46
47 using namespace gold;
48
49 // A class to handle the PLT data.
50
51 class Output_data_plt_x86_64 : public Output_section_data
52 {
53  public:
54   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
55
56   Output_data_plt_x86_64(Symbol_table*, Layout*, Output_data_got<64, false>*,
57                          Output_data_space*);
58
59   // Add an entry to the PLT.
60   void
61   add_entry(Symbol* gsym);
62
63   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
64   unsigned int
65   add_local_ifunc_entry(Sized_relobj<64, false>* relobj,
66                         unsigned int local_sym_index);
67
68   // Add the reserved TLSDESC_PLT entry to the PLT.
69   void
70   reserve_tlsdesc_entry(unsigned int got_offset)
71   { this->tlsdesc_got_offset_ = got_offset; }
72
73   // Return true if a TLSDESC_PLT entry has been reserved.
74   bool
75   has_tlsdesc_entry() const
76   { return this->tlsdesc_got_offset_ != -1U; }
77
78   // Return the GOT offset for the reserved TLSDESC_PLT entry.
79   unsigned int
80   get_tlsdesc_got_offset() const
81   { return this->tlsdesc_got_offset_; }
82
83   // Return the offset of the reserved TLSDESC_PLT entry.
84   unsigned int
85   get_tlsdesc_plt_offset() const
86   { return (this->count_ + 1) * plt_entry_size; }
87
88   // Return the .rela.plt section data.
89   Reloc_section*
90   rela_plt()
91   { return this->rel_; }
92
93   // Return where the TLSDESC relocations should go.
94   Reloc_section*
95   rela_tlsdesc(Layout*);
96
97   // Return the number of PLT entries.
98   unsigned int
99   entry_count() const
100   { return this->count_; }
101
102   // Return the offset of the first non-reserved PLT entry.
103   static unsigned int
104   first_plt_entry_offset()
105   { return plt_entry_size; }
106
107   // Return the size of a PLT entry.
108   static unsigned int
109   get_plt_entry_size()
110   { return plt_entry_size; }
111
112  protected:
113   void
114   do_adjust_output_section(Output_section* os);
115
116   // Write to a map file.
117   void
118   do_print_to_mapfile(Mapfile* mapfile) const
119   { mapfile->print_output_data(this, _("** PLT")); }
120
121  private:
122   // The size of an entry in the PLT.
123   static const int plt_entry_size = 16;
124
125   // The first entry in the PLT.
126   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
127   // procedure linkage table for both programs and shared objects."
128   static unsigned char first_plt_entry[plt_entry_size];
129
130   // Other entries in the PLT for an executable.
131   static unsigned char plt_entry[plt_entry_size];
132
133   // The reserved TLSDESC entry in the PLT for an executable.
134   static unsigned char tlsdesc_plt_entry[plt_entry_size];
135
136   // Set the final size.
137   void
138   set_final_data_size();
139
140   // Write out the PLT data.
141   void
142   do_write(Output_file*);
143
144   // The reloc section.
145   Reloc_section* rel_;
146   // The TLSDESC relocs, if necessary.  These must follow the regular
147   // PLT relocs.
148   Reloc_section* tlsdesc_rel_;
149   // The .got section.
150   Output_data_got<64, false>* got_;
151   // The .got.plt section.
152   Output_data_space* got_plt_;
153   // The number of PLT entries.
154   unsigned int count_;
155   // Offset of the reserved TLSDESC_GOT entry when needed.
156   unsigned int tlsdesc_got_offset_;
157 };
158
159 // The x86_64 target class.
160 // See the ABI at
161 //   http://www.x86-64.org/documentation/abi.pdf
162 // TLS info comes from
163 //   http://people.redhat.com/drepper/tls.pdf
164 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
165
166 class Target_x86_64 : public Target_freebsd<64, false>
167 {
168  public:
169   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
170   // uses only Elf64_Rela relocation entries with explicit addends."
171   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
172
173   Target_x86_64()
174     : Target_freebsd<64, false>(&x86_64_info),
175       got_(NULL), plt_(NULL), got_plt_(NULL), got_tlsdesc_(NULL),
176       global_offset_table_(NULL), rela_dyn_(NULL),
177       copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
178       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
179       tls_base_symbol_defined_(false)
180   { }
181
182   // This function should be defined in targets that can use relocation
183   // types to determine (implemented in local_reloc_may_be_function_pointer
184   // and global_reloc_may_be_function_pointer)
185   // if a function's pointer is taken.  ICF uses this in safe mode to only
186   // fold those functions whose pointer is defintely not taken.  For x86_64
187   // pie binaries, safe ICF cannot be done by looking at relocation types.
188   inline bool
189   can_check_for_function_pointers() const
190   { return !parameters->options().pie(); }
191
192   virtual bool
193   can_icf_inline_merge_sections () const
194   { return true; }
195
196   // Hook for a new output section.
197   void
198   do_new_output_section(Output_section*) const;
199
200   // Scan the relocations to look for symbol adjustments.
201   void
202   gc_process_relocs(Symbol_table* symtab,
203                     Layout* layout,
204                     Sized_relobj<64, false>* object,
205                     unsigned int data_shndx,
206                     unsigned int sh_type,
207                     const unsigned char* prelocs,
208                     size_t reloc_count,
209                     Output_section* output_section,
210                     bool needs_special_offset_handling,
211                     size_t local_symbol_count,
212                     const unsigned char* plocal_symbols);
213
214   // Scan the relocations to look for symbol adjustments.
215   void
216   scan_relocs(Symbol_table* symtab,
217               Layout* layout,
218               Sized_relobj<64, false>* object,
219               unsigned int data_shndx,
220               unsigned int sh_type,
221               const unsigned char* prelocs,
222               size_t reloc_count,
223               Output_section* output_section,
224               bool needs_special_offset_handling,
225               size_t local_symbol_count,
226               const unsigned char* plocal_symbols);
227
228   // Finalize the sections.
229   void
230   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
231
232   // Return the value to use for a dynamic which requires special
233   // treatment.
234   uint64_t
235   do_dynsym_value(const Symbol*) const;
236
237   // Relocate a section.
238   void
239   relocate_section(const Relocate_info<64, false>*,
240                    unsigned int sh_type,
241                    const unsigned char* prelocs,
242                    size_t reloc_count,
243                    Output_section* output_section,
244                    bool needs_special_offset_handling,
245                    unsigned char* view,
246                    elfcpp::Elf_types<64>::Elf_Addr view_address,
247                    section_size_type view_size,
248                    const Reloc_symbol_changes*);
249
250   // Scan the relocs during a relocatable link.
251   void
252   scan_relocatable_relocs(Symbol_table* symtab,
253                           Layout* layout,
254                           Sized_relobj<64, false>* object,
255                           unsigned int data_shndx,
256                           unsigned int sh_type,
257                           const unsigned char* prelocs,
258                           size_t reloc_count,
259                           Output_section* output_section,
260                           bool needs_special_offset_handling,
261                           size_t local_symbol_count,
262                           const unsigned char* plocal_symbols,
263                           Relocatable_relocs*);
264
265   // Relocate a section during a relocatable link.
266   void
267   relocate_for_relocatable(const Relocate_info<64, false>*,
268                            unsigned int sh_type,
269                            const unsigned char* prelocs,
270                            size_t reloc_count,
271                            Output_section* output_section,
272                            off_t offset_in_output_section,
273                            const Relocatable_relocs*,
274                            unsigned char* view,
275                            elfcpp::Elf_types<64>::Elf_Addr view_address,
276                            section_size_type view_size,
277                            unsigned char* reloc_view,
278                            section_size_type reloc_view_size);
279
280   // Return a string used to fill a code section with nops.
281   std::string
282   do_code_fill(section_size_type length) const;
283
284   // Return whether SYM is defined by the ABI.
285   bool
286   do_is_defined_by_abi(const Symbol* sym) const
287   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
288
289   // Return the symbol index to use for a target specific relocation.
290   // The only target specific relocation is R_X86_64_TLSDESC for a
291   // local symbol, which is an absolute reloc.
292   unsigned int
293   do_reloc_symbol_index(void*, unsigned int r_type) const
294   {
295     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
296     return 0;
297   }
298
299   // Return the addend to use for a target specific relocation.
300   uint64_t
301   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
302
303   // Return the PLT section.
304   Output_data*
305   do_plt_section_for_global(const Symbol*) const
306   { return this->plt_section(); }
307
308   Output_data*
309   do_plt_section_for_local(const Relobj*, unsigned int) const
310   { return this->plt_section(); }
311
312   // Adjust -fsplit-stack code which calls non-split-stack code.
313   void
314   do_calls_non_split(Relobj* object, unsigned int shndx,
315                      section_offset_type fnoffset, section_size_type fnsize,
316                      unsigned char* view, section_size_type view_size,
317                      std::string* from, std::string* to) const;
318
319   // Return the size of the GOT section.
320   section_size_type
321   got_size() const
322   {
323     gold_assert(this->got_ != NULL);
324     return this->got_->data_size();
325   }
326
327   // Return the number of entries in the GOT.
328   unsigned int
329   got_entry_count() const
330   {
331     if (this->got_ == NULL)
332       return 0;
333     return this->got_size() / 8;
334   }
335
336   // Return the number of entries in the PLT.
337   unsigned int
338   plt_entry_count() const;
339
340   // Return the offset of the first non-reserved PLT entry.
341   unsigned int
342   first_plt_entry_offset() const;
343
344   // Return the size of each PLT entry.
345   unsigned int
346   plt_entry_size() const;
347
348   // Add a new reloc argument, returning the index in the vector.
349   size_t
350   add_tlsdesc_info(Sized_relobj<64, false>* object, unsigned int r_sym)
351   {
352     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
353     return this->tlsdesc_reloc_info_.size() - 1;
354   }
355
356  private:
357   // The class which scans relocations.
358   class Scan
359   {
360   public:
361     Scan()
362       : issued_non_pic_error_(false)
363     { }
364
365     static inline int
366     get_reference_flags(unsigned int r_type);
367
368     inline void
369     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
370           Sized_relobj<64, false>* object,
371           unsigned int data_shndx,
372           Output_section* output_section,
373           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
374           const elfcpp::Sym<64, false>& lsym);
375
376     inline void
377     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
378            Sized_relobj<64, false>* object,
379            unsigned int data_shndx,
380            Output_section* output_section,
381            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
382            Symbol* gsym);
383
384     inline bool
385     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
386                                         Target_x86_64* target,
387                                         Sized_relobj<64, false>* object,
388                                         unsigned int data_shndx,
389                                         Output_section* output_section,
390                                         const elfcpp::Rela<64, false>& reloc,
391                                         unsigned int r_type,
392                                         const elfcpp::Sym<64, false>& lsym);
393
394     inline bool
395     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
396                                          Target_x86_64* target,
397                                          Sized_relobj<64, false>* object,
398                                          unsigned int data_shndx,
399                                          Output_section* output_section,
400                                          const elfcpp::Rela<64, false>& reloc,
401                                          unsigned int r_type,
402                                          Symbol* gsym);
403
404   private:
405     static void
406     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
407
408     static void
409     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
410                              Symbol*);
411
412     void
413     check_non_pic(Relobj*, unsigned int r_type);
414
415     inline bool
416     possible_function_pointer_reloc(unsigned int r_type);
417
418     bool
419     reloc_needs_plt_for_ifunc(Sized_relobj<64, false>*, unsigned int r_type);
420
421     // Whether we have issued an error about a non-PIC compilation.
422     bool issued_non_pic_error_;
423   };
424
425   // The class which implements relocation.
426   class Relocate
427   {
428    public:
429     Relocate()
430       : skip_call_tls_get_addr_(false)
431     { }
432
433     ~Relocate()
434     {
435       if (this->skip_call_tls_get_addr_)
436         {
437           // FIXME: This needs to specify the location somehow.
438           gold_error(_("missing expected TLS relocation"));
439         }
440     }
441
442     // Do a relocation.  Return false if the caller should not issue
443     // any warnings about this relocation.
444     inline bool
445     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
446              size_t relnum, const elfcpp::Rela<64, false>&,
447              unsigned int r_type, const Sized_symbol<64>*,
448              const Symbol_value<64>*,
449              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
450              section_size_type);
451
452    private:
453     // Do a TLS relocation.
454     inline void
455     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
456                  size_t relnum, const elfcpp::Rela<64, false>&,
457                  unsigned int r_type, const Sized_symbol<64>*,
458                  const Symbol_value<64>*,
459                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
460                  section_size_type);
461
462     // Do a TLS General-Dynamic to Initial-Exec transition.
463     inline void
464     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
465                  Output_segment* tls_segment,
466                  const elfcpp::Rela<64, false>&, unsigned int r_type,
467                  elfcpp::Elf_types<64>::Elf_Addr value,
468                  unsigned char* view,
469                  elfcpp::Elf_types<64>::Elf_Addr,
470                  section_size_type view_size);
471
472     // Do a TLS General-Dynamic to Local-Exec transition.
473     inline void
474     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
475                  Output_segment* tls_segment,
476                  const elfcpp::Rela<64, false>&, unsigned int r_type,
477                  elfcpp::Elf_types<64>::Elf_Addr value,
478                  unsigned char* view,
479                  section_size_type view_size);
480
481     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
482     inline void
483     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
484                       Output_segment* tls_segment,
485                       const elfcpp::Rela<64, false>&, unsigned int r_type,
486                       elfcpp::Elf_types<64>::Elf_Addr value,
487                       unsigned char* view,
488                       elfcpp::Elf_types<64>::Elf_Addr,
489                       section_size_type view_size);
490
491     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
492     inline void
493     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
494                       Output_segment* tls_segment,
495                       const elfcpp::Rela<64, false>&, unsigned int r_type,
496                       elfcpp::Elf_types<64>::Elf_Addr value,
497                       unsigned char* view,
498                       section_size_type view_size);
499
500     // Do a TLS Local-Dynamic to Local-Exec transition.
501     inline void
502     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
503                  Output_segment* tls_segment,
504                  const elfcpp::Rela<64, false>&, unsigned int r_type,
505                  elfcpp::Elf_types<64>::Elf_Addr value,
506                  unsigned char* view,
507                  section_size_type view_size);
508
509     // Do a TLS Initial-Exec to Local-Exec transition.
510     static inline void
511     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
512                  Output_segment* tls_segment,
513                  const elfcpp::Rela<64, false>&, unsigned int r_type,
514                  elfcpp::Elf_types<64>::Elf_Addr value,
515                  unsigned char* view,
516                  section_size_type view_size);
517
518     // This is set if we should skip the next reloc, which should be a
519     // PLT32 reloc against ___tls_get_addr.
520     bool skip_call_tls_get_addr_;
521   };
522
523   // A class which returns the size required for a relocation type,
524   // used while scanning relocs during a relocatable link.
525   class Relocatable_size_for_reloc
526   {
527    public:
528     unsigned int
529     get_size_for_reloc(unsigned int, Relobj*);
530   };
531
532   // Adjust TLS relocation type based on the options and whether this
533   // is a local symbol.
534   static tls::Tls_optimization
535   optimize_tls_reloc(bool is_final, int r_type);
536
537   // Get the GOT section, creating it if necessary.
538   Output_data_got<64, false>*
539   got_section(Symbol_table*, Layout*);
540
541   // Get the GOT PLT section.
542   Output_data_space*
543   got_plt_section() const
544   {
545     gold_assert(this->got_plt_ != NULL);
546     return this->got_plt_;
547   }
548
549   // Get the GOT section for TLSDESC entries.
550   Output_data_got<64, false>*
551   got_tlsdesc_section() const
552   {
553     gold_assert(this->got_tlsdesc_ != NULL);
554     return this->got_tlsdesc_;
555   }
556
557   // Create the PLT section.
558   void
559   make_plt_section(Symbol_table* symtab, Layout* layout);
560
561   // Create a PLT entry for a global symbol.
562   void
563   make_plt_entry(Symbol_table*, Layout*, Symbol*);
564
565   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
566   void
567   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
568                              Sized_relobj<64, false>* relobj,
569                              unsigned int local_sym_index);
570
571   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
572   void
573   define_tls_base_symbol(Symbol_table*, Layout*);
574
575   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
576   void
577   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
578
579   // Create a GOT entry for the TLS module index.
580   unsigned int
581   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
582                       Sized_relobj<64, false>* object);
583
584   // Get the PLT section.
585   Output_data_plt_x86_64*
586   plt_section() const
587   {
588     gold_assert(this->plt_ != NULL);
589     return this->plt_;
590   }
591
592   // Get the dynamic reloc section, creating it if necessary.
593   Reloc_section*
594   rela_dyn_section(Layout*);
595
596   // Get the section to use for TLSDESC relocations.
597   Reloc_section*
598   rela_tlsdesc_section(Layout*) const;
599
600   // Add a potential copy relocation.
601   void
602   copy_reloc(Symbol_table* symtab, Layout* layout,
603              Sized_relobj<64, false>* object,
604              unsigned int shndx, Output_section* output_section,
605              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
606   {
607     this->copy_relocs_.copy_reloc(symtab, layout,
608                                   symtab->get_sized_symbol<64>(sym),
609                                   object, shndx, output_section,
610                                   reloc, this->rela_dyn_section(layout));
611   }
612
613   // Information about this specific target which we pass to the
614   // general Target structure.
615   static const Target::Target_info x86_64_info;
616
617   // The types of GOT entries needed for this platform.
618   // These values are exposed to the ABI in an incremental link.
619   // Do not renumber existing values without changing the version
620   // number of the .gnu_incremental_inputs section.
621   enum Got_type
622   {
623     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
624     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
625     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
626     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
627   };
628
629   // This type is used as the argument to the target specific
630   // relocation routines.  The only target specific reloc is
631   // R_X86_64_TLSDESC against a local symbol.
632   struct Tlsdesc_info
633   {
634     Tlsdesc_info(Sized_relobj<64, false>* a_object, unsigned int a_r_sym)
635       : object(a_object), r_sym(a_r_sym)
636     { }
637
638     // The object in which the local symbol is defined.
639     Sized_relobj<64, false>* object;
640     // The local symbol index in the object.
641     unsigned int r_sym;
642   };
643
644   // The GOT section.
645   Output_data_got<64, false>* got_;
646   // The PLT section.
647   Output_data_plt_x86_64* plt_;
648   // The GOT PLT section.
649   Output_data_space* got_plt_;
650   // The GOT section for TLSDESC relocations.
651   Output_data_got<64, false>* got_tlsdesc_;
652   // The _GLOBAL_OFFSET_TABLE_ symbol.
653   Symbol* global_offset_table_;
654   // The dynamic reloc section.
655   Reloc_section* rela_dyn_;
656   // Relocs saved to avoid a COPY reloc.
657   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
658   // Space for variables copied with a COPY reloc.
659   Output_data_space* dynbss_;
660   // Offset of the GOT entry for the TLS module index.
661   unsigned int got_mod_index_offset_;
662   // We handle R_X86_64_TLSDESC against a local symbol as a target
663   // specific relocation.  Here we store the object and local symbol
664   // index for the relocation.
665   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
666   // True if the _TLS_MODULE_BASE_ symbol has been defined.
667   bool tls_base_symbol_defined_;
668 };
669
670 const Target::Target_info Target_x86_64::x86_64_info =
671 {
672   64,                   // size
673   false,                // is_big_endian
674   elfcpp::EM_X86_64,    // machine_code
675   false,                // has_make_symbol
676   false,                // has_resolve
677   true,                 // has_code_fill
678   true,                 // is_default_stack_executable
679   '\0',                 // wrap_char
680   "/lib/ld64.so.1",     // program interpreter
681   0x400000,             // default_text_segment_address
682   0x1000,               // abi_pagesize (overridable by -z max-page-size)
683   0x1000,               // common_pagesize (overridable by -z common-page-size)
684   elfcpp::SHN_UNDEF,    // small_common_shndx
685   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
686   0,                    // small_common_section_flags
687   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
688   NULL,                 // attributes_section
689   NULL                  // attributes_vendor
690 };
691
692 // This is called when a new output section is created.  This is where
693 // we handle the SHF_X86_64_LARGE.
694
695 void
696 Target_x86_64::do_new_output_section(Output_section* os) const
697 {
698   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
699     os->set_is_large_section();
700 }
701
702 // Get the GOT section, creating it if necessary.
703
704 Output_data_got<64, false>*
705 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
706 {
707   if (this->got_ == NULL)
708     {
709       gold_assert(symtab != NULL && layout != NULL);
710
711       this->got_ = new Output_data_got<64, false>();
712
713       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
714                                       (elfcpp::SHF_ALLOC
715                                        | elfcpp::SHF_WRITE),
716                                       this->got_, ORDER_RELRO_LAST,
717                                       true);
718
719       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
720       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
721                                       (elfcpp::SHF_ALLOC
722                                        | elfcpp::SHF_WRITE),
723                                       this->got_plt_, ORDER_NON_RELRO_FIRST,
724                                       false);
725
726       // The first three entries are reserved.
727       this->got_plt_->set_current_data_size(3 * 8);
728
729       // Those bytes can go into the relro segment.
730       layout->increase_relro(3 * 8);
731
732       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
733       this->global_offset_table_ =
734         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
735                                       Symbol_table::PREDEFINED,
736                                       this->got_plt_,
737                                       0, 0, elfcpp::STT_OBJECT,
738                                       elfcpp::STB_LOCAL,
739                                       elfcpp::STV_HIDDEN, 0,
740                                       false, false);
741
742       // If there are any TLSDESC relocations, they get GOT entries in
743       // .got.plt after the jump slot entries.
744       this->got_tlsdesc_ = new Output_data_got<64, false>();
745       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
746                                       (elfcpp::SHF_ALLOC
747                                        | elfcpp::SHF_WRITE),
748                                       this->got_tlsdesc_,
749                                       ORDER_NON_RELRO_FIRST, false);
750     }
751
752   return this->got_;
753 }
754
755 // Get the dynamic reloc section, creating it if necessary.
756
757 Target_x86_64::Reloc_section*
758 Target_x86_64::rela_dyn_section(Layout* layout)
759 {
760   if (this->rela_dyn_ == NULL)
761     {
762       gold_assert(layout != NULL);
763       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
764       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
765                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
766                                       ORDER_DYNAMIC_RELOCS, false);
767     }
768   return this->rela_dyn_;
769 }
770
771 // Create the PLT section.  The ordinary .got section is an argument,
772 // since we need to refer to the start.  We also create our own .got
773 // section just for PLT entries.
774
775 Output_data_plt_x86_64::Output_data_plt_x86_64(Symbol_table* symtab,
776                                                Layout* layout,
777                                                Output_data_got<64, false>* got,
778                                                Output_data_space* got_plt)
779   : Output_section_data(8), tlsdesc_rel_(NULL), got_(got), got_plt_(got_plt),
780     count_(0), tlsdesc_got_offset_(-1U)
781 {
782   this->rel_ = new Reloc_section(false);
783   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
784                                   elfcpp::SHF_ALLOC, this->rel_,
785                                   ORDER_DYNAMIC_PLT_RELOCS, false);
786
787   if (parameters->doing_static_link())
788     {
789       // A statically linked executable will only have a .rela.plt
790       // section to hold R_X86_64_IRELATIVE relocs for STT_GNU_IFUNC
791       // symbols.  The library will use these symbols to locate the
792       // IRELATIVE relocs at program startup time.
793       symtab->define_in_output_data("__rela_iplt_start", NULL,
794                                     Symbol_table::PREDEFINED,
795                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
796                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
797                                     0, false, true);
798       symtab->define_in_output_data("__rela_iplt_end", NULL,
799                                     Symbol_table::PREDEFINED,
800                                     this->rel_, 0, 0, elfcpp::STT_NOTYPE,
801                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
802                                     0, true, true);
803     }
804 }
805
806 void
807 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
808 {
809   os->set_entsize(plt_entry_size);
810 }
811
812 // Add an entry to the PLT.
813
814 void
815 Output_data_plt_x86_64::add_entry(Symbol* gsym)
816 {
817   gold_assert(!gsym->has_plt_offset());
818
819   // Note that when setting the PLT offset we skip the initial
820   // reserved PLT entry.
821   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
822
823   ++this->count_;
824
825   section_offset_type got_offset = this->got_plt_->current_data_size();
826
827   // Every PLT entry needs a GOT entry which points back to the PLT
828   // entry (this will be changed by the dynamic linker, normally
829   // lazily when the function is called).
830   this->got_plt_->set_current_data_size(got_offset + 8);
831
832   // Every PLT entry needs a reloc.
833   if (gsym->type() == elfcpp::STT_GNU_IFUNC
834       && gsym->can_use_relative_reloc(false))
835     this->rel_->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
836                                              this->got_plt_, got_offset, 0);
837   else
838     {
839       gsym->set_needs_dynsym_entry();
840       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
841                              got_offset, 0);
842     }
843
844   // Note that we don't need to save the symbol.  The contents of the
845   // PLT are independent of which symbols are used.  The symbols only
846   // appear in the relocations.
847 }
848
849 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
850 // the PLT offset.
851
852 unsigned int
853 Output_data_plt_x86_64::add_local_ifunc_entry(Sized_relobj<64, false>* relobj,
854                                               unsigned int local_sym_index)
855 {
856   unsigned int plt_offset = (this->count_ + 1) * plt_entry_size;
857   ++this->count_;
858
859   section_offset_type got_offset = this->got_plt_->current_data_size();
860
861   // Every PLT entry needs a GOT entry which points back to the PLT
862   // entry.
863   this->got_plt_->set_current_data_size(got_offset + 8);
864
865   // Every PLT entry needs a reloc.
866   this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
867                                           elfcpp::R_X86_64_IRELATIVE,
868                                           this->got_plt_, got_offset, 0);
869
870   return plt_offset;
871 }
872
873 // Return where the TLSDESC relocations should go, creating it if
874 // necessary.  These follow the JUMP_SLOT relocations.
875
876 Output_data_plt_x86_64::Reloc_section*
877 Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
878 {
879   if (this->tlsdesc_rel_ == NULL)
880     {
881       this->tlsdesc_rel_ = new Reloc_section(false);
882       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
883                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
884                                       ORDER_DYNAMIC_PLT_RELOCS, false);
885       gold_assert(this->tlsdesc_rel_->output_section() ==
886                   this->rel_->output_section());
887     }
888   return this->tlsdesc_rel_;
889 }
890
891 // Set the final size.
892 void
893 Output_data_plt_x86_64::set_final_data_size()
894 {
895   unsigned int count = this->count_;
896   if (this->has_tlsdesc_entry())
897     ++count;
898   this->set_data_size((count + 1) * plt_entry_size);
899 }
900
901 // The first entry in the PLT for an executable.
902
903 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
904 {
905   // From AMD64 ABI Draft 0.98, page 76
906   0xff, 0x35,   // pushq contents of memory address
907   0, 0, 0, 0,   // replaced with address of .got + 8
908   0xff, 0x25,   // jmp indirect
909   0, 0, 0, 0,   // replaced with address of .got + 16
910   0x90, 0x90, 0x90, 0x90   // noop (x4)
911 };
912
913 // Subsequent entries in the PLT for an executable.
914
915 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
916 {
917   // From AMD64 ABI Draft 0.98, page 76
918   0xff, 0x25,   // jmpq indirect
919   0, 0, 0, 0,   // replaced with address of symbol in .got
920   0x68,         // pushq immediate
921   0, 0, 0, 0,   // replaced with offset into relocation table
922   0xe9,         // jmpq relative
923   0, 0, 0, 0    // replaced with offset to start of .plt
924 };
925
926 // The reserved TLSDESC entry in the PLT for an executable.
927
928 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
929 {
930   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
931   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
932   0xff, 0x35,   // pushq x(%rip)
933   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
934   0xff, 0x25,   // jmpq *y(%rip)
935   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
936   0x0f, 0x1f,   // nop
937   0x40, 0
938 };
939
940 // Write out the PLT.  This uses the hand-coded instructions above,
941 // and adjusts them as needed.  This is specified by the AMD64 ABI.
942
943 void
944 Output_data_plt_x86_64::do_write(Output_file* of)
945 {
946   const off_t offset = this->offset();
947   const section_size_type oview_size =
948     convert_to_section_size_type(this->data_size());
949   unsigned char* const oview = of->get_output_view(offset, oview_size);
950
951   const off_t got_file_offset = this->got_plt_->offset();
952   const section_size_type got_size =
953     convert_to_section_size_type(this->got_plt_->data_size());
954   unsigned char* const got_view = of->get_output_view(got_file_offset,
955                                                       got_size);
956
957   unsigned char* pov = oview;
958
959   // The base address of the .plt section.
960   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
961   // The base address of the .got section.
962   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
963   // The base address of the PLT portion of the .got section,
964   // which is where the GOT pointer will point, and where the
965   // three reserved GOT entries are located.
966   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
967
968   memcpy(pov, first_plt_entry, plt_entry_size);
969   // We do a jmp relative to the PC at the end of this instruction.
970   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
971                                               (got_address + 8
972                                                - (plt_address + 6)));
973   elfcpp::Swap<32, false>::writeval(pov + 8,
974                                     (got_address + 16
975                                      - (plt_address + 12)));
976   pov += plt_entry_size;
977
978   unsigned char* got_pov = got_view;
979
980   memset(got_pov, 0, 24);
981   got_pov += 24;
982
983   unsigned int plt_offset = plt_entry_size;
984   unsigned int got_offset = 24;
985   const unsigned int count = this->count_;
986   for (unsigned int plt_index = 0;
987        plt_index < count;
988        ++plt_index,
989          pov += plt_entry_size,
990          got_pov += 8,
991          plt_offset += plt_entry_size,
992          got_offset += 8)
993     {
994       // Set and adjust the PLT entry itself.
995       memcpy(pov, plt_entry, plt_entry_size);
996       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
997                                                   (got_address + got_offset
998                                                    - (plt_address + plt_offset
999                                                       + 6)));
1000
1001       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1002       elfcpp::Swap<32, false>::writeval(pov + 12,
1003                                         - (plt_offset + plt_entry_size));
1004
1005       // Set the entry in the GOT.
1006       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1007     }
1008
1009   if (this->has_tlsdesc_entry())
1010     {
1011       // Set and adjust the reserved TLSDESC PLT entry.
1012       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1013       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1014       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1015                                                   (got_address + 8
1016                                                    - (plt_address + plt_offset
1017                                                       + 6)));
1018       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1019                                                   (got_base
1020                                                    + tlsdesc_got_offset
1021                                                    - (plt_address + plt_offset
1022                                                       + 12)));
1023       pov += plt_entry_size;
1024     }
1025
1026   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1027   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1028
1029   of->write_output_view(offset, oview_size, oview);
1030   of->write_output_view(got_file_offset, got_size, got_view);
1031 }
1032
1033 // Create the PLT section.
1034
1035 void
1036 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
1037 {
1038   if (this->plt_ == NULL)
1039     {
1040       // Create the GOT sections first.
1041       this->got_section(symtab, layout);
1042
1043       this->plt_ = new Output_data_plt_x86_64(symtab, layout, this->got_,
1044                                               this->got_plt_);
1045       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1046                                       (elfcpp::SHF_ALLOC
1047                                        | elfcpp::SHF_EXECINSTR),
1048                                       this->plt_, ORDER_PLT, false);
1049
1050       // Make the sh_info field of .rela.plt point to .plt.
1051       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1052       rela_plt_os->set_info_section(this->plt_->output_section());
1053     }
1054 }
1055
1056 // Return the section for TLSDESC relocations.
1057
1058 Target_x86_64::Reloc_section*
1059 Target_x86_64::rela_tlsdesc_section(Layout* layout) const
1060 {
1061   return this->plt_section()->rela_tlsdesc(layout);
1062 }
1063
1064 // Create a PLT entry for a global symbol.
1065
1066 void
1067 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
1068                               Symbol* gsym)
1069 {
1070   if (gsym->has_plt_offset())
1071     return;
1072
1073   if (this->plt_ == NULL)
1074     this->make_plt_section(symtab, layout);
1075
1076   this->plt_->add_entry(gsym);
1077 }
1078
1079 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1080
1081 void
1082 Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1083                                           Sized_relobj<64, false>* relobj,
1084                                           unsigned int local_sym_index)
1085 {
1086   if (relobj->local_has_plt_offset(local_sym_index))
1087     return;
1088   if (this->plt_ == NULL)
1089     this->make_plt_section(symtab, layout);
1090   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(relobj,
1091                                                               local_sym_index);
1092   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1093 }
1094
1095 // Return the number of entries in the PLT.
1096
1097 unsigned int
1098 Target_x86_64::plt_entry_count() const
1099 {
1100   if (this->plt_ == NULL)
1101     return 0;
1102   return this->plt_->entry_count();
1103 }
1104
1105 // Return the offset of the first non-reserved PLT entry.
1106
1107 unsigned int
1108 Target_x86_64::first_plt_entry_offset() const
1109 {
1110   return Output_data_plt_x86_64::first_plt_entry_offset();
1111 }
1112
1113 // Return the size of each PLT entry.
1114
1115 unsigned int
1116 Target_x86_64::plt_entry_size() const
1117 {
1118   return Output_data_plt_x86_64::get_plt_entry_size();
1119 }
1120
1121 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1122
1123 void
1124 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1125 {
1126   if (this->tls_base_symbol_defined_)
1127     return;
1128
1129   Output_segment* tls_segment = layout->tls_segment();
1130   if (tls_segment != NULL)
1131     {
1132       bool is_exec = parameters->options().output_is_executable();
1133       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1134                                        Symbol_table::PREDEFINED,
1135                                        tls_segment, 0, 0,
1136                                        elfcpp::STT_TLS,
1137                                        elfcpp::STB_LOCAL,
1138                                        elfcpp::STV_HIDDEN, 0,
1139                                        (is_exec
1140                                         ? Symbol::SEGMENT_END
1141                                         : Symbol::SEGMENT_START),
1142                                        true);
1143     }
1144   this->tls_base_symbol_defined_ = true;
1145 }
1146
1147 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1148
1149 void
1150 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
1151                                              Layout* layout)
1152 {
1153   if (this->plt_ == NULL)
1154     this->make_plt_section(symtab, layout);
1155
1156   if (!this->plt_->has_tlsdesc_entry())
1157     {
1158       // Allocate the TLSDESC_GOT entry.
1159       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1160       unsigned int got_offset = got->add_constant(0);
1161
1162       // Allocate the TLSDESC_PLT entry.
1163       this->plt_->reserve_tlsdesc_entry(got_offset);
1164     }
1165 }
1166
1167 // Create a GOT entry for the TLS module index.
1168
1169 unsigned int
1170 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1171                                    Sized_relobj<64, false>* object)
1172 {
1173   if (this->got_mod_index_offset_ == -1U)
1174     {
1175       gold_assert(symtab != NULL && layout != NULL && object != NULL);
1176       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1177       Output_data_got<64, false>* got = this->got_section(symtab, layout);
1178       unsigned int got_offset = got->add_constant(0);
1179       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1180                           got_offset, 0);
1181       got->add_constant(0);
1182       this->got_mod_index_offset_ = got_offset;
1183     }
1184   return this->got_mod_index_offset_;
1185 }
1186
1187 // Optimize the TLS relocation type based on what we know about the
1188 // symbol.  IS_FINAL is true if the final address of this symbol is
1189 // known at link time.
1190
1191 tls::Tls_optimization
1192 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1193 {
1194   // If we are generating a shared library, then we can't do anything
1195   // in the linker.
1196   if (parameters->options().shared())
1197     return tls::TLSOPT_NONE;
1198
1199   switch (r_type)
1200     {
1201     case elfcpp::R_X86_64_TLSGD:
1202     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1203     case elfcpp::R_X86_64_TLSDESC_CALL:
1204       // These are General-Dynamic which permits fully general TLS
1205       // access.  Since we know that we are generating an executable,
1206       // we can convert this to Initial-Exec.  If we also know that
1207       // this is a local symbol, we can further switch to Local-Exec.
1208       if (is_final)
1209         return tls::TLSOPT_TO_LE;
1210       return tls::TLSOPT_TO_IE;
1211
1212     case elfcpp::R_X86_64_TLSLD:
1213       // This is Local-Dynamic, which refers to a local symbol in the
1214       // dynamic TLS block.  Since we know that we generating an
1215       // executable, we can switch to Local-Exec.
1216       return tls::TLSOPT_TO_LE;
1217
1218     case elfcpp::R_X86_64_DTPOFF32:
1219     case elfcpp::R_X86_64_DTPOFF64:
1220       // Another Local-Dynamic reloc.
1221       return tls::TLSOPT_TO_LE;
1222
1223     case elfcpp::R_X86_64_GOTTPOFF:
1224       // These are Initial-Exec relocs which get the thread offset
1225       // from the GOT.  If we know that we are linking against the
1226       // local symbol, we can switch to Local-Exec, which links the
1227       // thread offset into the instruction.
1228       if (is_final)
1229         return tls::TLSOPT_TO_LE;
1230       return tls::TLSOPT_NONE;
1231
1232     case elfcpp::R_X86_64_TPOFF32:
1233       // When we already have Local-Exec, there is nothing further we
1234       // can do.
1235       return tls::TLSOPT_NONE;
1236
1237     default:
1238       gold_unreachable();
1239     }
1240 }
1241
1242 // Get the Reference_flags for a particular relocation.
1243
1244 int
1245 Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
1246 {
1247   switch (r_type)
1248     {
1249     case elfcpp::R_X86_64_NONE:
1250     case elfcpp::R_X86_64_GNU_VTINHERIT:
1251     case elfcpp::R_X86_64_GNU_VTENTRY:
1252     case elfcpp::R_X86_64_GOTPC32:
1253     case elfcpp::R_X86_64_GOTPC64:
1254       // No symbol reference.
1255       return 0;
1256
1257     case elfcpp::R_X86_64_64:
1258     case elfcpp::R_X86_64_32:
1259     case elfcpp::R_X86_64_32S:
1260     case elfcpp::R_X86_64_16:
1261     case elfcpp::R_X86_64_8:
1262       return Symbol::ABSOLUTE_REF;
1263
1264     case elfcpp::R_X86_64_PC64:
1265     case elfcpp::R_X86_64_PC32:
1266     case elfcpp::R_X86_64_PC16:
1267     case elfcpp::R_X86_64_PC8:
1268     case elfcpp::R_X86_64_GOTOFF64:
1269       return Symbol::RELATIVE_REF;
1270
1271     case elfcpp::R_X86_64_PLT32:
1272     case elfcpp::R_X86_64_PLTOFF64:
1273       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1274
1275     case elfcpp::R_X86_64_GOT64:
1276     case elfcpp::R_X86_64_GOT32:
1277     case elfcpp::R_X86_64_GOTPCREL64:
1278     case elfcpp::R_X86_64_GOTPCREL:
1279     case elfcpp::R_X86_64_GOTPLT64:
1280       // Absolute in GOT.
1281       return Symbol::ABSOLUTE_REF;
1282
1283     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1284     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1285     case elfcpp::R_X86_64_TLSDESC_CALL:
1286     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1287     case elfcpp::R_X86_64_DTPOFF32:
1288     case elfcpp::R_X86_64_DTPOFF64:
1289     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1290     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1291       return Symbol::TLS_REF;
1292
1293     case elfcpp::R_X86_64_COPY:
1294     case elfcpp::R_X86_64_GLOB_DAT:
1295     case elfcpp::R_X86_64_JUMP_SLOT:
1296     case elfcpp::R_X86_64_RELATIVE:
1297     case elfcpp::R_X86_64_IRELATIVE:
1298     case elfcpp::R_X86_64_TPOFF64:
1299     case elfcpp::R_X86_64_DTPMOD64:
1300     case elfcpp::R_X86_64_TLSDESC:
1301     case elfcpp::R_X86_64_SIZE32:
1302     case elfcpp::R_X86_64_SIZE64:
1303     default:
1304       // Not expected.  We will give an error later.
1305       return 0;
1306     }
1307 }
1308
1309 // Report an unsupported relocation against a local symbol.
1310
1311 void
1312 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
1313                                              unsigned int r_type)
1314 {
1315   gold_error(_("%s: unsupported reloc %u against local symbol"),
1316              object->name().c_str(), r_type);
1317 }
1318
1319 // We are about to emit a dynamic relocation of type R_TYPE.  If the
1320 // dynamic linker does not support it, issue an error.  The GNU linker
1321 // only issues a non-PIC error for an allocated read-only section.
1322 // Here we know the section is allocated, but we don't know that it is
1323 // read-only.  But we check for all the relocation types which the
1324 // glibc dynamic linker supports, so it seems appropriate to issue an
1325 // error even if the section is not read-only.
1326
1327 void
1328 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
1329 {
1330   switch (r_type)
1331     {
1332       // These are the relocation types supported by glibc for x86_64.
1333     case elfcpp::R_X86_64_RELATIVE:
1334     case elfcpp::R_X86_64_IRELATIVE:
1335     case elfcpp::R_X86_64_GLOB_DAT:
1336     case elfcpp::R_X86_64_JUMP_SLOT:
1337     case elfcpp::R_X86_64_DTPMOD64:
1338     case elfcpp::R_X86_64_DTPOFF64:
1339     case elfcpp::R_X86_64_TPOFF64:
1340     case elfcpp::R_X86_64_64:
1341     case elfcpp::R_X86_64_32:
1342     case elfcpp::R_X86_64_PC32:
1343     case elfcpp::R_X86_64_COPY:
1344       return;
1345
1346     default:
1347       // This prevents us from issuing more than one error per reloc
1348       // section.  But we can still wind up issuing more than one
1349       // error per object file.
1350       if (this->issued_non_pic_error_)
1351         return;
1352       gold_assert(parameters->options().output_is_position_independent());
1353       object->error(_("requires unsupported dynamic reloc; "
1354                       "recompile with -fPIC"));
1355       this->issued_non_pic_error_ = true;
1356       return;
1357
1358     case elfcpp::R_X86_64_NONE:
1359       gold_unreachable();
1360     }
1361 }
1362
1363 // Return whether we need to make a PLT entry for a relocation of the
1364 // given type against a STT_GNU_IFUNC symbol.
1365
1366 bool
1367 Target_x86_64::Scan::reloc_needs_plt_for_ifunc(Sized_relobj<64, false>* object,
1368                                                unsigned int r_type)
1369 {
1370   int flags = Scan::get_reference_flags(r_type);
1371   if (flags & Symbol::TLS_REF)
1372     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1373                object->name().c_str(), r_type);
1374   return flags != 0;
1375 }
1376
1377 // Scan a relocation for a local symbol.
1378
1379 inline void
1380 Target_x86_64::Scan::local(Symbol_table* symtab,
1381                            Layout* layout,
1382                            Target_x86_64* target,
1383                            Sized_relobj<64, false>* object,
1384                            unsigned int data_shndx,
1385                            Output_section* output_section,
1386                            const elfcpp::Rela<64, false>& reloc,
1387                            unsigned int r_type,
1388                            const elfcpp::Sym<64, false>& lsym)
1389 {
1390   // A local STT_GNU_IFUNC symbol may require a PLT entry.
1391   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1392       && this->reloc_needs_plt_for_ifunc(object, r_type))
1393     {
1394       unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1395       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1396     }
1397
1398   switch (r_type)
1399     {
1400     case elfcpp::R_X86_64_NONE:
1401     case elfcpp::R_X86_64_GNU_VTINHERIT:
1402     case elfcpp::R_X86_64_GNU_VTENTRY:
1403       break;
1404
1405     case elfcpp::R_X86_64_64:
1406       // If building a shared library (or a position-independent
1407       // executable), we need to create a dynamic relocation for this
1408       // location.  The relocation applied at link time will apply the
1409       // link-time value, so we flag the location with an
1410       // R_X86_64_RELATIVE relocation so the dynamic loader can
1411       // relocate it easily.
1412       if (parameters->options().output_is_position_independent())
1413         {
1414           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1415           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1416           rela_dyn->add_local_relative(object, r_sym,
1417                                        elfcpp::R_X86_64_RELATIVE,
1418                                        output_section, data_shndx,
1419                                        reloc.get_r_offset(),
1420                                        reloc.get_r_addend());
1421         }
1422       break;
1423
1424     case elfcpp::R_X86_64_32:
1425     case elfcpp::R_X86_64_32S:
1426     case elfcpp::R_X86_64_16:
1427     case elfcpp::R_X86_64_8:
1428       // If building a shared library (or a position-independent
1429       // executable), we need to create a dynamic relocation for this
1430       // location.  We can't use an R_X86_64_RELATIVE relocation
1431       // because that is always a 64-bit relocation.
1432       if (parameters->options().output_is_position_independent())
1433         {
1434           this->check_non_pic(object, r_type);
1435
1436           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1437           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1438           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1439             rela_dyn->add_local(object, r_sym, r_type, output_section,
1440                                 data_shndx, reloc.get_r_offset(),
1441                                 reloc.get_r_addend());
1442           else
1443             {
1444               gold_assert(lsym.get_st_value() == 0);
1445               unsigned int shndx = lsym.get_st_shndx();
1446               bool is_ordinary;
1447               shndx = object->adjust_sym_shndx(r_sym, shndx,
1448                                                &is_ordinary);
1449               if (!is_ordinary)
1450                 object->error(_("section symbol %u has bad shndx %u"),
1451                               r_sym, shndx);
1452               else
1453                 rela_dyn->add_local_section(object, shndx,
1454                                             r_type, output_section,
1455                                             data_shndx, reloc.get_r_offset(),
1456                                             reloc.get_r_addend());
1457             }
1458         }
1459       break;
1460
1461     case elfcpp::R_X86_64_PC64:
1462     case elfcpp::R_X86_64_PC32:
1463     case elfcpp::R_X86_64_PC16:
1464     case elfcpp::R_X86_64_PC8:
1465       break;
1466
1467     case elfcpp::R_X86_64_PLT32:
1468       // Since we know this is a local symbol, we can handle this as a
1469       // PC32 reloc.
1470       break;
1471
1472     case elfcpp::R_X86_64_GOTPC32:
1473     case elfcpp::R_X86_64_GOTOFF64:
1474     case elfcpp::R_X86_64_GOTPC64:
1475     case elfcpp::R_X86_64_PLTOFF64:
1476       // We need a GOT section.
1477       target->got_section(symtab, layout);
1478       // For PLTOFF64, we'd normally want a PLT section, but since we
1479       // know this is a local symbol, no PLT is needed.
1480       break;
1481
1482     case elfcpp::R_X86_64_GOT64:
1483     case elfcpp::R_X86_64_GOT32:
1484     case elfcpp::R_X86_64_GOTPCREL64:
1485     case elfcpp::R_X86_64_GOTPCREL:
1486     case elfcpp::R_X86_64_GOTPLT64:
1487       {
1488         // The symbol requires a GOT entry.
1489         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1490         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1491
1492         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
1493         // lets function pointers compare correctly with shared
1494         // libraries.  Otherwise we would need an IRELATIVE reloc.
1495         bool is_new;
1496         if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1497           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1498         else
1499           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1500         if (is_new)
1501           {
1502             // If we are generating a shared object, we need to add a
1503             // dynamic relocation for this symbol's GOT entry.
1504             if (parameters->options().output_is_position_independent())
1505               {
1506                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1507                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1508                 if (r_type != elfcpp::R_X86_64_GOT32)
1509                   {
1510                     unsigned int got_offset =
1511                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1512                     rela_dyn->add_local_relative(object, r_sym,
1513                                                  elfcpp::R_X86_64_RELATIVE,
1514                                                  got, got_offset, 0);
1515                   }
1516                 else
1517                   {
1518                     this->check_non_pic(object, r_type);
1519
1520                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1521                     rela_dyn->add_local(
1522                         object, r_sym, r_type, got,
1523                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1524                   }
1525               }
1526           }
1527         // For GOTPLT64, we'd normally want a PLT section, but since
1528         // we know this is a local symbol, no PLT is needed.
1529       }
1530       break;
1531
1532     case elfcpp::R_X86_64_COPY:
1533     case elfcpp::R_X86_64_GLOB_DAT:
1534     case elfcpp::R_X86_64_JUMP_SLOT:
1535     case elfcpp::R_X86_64_RELATIVE:
1536     case elfcpp::R_X86_64_IRELATIVE:
1537       // These are outstanding tls relocs, which are unexpected when linking
1538     case elfcpp::R_X86_64_TPOFF64:
1539     case elfcpp::R_X86_64_DTPMOD64:
1540     case elfcpp::R_X86_64_TLSDESC:
1541       gold_error(_("%s: unexpected reloc %u in object file"),
1542                  object->name().c_str(), r_type);
1543       break;
1544
1545       // These are initial tls relocs, which are expected when linking
1546     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1547     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1548     case elfcpp::R_X86_64_TLSDESC_CALL:
1549     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1550     case elfcpp::R_X86_64_DTPOFF32:
1551     case elfcpp::R_X86_64_DTPOFF64:
1552     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1553     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1554       {
1555         bool output_is_shared = parameters->options().shared();
1556         const tls::Tls_optimization optimized_type
1557             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1558         switch (r_type)
1559           {
1560           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1561             if (optimized_type == tls::TLSOPT_NONE)
1562               {
1563                 // Create a pair of GOT entries for the module index and
1564                 // dtv-relative offset.
1565                 Output_data_got<64, false>* got
1566                     = target->got_section(symtab, layout);
1567                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1568                 unsigned int shndx = lsym.get_st_shndx();
1569                 bool is_ordinary;
1570                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1571                 if (!is_ordinary)
1572                   object->error(_("local symbol %u has bad shndx %u"),
1573                               r_sym, shndx);
1574                 else
1575                   got->add_local_pair_with_rela(object, r_sym,
1576                                                 shndx,
1577                                                 GOT_TYPE_TLS_PAIR,
1578                                                 target->rela_dyn_section(layout),
1579                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1580               }
1581             else if (optimized_type != tls::TLSOPT_TO_LE)
1582               unsupported_reloc_local(object, r_type);
1583             break;
1584
1585           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1586             target->define_tls_base_symbol(symtab, layout);
1587             if (optimized_type == tls::TLSOPT_NONE)
1588               {
1589                 // Create reserved PLT and GOT entries for the resolver.
1590                 target->reserve_tlsdesc_entries(symtab, layout);
1591
1592                 // Generate a double GOT entry with an
1593                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
1594                 // is resolved lazily, so the GOT entry needs to be in
1595                 // an area in .got.plt, not .got.  Call got_section to
1596                 // make sure the section has been created.
1597                 target->got_section(symtab, layout);
1598                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
1599                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1600                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
1601                   {
1602                     unsigned int got_offset = got->add_constant(0);
1603                     got->add_constant(0);
1604                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
1605                                                  got_offset);
1606                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
1607                     // We store the arguments we need in a vector, and
1608                     // use the index into the vector as the parameter
1609                     // to pass to the target specific routines.
1610                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
1611                     void* arg = reinterpret_cast<void*>(intarg);
1612                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1613                                             got, got_offset, 0);
1614                   }
1615               }
1616             else if (optimized_type != tls::TLSOPT_TO_LE)
1617               unsupported_reloc_local(object, r_type);
1618             break;
1619
1620           case elfcpp::R_X86_64_TLSDESC_CALL:
1621             break;
1622
1623           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1624             if (optimized_type == tls::TLSOPT_NONE)
1625               {
1626                 // Create a GOT entry for the module index.
1627                 target->got_mod_index_entry(symtab, layout, object);
1628               }
1629             else if (optimized_type != tls::TLSOPT_TO_LE)
1630               unsupported_reloc_local(object, r_type);
1631             break;
1632
1633           case elfcpp::R_X86_64_DTPOFF32:
1634           case elfcpp::R_X86_64_DTPOFF64:
1635             break;
1636
1637           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1638             layout->set_has_static_tls();
1639             if (optimized_type == tls::TLSOPT_NONE)
1640               {
1641                 // Create a GOT entry for the tp-relative offset.
1642                 Output_data_got<64, false>* got
1643                     = target->got_section(symtab, layout);
1644                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1645                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1646                                          target->rela_dyn_section(layout),
1647                                          elfcpp::R_X86_64_TPOFF64);
1648               }
1649             else if (optimized_type != tls::TLSOPT_TO_LE)
1650               unsupported_reloc_local(object, r_type);
1651             break;
1652
1653           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1654             layout->set_has_static_tls();
1655             if (output_is_shared)
1656               unsupported_reloc_local(object, r_type);
1657             break;
1658
1659           default:
1660             gold_unreachable();
1661           }
1662       }
1663       break;
1664
1665     case elfcpp::R_X86_64_SIZE32:
1666     case elfcpp::R_X86_64_SIZE64:
1667     default:
1668       gold_error(_("%s: unsupported reloc %u against local symbol"),
1669                  object->name().c_str(), r_type);
1670       break;
1671     }
1672 }
1673
1674
1675 // Report an unsupported relocation against a global symbol.
1676
1677 void
1678 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1679                                               unsigned int r_type,
1680                                               Symbol* gsym)
1681 {
1682   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1683              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1684 }
1685
1686 // Returns true if this relocation type could be that of a function pointer.
1687 inline bool
1688 Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
1689 {
1690   switch (r_type)
1691     {
1692     case elfcpp::R_X86_64_64:
1693     case elfcpp::R_X86_64_32:
1694     case elfcpp::R_X86_64_32S:
1695     case elfcpp::R_X86_64_16:
1696     case elfcpp::R_X86_64_8:
1697     case elfcpp::R_X86_64_GOT64:
1698     case elfcpp::R_X86_64_GOT32:
1699     case elfcpp::R_X86_64_GOTPCREL64:
1700     case elfcpp::R_X86_64_GOTPCREL:
1701     case elfcpp::R_X86_64_GOTPLT64:
1702       {
1703         return true;
1704       }
1705     }
1706   return false;
1707 }
1708
1709 // For safe ICF, scan a relocation for a local symbol to check if it
1710 // corresponds to a function pointer being taken.  In that case mark
1711 // the function whose pointer was taken as not foldable.
1712
1713 inline bool
1714 Target_x86_64::Scan::local_reloc_may_be_function_pointer(
1715   Symbol_table* ,
1716   Layout* ,
1717   Target_x86_64* ,
1718   Sized_relobj<64, false>* ,
1719   unsigned int ,
1720   Output_section* ,
1721   const elfcpp::Rela<64, false>& ,
1722   unsigned int r_type,
1723   const elfcpp::Sym<64, false>&)
1724 {
1725   // When building a shared library, do not fold any local symbols as it is
1726   // not possible to distinguish pointer taken versus a call by looking at
1727   // the relocation types.
1728   return (parameters->options().shared()
1729           || possible_function_pointer_reloc(r_type));
1730 }
1731
1732 // For safe ICF, scan a relocation for a global symbol to check if it
1733 // corresponds to a function pointer being taken.  In that case mark
1734 // the function whose pointer was taken as not foldable.
1735
1736 inline bool
1737 Target_x86_64::Scan::global_reloc_may_be_function_pointer(
1738   Symbol_table*,
1739   Layout* ,
1740   Target_x86_64* ,
1741   Sized_relobj<64, false>* ,
1742   unsigned int ,
1743   Output_section* ,
1744   const elfcpp::Rela<64, false>& ,
1745   unsigned int r_type,
1746   Symbol* gsym)
1747 {
1748   // When building a shared library, do not fold symbols whose visibility
1749   // is hidden, internal or protected.
1750   return ((parameters->options().shared()
1751            && (gsym->visibility() == elfcpp::STV_INTERNAL
1752                || gsym->visibility() == elfcpp::STV_PROTECTED
1753                || gsym->visibility() == elfcpp::STV_HIDDEN))
1754           || possible_function_pointer_reloc(r_type));
1755 }
1756
1757 // Scan a relocation for a global symbol.
1758
1759 inline void
1760 Target_x86_64::Scan::global(Symbol_table* symtab,
1761                             Layout* layout,
1762                             Target_x86_64* target,
1763                             Sized_relobj<64, false>* object,
1764                             unsigned int data_shndx,
1765                             Output_section* output_section,
1766                             const elfcpp::Rela<64, false>& reloc,
1767                             unsigned int r_type,
1768                             Symbol* gsym)
1769 {
1770   // A STT_GNU_IFUNC symbol may require a PLT entry.
1771   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1772       && this->reloc_needs_plt_for_ifunc(object, r_type))
1773     target->make_plt_entry(symtab, layout, gsym);
1774
1775   switch (r_type)
1776     {
1777     case elfcpp::R_X86_64_NONE:
1778     case elfcpp::R_X86_64_GNU_VTINHERIT:
1779     case elfcpp::R_X86_64_GNU_VTENTRY:
1780       break;
1781
1782     case elfcpp::R_X86_64_64:
1783     case elfcpp::R_X86_64_32:
1784     case elfcpp::R_X86_64_32S:
1785     case elfcpp::R_X86_64_16:
1786     case elfcpp::R_X86_64_8:
1787       {
1788         // Make a PLT entry if necessary.
1789         if (gsym->needs_plt_entry())
1790           {
1791             target->make_plt_entry(symtab, layout, gsym);
1792             // Since this is not a PC-relative relocation, we may be
1793             // taking the address of a function. In that case we need to
1794             // set the entry in the dynamic symbol table to the address of
1795             // the PLT entry.
1796             if (gsym->is_from_dynobj() && !parameters->options().shared())
1797               gsym->set_needs_dynsym_value();
1798           }
1799         // Make a dynamic relocation if necessary.
1800         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1801           {
1802             if (gsym->may_need_copy_reloc())
1803               {
1804                 target->copy_reloc(symtab, layout, object,
1805                                    data_shndx, output_section, gsym, reloc);
1806               }
1807             else if (r_type == elfcpp::R_X86_64_64
1808                      && gsym->type() == elfcpp::STT_GNU_IFUNC
1809                      && gsym->can_use_relative_reloc(false)
1810                      && !gsym->is_from_dynobj()
1811                      && !gsym->is_undefined()
1812                      && !gsym->is_preemptible())
1813               {
1814                 // Use an IRELATIVE reloc for a locally defined
1815                 // STT_GNU_IFUNC symbol.  This makes a function
1816                 // address in a PIE executable match the address in a
1817                 // shared library that it links against.
1818                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1819                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
1820                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
1821                                                        output_section, object,
1822                                                        data_shndx,
1823                                                        reloc.get_r_offset(),
1824                                                        reloc.get_r_addend());
1825               }
1826             else if (r_type == elfcpp::R_X86_64_64
1827                      && gsym->can_use_relative_reloc(false))
1828               {
1829                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1830                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1831                                               output_section, object,
1832                                               data_shndx,
1833                                               reloc.get_r_offset(),
1834                                               reloc.get_r_addend());
1835               }
1836             else
1837               {
1838                 this->check_non_pic(object, r_type);
1839                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1840                 rela_dyn->add_global(gsym, r_type, output_section, object,
1841                                      data_shndx, reloc.get_r_offset(),
1842                                      reloc.get_r_addend());
1843               }
1844           }
1845       }
1846       break;
1847
1848     case elfcpp::R_X86_64_PC64:
1849     case elfcpp::R_X86_64_PC32:
1850     case elfcpp::R_X86_64_PC16:
1851     case elfcpp::R_X86_64_PC8:
1852       {
1853         // Make a PLT entry if necessary.
1854         if (gsym->needs_plt_entry())
1855           target->make_plt_entry(symtab, layout, gsym);
1856         // Make a dynamic relocation if necessary.
1857         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
1858           {
1859             if (gsym->may_need_copy_reloc())
1860               {
1861                 target->copy_reloc(symtab, layout, object,
1862                                    data_shndx, output_section, gsym, reloc);
1863               }
1864             else
1865               {
1866                 this->check_non_pic(object, r_type);
1867                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1868                 rela_dyn->add_global(gsym, r_type, output_section, object,
1869                                      data_shndx, reloc.get_r_offset(),
1870                                      reloc.get_r_addend());
1871               }
1872           }
1873       }
1874       break;
1875
1876     case elfcpp::R_X86_64_GOT64:
1877     case elfcpp::R_X86_64_GOT32:
1878     case elfcpp::R_X86_64_GOTPCREL64:
1879     case elfcpp::R_X86_64_GOTPCREL:
1880     case elfcpp::R_X86_64_GOTPLT64:
1881       {
1882         // The symbol requires a GOT entry.
1883         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1884         if (gsym->final_value_is_known())
1885           {
1886             // For a STT_GNU_IFUNC symbol we want the PLT address.
1887             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1888               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
1889             else
1890               got->add_global(gsym, GOT_TYPE_STANDARD);
1891           }
1892         else
1893           {
1894             // If this symbol is not fully resolved, we need to add a
1895             // dynamic relocation for it.
1896             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1897             if (gsym->is_from_dynobj()
1898                 || gsym->is_undefined()
1899                 || gsym->is_preemptible()
1900                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
1901                     && parameters->options().output_is_position_independent()))
1902               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1903                                         elfcpp::R_X86_64_GLOB_DAT);
1904             else
1905               {
1906                 // For a STT_GNU_IFUNC symbol we want to write the PLT
1907                 // offset into the GOT, so that function pointer
1908                 // comparisons work correctly.
1909                 bool is_new;
1910                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
1911                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
1912                 else
1913                   {
1914                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
1915                     // Tell the dynamic linker to use the PLT address
1916                     // when resolving relocations.
1917                     if (gsym->is_from_dynobj()
1918                         && !parameters->options().shared())
1919                       gsym->set_needs_dynsym_value();
1920                   }
1921                 if (is_new)
1922                   {
1923                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
1924                     rela_dyn->add_global_relative(gsym,
1925                                                   elfcpp::R_X86_64_RELATIVE,
1926                                                   got, got_off, 0);
1927                   }
1928               }
1929           }
1930         // For GOTPLT64, we also need a PLT entry (but only if the
1931         // symbol is not fully resolved).
1932         if (r_type == elfcpp::R_X86_64_GOTPLT64
1933             && !gsym->final_value_is_known())
1934           target->make_plt_entry(symtab, layout, gsym);
1935       }
1936       break;
1937
1938     case elfcpp::R_X86_64_PLT32:
1939       // If the symbol is fully resolved, this is just a PC32 reloc.
1940       // Otherwise we need a PLT entry.
1941       if (gsym->final_value_is_known())
1942         break;
1943       // If building a shared library, we can also skip the PLT entry
1944       // if the symbol is defined in the output file and is protected
1945       // or hidden.
1946       if (gsym->is_defined()
1947           && !gsym->is_from_dynobj()
1948           && !gsym->is_preemptible())
1949         break;
1950       target->make_plt_entry(symtab, layout, gsym);
1951       break;
1952
1953     case elfcpp::R_X86_64_GOTPC32:
1954     case elfcpp::R_X86_64_GOTOFF64:
1955     case elfcpp::R_X86_64_GOTPC64:
1956     case elfcpp::R_X86_64_PLTOFF64:
1957       // We need a GOT section.
1958       target->got_section(symtab, layout);
1959       // For PLTOFF64, we also need a PLT entry (but only if the
1960       // symbol is not fully resolved).
1961       if (r_type == elfcpp::R_X86_64_PLTOFF64
1962           && !gsym->final_value_is_known())
1963         target->make_plt_entry(symtab, layout, gsym);
1964       break;
1965
1966     case elfcpp::R_X86_64_COPY:
1967     case elfcpp::R_X86_64_GLOB_DAT:
1968     case elfcpp::R_X86_64_JUMP_SLOT:
1969     case elfcpp::R_X86_64_RELATIVE:
1970     case elfcpp::R_X86_64_IRELATIVE:
1971       // These are outstanding tls relocs, which are unexpected when linking
1972     case elfcpp::R_X86_64_TPOFF64:
1973     case elfcpp::R_X86_64_DTPMOD64:
1974     case elfcpp::R_X86_64_TLSDESC:
1975       gold_error(_("%s: unexpected reloc %u in object file"),
1976                  object->name().c_str(), r_type);
1977       break;
1978
1979       // These are initial tls relocs, which are expected for global()
1980     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1981     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1982     case elfcpp::R_X86_64_TLSDESC_CALL:
1983     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1984     case elfcpp::R_X86_64_DTPOFF32:
1985     case elfcpp::R_X86_64_DTPOFF64:
1986     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1987     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1988       {
1989         const bool is_final = gsym->final_value_is_known();
1990         const tls::Tls_optimization optimized_type
1991             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1992         switch (r_type)
1993           {
1994           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1995             if (optimized_type == tls::TLSOPT_NONE)
1996               {
1997                 // Create a pair of GOT entries for the module index and
1998                 // dtv-relative offset.
1999                 Output_data_got<64, false>* got
2000                     = target->got_section(symtab, layout);
2001                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
2002                                                target->rela_dyn_section(layout),
2003                                                elfcpp::R_X86_64_DTPMOD64,
2004                                                elfcpp::R_X86_64_DTPOFF64);
2005               }
2006             else if (optimized_type == tls::TLSOPT_TO_IE)
2007               {
2008                 // Create a GOT entry for the tp-relative offset.
2009                 Output_data_got<64, false>* got
2010                     = target->got_section(symtab, layout);
2011                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2012                                           target->rela_dyn_section(layout),
2013                                           elfcpp::R_X86_64_TPOFF64);
2014               }
2015             else if (optimized_type != tls::TLSOPT_TO_LE)
2016               unsupported_reloc_global(object, r_type, gsym);
2017             break;
2018
2019           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2020             target->define_tls_base_symbol(symtab, layout);
2021             if (optimized_type == tls::TLSOPT_NONE)
2022               {
2023                 // Create reserved PLT and GOT entries for the resolver.
2024                 target->reserve_tlsdesc_entries(symtab, layout);
2025
2026                 // Create a double GOT entry with an R_X86_64_TLSDESC
2027                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
2028                 // lazily, so the GOT entry needs to be in an area in
2029                 // .got.plt, not .got.  Call got_section to make sure
2030                 // the section has been created.
2031                 target->got_section(symtab, layout);
2032                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2033                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2034                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
2035                                                elfcpp::R_X86_64_TLSDESC, 0);
2036               }
2037             else if (optimized_type == tls::TLSOPT_TO_IE)
2038               {
2039                 // Create a GOT entry for the tp-relative offset.
2040                 Output_data_got<64, false>* got
2041                     = target->got_section(symtab, layout);
2042                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2043                                           target->rela_dyn_section(layout),
2044                                           elfcpp::R_X86_64_TPOFF64);
2045               }
2046             else if (optimized_type != tls::TLSOPT_TO_LE)
2047               unsupported_reloc_global(object, r_type, gsym);
2048             break;
2049
2050           case elfcpp::R_X86_64_TLSDESC_CALL:
2051             break;
2052
2053           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2054             if (optimized_type == tls::TLSOPT_NONE)
2055               {
2056                 // Create a GOT entry for the module index.
2057                 target->got_mod_index_entry(symtab, layout, object);
2058               }
2059             else if (optimized_type != tls::TLSOPT_TO_LE)
2060               unsupported_reloc_global(object, r_type, gsym);
2061             break;
2062
2063           case elfcpp::R_X86_64_DTPOFF32:
2064           case elfcpp::R_X86_64_DTPOFF64:
2065             break;
2066
2067           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2068             layout->set_has_static_tls();
2069             if (optimized_type == tls::TLSOPT_NONE)
2070               {
2071                 // Create a GOT entry for the tp-relative offset.
2072                 Output_data_got<64, false>* got
2073                     = target->got_section(symtab, layout);
2074                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2075                                           target->rela_dyn_section(layout),
2076                                           elfcpp::R_X86_64_TPOFF64);
2077               }
2078             else if (optimized_type != tls::TLSOPT_TO_LE)
2079               unsupported_reloc_global(object, r_type, gsym);
2080             break;
2081
2082           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2083             layout->set_has_static_tls();
2084             if (parameters->options().shared())
2085               unsupported_reloc_local(object, r_type);
2086             break;
2087
2088           default:
2089             gold_unreachable();
2090           }
2091       }
2092       break;
2093
2094     case elfcpp::R_X86_64_SIZE32:
2095     case elfcpp::R_X86_64_SIZE64:
2096     default:
2097       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2098                  object->name().c_str(), r_type,
2099                  gsym->demangled_name().c_str());
2100       break;
2101     }
2102 }
2103
2104 void
2105 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
2106                                  Layout* layout,
2107                                  Sized_relobj<64, false>* object,
2108                                  unsigned int data_shndx,
2109                                  unsigned int sh_type,
2110                                  const unsigned char* prelocs,
2111                                  size_t reloc_count,
2112                                  Output_section* output_section,
2113                                  bool needs_special_offset_handling,
2114                                  size_t local_symbol_count,
2115                                  const unsigned char* plocal_symbols)
2116 {
2117
2118   if (sh_type == elfcpp::SHT_REL)
2119     {
2120       return;
2121     }
2122
2123    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2124                            Target_x86_64::Scan,
2125                            Target_x86_64::Relocatable_size_for_reloc>(
2126     symtab,
2127     layout,
2128     this,
2129     object,
2130     data_shndx,
2131     prelocs,
2132     reloc_count,
2133     output_section,
2134     needs_special_offset_handling,
2135     local_symbol_count,
2136     plocal_symbols);
2137  
2138 }
2139 // Scan relocations for a section.
2140
2141 void
2142 Target_x86_64::scan_relocs(Symbol_table* symtab,
2143                            Layout* layout,
2144                            Sized_relobj<64, false>* object,
2145                            unsigned int data_shndx,
2146                            unsigned int sh_type,
2147                            const unsigned char* prelocs,
2148                            size_t reloc_count,
2149                            Output_section* output_section,
2150                            bool needs_special_offset_handling,
2151                            size_t local_symbol_count,
2152                            const unsigned char* plocal_symbols)
2153 {
2154   if (sh_type == elfcpp::SHT_REL)
2155     {
2156       gold_error(_("%s: unsupported REL reloc section"),
2157                  object->name().c_str());
2158       return;
2159     }
2160
2161   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2162       Target_x86_64::Scan>(
2163     symtab,
2164     layout,
2165     this,
2166     object,
2167     data_shndx,
2168     prelocs,
2169     reloc_count,
2170     output_section,
2171     needs_special_offset_handling,
2172     local_symbol_count,
2173     plocal_symbols);
2174 }
2175
2176 // Finalize the sections.
2177
2178 void
2179 Target_x86_64::do_finalize_sections(
2180     Layout* layout,
2181     const Input_objects*,
2182     Symbol_table* symtab)
2183 {
2184   const Reloc_section* rel_plt = (this->plt_ == NULL
2185                                   ? NULL
2186                                   : this->plt_->rela_plt());
2187   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2188                                   this->rela_dyn_, true, false);
2189                                   
2190   // Fill in some more dynamic tags.
2191   Output_data_dynamic* const odyn = layout->dynamic_data();
2192   if (odyn != NULL)
2193     {
2194       if (this->plt_ != NULL
2195           && this->plt_->output_section() != NULL
2196           && this->plt_->has_tlsdesc_entry())
2197         {
2198           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2199           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2200           this->got_->finalize_data_size();
2201           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2202                                         this->plt_, plt_offset);
2203           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2204                                         this->got_, got_offset);
2205         }
2206     }
2207
2208   // Emit any relocs we saved in an attempt to avoid generating COPY
2209   // relocs.
2210   if (this->copy_relocs_.any_saved_relocs())
2211     this->copy_relocs_.emit(this->rela_dyn_section(layout));
2212
2213   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2214   // the .got.plt section.
2215   Symbol* sym = this->global_offset_table_;
2216   if (sym != NULL)
2217     {
2218       uint64_t data_size = this->got_plt_->current_data_size();
2219       symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
2220     }
2221 }
2222
2223 // Perform a relocation.
2224
2225 inline bool
2226 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
2227                                   Target_x86_64* target,
2228                                   Output_section*,
2229                                   size_t relnum,
2230                                   const elfcpp::Rela<64, false>& rela,
2231                                   unsigned int r_type,
2232                                   const Sized_symbol<64>* gsym,
2233                                   const Symbol_value<64>* psymval,
2234                                   unsigned char* view,
2235                                   elfcpp::Elf_types<64>::Elf_Addr address,
2236                                   section_size_type view_size)
2237 {
2238   if (this->skip_call_tls_get_addr_)
2239     {
2240       if ((r_type != elfcpp::R_X86_64_PLT32
2241            && r_type != elfcpp::R_X86_64_PC32)
2242           || gsym == NULL
2243           || strcmp(gsym->name(), "__tls_get_addr") != 0)
2244         {
2245           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2246                                  _("missing expected TLS relocation"));
2247         }
2248       else
2249         {
2250           this->skip_call_tls_get_addr_ = false;
2251           return false;
2252         }
2253     }
2254
2255   const Sized_relobj<64, false>* object = relinfo->object;
2256
2257   // Pick the value to use for symbols defined in the PLT.
2258   Symbol_value<64> symval;
2259   if (gsym != NULL
2260       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2261     {
2262       symval.set_output_value(target->plt_section()->address()
2263                               + gsym->plt_offset());
2264       psymval = &symval;
2265     }
2266   else if (gsym == NULL && psymval->is_ifunc_symbol())
2267     {
2268       unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2269       if (object->local_has_plt_offset(r_sym))
2270         {
2271           symval.set_output_value(target->plt_section()->address()
2272                                   + object->local_plt_offset(r_sym));
2273           psymval = &symval;
2274         }
2275     }
2276
2277   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2278
2279   // Get the GOT offset if needed.
2280   // The GOT pointer points to the end of the GOT section.
2281   // We need to subtract the size of the GOT section to get
2282   // the actual offset to use in the relocation.
2283   bool have_got_offset = false;
2284   unsigned int got_offset = 0;
2285   switch (r_type)
2286     {
2287     case elfcpp::R_X86_64_GOT32:
2288     case elfcpp::R_X86_64_GOT64:
2289     case elfcpp::R_X86_64_GOTPLT64:
2290     case elfcpp::R_X86_64_GOTPCREL:
2291     case elfcpp::R_X86_64_GOTPCREL64:
2292       if (gsym != NULL)
2293         {
2294           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2295           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
2296         }
2297       else
2298         {
2299           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2300           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2301           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2302                         - target->got_size());
2303         }
2304       have_got_offset = true;
2305       break;
2306
2307     default:
2308       break;
2309     }
2310
2311   switch (r_type)
2312     {
2313     case elfcpp::R_X86_64_NONE:
2314     case elfcpp::R_X86_64_GNU_VTINHERIT:
2315     case elfcpp::R_X86_64_GNU_VTENTRY:
2316       break;
2317
2318     case elfcpp::R_X86_64_64:
2319       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
2320       break;
2321
2322     case elfcpp::R_X86_64_PC64:
2323       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
2324                                               address);
2325       break;
2326
2327     case elfcpp::R_X86_64_32:
2328       // FIXME: we need to verify that value + addend fits into 32 bits:
2329       //    uint64_t x = value + addend;
2330       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
2331       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2332       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2333       break;
2334
2335     case elfcpp::R_X86_64_32S:
2336       // FIXME: we need to verify that value + addend fits into 32 bits:
2337       //    int64_t x = value + addend;   // note this quantity is signed!
2338       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
2339       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2340       break;
2341
2342     case elfcpp::R_X86_64_PC32:
2343       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2344                                               address);
2345       break;
2346
2347     case elfcpp::R_X86_64_16:
2348       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2349       break;
2350
2351     case elfcpp::R_X86_64_PC16:
2352       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2353                                               address);
2354       break;
2355
2356     case elfcpp::R_X86_64_8:
2357       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2358       break;
2359
2360     case elfcpp::R_X86_64_PC8:
2361       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2362                                              address);
2363       break;
2364
2365     case elfcpp::R_X86_64_PLT32:
2366       gold_assert(gsym == NULL
2367                   || gsym->has_plt_offset()
2368                   || gsym->final_value_is_known()
2369                   || (gsym->is_defined()
2370                       && !gsym->is_from_dynobj()
2371                       && !gsym->is_preemptible()));
2372       // Note: while this code looks the same as for R_X86_64_PC32, it
2373       // behaves differently because psymval was set to point to
2374       // the PLT entry, rather than the symbol, in Scan::global().
2375       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2376                                               address);
2377       break;
2378
2379     case elfcpp::R_X86_64_PLTOFF64:
2380       {
2381         gold_assert(gsym);
2382         gold_assert(gsym->has_plt_offset()
2383                     || gsym->final_value_is_known());
2384         elfcpp::Elf_types<64>::Elf_Addr got_address;
2385         got_address = target->got_section(NULL, NULL)->address();
2386         Relocate_functions<64, false>::rela64(view, object, psymval,
2387                                               addend - got_address);
2388       }
2389
2390     case elfcpp::R_X86_64_GOT32:
2391       gold_assert(have_got_offset);
2392       Relocate_functions<64, false>::rela32(view, got_offset, addend);
2393       break;
2394
2395     case elfcpp::R_X86_64_GOTPC32:
2396       {
2397         gold_assert(gsym);
2398         elfcpp::Elf_types<64>::Elf_Addr value;
2399         value = target->got_plt_section()->address();
2400         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2401       }
2402       break;
2403
2404     case elfcpp::R_X86_64_GOT64:
2405       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
2406       // Since we always add a PLT entry, this is equivalent.
2407     case elfcpp::R_X86_64_GOTPLT64:
2408       gold_assert(have_got_offset);
2409       Relocate_functions<64, false>::rela64(view, got_offset, addend);
2410       break;
2411
2412     case elfcpp::R_X86_64_GOTPC64:
2413       {
2414         gold_assert(gsym);
2415         elfcpp::Elf_types<64>::Elf_Addr value;
2416         value = target->got_plt_section()->address();
2417         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2418       }
2419       break;
2420
2421     case elfcpp::R_X86_64_GOTOFF64:
2422       {
2423         elfcpp::Elf_types<64>::Elf_Addr value;
2424         value = (psymval->value(object, 0)
2425                  - target->got_plt_section()->address());
2426         Relocate_functions<64, false>::rela64(view, value, addend);
2427       }
2428       break;
2429
2430     case elfcpp::R_X86_64_GOTPCREL:
2431       {
2432         gold_assert(have_got_offset);
2433         elfcpp::Elf_types<64>::Elf_Addr value;
2434         value = target->got_plt_section()->address() + got_offset;
2435         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2436       }
2437       break;
2438
2439     case elfcpp::R_X86_64_GOTPCREL64:
2440       {
2441         gold_assert(have_got_offset);
2442         elfcpp::Elf_types<64>::Elf_Addr value;
2443         value = target->got_plt_section()->address() + got_offset;
2444         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
2445       }
2446       break;
2447
2448     case elfcpp::R_X86_64_COPY:
2449     case elfcpp::R_X86_64_GLOB_DAT:
2450     case elfcpp::R_X86_64_JUMP_SLOT:
2451     case elfcpp::R_X86_64_RELATIVE:
2452     case elfcpp::R_X86_64_IRELATIVE:
2453       // These are outstanding tls relocs, which are unexpected when linking
2454     case elfcpp::R_X86_64_TPOFF64:
2455     case elfcpp::R_X86_64_DTPMOD64:
2456     case elfcpp::R_X86_64_TLSDESC:
2457       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2458                              _("unexpected reloc %u in object file"),
2459                              r_type);
2460       break;
2461
2462       // These are initial tls relocs, which are expected when linking
2463     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2464     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2465     case elfcpp::R_X86_64_TLSDESC_CALL:
2466     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2467     case elfcpp::R_X86_64_DTPOFF32:
2468     case elfcpp::R_X86_64_DTPOFF64:
2469     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2470     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2471       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
2472                          view, address, view_size);
2473       break;
2474
2475     case elfcpp::R_X86_64_SIZE32:
2476     case elfcpp::R_X86_64_SIZE64:
2477     default:
2478       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2479                              _("unsupported reloc %u"),
2480                              r_type);
2481       break;
2482     }
2483
2484   return true;
2485 }
2486
2487 // Perform a TLS relocation.
2488
2489 inline void
2490 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
2491                                       Target_x86_64* target,
2492                                       size_t relnum,
2493                                       const elfcpp::Rela<64, false>& rela,
2494                                       unsigned int r_type,
2495                                       const Sized_symbol<64>* gsym,
2496                                       const Symbol_value<64>* psymval,
2497                                       unsigned char* view,
2498                                       elfcpp::Elf_types<64>::Elf_Addr address,
2499                                       section_size_type view_size)
2500 {
2501   Output_segment* tls_segment = relinfo->layout->tls_segment();
2502
2503   const Sized_relobj<64, false>* object = relinfo->object;
2504   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2505   elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
2506   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
2507
2508   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
2509
2510   const bool is_final = (gsym == NULL
2511                          ? !parameters->options().shared()
2512                          : gsym->final_value_is_known());
2513   tls::Tls_optimization optimized_type
2514       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2515   switch (r_type)
2516     {
2517     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2518       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2519         {
2520           // If this code sequence is used in a non-executable section,
2521           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
2522           // on the assumption that it's being used by itself in a debug
2523           // section.  Therefore, in the unlikely event that the code
2524           // sequence appears in a non-executable section, we simply
2525           // leave it unoptimized.
2526           optimized_type = tls::TLSOPT_NONE;
2527         }
2528       if (optimized_type == tls::TLSOPT_TO_LE)
2529         {
2530           gold_assert(tls_segment != NULL);
2531           this->tls_gd_to_le(relinfo, relnum, tls_segment,
2532                              rela, r_type, value, view,
2533                              view_size);
2534           break;
2535         }
2536       else
2537         {
2538           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2539                                    ? GOT_TYPE_TLS_OFFSET
2540                                    : GOT_TYPE_TLS_PAIR);
2541           unsigned int got_offset;
2542           if (gsym != NULL)
2543             {
2544               gold_assert(gsym->has_got_offset(got_type));
2545               got_offset = gsym->got_offset(got_type) - target->got_size();
2546             }
2547           else
2548             {
2549               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2550               gold_assert(object->local_has_got_offset(r_sym, got_type));
2551               got_offset = (object->local_got_offset(r_sym, got_type)
2552                             - target->got_size());
2553             }
2554           if (optimized_type == tls::TLSOPT_TO_IE)
2555             {
2556               gold_assert(tls_segment != NULL);
2557               value = target->got_plt_section()->address() + got_offset;
2558               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2559                                  value, view, address, view_size);
2560               break;
2561             }
2562           else if (optimized_type == tls::TLSOPT_NONE)
2563             {
2564               // Relocate the field with the offset of the pair of GOT
2565               // entries.
2566               value = target->got_plt_section()->address() + got_offset;
2567               Relocate_functions<64, false>::pcrela32(view, value, addend,
2568                                                       address);
2569               break;
2570             }
2571         }
2572       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2573                              _("unsupported reloc %u"), r_type);
2574       break;
2575
2576     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2577     case elfcpp::R_X86_64_TLSDESC_CALL:
2578       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2579         {
2580           // See above comment for R_X86_64_TLSGD.
2581           optimized_type = tls::TLSOPT_NONE;
2582         }
2583       if (optimized_type == tls::TLSOPT_TO_LE)
2584         {
2585           gold_assert(tls_segment != NULL);
2586           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2587                                   rela, r_type, value, view,
2588                                   view_size);
2589           break;
2590         }
2591       else
2592         {
2593           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2594                                    ? GOT_TYPE_TLS_OFFSET
2595                                    : GOT_TYPE_TLS_DESC);
2596           unsigned int got_offset = 0;
2597           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
2598               && optimized_type == tls::TLSOPT_NONE)
2599             {
2600               // We created GOT entries in the .got.tlsdesc portion of
2601               // the .got.plt section, but the offset stored in the
2602               // symbol is the offset within .got.tlsdesc.
2603               got_offset = (target->got_size()
2604                             + target->got_plt_section()->data_size());
2605             }
2606           if (gsym != NULL)
2607             {
2608               gold_assert(gsym->has_got_offset(got_type));
2609               got_offset += gsym->got_offset(got_type) - target->got_size();
2610             }
2611           else
2612             {
2613               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2614               gold_assert(object->local_has_got_offset(r_sym, got_type));
2615               got_offset += (object->local_got_offset(r_sym, got_type)
2616                              - target->got_size());
2617             }
2618           if (optimized_type == tls::TLSOPT_TO_IE)
2619             {
2620               gold_assert(tls_segment != NULL);
2621               value = target->got_plt_section()->address() + got_offset;
2622               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2623                                       rela, r_type, value, view, address,
2624                                       view_size);
2625               break;
2626             }
2627           else if (optimized_type == tls::TLSOPT_NONE)
2628             {
2629               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2630                 {
2631                   // Relocate the field with the offset of the pair of GOT
2632                   // entries.
2633                   value = target->got_plt_section()->address() + got_offset;
2634                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2635                                                           address);
2636                 }
2637               break;
2638             }
2639         }
2640       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2641                              _("unsupported reloc %u"), r_type);
2642       break;
2643
2644     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2645       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
2646         {
2647           // See above comment for R_X86_64_TLSGD.
2648           optimized_type = tls::TLSOPT_NONE;
2649         }
2650       if (optimized_type == tls::TLSOPT_TO_LE)
2651         {
2652           gold_assert(tls_segment != NULL);
2653           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2654                              value, view, view_size);
2655           break;
2656         }
2657       else if (optimized_type == tls::TLSOPT_NONE)
2658         {
2659           // Relocate the field with the offset of the GOT entry for
2660           // the module index.
2661           unsigned int got_offset;
2662           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2663                         - target->got_size());
2664           value = target->got_plt_section()->address() + got_offset;
2665           Relocate_functions<64, false>::pcrela32(view, value, addend,
2666                                                   address);
2667           break;
2668         }
2669       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2670                              _("unsupported reloc %u"), r_type);
2671       break;
2672
2673     case elfcpp::R_X86_64_DTPOFF32:
2674       // This relocation type is used in debugging information.
2675       // In that case we need to not optimize the value.  If the
2676       // section is not executable, then we assume we should not
2677       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
2678       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
2679       // R_X86_64_TLSLD.
2680       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2681         {
2682           gold_assert(tls_segment != NULL);
2683           value -= tls_segment->memsz();
2684         }
2685       Relocate_functions<64, false>::rela32(view, value, addend);
2686       break;
2687
2688     case elfcpp::R_X86_64_DTPOFF64:
2689       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
2690       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
2691         {
2692           gold_assert(tls_segment != NULL);
2693           value -= tls_segment->memsz();
2694         }
2695       Relocate_functions<64, false>::rela64(view, value, addend);
2696       break;
2697
2698     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2699       if (optimized_type == tls::TLSOPT_TO_LE)
2700         {
2701           gold_assert(tls_segment != NULL);
2702           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2703                                                 rela, r_type, value, view,
2704                                                 view_size);
2705           break;
2706         }
2707       else if (optimized_type == tls::TLSOPT_NONE)
2708         {
2709           // Relocate the field with the offset of the GOT entry for
2710           // the tp-relative offset of the symbol.
2711           unsigned int got_offset;
2712           if (gsym != NULL)
2713             {
2714               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2715               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2716                             - target->got_size());
2717             }
2718           else
2719             {
2720               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2721               gold_assert(object->local_has_got_offset(r_sym,
2722                                                        GOT_TYPE_TLS_OFFSET));
2723               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2724                             - target->got_size());
2725             }
2726           value = target->got_plt_section()->address() + got_offset;
2727           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2728           break;
2729         }
2730       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2731                              _("unsupported reloc type %u"),
2732                              r_type);
2733       break;
2734
2735     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2736       value -= tls_segment->memsz();
2737       Relocate_functions<64, false>::rela32(view, value, addend);
2738       break;
2739     }
2740 }
2741
2742 // Do a relocation in which we convert a TLS General-Dynamic to an
2743 // Initial-Exec.
2744
2745 inline void
2746 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2747                                       size_t relnum,
2748                                       Output_segment*,
2749                                       const elfcpp::Rela<64, false>& rela,
2750                                       unsigned int,
2751                                       elfcpp::Elf_types<64>::Elf_Addr value,
2752                                       unsigned char* view,
2753                                       elfcpp::Elf_types<64>::Elf_Addr address,
2754                                       section_size_type view_size)
2755 {
2756   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2757   // .word 0x6666; rex64; call __tls_get_addr
2758   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2759
2760   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2761   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2762
2763   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2764                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2765   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2766                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2767
2768   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2769
2770   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2771   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2772
2773   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2774   // We can skip it.
2775   this->skip_call_tls_get_addr_ = true;
2776 }
2777
2778 // Do a relocation in which we convert a TLS General-Dynamic to a
2779 // Local-Exec.
2780
2781 inline void
2782 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2783                                       size_t relnum,
2784                                       Output_segment* tls_segment,
2785                                       const elfcpp::Rela<64, false>& rela,
2786                                       unsigned int,
2787                                       elfcpp::Elf_types<64>::Elf_Addr value,
2788                                       unsigned char* view,
2789                                       section_size_type view_size)
2790 {
2791   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2792   // .word 0x6666; rex64; call __tls_get_addr
2793   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2794
2795   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2796   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2797
2798   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2799                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2800   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2801                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2802
2803   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2804
2805   value -= tls_segment->memsz();
2806   Relocate_functions<64, false>::rela32(view + 8, value, 0);
2807
2808   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2809   // We can skip it.
2810   this->skip_call_tls_get_addr_ = true;
2811 }
2812
2813 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2814
2815 inline void
2816 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2817     const Relocate_info<64, false>* relinfo,
2818     size_t relnum,
2819     Output_segment*,
2820     const elfcpp::Rela<64, false>& rela,
2821     unsigned int r_type,
2822     elfcpp::Elf_types<64>::Elf_Addr value,
2823     unsigned char* view,
2824     elfcpp::Elf_types<64>::Elf_Addr address,
2825     section_size_type view_size)
2826 {
2827   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2828     {
2829       // leaq foo@tlsdesc(%rip), %rax
2830       // ==> movq foo@gottpoff(%rip), %rax
2831       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2832       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2833       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2834                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2835       view[-2] = 0x8b;
2836       const elfcpp::Elf_Xword addend = rela.get_r_addend();
2837       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2838     }
2839   else
2840     {
2841       // call *foo@tlscall(%rax)
2842       // ==> nop; nop
2843       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2844       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2845       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2846                      view[0] == 0xff && view[1] == 0x10);
2847       view[0] = 0x66;
2848       view[1] = 0x90;
2849     }
2850 }
2851
2852 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2853
2854 inline void
2855 Target_x86_64::Relocate::tls_desc_gd_to_le(
2856     const Relocate_info<64, false>* relinfo,
2857     size_t relnum,
2858     Output_segment* tls_segment,
2859     const elfcpp::Rela<64, false>& rela,
2860     unsigned int r_type,
2861     elfcpp::Elf_types<64>::Elf_Addr value,
2862     unsigned char* view,
2863     section_size_type view_size)
2864 {
2865   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2866     {
2867       // leaq foo@tlsdesc(%rip), %rax
2868       // ==> movq foo@tpoff, %rax
2869       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2870       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2871       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2872                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2873       view[-2] = 0xc7;
2874       view[-1] = 0xc0;
2875       value -= tls_segment->memsz();
2876       Relocate_functions<64, false>::rela32(view, value, 0);
2877     }
2878   else
2879     {
2880       // call *foo@tlscall(%rax)
2881       // ==> nop; nop
2882       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2883       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2884       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2885                      view[0] == 0xff && view[1] == 0x10);
2886       view[0] = 0x66;
2887       view[1] = 0x90;
2888     }
2889 }
2890
2891 inline void
2892 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2893                                       size_t relnum,
2894                                       Output_segment*,
2895                                       const elfcpp::Rela<64, false>& rela,
2896                                       unsigned int,
2897                                       elfcpp::Elf_types<64>::Elf_Addr,
2898                                       unsigned char* view,
2899                                       section_size_type view_size)
2900 {
2901   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2902   // ... leq foo@dtpoff(%rax),%reg
2903   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2904
2905   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2906   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2907
2908   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2909                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2910
2911   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2912
2913   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2914
2915   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2916   // We can skip it.
2917   this->skip_call_tls_get_addr_ = true;
2918 }
2919
2920 // Do a relocation in which we convert a TLS Initial-Exec to a
2921 // Local-Exec.
2922
2923 inline void
2924 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2925                                       size_t relnum,
2926                                       Output_segment* tls_segment,
2927                                       const elfcpp::Rela<64, false>& rela,
2928                                       unsigned int,
2929                                       elfcpp::Elf_types<64>::Elf_Addr value,
2930                                       unsigned char* view,
2931                                       section_size_type view_size)
2932 {
2933   // We need to examine the opcodes to figure out which instruction we
2934   // are looking at.
2935
2936   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
2937   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
2938
2939   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2940   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2941
2942   unsigned char op1 = view[-3];
2943   unsigned char op2 = view[-2];
2944   unsigned char op3 = view[-1];
2945   unsigned char reg = op3 >> 3;
2946
2947   if (op2 == 0x8b)
2948     {
2949       // movq
2950       if (op1 == 0x4c)
2951         view[-3] = 0x49;
2952       view[-2] = 0xc7;
2953       view[-1] = 0xc0 | reg;
2954     }
2955   else if (reg == 4)
2956     {
2957       // Special handling for %rsp.
2958       if (op1 == 0x4c)
2959         view[-3] = 0x49;
2960       view[-2] = 0x81;
2961       view[-1] = 0xc0 | reg;
2962     }
2963   else
2964     {
2965       // addq
2966       if (op1 == 0x4c)
2967         view[-3] = 0x4d;
2968       view[-2] = 0x8d;
2969       view[-1] = 0x80 | reg | (reg << 3);
2970     }
2971
2972   value -= tls_segment->memsz();
2973   Relocate_functions<64, false>::rela32(view, value, 0);
2974 }
2975
2976 // Relocate section data.
2977
2978 void
2979 Target_x86_64::relocate_section(
2980     const Relocate_info<64, false>* relinfo,
2981     unsigned int sh_type,
2982     const unsigned char* prelocs,
2983     size_t reloc_count,
2984     Output_section* output_section,
2985     bool needs_special_offset_handling,
2986     unsigned char* view,
2987     elfcpp::Elf_types<64>::Elf_Addr address,
2988     section_size_type view_size,
2989     const Reloc_symbol_changes* reloc_symbol_changes)
2990 {
2991   gold_assert(sh_type == elfcpp::SHT_RELA);
2992
2993   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2994                          Target_x86_64::Relocate>(
2995     relinfo,
2996     this,
2997     prelocs,
2998     reloc_count,
2999     output_section,
3000     needs_special_offset_handling,
3001     view,
3002     address,
3003     view_size,
3004     reloc_symbol_changes);
3005 }
3006
3007 // Return the size of a relocation while scanning during a relocatable
3008 // link.
3009
3010 unsigned int
3011 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
3012     unsigned int r_type,
3013     Relobj* object)
3014 {
3015   switch (r_type)
3016     {
3017     case elfcpp::R_X86_64_NONE:
3018     case elfcpp::R_X86_64_GNU_VTINHERIT:
3019     case elfcpp::R_X86_64_GNU_VTENTRY:
3020     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3021     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3022     case elfcpp::R_X86_64_TLSDESC_CALL:
3023     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3024     case elfcpp::R_X86_64_DTPOFF32:
3025     case elfcpp::R_X86_64_DTPOFF64:
3026     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3027     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3028       return 0;
3029
3030     case elfcpp::R_X86_64_64:
3031     case elfcpp::R_X86_64_PC64:
3032     case elfcpp::R_X86_64_GOTOFF64:
3033     case elfcpp::R_X86_64_GOTPC64:
3034     case elfcpp::R_X86_64_PLTOFF64:
3035     case elfcpp::R_X86_64_GOT64:
3036     case elfcpp::R_X86_64_GOTPCREL64:
3037     case elfcpp::R_X86_64_GOTPCREL:
3038     case elfcpp::R_X86_64_GOTPLT64:
3039       return 8;
3040
3041     case elfcpp::R_X86_64_32:
3042     case elfcpp::R_X86_64_32S:
3043     case elfcpp::R_X86_64_PC32:
3044     case elfcpp::R_X86_64_PLT32:
3045     case elfcpp::R_X86_64_GOTPC32:
3046     case elfcpp::R_X86_64_GOT32:
3047       return 4;
3048
3049     case elfcpp::R_X86_64_16:
3050     case elfcpp::R_X86_64_PC16:
3051       return 2;
3052
3053     case elfcpp::R_X86_64_8:
3054     case elfcpp::R_X86_64_PC8:
3055       return 1;
3056
3057     case elfcpp::R_X86_64_COPY:
3058     case elfcpp::R_X86_64_GLOB_DAT:
3059     case elfcpp::R_X86_64_JUMP_SLOT:
3060     case elfcpp::R_X86_64_RELATIVE:
3061     case elfcpp::R_X86_64_IRELATIVE:
3062       // These are outstanding tls relocs, which are unexpected when linking
3063     case elfcpp::R_X86_64_TPOFF64:
3064     case elfcpp::R_X86_64_DTPMOD64:
3065     case elfcpp::R_X86_64_TLSDESC:
3066       object->error(_("unexpected reloc %u in object file"), r_type);
3067       return 0;
3068
3069     case elfcpp::R_X86_64_SIZE32:
3070     case elfcpp::R_X86_64_SIZE64:
3071     default:
3072       object->error(_("unsupported reloc %u against local symbol"), r_type);
3073       return 0;
3074     }
3075 }
3076
3077 // Scan the relocs during a relocatable link.
3078
3079 void
3080 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
3081                                        Layout* layout,
3082                                        Sized_relobj<64, false>* object,
3083                                        unsigned int data_shndx,
3084                                        unsigned int sh_type,
3085                                        const unsigned char* prelocs,
3086                                        size_t reloc_count,
3087                                        Output_section* output_section,
3088                                        bool needs_special_offset_handling,
3089                                        size_t local_symbol_count,
3090                                        const unsigned char* plocal_symbols,
3091                                        Relocatable_relocs* rr)
3092 {
3093   gold_assert(sh_type == elfcpp::SHT_RELA);
3094
3095   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3096     Relocatable_size_for_reloc> Scan_relocatable_relocs;
3097
3098   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
3099       Scan_relocatable_relocs>(
3100     symtab,
3101     layout,
3102     object,
3103     data_shndx,
3104     prelocs,
3105     reloc_count,
3106     output_section,
3107     needs_special_offset_handling,
3108     local_symbol_count,
3109     plocal_symbols,
3110     rr);
3111 }
3112
3113 // Relocate a section during a relocatable link.
3114
3115 void
3116 Target_x86_64::relocate_for_relocatable(
3117     const Relocate_info<64, false>* relinfo,
3118     unsigned int sh_type,
3119     const unsigned char* prelocs,
3120     size_t reloc_count,
3121     Output_section* output_section,
3122     off_t offset_in_output_section,
3123     const Relocatable_relocs* rr,
3124     unsigned char* view,
3125     elfcpp::Elf_types<64>::Elf_Addr view_address,
3126     section_size_type view_size,
3127     unsigned char* reloc_view,
3128     section_size_type reloc_view_size)
3129 {
3130   gold_assert(sh_type == elfcpp::SHT_RELA);
3131
3132   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
3133     relinfo,
3134     prelocs,
3135     reloc_count,
3136     output_section,
3137     offset_in_output_section,
3138     rr,
3139     view,
3140     view_address,
3141     view_size,
3142     reloc_view,
3143     reloc_view_size);
3144 }
3145
3146 // Return the value to use for a dynamic which requires special
3147 // treatment.  This is how we support equality comparisons of function
3148 // pointers across shared library boundaries, as described in the
3149 // processor specific ABI supplement.
3150
3151 uint64_t
3152 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
3153 {
3154   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3155   return this->plt_section()->address() + gsym->plt_offset();
3156 }
3157
3158 // Return a string used to fill a code section with nops to take up
3159 // the specified length.
3160
3161 std::string
3162 Target_x86_64::do_code_fill(section_size_type length) const
3163 {
3164   if (length >= 16)
3165     {
3166       // Build a jmpq instruction to skip over the bytes.
3167       unsigned char jmp[5];
3168       jmp[0] = 0xe9;
3169       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3170       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3171               + std::string(length - 5, '\0'));
3172     }
3173
3174   // Nop sequences of various lengths.
3175   const char nop1[1] = { 0x90 };                   // nop
3176   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
3177   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
3178   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
3179   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
3180                          0x00 };
3181   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
3182                          0x00, 0x00 };
3183   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
3184                          0x00, 0x00, 0x00 };
3185   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
3186                          0x00, 0x00, 0x00, 0x00 };
3187   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
3188                          0x00, 0x00, 0x00, 0x00,
3189                          0x00 };
3190   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
3191                            0x84, 0x00, 0x00, 0x00,
3192                            0x00, 0x00 };
3193   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
3194                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3195                            0x00, 0x00, 0x00 };
3196   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
3197                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
3198                            0x00, 0x00, 0x00, 0x00 };
3199   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3200                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
3201                            0x00, 0x00, 0x00, 0x00,
3202                            0x00 };
3203   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3204                            0x66, 0x2e, 0x0f, 0x1f, // data16
3205                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3206                            0x00, 0x00 };
3207   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3208                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
3209                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3210                            0x00, 0x00, 0x00 };
3211
3212   const char* nops[16] = {
3213     NULL,
3214     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3215     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3216   };
3217
3218   return std::string(nops[length], length);
3219 }
3220
3221 // Return the addend to use for a target specific relocation.  The
3222 // only target specific relocation is R_X86_64_TLSDESC for a local
3223 // symbol.  We want to set the addend is the offset of the local
3224 // symbol in the TLS segment.
3225
3226 uint64_t
3227 Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
3228                                uint64_t) const
3229 {
3230   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
3231   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
3232   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
3233   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
3234   const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
3235   gold_assert(psymval->is_tls_symbol());
3236   // The value of a TLS symbol is the offset in the TLS segment.
3237   return psymval->value(ti.object, 0);
3238 }
3239
3240 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3241 // compiled with -fsplit-stack.  The function calls non-split-stack
3242 // code.  We have to change the function so that it always ensures
3243 // that it has enough stack space to run some random function.
3244
3245 void
3246 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
3247                                   section_offset_type fnoffset,
3248                                   section_size_type fnsize,
3249                                   unsigned char* view,
3250                                   section_size_type view_size,
3251                                   std::string* from,
3252                                   std::string* to) const
3253 {
3254   // The function starts with a comparison of the stack pointer and a
3255   // field in the TCB.  This is followed by a jump.
3256
3257   // cmp %fs:NN,%rsp
3258   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
3259       && fnsize > 9)
3260     {
3261       // We will call __morestack if the carry flag is set after this
3262       // comparison.  We turn the comparison into an stc instruction
3263       // and some nops.
3264       view[fnoffset] = '\xf9';
3265       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
3266     }
3267   // lea NN(%rsp),%r10
3268   // lea NN(%rsp),%r11
3269   else if ((this->match_view(view, view_size, fnoffset,
3270                              "\x4c\x8d\x94\x24", 4)
3271             || this->match_view(view, view_size, fnoffset,
3272                                 "\x4c\x8d\x9c\x24", 4))
3273            && fnsize > 8)
3274     {
3275       // This is loading an offset from the stack pointer for a
3276       // comparison.  The offset is negative, so we decrease the
3277       // offset by the amount of space we need for the stack.  This
3278       // means we will avoid calling __morestack if there happens to
3279       // be plenty of space on the stack already.
3280       unsigned char* pval = view + fnoffset + 4;
3281       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3282       val -= parameters->options().split_stack_adjust_size();
3283       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3284     }
3285   else
3286     {
3287       if (!object->has_no_split_stack())
3288         object->error(_("failed to match split-stack sequence at "
3289                         "section %u offset %0zx"),
3290                       shndx, static_cast<size_t>(fnoffset));
3291       return;
3292     }
3293
3294   // We have to change the function so that it calls
3295   // __morestack_non_split instead of __morestack.  The former will
3296   // allocate additional stack space.
3297   *from = "__morestack";
3298   *to = "__morestack_non_split";
3299 }
3300
3301 // The selector for x86_64 object files.
3302
3303 class Target_selector_x86_64 : public Target_selector_freebsd
3304 {
3305 public:
3306   Target_selector_x86_64()
3307     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
3308                               "elf64-x86-64-freebsd")
3309   { }
3310
3311   Target*
3312   do_instantiate_target()
3313   { return new Target_x86_64(); }
3314
3315 };
3316
3317 Target_selector_x86_64 target_selector_x86_64;
3318
3319 } // End anonymous namespace.