Fix compile errors with GCC 4.2.
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Get count of regular PLT entries.
183   unsigned int
184   regular_count() const
185   { return this->count_; }
186
187   // Return the total number of PLT entries.
188   unsigned int
189   entry_count() const
190   { return this->count_ + this->irelative_count_; }
191
192   // Return the offset of the first non-reserved PLT entry.
193   unsigned int
194   first_plt_entry_offset()
195   { return this->get_plt_entry_size(); }
196
197   // Return the size of a PLT entry.
198   unsigned int
199   get_plt_entry_size() const
200   { return this->do_get_plt_entry_size(); }
201
202   // Reserve a slot in the PLT for an existing symbol in an incremental update.
203   void
204   reserve_slot(unsigned int plt_index)
205   {
206     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
207                             (plt_index + 2) * this->get_plt_entry_size());
208   }
209
210   // Return the PLT address to use for a global symbol.
211   uint64_t
212   address_for_global(const Symbol* sym)
213   { return do_address_for_global(sym); }
214
215   // Return the PLT address to use for a local symbol.
216   uint64_t
217   address_for_local(const Relobj* obj, unsigned int symndx)
218   { return do_address_for_local(obj, symndx); }
219
220   // Add .eh_frame information for the PLT.
221   void
222   add_eh_frame(Layout* layout)
223   { this->do_add_eh_frame(layout); }
224
225  protected:
226   Output_data_got<64, false>*
227   got() const
228   { return this->got_; }
229
230   Output_data_got_plt_x86_64*
231   got_plt() const
232   { return this->got_plt_; }
233
234   Output_data_space*
235   got_irelative() const
236   { return this->got_irelative_; }
237
238   // Fill in the first PLT entry.
239   void
240   fill_first_plt_entry(unsigned char* pov,
241                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
242                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
243   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
244
245   // Fill in a normal PLT entry.  Returns the offset into the entry that
246   // should be the initial GOT slot value.
247   unsigned int
248   fill_plt_entry(unsigned char* pov,
249                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
250                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
251                  unsigned int got_offset,
252                  unsigned int plt_offset,
253                  unsigned int plt_index)
254   {
255     return this->do_fill_plt_entry(pov, got_address, plt_address,
256                                    got_offset, plt_offset, plt_index);
257   }
258
259   // Fill in the reserved TLSDESC PLT entry.
260   void
261   fill_tlsdesc_entry(unsigned char* pov,
262                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
263                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
264                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
265                      unsigned int tlsdesc_got_offset,
266                      unsigned int plt_offset)
267   {
268     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
269                                 tlsdesc_got_offset, plt_offset);
270   }
271
272   virtual unsigned int
273   do_get_plt_entry_size() const = 0;
274
275   virtual void
276   do_fill_first_plt_entry(unsigned char* pov,
277                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
278                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
279     = 0;
280
281   virtual unsigned int
282   do_fill_plt_entry(unsigned char* pov,
283                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
284                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
285                     unsigned int got_offset,
286                     unsigned int plt_offset,
287                     unsigned int plt_index) = 0;
288
289   virtual void
290   do_fill_tlsdesc_entry(unsigned char* pov,
291                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
292                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
293                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
294                         unsigned int tlsdesc_got_offset,
295                         unsigned int plt_offset) = 0;
296
297   // Return the PLT address to use for a global symbol.
298   virtual uint64_t
299   do_address_for_global(const Symbol* sym);
300
301   // Return the PLT address to use for a local symbol.
302   virtual uint64_t
303   do_address_for_local(const Relobj* obj, unsigned int symndx);
304
305   virtual void
306   do_add_eh_frame(Layout* layout) = 0;
307
308   void
309   do_adjust_output_section(Output_section* os);
310
311   // Write to a map file.
312   void
313   do_print_to_mapfile(Mapfile* mapfile) const
314   { mapfile->print_output_data(this, _("** PLT")); }
315
316   // The CIE of the .eh_frame unwind information for the PLT.
317   static const int plt_eh_frame_cie_size = 16;
318   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
319
320  private:
321   // Set the final size.
322   void
323   set_final_data_size();
324
325   // Write out the PLT data.
326   void
327   do_write(Output_file*);
328
329   // The reloc section.
330   Reloc_section* rel_;
331   // The TLSDESC relocs, if necessary.  These must follow the regular
332   // PLT relocs.
333   Reloc_section* tlsdesc_rel_;
334   // The IRELATIVE relocs, if necessary.  These must follow the
335   // regular PLT relocations and the TLSDESC relocations.
336   Reloc_section* irelative_rel_;
337   // The .got section.
338   Output_data_got<64, false>* got_;
339   // The .got.plt section.
340   Output_data_got_plt_x86_64* got_plt_;
341   // The part of the .got.plt section used for IRELATIVE relocs.
342   Output_data_space* got_irelative_;
343   // The number of PLT entries.
344   unsigned int count_;
345   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
346   // follow the regular PLT entries.
347   unsigned int irelative_count_;
348   // Offset of the reserved TLSDESC_GOT entry when needed.
349   unsigned int tlsdesc_got_offset_;
350   // List of available regions within the section, for incremental
351   // update links.
352   Free_list free_list_;
353 };
354
355 template<int size>
356 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
357 {
358  public:
359   Output_data_plt_x86_64_standard(Layout* layout,
360                                   Output_data_got<64, false>* got,
361                                   Output_data_got_plt_x86_64* got_plt,
362                                   Output_data_space* got_irelative)
363     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
364                                    got, got_plt, got_irelative)
365   { }
366
367   Output_data_plt_x86_64_standard(Layout* layout,
368                                   Output_data_got<64, false>* got,
369                                   Output_data_got_plt_x86_64* got_plt,
370                                   Output_data_space* got_irelative,
371                                   unsigned int plt_count)
372     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
373                                    got, got_plt, got_irelative,
374                                    plt_count)
375   { }
376
377  protected:
378   virtual unsigned int
379   do_get_plt_entry_size() const
380   { return plt_entry_size; }
381
382   virtual void
383   do_add_eh_frame(Layout* layout)
384   {
385     layout->add_eh_frame_for_plt(this,
386                                  this->plt_eh_frame_cie,
387                                  this->plt_eh_frame_cie_size,
388                                  plt_eh_frame_fde,
389                                  plt_eh_frame_fde_size);
390   }
391
392   virtual void
393   do_fill_first_plt_entry(unsigned char* pov,
394                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
395                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
396
397   virtual unsigned int
398   do_fill_plt_entry(unsigned char* pov,
399                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
400                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
401                     unsigned int got_offset,
402                     unsigned int plt_offset,
403                     unsigned int plt_index);
404
405   virtual void
406   do_fill_tlsdesc_entry(unsigned char* pov,
407                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
408                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
409                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
410                         unsigned int tlsdesc_got_offset,
411                         unsigned int plt_offset);
412
413  private:
414   // The size of an entry in the PLT.
415   static const int plt_entry_size = 16;
416
417   // The first entry in the PLT.
418   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
419   // procedure linkage table for both programs and shared objects."
420   static const unsigned char first_plt_entry[plt_entry_size];
421
422   // Other entries in the PLT for an executable.
423   static const unsigned char plt_entry[plt_entry_size];
424
425   // The reserved TLSDESC entry in the PLT for an executable.
426   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
427
428   // The .eh_frame unwind information for the PLT.
429   static const int plt_eh_frame_fde_size = 32;
430   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
431 };
432
433 class Output_data_plt_x86_64_bnd : public Output_data_plt_x86_64<64>
434 {
435  public:
436   Output_data_plt_x86_64_bnd(Layout* layout,
437                              Output_data_got<64, false>* got,
438                              Output_data_got_plt_x86_64* got_plt,
439                              Output_data_space* got_irelative)
440     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
441                                  got, got_plt, got_irelative),
442       aplt_offset_(0)
443   { }
444
445   Output_data_plt_x86_64_bnd(Layout* layout,
446                              Output_data_got<64, false>* got,
447                              Output_data_got_plt_x86_64* got_plt,
448                              Output_data_space* got_irelative,
449                              unsigned int plt_count)
450     : Output_data_plt_x86_64<64>(layout, plt_entry_size,
451                                  got, got_plt, got_irelative,
452                                  plt_count),
453       aplt_offset_(0)
454   { }
455
456  protected:
457   virtual unsigned int
458   do_get_plt_entry_size() const
459   { return plt_entry_size; }
460
461   // Return the PLT address to use for a global symbol.
462   uint64_t
463   do_address_for_global(const Symbol*);
464
465   // Return the PLT address to use for a local symbol.
466   uint64_t
467   do_address_for_local(const Relobj*, unsigned int symndx);
468
469   virtual void
470   do_add_eh_frame(Layout* layout)
471   {
472     layout->add_eh_frame_for_plt(this,
473                                  this->plt_eh_frame_cie,
474                                  this->plt_eh_frame_cie_size,
475                                  plt_eh_frame_fde,
476                                  plt_eh_frame_fde_size);
477   }
478
479   virtual void
480   do_fill_first_plt_entry(unsigned char* pov,
481                           elfcpp::Elf_types<64>::Elf_Addr got_addr,
482                           elfcpp::Elf_types<64>::Elf_Addr plt_addr);
483
484   virtual unsigned int
485   do_fill_plt_entry(unsigned char* pov,
486                     elfcpp::Elf_types<64>::Elf_Addr got_address,
487                     elfcpp::Elf_types<64>::Elf_Addr plt_address,
488                     unsigned int got_offset,
489                     unsigned int plt_offset,
490                     unsigned int plt_index);
491
492   virtual void
493   do_fill_tlsdesc_entry(unsigned char* pov,
494                         elfcpp::Elf_types<64>::Elf_Addr got_address,
495                         elfcpp::Elf_types<64>::Elf_Addr plt_address,
496                         elfcpp::Elf_types<64>::Elf_Addr got_base,
497                         unsigned int tlsdesc_got_offset,
498                         unsigned int plt_offset);
499
500   void
501   fill_aplt_entry(unsigned char* pov,
502                   elfcpp::Elf_types<64>::Elf_Addr got_address,
503                   elfcpp::Elf_types<64>::Elf_Addr plt_address,
504                   unsigned int got_offset,
505                   unsigned int plt_offset,
506                   unsigned int plt_index);
507
508  private:
509   // Set the final size.
510   void
511   set_final_data_size();
512
513   // Write out the BND PLT data.
514   void
515   do_write(Output_file*);
516
517   // Offset of the Additional PLT (if using -z bndplt).
518   unsigned int aplt_offset_;
519
520   // The size of an entry in the PLT.
521   static const int plt_entry_size = 16;
522
523   // The size of an entry in the additional PLT.
524   static const int aplt_entry_size = 8;
525
526   // The first entry in the PLT.
527   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
528   // procedure linkage table for both programs and shared objects."
529   static const unsigned char first_plt_entry[plt_entry_size];
530
531   // Other entries in the PLT for an executable.
532   static const unsigned char plt_entry[plt_entry_size];
533
534   // Entries in the additional PLT.
535   static const unsigned char aplt_entry[aplt_entry_size];
536
537   // The reserved TLSDESC entry in the PLT for an executable.
538   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
539
540   // The .eh_frame unwind information for the PLT.
541   static const int plt_eh_frame_fde_size = 32;
542   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
543 };
544
545 template<int size>
546 class Lazy_view
547 {
548  public:
549   Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
550     : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
551   { }
552
553   inline unsigned char
554   operator[](size_t offset)
555   {
556     if (this->view_ == NULL)
557       this->view_ = this->object_->section_contents(this->data_shndx_,
558                                                     &this->view_size_,
559                                                     true);
560     if (offset >= this->view_size_)
561       return 0;
562     return this->view_[offset];
563   }
564
565  private:
566   Sized_relobj_file<size, false>* object_;
567   unsigned int data_shndx_;
568   const unsigned char* view_;
569   section_size_type view_size_;
570 };
571
572 // The x86_64 target class.
573 // See the ABI at
574 //   http://www.x86-64.org/documentation/abi.pdf
575 // TLS info comes from
576 //   http://people.redhat.com/drepper/tls.pdf
577 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
578
579 template<int size>
580 class Target_x86_64 : public Sized_target<size, false>
581 {
582  public:
583   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
584   // uses only Elf64_Rela relocation entries with explicit addends."
585   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
586
587   Target_x86_64(const Target::Target_info* info = &x86_64_info)
588     : Sized_target<size, false>(info),
589       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
590       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
591       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
592       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
593       tls_base_symbol_defined_(false)
594   { }
595
596   // Hook for a new output section.
597   void
598   do_new_output_section(Output_section*) const;
599
600   // Scan the relocations to look for symbol adjustments.
601   void
602   gc_process_relocs(Symbol_table* symtab,
603                     Layout* layout,
604                     Sized_relobj_file<size, false>* object,
605                     unsigned int data_shndx,
606                     unsigned int sh_type,
607                     const unsigned char* prelocs,
608                     size_t reloc_count,
609                     Output_section* output_section,
610                     bool needs_special_offset_handling,
611                     size_t local_symbol_count,
612                     const unsigned char* plocal_symbols);
613
614   // Scan the relocations to look for symbol adjustments.
615   void
616   scan_relocs(Symbol_table* symtab,
617               Layout* layout,
618               Sized_relobj_file<size, false>* object,
619               unsigned int data_shndx,
620               unsigned int sh_type,
621               const unsigned char* prelocs,
622               size_t reloc_count,
623               Output_section* output_section,
624               bool needs_special_offset_handling,
625               size_t local_symbol_count,
626               const unsigned char* plocal_symbols);
627
628   // Finalize the sections.
629   void
630   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
631
632   // Return the value to use for a dynamic which requires special
633   // treatment.
634   uint64_t
635   do_dynsym_value(const Symbol*) const;
636
637   // Relocate a section.
638   void
639   relocate_section(const Relocate_info<size, false>*,
640                    unsigned int sh_type,
641                    const unsigned char* prelocs,
642                    size_t reloc_count,
643                    Output_section* output_section,
644                    bool needs_special_offset_handling,
645                    unsigned char* view,
646                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
647                    section_size_type view_size,
648                    const Reloc_symbol_changes*);
649
650   // Scan the relocs during a relocatable link.
651   void
652   scan_relocatable_relocs(Symbol_table* symtab,
653                           Layout* layout,
654                           Sized_relobj_file<size, false>* object,
655                           unsigned int data_shndx,
656                           unsigned int sh_type,
657                           const unsigned char* prelocs,
658                           size_t reloc_count,
659                           Output_section* output_section,
660                           bool needs_special_offset_handling,
661                           size_t local_symbol_count,
662                           const unsigned char* plocal_symbols,
663                           Relocatable_relocs*);
664
665   // Scan the relocs for --emit-relocs.
666   void
667   emit_relocs_scan(Symbol_table* symtab,
668                    Layout* layout,
669                    Sized_relobj_file<size, false>* object,
670                    unsigned int data_shndx,
671                    unsigned int sh_type,
672                    const unsigned char* prelocs,
673                    size_t reloc_count,
674                    Output_section* output_section,
675                    bool needs_special_offset_handling,
676                    size_t local_symbol_count,
677                    const unsigned char* plocal_syms,
678                    Relocatable_relocs* rr);
679
680   // Emit relocations for a section.
681   void
682   relocate_relocs(
683       const Relocate_info<size, false>*,
684       unsigned int sh_type,
685       const unsigned char* prelocs,
686       size_t reloc_count,
687       Output_section* output_section,
688       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
689       unsigned char* view,
690       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
691       section_size_type view_size,
692       unsigned char* reloc_view,
693       section_size_type reloc_view_size);
694
695   // Return a string used to fill a code section with nops.
696   std::string
697   do_code_fill(section_size_type length) const;
698
699   // Return whether SYM is defined by the ABI.
700   bool
701   do_is_defined_by_abi(const Symbol* sym) const
702   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
703
704   // Return the symbol index to use for a target specific relocation.
705   // The only target specific relocation is R_X86_64_TLSDESC for a
706   // local symbol, which is an absolute reloc.
707   unsigned int
708   do_reloc_symbol_index(void*, unsigned int r_type) const
709   {
710     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
711     return 0;
712   }
713
714   // Return the addend to use for a target specific relocation.
715   uint64_t
716   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
717
718   // Return the PLT section.
719   uint64_t
720   do_plt_address_for_global(const Symbol* gsym) const
721   { return this->plt_section()->address_for_global(gsym); }
722
723   uint64_t
724   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
725   { return this->plt_section()->address_for_local(relobj, symndx); }
726
727   // This function should be defined in targets that can use relocation
728   // types to determine (implemented in local_reloc_may_be_function_pointer
729   // and global_reloc_may_be_function_pointer)
730   // if a function's pointer is taken.  ICF uses this in safe mode to only
731   // fold those functions whose pointer is defintely not taken.  For x86_64
732   // pie binaries, safe ICF cannot be done by looking at relocation types.
733   bool
734   do_can_check_for_function_pointers() const
735   { return !parameters->options().pie(); }
736
737   // Return the base for a DW_EH_PE_datarel encoding.
738   uint64_t
739   do_ehframe_datarel_base() const;
740
741   // Adjust -fsplit-stack code which calls non-split-stack code.
742   void
743   do_calls_non_split(Relobj* object, unsigned int shndx,
744                      section_offset_type fnoffset, section_size_type fnsize,
745                      const unsigned char* prelocs, size_t reloc_count,
746                      unsigned char* view, section_size_type view_size,
747                      std::string* from, std::string* to) const;
748
749   // Return the size of the GOT section.
750   section_size_type
751   got_size() const
752   {
753     gold_assert(this->got_ != NULL);
754     return this->got_->data_size();
755   }
756
757   // Return the number of entries in the GOT.
758   unsigned int
759   got_entry_count() const
760   {
761     if (this->got_ == NULL)
762       return 0;
763     return this->got_size() / 8;
764   }
765
766   // Return the number of entries in the PLT.
767   unsigned int
768   plt_entry_count() const;
769
770   // Return the offset of the first non-reserved PLT entry.
771   unsigned int
772   first_plt_entry_offset() const;
773
774   // Return the size of each PLT entry.
775   unsigned int
776   plt_entry_size() const;
777
778   // Return the size of each GOT entry.
779   unsigned int
780   got_entry_size() const
781   { return 8; };
782
783   // Create the GOT section for an incremental update.
784   Output_data_got_base*
785   init_got_plt_for_update(Symbol_table* symtab,
786                           Layout* layout,
787                           unsigned int got_count,
788                           unsigned int plt_count);
789
790   // Reserve a GOT entry for a local symbol, and regenerate any
791   // necessary dynamic relocations.
792   void
793   reserve_local_got_entry(unsigned int got_index,
794                           Sized_relobj<size, false>* obj,
795                           unsigned int r_sym,
796                           unsigned int got_type);
797
798   // Reserve a GOT entry for a global symbol, and regenerate any
799   // necessary dynamic relocations.
800   void
801   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
802                            unsigned int got_type);
803
804   // Register an existing PLT entry for a global symbol.
805   void
806   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
807                             Symbol* gsym);
808
809   // Force a COPY relocation for a given symbol.
810   void
811   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
812
813   // Apply an incremental relocation.
814   void
815   apply_relocation(const Relocate_info<size, false>* relinfo,
816                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
817                    unsigned int r_type,
818                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
819                    const Symbol* gsym,
820                    unsigned char* view,
821                    typename elfcpp::Elf_types<size>::Elf_Addr address,
822                    section_size_type view_size);
823
824   // Add a new reloc argument, returning the index in the vector.
825   size_t
826   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
827   {
828     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
829     return this->tlsdesc_reloc_info_.size() - 1;
830   }
831
832   Output_data_plt_x86_64<size>*
833   make_data_plt(Layout* layout,
834                 Output_data_got<64, false>* got,
835                 Output_data_got_plt_x86_64* got_plt,
836                 Output_data_space* got_irelative)
837   {
838     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
839   }
840
841   Output_data_plt_x86_64<size>*
842   make_data_plt(Layout* layout,
843                 Output_data_got<64, false>* got,
844                 Output_data_got_plt_x86_64* got_plt,
845                 Output_data_space* got_irelative,
846                 unsigned int plt_count)
847   {
848     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
849                                   plt_count);
850   }
851
852   virtual Output_data_plt_x86_64<size>*
853   do_make_data_plt(Layout* layout,
854                    Output_data_got<64, false>* got,
855                    Output_data_got_plt_x86_64* got_plt,
856                    Output_data_space* got_irelative);
857
858   virtual Output_data_plt_x86_64<size>*
859   do_make_data_plt(Layout* layout,
860                    Output_data_got<64, false>* got,
861                    Output_data_got_plt_x86_64* got_plt,
862                    Output_data_space* got_irelative,
863                    unsigned int plt_count);
864
865  private:
866   // The class which scans relocations.
867   class Scan
868   {
869   public:
870     Scan()
871       : issued_non_pic_error_(false)
872     { }
873
874     static inline int
875     get_reference_flags(unsigned int r_type);
876
877     inline void
878     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
879           Sized_relobj_file<size, false>* object,
880           unsigned int data_shndx,
881           Output_section* output_section,
882           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
883           const elfcpp::Sym<size, false>& lsym,
884           bool is_discarded);
885
886     inline void
887     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
888            Sized_relobj_file<size, false>* object,
889            unsigned int data_shndx,
890            Output_section* output_section,
891            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
892            Symbol* gsym);
893
894     inline bool
895     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
896                                         Target_x86_64* target,
897                                         Sized_relobj_file<size, false>* object,
898                                         unsigned int data_shndx,
899                                         Output_section* output_section,
900                                         const elfcpp::Rela<size, false>& reloc,
901                                         unsigned int r_type,
902                                         const elfcpp::Sym<size, false>& lsym);
903
904     inline bool
905     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
906                                          Target_x86_64* target,
907                                          Sized_relobj_file<size, false>* object,
908                                          unsigned int data_shndx,
909                                          Output_section* output_section,
910                                          const elfcpp::Rela<size, false>& reloc,
911                                          unsigned int r_type,
912                                          Symbol* gsym);
913
914   private:
915     static void
916     unsupported_reloc_local(Sized_relobj_file<size, false>*,
917                             unsigned int r_type);
918
919     static void
920     unsupported_reloc_global(Sized_relobj_file<size, false>*,
921                              unsigned int r_type, Symbol*);
922
923     void
924     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
925
926     inline bool
927     possible_function_pointer_reloc(unsigned int r_type);
928
929     bool
930     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
931                               unsigned int r_type);
932
933     // Whether we have issued an error about a non-PIC compilation.
934     bool issued_non_pic_error_;
935   };
936
937   // The class which implements relocation.
938   class Relocate
939   {
940    public:
941     Relocate()
942       : skip_call_tls_get_addr_(false)
943     { }
944
945     ~Relocate()
946     {
947       if (this->skip_call_tls_get_addr_)
948         {
949           // FIXME: This needs to specify the location somehow.
950           gold_error(_("missing expected TLS relocation"));
951         }
952     }
953
954     // Do a relocation.  Return false if the caller should not issue
955     // any warnings about this relocation.
956     inline bool
957     relocate(const Relocate_info<size, false>*, unsigned int,
958              Target_x86_64*, Output_section*, size_t, const unsigned char*,
959              const Sized_symbol<size>*, const Symbol_value<size>*,
960              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
961              section_size_type);
962
963    private:
964     // Do a TLS relocation.
965     inline void
966     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
967                  size_t relnum, const elfcpp::Rela<size, false>&,
968                  unsigned int r_type, const Sized_symbol<size>*,
969                  const Symbol_value<size>*,
970                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
971                  section_size_type);
972
973     // Do a TLS General-Dynamic to Initial-Exec transition.
974     inline void
975     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
976                  const elfcpp::Rela<size, false>&, unsigned int r_type,
977                  typename elfcpp::Elf_types<size>::Elf_Addr value,
978                  unsigned char* view,
979                  typename elfcpp::Elf_types<size>::Elf_Addr,
980                  section_size_type view_size);
981
982     // Do a TLS General-Dynamic to Local-Exec transition.
983     inline void
984     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
985                  Output_segment* tls_segment,
986                  const elfcpp::Rela<size, false>&, unsigned int r_type,
987                  typename elfcpp::Elf_types<size>::Elf_Addr value,
988                  unsigned char* view,
989                  section_size_type view_size);
990
991     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
992     inline void
993     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
994                       const elfcpp::Rela<size, false>&, unsigned int r_type,
995                       typename elfcpp::Elf_types<size>::Elf_Addr value,
996                       unsigned char* view,
997                       typename elfcpp::Elf_types<size>::Elf_Addr,
998                       section_size_type view_size);
999
1000     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
1001     inline void
1002     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
1003                       Output_segment* tls_segment,
1004                       const elfcpp::Rela<size, false>&, unsigned int r_type,
1005                       typename elfcpp::Elf_types<size>::Elf_Addr value,
1006                       unsigned char* view,
1007                       section_size_type view_size);
1008
1009     // Do a TLS Local-Dynamic to Local-Exec transition.
1010     inline void
1011     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
1012                  Output_segment* tls_segment,
1013                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1014                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1015                  unsigned char* view,
1016                  section_size_type view_size);
1017
1018     // Do a TLS Initial-Exec to Local-Exec transition.
1019     static inline void
1020     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
1021                  Output_segment* tls_segment,
1022                  const elfcpp::Rela<size, false>&, unsigned int r_type,
1023                  typename elfcpp::Elf_types<size>::Elf_Addr value,
1024                  unsigned char* view,
1025                  section_size_type view_size);
1026
1027     // This is set if we should skip the next reloc, which should be a
1028     // PLT32 reloc against ___tls_get_addr.
1029     bool skip_call_tls_get_addr_;
1030   };
1031
1032   // Check if relocation against this symbol is a candidate for
1033   // conversion from
1034   // mov foo@GOTPCREL(%rip), %reg
1035   // to lea foo(%rip), %reg.
1036   template<class View_type>
1037   static inline bool
1038   can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
1039                          size_t r_offset, View_type* view)
1040   {
1041     gold_assert(gsym != NULL);
1042     // We cannot do the conversion unless it's one of these relocations.
1043     if (r_type != elfcpp::R_X86_64_GOTPCREL
1044         && r_type != elfcpp::R_X86_64_GOTPCRELX
1045         && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
1046       return false;
1047     // We cannot convert references to IFUNC symbols, or to symbols that
1048     // are not local to the current module.
1049     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1050         || gsym->is_undefined ()
1051         || gsym->is_from_dynobj()
1052         || gsym->is_preemptible())
1053       return false;
1054     // If we are building a shared object and the symbol is protected, we may
1055     // need to go through the GOT.
1056     if (parameters->options().shared()
1057         && gsym->visibility() == elfcpp::STV_PROTECTED)
1058       return false;
1059     // We cannot convert references to the _DYNAMIC symbol.
1060     if (strcmp(gsym->name(), "_DYNAMIC") == 0)
1061       return false;
1062     // Check for a MOV opcode.
1063     return (*view)[r_offset - 2] == 0x8b;
1064   }
1065
1066   // Convert
1067   // callq *foo@GOTPCRELX(%rip) to
1068   // addr32 callq foo
1069   // and jmpq *foo@GOTPCRELX(%rip) to
1070   // jmpq foo
1071   // nop
1072   template<class View_type>
1073   static inline bool
1074   can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
1075                               size_t r_offset, View_type* view)
1076   {
1077     gold_assert(gsym != NULL);
1078     // We cannot do the conversion unless it's a GOTPCRELX relocation.
1079     if (r_type != elfcpp::R_X86_64_GOTPCRELX)
1080       return false;
1081     // We cannot convert references to IFUNC symbols, or to symbols that
1082     // are not local to the current module.
1083     if (gsym->type() == elfcpp::STT_GNU_IFUNC
1084         || gsym->is_undefined ()
1085         || gsym->is_from_dynobj()
1086         || gsym->is_preemptible())
1087       return false;
1088     // Check for a CALLQ or JMPQ opcode.
1089     return ((*view)[r_offset - 2] == 0xff
1090             && ((*view)[r_offset - 1] == 0x15
1091                 || (*view)[r_offset - 1] == 0x25));
1092   }
1093
1094   // Adjust TLS relocation type based on the options and whether this
1095   // is a local symbol.
1096   static tls::Tls_optimization
1097   optimize_tls_reloc(bool is_final, int r_type);
1098
1099   // Get the GOT section, creating it if necessary.
1100   Output_data_got<64, false>*
1101   got_section(Symbol_table*, Layout*);
1102
1103   // Get the GOT PLT section.
1104   Output_data_got_plt_x86_64*
1105   got_plt_section() const
1106   {
1107     gold_assert(this->got_plt_ != NULL);
1108     return this->got_plt_;
1109   }
1110
1111   // Get the GOT section for TLSDESC entries.
1112   Output_data_got<64, false>*
1113   got_tlsdesc_section() const
1114   {
1115     gold_assert(this->got_tlsdesc_ != NULL);
1116     return this->got_tlsdesc_;
1117   }
1118
1119   // Create the PLT section.
1120   void
1121   make_plt_section(Symbol_table* symtab, Layout* layout);
1122
1123   // Create a PLT entry for a global symbol.
1124   void
1125   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1126
1127   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
1128   void
1129   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1130                              Sized_relobj_file<size, false>* relobj,
1131                              unsigned int local_sym_index);
1132
1133   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1134   void
1135   define_tls_base_symbol(Symbol_table*, Layout*);
1136
1137   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1138   void
1139   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1140
1141   // Create a GOT entry for the TLS module index.
1142   unsigned int
1143   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1144                       Sized_relobj_file<size, false>* object);
1145
1146   // Get the PLT section.
1147   Output_data_plt_x86_64<size>*
1148   plt_section() const
1149   {
1150     gold_assert(this->plt_ != NULL);
1151     return this->plt_;
1152   }
1153
1154   // Get the dynamic reloc section, creating it if necessary.
1155   Reloc_section*
1156   rela_dyn_section(Layout*);
1157
1158   // Get the section to use for TLSDESC relocations.
1159   Reloc_section*
1160   rela_tlsdesc_section(Layout*) const;
1161
1162   // Get the section to use for IRELATIVE relocations.
1163   Reloc_section*
1164   rela_irelative_section(Layout*);
1165
1166   // Add a potential copy relocation.
1167   void
1168   copy_reloc(Symbol_table* symtab, Layout* layout,
1169              Sized_relobj_file<size, false>* object,
1170              unsigned int shndx, Output_section* output_section,
1171              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1172   {
1173     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1174     this->copy_relocs_.copy_reloc(symtab, layout,
1175                                   symtab->get_sized_symbol<size>(sym),
1176                                   object, shndx, output_section,
1177                                   r_type, reloc.get_r_offset(),
1178                                   reloc.get_r_addend(),
1179                                   this->rela_dyn_section(layout));
1180   }
1181
1182   // Information about this specific target which we pass to the
1183   // general Target structure.
1184   static const Target::Target_info x86_64_info;
1185
1186   // The types of GOT entries needed for this platform.
1187   // These values are exposed to the ABI in an incremental link.
1188   // Do not renumber existing values without changing the version
1189   // number of the .gnu_incremental_inputs section.
1190   enum Got_type
1191   {
1192     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
1193     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
1194     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
1195     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
1196   };
1197
1198   // This type is used as the argument to the target specific
1199   // relocation routines.  The only target specific reloc is
1200   // R_X86_64_TLSDESC against a local symbol.
1201   struct Tlsdesc_info
1202   {
1203     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1204       : object(a_object), r_sym(a_r_sym)
1205     { }
1206
1207     // The object in which the local symbol is defined.
1208     Sized_relobj_file<size, false>* object;
1209     // The local symbol index in the object.
1210     unsigned int r_sym;
1211   };
1212
1213   // The GOT section.
1214   Output_data_got<64, false>* got_;
1215   // The PLT section.
1216   Output_data_plt_x86_64<size>* plt_;
1217   // The GOT PLT section.
1218   Output_data_got_plt_x86_64* got_plt_;
1219   // The GOT section for IRELATIVE relocations.
1220   Output_data_space* got_irelative_;
1221   // The GOT section for TLSDESC relocations.
1222   Output_data_got<64, false>* got_tlsdesc_;
1223   // The _GLOBAL_OFFSET_TABLE_ symbol.
1224   Symbol* global_offset_table_;
1225   // The dynamic reloc section.
1226   Reloc_section* rela_dyn_;
1227   // The section to use for IRELATIVE relocs.
1228   Reloc_section* rela_irelative_;
1229   // Relocs saved to avoid a COPY reloc.
1230   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1231   // Offset of the GOT entry for the TLS module index.
1232   unsigned int got_mod_index_offset_;
1233   // We handle R_X86_64_TLSDESC against a local symbol as a target
1234   // specific relocation.  Here we store the object and local symbol
1235   // index for the relocation.
1236   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1237   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1238   bool tls_base_symbol_defined_;
1239 };
1240
1241 template<>
1242 const Target::Target_info Target_x86_64<64>::x86_64_info =
1243 {
1244   64,                   // size
1245   false,                // is_big_endian
1246   elfcpp::EM_X86_64,    // machine_code
1247   false,                // has_make_symbol
1248   false,                // has_resolve
1249   true,                 // has_code_fill
1250   true,                 // is_default_stack_executable
1251   true,                 // can_icf_inline_merge_sections
1252   '\0',                 // wrap_char
1253   "/lib/ld64.so.1",     // program interpreter
1254   0x400000,             // default_text_segment_address
1255   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1256   0x1000,               // common_pagesize (overridable by -z common-page-size)
1257   false,                // isolate_execinstr
1258   0,                    // rosegment_gap
1259   elfcpp::SHN_UNDEF,    // small_common_shndx
1260   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1261   0,                    // small_common_section_flags
1262   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1263   NULL,                 // attributes_section
1264   NULL,                 // attributes_vendor
1265   "_start",             // entry_symbol_name
1266   32,                   // hash_entry_size
1267 };
1268
1269 template<>
1270 const Target::Target_info Target_x86_64<32>::x86_64_info =
1271 {
1272   32,                   // size
1273   false,                // is_big_endian
1274   elfcpp::EM_X86_64,    // machine_code
1275   false,                // has_make_symbol
1276   false,                // has_resolve
1277   true,                 // has_code_fill
1278   true,                 // is_default_stack_executable
1279   true,                 // can_icf_inline_merge_sections
1280   '\0',                 // wrap_char
1281   "/libx32/ldx32.so.1", // program interpreter
1282   0x400000,             // default_text_segment_address
1283   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1284   0x1000,               // common_pagesize (overridable by -z common-page-size)
1285   false,                // isolate_execinstr
1286   0,                    // rosegment_gap
1287   elfcpp::SHN_UNDEF,    // small_common_shndx
1288   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1289   0,                    // small_common_section_flags
1290   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1291   NULL,                 // attributes_section
1292   NULL,                 // attributes_vendor
1293   "_start",             // entry_symbol_name
1294   32,                   // hash_entry_size
1295 };
1296
1297 // This is called when a new output section is created.  This is where
1298 // we handle the SHF_X86_64_LARGE.
1299
1300 template<int size>
1301 void
1302 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1303 {
1304   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1305     os->set_is_large_section();
1306 }
1307
1308 // Get the GOT section, creating it if necessary.
1309
1310 template<int size>
1311 Output_data_got<64, false>*
1312 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1313 {
1314   if (this->got_ == NULL)
1315     {
1316       gold_assert(symtab != NULL && layout != NULL);
1317
1318       // When using -z now, we can treat .got.plt as a relro section.
1319       // Without -z now, it is modified after program startup by lazy
1320       // PLT relocations.
1321       bool is_got_plt_relro = parameters->options().now();
1322       Output_section_order got_order = (is_got_plt_relro
1323                                         ? ORDER_RELRO
1324                                         : ORDER_RELRO_LAST);
1325       Output_section_order got_plt_order = (is_got_plt_relro
1326                                             ? ORDER_RELRO
1327                                             : ORDER_NON_RELRO_FIRST);
1328
1329       this->got_ = new Output_data_got<64, false>();
1330
1331       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1332                                       (elfcpp::SHF_ALLOC
1333                                        | elfcpp::SHF_WRITE),
1334                                       this->got_, got_order, true);
1335
1336       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1337       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1338                                       (elfcpp::SHF_ALLOC
1339                                        | elfcpp::SHF_WRITE),
1340                                       this->got_plt_, got_plt_order,
1341                                       is_got_plt_relro);
1342
1343       // The first three entries are reserved.
1344       this->got_plt_->set_current_data_size(3 * 8);
1345
1346       if (!is_got_plt_relro)
1347         {
1348           // Those bytes can go into the relro segment.
1349           layout->increase_relro(3 * 8);
1350         }
1351
1352       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1353       this->global_offset_table_ =
1354         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1355                                       Symbol_table::PREDEFINED,
1356                                       this->got_plt_,
1357                                       0, 0, elfcpp::STT_OBJECT,
1358                                       elfcpp::STB_LOCAL,
1359                                       elfcpp::STV_HIDDEN, 0,
1360                                       false, false);
1361
1362       // If there are any IRELATIVE relocations, they get GOT entries
1363       // in .got.plt after the jump slot entries.
1364       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1365       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1366                                       (elfcpp::SHF_ALLOC
1367                                        | elfcpp::SHF_WRITE),
1368                                       this->got_irelative_,
1369                                       got_plt_order, is_got_plt_relro);
1370
1371       // If there are any TLSDESC relocations, they get GOT entries in
1372       // .got.plt after the jump slot and IRELATIVE entries.
1373       this->got_tlsdesc_ = new Output_data_got<64, false>();
1374       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1375                                       (elfcpp::SHF_ALLOC
1376                                        | elfcpp::SHF_WRITE),
1377                                       this->got_tlsdesc_,
1378                                       got_plt_order, is_got_plt_relro);
1379     }
1380
1381   return this->got_;
1382 }
1383
1384 // Get the dynamic reloc section, creating it if necessary.
1385
1386 template<int size>
1387 typename Target_x86_64<size>::Reloc_section*
1388 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1389 {
1390   if (this->rela_dyn_ == NULL)
1391     {
1392       gold_assert(layout != NULL);
1393       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1394       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1395                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1396                                       ORDER_DYNAMIC_RELOCS, false);
1397     }
1398   return this->rela_dyn_;
1399 }
1400
1401 // Get the section to use for IRELATIVE relocs, creating it if
1402 // necessary.  These go in .rela.dyn, but only after all other dynamic
1403 // relocations.  They need to follow the other dynamic relocations so
1404 // that they can refer to global variables initialized by those
1405 // relocs.
1406
1407 template<int size>
1408 typename Target_x86_64<size>::Reloc_section*
1409 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1410 {
1411   if (this->rela_irelative_ == NULL)
1412     {
1413       // Make sure we have already created the dynamic reloc section.
1414       this->rela_dyn_section(layout);
1415       this->rela_irelative_ = new Reloc_section(false);
1416       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1417                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1418                                       ORDER_DYNAMIC_RELOCS, false);
1419       gold_assert(this->rela_dyn_->output_section()
1420                   == this->rela_irelative_->output_section());
1421     }
1422   return this->rela_irelative_;
1423 }
1424
1425 // Write the first three reserved words of the .got.plt section.
1426 // The remainder of the section is written while writing the PLT
1427 // in Output_data_plt_i386::do_write.
1428
1429 void
1430 Output_data_got_plt_x86_64::do_write(Output_file* of)
1431 {
1432   // The first entry in the GOT is the address of the .dynamic section
1433   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1434   // We saved space for them when we created the section in
1435   // Target_x86_64::got_section.
1436   const off_t got_file_offset = this->offset();
1437   gold_assert(this->data_size() >= 24);
1438   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1439   Output_section* dynamic = this->layout_->dynamic_section();
1440   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1441   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1442   memset(got_view + 8, 0, 16);
1443   of->write_output_view(got_file_offset, 24, got_view);
1444 }
1445
1446 // Initialize the PLT section.
1447
1448 template<int size>
1449 void
1450 Output_data_plt_x86_64<size>::init(Layout* layout)
1451 {
1452   this->rel_ = new Reloc_section(false);
1453   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1454                                   elfcpp::SHF_ALLOC, this->rel_,
1455                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1456 }
1457
1458 template<int size>
1459 void
1460 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1461 {
1462   os->set_entsize(this->get_plt_entry_size());
1463 }
1464
1465 // Add an entry to the PLT.
1466
1467 template<int size>
1468 void
1469 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1470                                         Symbol* gsym)
1471 {
1472   gold_assert(!gsym->has_plt_offset());
1473
1474   unsigned int plt_index;
1475   off_t plt_offset;
1476   section_offset_type got_offset;
1477
1478   unsigned int* pcount;
1479   unsigned int offset;
1480   unsigned int reserved;
1481   Output_section_data_build* got;
1482   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1483       && gsym->can_use_relative_reloc(false))
1484     {
1485       pcount = &this->irelative_count_;
1486       offset = 0;
1487       reserved = 0;
1488       got = this->got_irelative_;
1489     }
1490   else
1491     {
1492       pcount = &this->count_;
1493       offset = 1;
1494       reserved = 3;
1495       got = this->got_plt_;
1496     }
1497
1498   if (!this->is_data_size_valid())
1499     {
1500       // Note that when setting the PLT offset for a non-IRELATIVE
1501       // entry we skip the initial reserved PLT entry.
1502       plt_index = *pcount + offset;
1503       plt_offset = plt_index * this->get_plt_entry_size();
1504
1505       ++*pcount;
1506
1507       got_offset = (plt_index - offset + reserved) * 8;
1508       gold_assert(got_offset == got->current_data_size());
1509
1510       // Every PLT entry needs a GOT entry which points back to the PLT
1511       // entry (this will be changed by the dynamic linker, normally
1512       // lazily when the function is called).
1513       got->set_current_data_size(got_offset + 8);
1514     }
1515   else
1516     {
1517       // FIXME: This is probably not correct for IRELATIVE relocs.
1518
1519       // For incremental updates, find an available slot.
1520       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1521                                              this->get_plt_entry_size(), 0);
1522       if (plt_offset == -1)
1523         gold_fallback(_("out of patch space (PLT);"
1524                         " relink with --incremental-full"));
1525
1526       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1527       // can be calculated from the PLT index, adjusting for the three
1528       // reserved entries at the beginning of the GOT.
1529       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1530       got_offset = (plt_index - offset + reserved) * 8;
1531     }
1532
1533   gsym->set_plt_offset(plt_offset);
1534
1535   // Every PLT entry needs a reloc.
1536   this->add_relocation(symtab, layout, gsym, got_offset);
1537
1538   // Note that we don't need to save the symbol.  The contents of the
1539   // PLT are independent of which symbols are used.  The symbols only
1540   // appear in the relocations.
1541 }
1542
1543 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1544 // the PLT offset.
1545
1546 template<int size>
1547 unsigned int
1548 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1549     Symbol_table* symtab,
1550     Layout* layout,
1551     Sized_relobj_file<size, false>* relobj,
1552     unsigned int local_sym_index)
1553 {
1554   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1555   ++this->irelative_count_;
1556
1557   section_offset_type got_offset = this->got_irelative_->current_data_size();
1558
1559   // Every PLT entry needs a GOT entry which points back to the PLT
1560   // entry.
1561   this->got_irelative_->set_current_data_size(got_offset + 8);
1562
1563   // Every PLT entry needs a reloc.
1564   Reloc_section* rela = this->rela_irelative(symtab, layout);
1565   rela->add_symbolless_local_addend(relobj, local_sym_index,
1566                                     elfcpp::R_X86_64_IRELATIVE,
1567                                     this->got_irelative_, got_offset, 0);
1568
1569   return plt_offset;
1570 }
1571
1572 // Add the relocation for a PLT entry.
1573
1574 template<int size>
1575 void
1576 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1577                                              Layout* layout,
1578                                              Symbol* gsym,
1579                                              unsigned int got_offset)
1580 {
1581   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1582       && gsym->can_use_relative_reloc(false))
1583     {
1584       Reloc_section* rela = this->rela_irelative(symtab, layout);
1585       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1586                                          this->got_irelative_, got_offset, 0);
1587     }
1588   else
1589     {
1590       gsym->set_needs_dynsym_entry();
1591       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1592                              got_offset, 0);
1593     }
1594 }
1595
1596 // Return where the TLSDESC relocations should go, creating it if
1597 // necessary.  These follow the JUMP_SLOT relocations.
1598
1599 template<int size>
1600 typename Output_data_plt_x86_64<size>::Reloc_section*
1601 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1602 {
1603   if (this->tlsdesc_rel_ == NULL)
1604     {
1605       this->tlsdesc_rel_ = new Reloc_section(false);
1606       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1607                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1608                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1609       gold_assert(this->tlsdesc_rel_->output_section()
1610                   == this->rel_->output_section());
1611     }
1612   return this->tlsdesc_rel_;
1613 }
1614
1615 // Return where the IRELATIVE relocations should go in the PLT.  These
1616 // follow the JUMP_SLOT and the TLSDESC relocations.
1617
1618 template<int size>
1619 typename Output_data_plt_x86_64<size>::Reloc_section*
1620 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1621                                              Layout* layout)
1622 {
1623   if (this->irelative_rel_ == NULL)
1624     {
1625       // Make sure we have a place for the TLSDESC relocations, in
1626       // case we see any later on.
1627       this->rela_tlsdesc(layout);
1628       this->irelative_rel_ = new Reloc_section(false);
1629       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1630                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1631                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1632       gold_assert(this->irelative_rel_->output_section()
1633                   == this->rel_->output_section());
1634
1635       if (parameters->doing_static_link())
1636         {
1637           // A statically linked executable will only have a .rela.plt
1638           // section to hold R_X86_64_IRELATIVE relocs for
1639           // STT_GNU_IFUNC symbols.  The library will use these
1640           // symbols to locate the IRELATIVE relocs at program startup
1641           // time.
1642           symtab->define_in_output_data("__rela_iplt_start", NULL,
1643                                         Symbol_table::PREDEFINED,
1644                                         this->irelative_rel_, 0, 0,
1645                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1646                                         elfcpp::STV_HIDDEN, 0, false, true);
1647           symtab->define_in_output_data("__rela_iplt_end", NULL,
1648                                         Symbol_table::PREDEFINED,
1649                                         this->irelative_rel_, 0, 0,
1650                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1651                                         elfcpp::STV_HIDDEN, 0, true, true);
1652         }
1653     }
1654   return this->irelative_rel_;
1655 }
1656
1657 // Return the PLT address to use for a global symbol.
1658
1659 template<int size>
1660 uint64_t
1661 Output_data_plt_x86_64<size>::do_address_for_global(const Symbol* gsym)
1662 {
1663   uint64_t offset = 0;
1664   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1665       && gsym->can_use_relative_reloc(false))
1666     offset = (this->count_ + 1) * this->get_plt_entry_size();
1667   return this->address() + offset + gsym->plt_offset();
1668 }
1669
1670 // Return the PLT address to use for a local symbol.  These are always
1671 // IRELATIVE relocs.
1672
1673 template<int size>
1674 uint64_t
1675 Output_data_plt_x86_64<size>::do_address_for_local(const Relobj* object,
1676                                                    unsigned int r_sym)
1677 {
1678   return (this->address()
1679           + (this->count_ + 1) * this->get_plt_entry_size()
1680           + object->local_plt_offset(r_sym));
1681 }
1682
1683 // Set the final size.
1684 template<int size>
1685 void
1686 Output_data_plt_x86_64<size>::set_final_data_size()
1687 {
1688   // Number of regular and IFUNC PLT entries, plus the first entry.
1689   unsigned int count = this->count_ + this->irelative_count_ + 1;
1690   // Count the TLSDESC entry, if present.
1691   if (this->has_tlsdesc_entry())
1692     ++count;
1693   this->set_data_size(count * this->get_plt_entry_size());
1694 }
1695
1696 // The first entry in the PLT for an executable.
1697
1698 template<int size>
1699 const unsigned char
1700 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1701 {
1702   // From AMD64 ABI Draft 0.98, page 76
1703   0xff, 0x35,   // pushq contents of memory address
1704   0, 0, 0, 0,   // replaced with address of .got + 8
1705   0xff, 0x25,   // jmp indirect
1706   0, 0, 0, 0,   // replaced with address of .got + 16
1707   0x90, 0x90, 0x90, 0x90   // noop (x4)
1708 };
1709
1710 template<int size>
1711 void
1712 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1713     unsigned char* pov,
1714     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1715     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1716 {
1717   memcpy(pov, first_plt_entry, plt_entry_size);
1718   // We do a jmp relative to the PC at the end of this instruction.
1719   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1720                                               (got_address + 8
1721                                                - (plt_address + 6)));
1722   elfcpp::Swap<32, false>::writeval(pov + 8,
1723                                     (got_address + 16
1724                                      - (plt_address + 12)));
1725 }
1726
1727 // Subsequent entries in the PLT for an executable.
1728
1729 template<int size>
1730 const unsigned char
1731 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1732 {
1733   // From AMD64 ABI Draft 0.98, page 76
1734   0xff, 0x25,   // jmpq indirect
1735   0, 0, 0, 0,   // replaced with address of symbol in .got
1736   0x68,         // pushq immediate
1737   0, 0, 0, 0,   // replaced with offset into relocation table
1738   0xe9,         // jmpq relative
1739   0, 0, 0, 0    // replaced with offset to start of .plt
1740 };
1741
1742 template<int size>
1743 unsigned int
1744 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1745     unsigned char* pov,
1746     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1747     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1748     unsigned int got_offset,
1749     unsigned int plt_offset,
1750     unsigned int plt_index)
1751 {
1752   // Check PC-relative offset overflow in PLT entry.
1753   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1754                                    - (plt_address + plt_offset + 6));
1755   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1756     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1757                plt_index + 1);
1758
1759   memcpy(pov, plt_entry, plt_entry_size);
1760   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1761                                               plt_got_pcrel_offset);
1762
1763   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1764   elfcpp::Swap<32, false>::writeval(pov + 12,
1765                                     - (plt_offset + plt_entry_size));
1766
1767   return 6;
1768 }
1769
1770 // The reserved TLSDESC entry in the PLT for an executable.
1771
1772 template<int size>
1773 const unsigned char
1774 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1775 {
1776   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1777   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1778   0xff, 0x35,   // pushq x(%rip)
1779   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1780   0xff, 0x25,   // jmpq *y(%rip)
1781   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1782   0x0f, 0x1f,   // nop
1783   0x40, 0
1784 };
1785
1786 template<int size>
1787 void
1788 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1789     unsigned char* pov,
1790     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1791     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1792     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1793     unsigned int tlsdesc_got_offset,
1794     unsigned int plt_offset)
1795 {
1796   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1797   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1798                                               (got_address + 8
1799                                                - (plt_address + plt_offset
1800                                                   + 6)));
1801   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1802                                               (got_base
1803                                                + tlsdesc_got_offset
1804                                                - (plt_address + plt_offset
1805                                                   + 12)));
1806 }
1807
1808 // Return the APLT address to use for a global symbol (for -z bndplt).
1809
1810 uint64_t
1811 Output_data_plt_x86_64_bnd::do_address_for_global(const Symbol* gsym)
1812 {
1813   uint64_t offset = this->aplt_offset_;
1814   // Convert the PLT offset into an APLT offset.
1815   unsigned int plt_offset = gsym->plt_offset();
1816   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1817       && gsym->can_use_relative_reloc(false))
1818     offset += this->regular_count() * aplt_entry_size;
1819   else
1820     plt_offset -= plt_entry_size;
1821   plt_offset = plt_offset / (plt_entry_size / aplt_entry_size);
1822   return this->address() + offset + plt_offset;
1823 }
1824
1825 // Return the PLT address to use for a local symbol.  These are always
1826 // IRELATIVE relocs.
1827
1828 uint64_t
1829 Output_data_plt_x86_64_bnd::do_address_for_local(const Relobj* object,
1830                                                  unsigned int r_sym)
1831 {
1832   // Convert the PLT offset into an APLT offset.
1833   unsigned int plt_offset = ((object->local_plt_offset(r_sym) - plt_entry_size)
1834                              / (plt_entry_size / aplt_entry_size));
1835   return (this->address()
1836           + this->aplt_offset_
1837           + this->regular_count() * aplt_entry_size
1838           + plt_offset);
1839 }
1840
1841 // Set the final size.
1842 void
1843 Output_data_plt_x86_64_bnd::set_final_data_size()
1844 {
1845   // Number of regular and IFUNC PLT entries.
1846   unsigned int count = this->entry_count();
1847   // Count the first entry and the TLSDESC entry, if present.
1848   unsigned int extra = this->has_tlsdesc_entry() ? 2 : 1;
1849   unsigned int plt_size = (count + extra) * plt_entry_size;
1850   // Offset of the APLT.
1851   this->aplt_offset_ = plt_size;
1852   // Size of the APLT.
1853   plt_size += count * aplt_entry_size;
1854   this->set_data_size(plt_size);
1855 }
1856
1857 // The first entry in the BND PLT.
1858
1859 const unsigned char
1860 Output_data_plt_x86_64_bnd::first_plt_entry[plt_entry_size] =
1861 {
1862   // From AMD64 ABI Draft 0.98, page 76
1863   0xff, 0x35,           // pushq contents of memory address
1864   0, 0, 0, 0,           // replaced with address of .got + 8
1865   0xf2, 0xff, 0x25,     // bnd jmp indirect
1866   0, 0, 0, 0,           // replaced with address of .got + 16
1867   0x0f, 0x1f, 0x00      // nop
1868 };
1869
1870 void
1871 Output_data_plt_x86_64_bnd::do_fill_first_plt_entry(
1872     unsigned char* pov,
1873     typename elfcpp::Elf_types<64>::Elf_Addr got_address,
1874     typename elfcpp::Elf_types<64>::Elf_Addr plt_address)
1875 {
1876   memcpy(pov, first_plt_entry, plt_entry_size);
1877   // We do a jmp relative to the PC at the end of this instruction.
1878   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1879                                               (got_address + 8
1880                                                - (plt_address + 6)));
1881   elfcpp::Swap<32, false>::writeval(pov + 9,
1882                                     (got_address + 16
1883                                      - (plt_address + 13)));
1884 }
1885
1886 // Subsequent entries in the BND PLT.
1887
1888 const unsigned char
1889 Output_data_plt_x86_64_bnd::plt_entry[plt_entry_size] =
1890 {
1891   // From AMD64 ABI Draft 0.99.8, page 139
1892   0x68,                         // pushq immediate
1893   0, 0, 0, 0,                   // replaced with offset into relocation table
1894   0xf2, 0xe9,                   // bnd jmpq relative
1895   0, 0, 0, 0,                   // replaced with offset to start of .plt
1896   0x0f, 0x1f, 0x44, 0, 0        // nop
1897 };
1898
1899 // Entries in the BND Additional PLT.
1900
1901 const unsigned char
1902 Output_data_plt_x86_64_bnd::aplt_entry[aplt_entry_size] =
1903 {
1904   // From AMD64 ABI Draft 0.99.8, page 139
1905   0xf2, 0xff, 0x25,     // bnd jmpq indirect
1906   0, 0, 0, 0,           // replaced with address of symbol in .got
1907   0x90,                 // nop
1908 };
1909
1910 unsigned int
1911 Output_data_plt_x86_64_bnd::do_fill_plt_entry(
1912     unsigned char* pov,
1913     typename elfcpp::Elf_types<64>::Elf_Addr,
1914     typename elfcpp::Elf_types<64>::Elf_Addr,
1915     unsigned int,
1916     unsigned int plt_offset,
1917     unsigned int plt_index)
1918 {
1919   memcpy(pov, plt_entry, plt_entry_size);
1920   elfcpp::Swap_unaligned<32, false>::writeval(pov + 1, plt_index);
1921   elfcpp::Swap<32, false>::writeval(pov + 7, -(plt_offset + 11));
1922   return 0;
1923 }
1924
1925 void
1926 Output_data_plt_x86_64_bnd::fill_aplt_entry(
1927     unsigned char* pov,
1928     typename elfcpp::Elf_types<64>::Elf_Addr got_address,
1929     typename elfcpp::Elf_types<64>::Elf_Addr plt_address,
1930     unsigned int got_offset,
1931     unsigned int plt_offset,
1932     unsigned int plt_index)
1933 {
1934   // Check PC-relative offset overflow in PLT entry.
1935   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1936                                    - (plt_address + plt_offset + 7));
1937   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1938     gold_error(_("PC-relative offset overflow in APLT entry %d"),
1939                plt_index + 1);
1940
1941   memcpy(pov, aplt_entry, aplt_entry_size);
1942   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3, plt_got_pcrel_offset);
1943 }
1944
1945 // The reserved TLSDESC entry in the PLT for an executable.
1946
1947 const unsigned char
1948 Output_data_plt_x86_64_bnd::tlsdesc_plt_entry[plt_entry_size] =
1949 {
1950   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1951   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1952   0xff, 0x35,           // pushq x(%rip)
1953   0, 0, 0, 0,           // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1954   0xf2, 0xff, 0x25,     // jmpq *y(%rip)
1955   0, 0, 0, 0,           // replaced with offset of reserved TLSDESC_GOT entry
1956   0x0f, 0x1f, 0         // nop
1957 };
1958
1959 void
1960 Output_data_plt_x86_64_bnd::do_fill_tlsdesc_entry(
1961     unsigned char* pov,
1962     typename elfcpp::Elf_types<64>::Elf_Addr got_address,
1963     typename elfcpp::Elf_types<64>::Elf_Addr plt_address,
1964     typename elfcpp::Elf_types<64>::Elf_Addr got_base,
1965     unsigned int tlsdesc_got_offset,
1966     unsigned int plt_offset)
1967 {
1968   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1969   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1970                                               (got_address + 8
1971                                                - (plt_address + plt_offset
1972                                                   + 6)));
1973   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
1974                                               (got_base
1975                                                + tlsdesc_got_offset
1976                                                - (plt_address + plt_offset
1977                                                   + 13)));
1978 }
1979
1980 // The .eh_frame unwind information for the PLT.
1981
1982 template<int size>
1983 const unsigned char
1984 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1985 {
1986   1,                            // CIE version.
1987   'z',                          // Augmentation: augmentation size included.
1988   'R',                          // Augmentation: FDE encoding included.
1989   '\0',                         // End of augmentation string.
1990   1,                            // Code alignment factor.
1991   0x78,                         // Data alignment factor.
1992   16,                           // Return address column.
1993   1,                            // Augmentation size.
1994   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1995    | elfcpp::DW_EH_PE_sdata4),
1996   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1997   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1998   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1999   elfcpp::DW_CFA_nop
2000 };
2001
2002 template<int size>
2003 const unsigned char
2004 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2005 {
2006   0, 0, 0, 0,                           // Replaced with offset to .plt.
2007   0, 0, 0, 0,                           // Replaced with size of .plt.
2008   0,                                    // Augmentation size.
2009   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2010   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2011   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2012   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2013   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2014   11,                                   // Block length.
2015   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2016   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2017   elfcpp::DW_OP_lit15,                  // Push 0xf.
2018   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2019   elfcpp::DW_OP_lit11,                  // Push 0xb.
2020   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
2021   elfcpp::DW_OP_lit3,                   // Push 3.
2022   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
2023   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
2024   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2025   elfcpp::DW_CFA_nop,
2026   elfcpp::DW_CFA_nop,
2027   elfcpp::DW_CFA_nop
2028 };
2029
2030 // The .eh_frame unwind information for the BND PLT.
2031 const unsigned char
2032 Output_data_plt_x86_64_bnd::plt_eh_frame_fde[plt_eh_frame_fde_size] =
2033 {
2034   0, 0, 0, 0,                           // Replaced with offset to .plt.
2035   0, 0, 0, 0,                           // Replaced with size of .plt.
2036   0,                                    // Augmentation size.
2037   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
2038   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
2039   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
2040   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
2041   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
2042   11,                                   // Block length.
2043   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
2044   elfcpp::DW_OP_breg16, 0,              // Push %rip.
2045   elfcpp::DW_OP_lit15,                  // Push 0xf.
2046   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
2047   elfcpp::DW_OP_lit5,                   // Push 5.
2048   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 5)
2049   elfcpp::DW_OP_lit3,                   // Push 3.
2050   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 5) << 3)
2051   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=5)<<3)+%rsp+8
2052   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
2053   elfcpp::DW_CFA_nop,
2054   elfcpp::DW_CFA_nop,
2055   elfcpp::DW_CFA_nop
2056 };
2057
2058 // Write out the PLT.  This uses the hand-coded instructions above,
2059 // and adjusts them as needed.  This is specified by the AMD64 ABI.
2060
2061 template<int size>
2062 void
2063 Output_data_plt_x86_64<size>::do_write(Output_file* of)
2064 {
2065   const off_t offset = this->offset();
2066   const section_size_type oview_size =
2067     convert_to_section_size_type(this->data_size());
2068   unsigned char* const oview = of->get_output_view(offset, oview_size);
2069
2070   const off_t got_file_offset = this->got_plt_->offset();
2071   gold_assert(parameters->incremental_update()
2072               || (got_file_offset + this->got_plt_->data_size()
2073                   == this->got_irelative_->offset()));
2074   const section_size_type got_size =
2075     convert_to_section_size_type(this->got_plt_->data_size()
2076                                  + this->got_irelative_->data_size());
2077   unsigned char* const got_view = of->get_output_view(got_file_offset,
2078                                                       got_size);
2079
2080   unsigned char* pov = oview;
2081
2082   // The base address of the .plt section.
2083   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2084   // The base address of the .got section.
2085   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
2086   // The base address of the PLT portion of the .got section,
2087   // which is where the GOT pointer will point, and where the
2088   // three reserved GOT entries are located.
2089   typename elfcpp::Elf_types<size>::Elf_Addr got_address
2090     = this->got_plt_->address();
2091
2092   this->fill_first_plt_entry(pov, got_address, plt_address);
2093   pov += this->get_plt_entry_size();
2094
2095   // The first three entries in the GOT are reserved, and are written
2096   // by Output_data_got_plt_x86_64::do_write.
2097   unsigned char* got_pov = got_view + 24;
2098
2099   unsigned int plt_offset = this->get_plt_entry_size();
2100   unsigned int got_offset = 24;
2101   const unsigned int count = this->count_ + this->irelative_count_;
2102   for (unsigned int plt_index = 0;
2103        plt_index < count;
2104        ++plt_index,
2105          pov += this->get_plt_entry_size(),
2106          got_pov += 8,
2107          plt_offset += this->get_plt_entry_size(),
2108          got_offset += 8)
2109     {
2110       // Set and adjust the PLT entry itself.
2111       unsigned int lazy_offset = this->fill_plt_entry(pov,
2112                                                       got_address, plt_address,
2113                                                       got_offset, plt_offset,
2114                                                       plt_index);
2115
2116       // Set the entry in the GOT.
2117       elfcpp::Swap<64, false>::writeval(got_pov,
2118                                         plt_address + plt_offset + lazy_offset);
2119     }
2120
2121   if (this->has_tlsdesc_entry())
2122     {
2123       // Set and adjust the reserved TLSDESC PLT entry.
2124       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2125       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2126                                tlsdesc_got_offset, plt_offset);
2127       pov += this->get_plt_entry_size();
2128     }
2129
2130   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2131   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2132
2133   of->write_output_view(offset, oview_size, oview);
2134   of->write_output_view(got_file_offset, got_size, got_view);
2135 }
2136
2137 // Write out the BND PLT.
2138
2139 void
2140 Output_data_plt_x86_64_bnd::do_write(Output_file* of)
2141 {
2142   const off_t offset = this->offset();
2143   const section_size_type oview_size =
2144     convert_to_section_size_type(this->data_size());
2145   unsigned char* const oview = of->get_output_view(offset, oview_size);
2146
2147   Output_data_got<64, false>* got = this->got();
2148   Output_data_got_plt_x86_64* got_plt = this->got_plt();
2149   Output_data_space* got_irelative = this->got_irelative();
2150
2151   const off_t got_file_offset = got_plt->offset();
2152   gold_assert(parameters->incremental_update()
2153               || (got_file_offset + got_plt->data_size()
2154                   == got_irelative->offset()));
2155   const section_size_type got_size =
2156     convert_to_section_size_type(got_plt->data_size()
2157                                  + got_irelative->data_size());
2158   unsigned char* const got_view = of->get_output_view(got_file_offset,
2159                                                       got_size);
2160
2161   unsigned char* pov = oview;
2162
2163   // The base address of the .plt section.
2164   typename elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
2165   // The base address of the .got section.
2166   typename elfcpp::Elf_types<64>::Elf_Addr got_base = got->address();
2167   // The base address of the PLT portion of the .got section,
2168   // which is where the GOT pointer will point, and where the
2169   // three reserved GOT entries are located.
2170   typename elfcpp::Elf_types<64>::Elf_Addr got_address = got_plt->address();
2171
2172   this->fill_first_plt_entry(pov, got_address, plt_address);
2173   pov += plt_entry_size;
2174
2175   // The first three entries in the GOT are reserved, and are written
2176   // by Output_data_got_plt_x86_64::do_write.
2177   unsigned char* got_pov = got_view + 24;
2178
2179   unsigned int plt_offset = plt_entry_size;
2180   unsigned int got_offset = 24;
2181   const unsigned int count = this->entry_count();
2182   for (unsigned int plt_index = 0;
2183        plt_index < count;
2184        ++plt_index,
2185          pov += plt_entry_size,
2186          got_pov += 8,
2187          plt_offset += plt_entry_size,
2188          got_offset += 8)
2189     {
2190       // Set and adjust the PLT entry itself.
2191       unsigned int lazy_offset = this->fill_plt_entry(pov,
2192                                                       got_address, plt_address,
2193                                                       got_offset, plt_offset,
2194                                                       plt_index);
2195
2196       // Set the entry in the GOT.
2197       elfcpp::Swap<64, false>::writeval(got_pov,
2198                                         plt_address + plt_offset + lazy_offset);
2199     }
2200
2201   if (this->has_tlsdesc_entry())
2202     {
2203       // Set and adjust the reserved TLSDESC PLT entry.
2204       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
2205       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
2206                                tlsdesc_got_offset, plt_offset);
2207       pov += this->get_plt_entry_size();
2208     }
2209
2210   // Write the additional PLT.
2211   got_offset = 24;
2212   for (unsigned int plt_index = 0;
2213        plt_index < count;
2214        ++plt_index,
2215          pov += aplt_entry_size,
2216          plt_offset += aplt_entry_size,
2217          got_offset += 8)
2218     {
2219       // Set and adjust the PLT entry itself.
2220       this->fill_aplt_entry(pov, got_address, plt_address, got_offset,
2221                             plt_offset, plt_index);
2222     }
2223
2224   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2225   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2226
2227   of->write_output_view(offset, oview_size, oview);
2228   of->write_output_view(got_file_offset, got_size, got_view);
2229 }
2230
2231 // Create the PLT section.
2232
2233 template<int size>
2234 void
2235 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
2236 {
2237   if (this->plt_ == NULL)
2238     {
2239       // Create the GOT sections first.
2240       this->got_section(symtab, layout);
2241
2242       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
2243                                        this->got_irelative_);
2244
2245       // Add unwind information if requested.
2246       if (parameters->options().ld_generated_unwind_info())
2247         this->plt_->add_eh_frame(layout);
2248
2249       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2250                                       (elfcpp::SHF_ALLOC
2251                                        | elfcpp::SHF_EXECINSTR),
2252                                       this->plt_, ORDER_PLT, false);
2253
2254       // Make the sh_info field of .rela.plt point to .plt.
2255       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2256       rela_plt_os->set_info_section(this->plt_->output_section());
2257     }
2258 }
2259
2260 template<>
2261 Output_data_plt_x86_64<32>*
2262 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2263                                     Output_data_got<64, false>* got,
2264                                     Output_data_got_plt_x86_64* got_plt,
2265                                     Output_data_space* got_irelative)
2266 {
2267   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2268                                                  got_irelative);
2269 }
2270
2271 template<>
2272 Output_data_plt_x86_64<64>*
2273 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2274                                     Output_data_got<64, false>* got,
2275                                     Output_data_got_plt_x86_64* got_plt,
2276                                     Output_data_space* got_irelative)
2277 {
2278   if (parameters->options().bndplt())
2279     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2280                                           got_irelative);
2281   else
2282     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2283                                                    got_irelative);
2284 }
2285
2286 template<>
2287 Output_data_plt_x86_64<32>*
2288 Target_x86_64<32>::do_make_data_plt(Layout* layout,
2289                                     Output_data_got<64, false>* got,
2290                                     Output_data_got_plt_x86_64* got_plt,
2291                                     Output_data_space* got_irelative,
2292                                     unsigned int plt_count)
2293 {
2294   return new Output_data_plt_x86_64_standard<32>(layout, got, got_plt,
2295                                                  got_irelative,
2296                                                  plt_count);
2297 }
2298
2299 template<>
2300 Output_data_plt_x86_64<64>*
2301 Target_x86_64<64>::do_make_data_plt(Layout* layout,
2302                                     Output_data_got<64, false>* got,
2303                                     Output_data_got_plt_x86_64* got_plt,
2304                                     Output_data_space* got_irelative,
2305                                     unsigned int plt_count)
2306 {
2307   if (parameters->options().bndplt())
2308     return new Output_data_plt_x86_64_bnd(layout, got, got_plt,
2309                                           got_irelative, plt_count);
2310   else
2311     return new Output_data_plt_x86_64_standard<64>(layout, got, got_plt,
2312                                                    got_irelative,
2313                                                    plt_count);
2314 }
2315
2316 // Return the section for TLSDESC relocations.
2317
2318 template<int size>
2319 typename Target_x86_64<size>::Reloc_section*
2320 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
2321 {
2322   return this->plt_section()->rela_tlsdesc(layout);
2323 }
2324
2325 // Create a PLT entry for a global symbol.
2326
2327 template<int size>
2328 void
2329 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
2330                                     Symbol* gsym)
2331 {
2332   if (gsym->has_plt_offset())
2333     return;
2334
2335   if (this->plt_ == NULL)
2336     this->make_plt_section(symtab, layout);
2337
2338   this->plt_->add_entry(symtab, layout, gsym);
2339 }
2340
2341 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2342
2343 template<int size>
2344 void
2345 Target_x86_64<size>::make_local_ifunc_plt_entry(
2346     Symbol_table* symtab, Layout* layout,
2347     Sized_relobj_file<size, false>* relobj,
2348     unsigned int local_sym_index)
2349 {
2350   if (relobj->local_has_plt_offset(local_sym_index))
2351     return;
2352   if (this->plt_ == NULL)
2353     this->make_plt_section(symtab, layout);
2354   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2355                                                               relobj,
2356                                                               local_sym_index);
2357   relobj->set_local_plt_offset(local_sym_index, plt_offset);
2358 }
2359
2360 // Return the number of entries in the PLT.
2361
2362 template<int size>
2363 unsigned int
2364 Target_x86_64<size>::plt_entry_count() const
2365 {
2366   if (this->plt_ == NULL)
2367     return 0;
2368   return this->plt_->entry_count();
2369 }
2370
2371 // Return the offset of the first non-reserved PLT entry.
2372
2373 template<int size>
2374 unsigned int
2375 Target_x86_64<size>::first_plt_entry_offset() const
2376 {
2377   if (this->plt_ == NULL)
2378     return 0;
2379   return this->plt_->first_plt_entry_offset();
2380 }
2381
2382 // Return the size of each PLT entry.
2383
2384 template<int size>
2385 unsigned int
2386 Target_x86_64<size>::plt_entry_size() const
2387 {
2388   if (this->plt_ == NULL)
2389     return 0;
2390   return this->plt_->get_plt_entry_size();
2391 }
2392
2393 // Create the GOT and PLT sections for an incremental update.
2394
2395 template<int size>
2396 Output_data_got_base*
2397 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
2398                                        Layout* layout,
2399                                        unsigned int got_count,
2400                                        unsigned int plt_count)
2401 {
2402   gold_assert(this->got_ == NULL);
2403
2404   this->got_ = new Output_data_got<64, false>(got_count * 8);
2405   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2406                                   (elfcpp::SHF_ALLOC
2407                                    | elfcpp::SHF_WRITE),
2408                                   this->got_, ORDER_RELRO_LAST,
2409                                   true);
2410
2411   // Add the three reserved entries.
2412   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
2413   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2414                                   (elfcpp::SHF_ALLOC
2415                                    | elfcpp::SHF_WRITE),
2416                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
2417                                   false);
2418
2419   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2420   this->global_offset_table_ =
2421     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2422                                   Symbol_table::PREDEFINED,
2423                                   this->got_plt_,
2424                                   0, 0, elfcpp::STT_OBJECT,
2425                                   elfcpp::STB_LOCAL,
2426                                   elfcpp::STV_HIDDEN, 0,
2427                                   false, false);
2428
2429   // If there are any TLSDESC relocations, they get GOT entries in
2430   // .got.plt after the jump slot entries.
2431   // FIXME: Get the count for TLSDESC entries.
2432   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
2433   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2434                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2435                                   this->got_tlsdesc_,
2436                                   ORDER_NON_RELRO_FIRST, false);
2437
2438   // If there are any IRELATIVE relocations, they get GOT entries in
2439   // .got.plt after the jump slot and TLSDESC entries.
2440   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
2441   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2442                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2443                                   this->got_irelative_,
2444                                   ORDER_NON_RELRO_FIRST, false);
2445
2446   // Create the PLT section.
2447   this->plt_ = this->make_data_plt(layout, this->got_,
2448                                    this->got_plt_,
2449                                    this->got_irelative_,
2450                                    plt_count);
2451
2452   // Add unwind information if requested.
2453   if (parameters->options().ld_generated_unwind_info())
2454     this->plt_->add_eh_frame(layout);
2455
2456   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2457                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2458                                   this->plt_, ORDER_PLT, false);
2459
2460   // Make the sh_info field of .rela.plt point to .plt.
2461   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2462   rela_plt_os->set_info_section(this->plt_->output_section());
2463
2464   // Create the rela_dyn section.
2465   this->rela_dyn_section(layout);
2466
2467   return this->got_;
2468 }
2469
2470 // Reserve a GOT entry for a local symbol, and regenerate any
2471 // necessary dynamic relocations.
2472
2473 template<int size>
2474 void
2475 Target_x86_64<size>::reserve_local_got_entry(
2476     unsigned int got_index,
2477     Sized_relobj<size, false>* obj,
2478     unsigned int r_sym,
2479     unsigned int got_type)
2480 {
2481   unsigned int got_offset = got_index * 8;
2482   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2483
2484   this->got_->reserve_local(got_index, obj, r_sym, got_type);
2485   switch (got_type)
2486     {
2487     case GOT_TYPE_STANDARD:
2488       if (parameters->options().output_is_position_independent())
2489         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
2490                                      this->got_, got_offset, 0, false);
2491       break;
2492     case GOT_TYPE_TLS_OFFSET:
2493       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
2494                           this->got_, got_offset, 0);
2495       break;
2496     case GOT_TYPE_TLS_PAIR:
2497       this->got_->reserve_slot(got_index + 1);
2498       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
2499                           this->got_, got_offset, 0);
2500       break;
2501     case GOT_TYPE_TLS_DESC:
2502       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2503       // this->got_->reserve_slot(got_index + 1);
2504       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2505       //                               this->got_, got_offset, 0);
2506       break;
2507     default:
2508       gold_unreachable();
2509     }
2510 }
2511
2512 // Reserve a GOT entry for a global symbol, and regenerate any
2513 // necessary dynamic relocations.
2514
2515 template<int size>
2516 void
2517 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
2518                                               Symbol* gsym,
2519                                               unsigned int got_type)
2520 {
2521   unsigned int got_offset = got_index * 8;
2522   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2523
2524   this->got_->reserve_global(got_index, gsym, got_type);
2525   switch (got_type)
2526     {
2527     case GOT_TYPE_STANDARD:
2528       if (!gsym->final_value_is_known())
2529         {
2530           if (gsym->is_from_dynobj()
2531               || gsym->is_undefined()
2532               || gsym->is_preemptible()
2533               || gsym->type() == elfcpp::STT_GNU_IFUNC)
2534             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
2535                                  this->got_, got_offset, 0);
2536           else
2537             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2538                                           this->got_, got_offset, 0, false);
2539         }
2540       break;
2541     case GOT_TYPE_TLS_OFFSET:
2542       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
2543                                     this->got_, got_offset, 0, false);
2544       break;
2545     case GOT_TYPE_TLS_PAIR:
2546       this->got_->reserve_slot(got_index + 1);
2547       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
2548                                     this->got_, got_offset, 0, false);
2549       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
2550                                     this->got_, got_offset + 8, 0, false);
2551       break;
2552     case GOT_TYPE_TLS_DESC:
2553       this->got_->reserve_slot(got_index + 1);
2554       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
2555                                     this->got_, got_offset, 0, false);
2556       break;
2557     default:
2558       gold_unreachable();
2559     }
2560 }
2561
2562 // Register an existing PLT entry for a global symbol.
2563
2564 template<int size>
2565 void
2566 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2567                                                Layout* layout,
2568                                                unsigned int plt_index,
2569                                                Symbol* gsym)
2570 {
2571   gold_assert(this->plt_ != NULL);
2572   gold_assert(!gsym->has_plt_offset());
2573
2574   this->plt_->reserve_slot(plt_index);
2575
2576   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2577
2578   unsigned int got_offset = (plt_index + 3) * 8;
2579   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2580 }
2581
2582 // Force a COPY relocation for a given symbol.
2583
2584 template<int size>
2585 void
2586 Target_x86_64<size>::emit_copy_reloc(
2587     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2588 {
2589   this->copy_relocs_.emit_copy_reloc(symtab,
2590                                      symtab->get_sized_symbol<size>(sym),
2591                                      os,
2592                                      offset,
2593                                      this->rela_dyn_section(NULL));
2594 }
2595
2596 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2597
2598 template<int size>
2599 void
2600 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2601                                             Layout* layout)
2602 {
2603   if (this->tls_base_symbol_defined_)
2604     return;
2605
2606   Output_segment* tls_segment = layout->tls_segment();
2607   if (tls_segment != NULL)
2608     {
2609       bool is_exec = parameters->options().output_is_executable();
2610       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2611                                        Symbol_table::PREDEFINED,
2612                                        tls_segment, 0, 0,
2613                                        elfcpp::STT_TLS,
2614                                        elfcpp::STB_LOCAL,
2615                                        elfcpp::STV_HIDDEN, 0,
2616                                        (is_exec
2617                                         ? Symbol::SEGMENT_END
2618                                         : Symbol::SEGMENT_START),
2619                                        true);
2620     }
2621   this->tls_base_symbol_defined_ = true;
2622 }
2623
2624 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2625
2626 template<int size>
2627 void
2628 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2629                                              Layout* layout)
2630 {
2631   if (this->plt_ == NULL)
2632     this->make_plt_section(symtab, layout);
2633
2634   if (!this->plt_->has_tlsdesc_entry())
2635     {
2636       // Allocate the TLSDESC_GOT entry.
2637       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2638       unsigned int got_offset = got->add_constant(0);
2639
2640       // Allocate the TLSDESC_PLT entry.
2641       this->plt_->reserve_tlsdesc_entry(got_offset);
2642     }
2643 }
2644
2645 // Create a GOT entry for the TLS module index.
2646
2647 template<int size>
2648 unsigned int
2649 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2650                                          Sized_relobj_file<size, false>* object)
2651 {
2652   if (this->got_mod_index_offset_ == -1U)
2653     {
2654       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2655       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2656       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2657       unsigned int got_offset = got->add_constant(0);
2658       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2659                           got_offset, 0);
2660       got->add_constant(0);
2661       this->got_mod_index_offset_ = got_offset;
2662     }
2663   return this->got_mod_index_offset_;
2664 }
2665
2666 // Optimize the TLS relocation type based on what we know about the
2667 // symbol.  IS_FINAL is true if the final address of this symbol is
2668 // known at link time.
2669
2670 template<int size>
2671 tls::Tls_optimization
2672 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2673 {
2674   // If we are generating a shared library, then we can't do anything
2675   // in the linker.
2676   if (parameters->options().shared())
2677     return tls::TLSOPT_NONE;
2678
2679   switch (r_type)
2680     {
2681     case elfcpp::R_X86_64_TLSGD:
2682     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2683     case elfcpp::R_X86_64_TLSDESC_CALL:
2684       // These are General-Dynamic which permits fully general TLS
2685       // access.  Since we know that we are generating an executable,
2686       // we can convert this to Initial-Exec.  If we also know that
2687       // this is a local symbol, we can further switch to Local-Exec.
2688       if (is_final)
2689         return tls::TLSOPT_TO_LE;
2690       return tls::TLSOPT_TO_IE;
2691
2692     case elfcpp::R_X86_64_TLSLD:
2693       // This is Local-Dynamic, which refers to a local symbol in the
2694       // dynamic TLS block.  Since we know that we generating an
2695       // executable, we can switch to Local-Exec.
2696       return tls::TLSOPT_TO_LE;
2697
2698     case elfcpp::R_X86_64_DTPOFF32:
2699     case elfcpp::R_X86_64_DTPOFF64:
2700       // Another Local-Dynamic reloc.
2701       return tls::TLSOPT_TO_LE;
2702
2703     case elfcpp::R_X86_64_GOTTPOFF:
2704       // These are Initial-Exec relocs which get the thread offset
2705       // from the GOT.  If we know that we are linking against the
2706       // local symbol, we can switch to Local-Exec, which links the
2707       // thread offset into the instruction.
2708       if (is_final)
2709         return tls::TLSOPT_TO_LE;
2710       return tls::TLSOPT_NONE;
2711
2712     case elfcpp::R_X86_64_TPOFF32:
2713       // When we already have Local-Exec, there is nothing further we
2714       // can do.
2715       return tls::TLSOPT_NONE;
2716
2717     default:
2718       gold_unreachable();
2719     }
2720 }
2721
2722 // Get the Reference_flags for a particular relocation.
2723
2724 template<int size>
2725 int
2726 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2727 {
2728   switch (r_type)
2729     {
2730     case elfcpp::R_X86_64_NONE:
2731     case elfcpp::R_X86_64_GNU_VTINHERIT:
2732     case elfcpp::R_X86_64_GNU_VTENTRY:
2733     case elfcpp::R_X86_64_GOTPC32:
2734     case elfcpp::R_X86_64_GOTPC64:
2735       // No symbol reference.
2736       return 0;
2737
2738     case elfcpp::R_X86_64_64:
2739     case elfcpp::R_X86_64_32:
2740     case elfcpp::R_X86_64_32S:
2741     case elfcpp::R_X86_64_16:
2742     case elfcpp::R_X86_64_8:
2743       return Symbol::ABSOLUTE_REF;
2744
2745     case elfcpp::R_X86_64_PC64:
2746     case elfcpp::R_X86_64_PC32:
2747     case elfcpp::R_X86_64_PC32_BND:
2748     case elfcpp::R_X86_64_PC16:
2749     case elfcpp::R_X86_64_PC8:
2750     case elfcpp::R_X86_64_GOTOFF64:
2751       return Symbol::RELATIVE_REF;
2752
2753     case elfcpp::R_X86_64_PLT32:
2754     case elfcpp::R_X86_64_PLT32_BND:
2755     case elfcpp::R_X86_64_PLTOFF64:
2756       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2757
2758     case elfcpp::R_X86_64_GOT64:
2759     case elfcpp::R_X86_64_GOT32:
2760     case elfcpp::R_X86_64_GOTPCREL64:
2761     case elfcpp::R_X86_64_GOTPCREL:
2762     case elfcpp::R_X86_64_GOTPCRELX:
2763     case elfcpp::R_X86_64_REX_GOTPCRELX:
2764     case elfcpp::R_X86_64_GOTPLT64:
2765       // Absolute in GOT.
2766       return Symbol::ABSOLUTE_REF;
2767
2768     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2769     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2770     case elfcpp::R_X86_64_TLSDESC_CALL:
2771     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2772     case elfcpp::R_X86_64_DTPOFF32:
2773     case elfcpp::R_X86_64_DTPOFF64:
2774     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2775     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2776       return Symbol::TLS_REF;
2777
2778     case elfcpp::R_X86_64_COPY:
2779     case elfcpp::R_X86_64_GLOB_DAT:
2780     case elfcpp::R_X86_64_JUMP_SLOT:
2781     case elfcpp::R_X86_64_RELATIVE:
2782     case elfcpp::R_X86_64_IRELATIVE:
2783     case elfcpp::R_X86_64_TPOFF64:
2784     case elfcpp::R_X86_64_DTPMOD64:
2785     case elfcpp::R_X86_64_TLSDESC:
2786     case elfcpp::R_X86_64_SIZE32:
2787     case elfcpp::R_X86_64_SIZE64:
2788     default:
2789       // Not expected.  We will give an error later.
2790       return 0;
2791     }
2792 }
2793
2794 // Report an unsupported relocation against a local symbol.
2795
2796 template<int size>
2797 void
2798 Target_x86_64<size>::Scan::unsupported_reloc_local(
2799      Sized_relobj_file<size, false>* object,
2800      unsigned int r_type)
2801 {
2802   gold_error(_("%s: unsupported reloc %u against local symbol"),
2803              object->name().c_str(), r_type);
2804 }
2805
2806 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2807 // dynamic linker does not support it, issue an error.  The GNU linker
2808 // only issues a non-PIC error for an allocated read-only section.
2809 // Here we know the section is allocated, but we don't know that it is
2810 // read-only.  But we check for all the relocation types which the
2811 // glibc dynamic linker supports, so it seems appropriate to issue an
2812 // error even if the section is not read-only.  If GSYM is not NULL,
2813 // it is the symbol the relocation is against; if it is NULL, the
2814 // relocation is against a local symbol.
2815
2816 template<int size>
2817 void
2818 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2819                                          Symbol* gsym)
2820 {
2821   switch (r_type)
2822     {
2823       // These are the relocation types supported by glibc for x86_64
2824       // which should always work.
2825     case elfcpp::R_X86_64_RELATIVE:
2826     case elfcpp::R_X86_64_IRELATIVE:
2827     case elfcpp::R_X86_64_GLOB_DAT:
2828     case elfcpp::R_X86_64_JUMP_SLOT:
2829     case elfcpp::R_X86_64_DTPMOD64:
2830     case elfcpp::R_X86_64_DTPOFF64:
2831     case elfcpp::R_X86_64_TPOFF64:
2832     case elfcpp::R_X86_64_64:
2833     case elfcpp::R_X86_64_COPY:
2834       return;
2835
2836       // glibc supports these reloc types, but they can overflow.
2837     case elfcpp::R_X86_64_PC32:
2838     case elfcpp::R_X86_64_PC32_BND:
2839       // A PC relative reference is OK against a local symbol or if
2840       // the symbol is defined locally.
2841       if (gsym == NULL
2842           || (!gsym->is_from_dynobj()
2843               && !gsym->is_undefined()
2844               && !gsym->is_preemptible()))
2845         return;
2846       // Fall through.
2847     case elfcpp::R_X86_64_32:
2848       // R_X86_64_32 is OK for x32.
2849       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2850         return;
2851       if (this->issued_non_pic_error_)
2852         return;
2853       gold_assert(parameters->options().output_is_position_independent());
2854       if (gsym == NULL)
2855         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2856                         "overflow at runtime; recompile with -fPIC"));
2857       else
2858         {
2859           const char *r_name;
2860           switch (r_type)
2861             {
2862             case elfcpp::R_X86_64_32:
2863               r_name = "R_X86_64_32";
2864               break;
2865             case elfcpp::R_X86_64_PC32:
2866               r_name = "R_X86_64_PC32";
2867               break;
2868             case elfcpp::R_X86_64_PC32_BND:
2869               r_name = "R_X86_64_PC32_BND";
2870               break;
2871             default:
2872               gold_unreachable();
2873               break;
2874             }
2875           object->error(_("requires dynamic %s reloc against '%s' "
2876                           "which may overflow at runtime; recompile "
2877                           "with -fPIC"),
2878                         r_name, gsym->name());
2879         }
2880       this->issued_non_pic_error_ = true;
2881       return;
2882
2883     default:
2884       // This prevents us from issuing more than one error per reloc
2885       // section.  But we can still wind up issuing more than one
2886       // error per object file.
2887       if (this->issued_non_pic_error_)
2888         return;
2889       gold_assert(parameters->options().output_is_position_independent());
2890       object->error(_("requires unsupported dynamic reloc %u; "
2891                       "recompile with -fPIC"),
2892                     r_type);
2893       this->issued_non_pic_error_ = true;
2894       return;
2895
2896     case elfcpp::R_X86_64_NONE:
2897       gold_unreachable();
2898     }
2899 }
2900
2901 // Return whether we need to make a PLT entry for a relocation of the
2902 // given type against a STT_GNU_IFUNC symbol.
2903
2904 template<int size>
2905 bool
2906 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2907      Sized_relobj_file<size, false>* object,
2908      unsigned int r_type)
2909 {
2910   int flags = Scan::get_reference_flags(r_type);
2911   if (flags & Symbol::TLS_REF)
2912     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2913                object->name().c_str(), r_type);
2914   return flags != 0;
2915 }
2916
2917 // Scan a relocation for a local symbol.
2918
2919 template<int size>
2920 inline void
2921 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2922                                  Layout* layout,
2923                                  Target_x86_64<size>* target,
2924                                  Sized_relobj_file<size, false>* object,
2925                                  unsigned int data_shndx,
2926                                  Output_section* output_section,
2927                                  const elfcpp::Rela<size, false>& reloc,
2928                                  unsigned int r_type,
2929                                  const elfcpp::Sym<size, false>& lsym,
2930                                  bool is_discarded)
2931 {
2932   if (is_discarded)
2933     return;
2934
2935   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2936   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2937   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2938     {
2939       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2940       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2941     }
2942
2943   switch (r_type)
2944     {
2945     case elfcpp::R_X86_64_NONE:
2946     case elfcpp::R_X86_64_GNU_VTINHERIT:
2947     case elfcpp::R_X86_64_GNU_VTENTRY:
2948       break;
2949
2950     case elfcpp::R_X86_64_64:
2951       // If building a shared library (or a position-independent
2952       // executable), we need to create a dynamic relocation for this
2953       // location.  The relocation applied at link time will apply the
2954       // link-time value, so we flag the location with an
2955       // R_X86_64_RELATIVE relocation so the dynamic loader can
2956       // relocate it easily.
2957       if (parameters->options().output_is_position_independent())
2958         {
2959           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2960           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2961           rela_dyn->add_local_relative(object, r_sym,
2962                                        (size == 32
2963                                         ? elfcpp::R_X86_64_RELATIVE64
2964                                         : elfcpp::R_X86_64_RELATIVE),
2965                                        output_section, data_shndx,
2966                                        reloc.get_r_offset(),
2967                                        reloc.get_r_addend(), is_ifunc);
2968         }
2969       break;
2970
2971     case elfcpp::R_X86_64_32:
2972     case elfcpp::R_X86_64_32S:
2973     case elfcpp::R_X86_64_16:
2974     case elfcpp::R_X86_64_8:
2975       // If building a shared library (or a position-independent
2976       // executable), we need to create a dynamic relocation for this
2977       // location.  We can't use an R_X86_64_RELATIVE relocation
2978       // because that is always a 64-bit relocation.
2979       if (parameters->options().output_is_position_independent())
2980         {
2981           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2982           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2983             {
2984               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2985               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2986               rela_dyn->add_local_relative(object, r_sym,
2987                                            elfcpp::R_X86_64_RELATIVE,
2988                                            output_section, data_shndx,
2989                                            reloc.get_r_offset(),
2990                                            reloc.get_r_addend(), is_ifunc);
2991               break;
2992             }
2993
2994           this->check_non_pic(object, r_type, NULL);
2995
2996           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2997           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2998           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2999             rela_dyn->add_local(object, r_sym, r_type, output_section,
3000                                 data_shndx, reloc.get_r_offset(),
3001                                 reloc.get_r_addend());
3002           else
3003             {
3004               gold_assert(lsym.get_st_value() == 0);
3005               unsigned int shndx = lsym.get_st_shndx();
3006               bool is_ordinary;
3007               shndx = object->adjust_sym_shndx(r_sym, shndx,
3008                                                &is_ordinary);
3009               if (!is_ordinary)
3010                 object->error(_("section symbol %u has bad shndx %u"),
3011                               r_sym, shndx);
3012               else
3013                 rela_dyn->add_local_section(object, shndx,
3014                                             r_type, output_section,
3015                                             data_shndx, reloc.get_r_offset(),
3016                                             reloc.get_r_addend());
3017             }
3018         }
3019       break;
3020
3021     case elfcpp::R_X86_64_PC64:
3022     case elfcpp::R_X86_64_PC32:
3023     case elfcpp::R_X86_64_PC32_BND:
3024     case elfcpp::R_X86_64_PC16:
3025     case elfcpp::R_X86_64_PC8:
3026       break;
3027
3028     case elfcpp::R_X86_64_PLT32:
3029     case elfcpp::R_X86_64_PLT32_BND:
3030       // Since we know this is a local symbol, we can handle this as a
3031       // PC32 reloc.
3032       break;
3033
3034     case elfcpp::R_X86_64_GOTPC32:
3035     case elfcpp::R_X86_64_GOTOFF64:
3036     case elfcpp::R_X86_64_GOTPC64:
3037     case elfcpp::R_X86_64_PLTOFF64:
3038       // We need a GOT section.
3039       target->got_section(symtab, layout);
3040       // For PLTOFF64, we'd normally want a PLT section, but since we
3041       // know this is a local symbol, no PLT is needed.
3042       break;
3043
3044     case elfcpp::R_X86_64_GOT64:
3045     case elfcpp::R_X86_64_GOT32:
3046     case elfcpp::R_X86_64_GOTPCREL64:
3047     case elfcpp::R_X86_64_GOTPCREL:
3048     case elfcpp::R_X86_64_GOTPCRELX:
3049     case elfcpp::R_X86_64_REX_GOTPCRELX:
3050     case elfcpp::R_X86_64_GOTPLT64:
3051       {
3052         // The symbol requires a GOT section.
3053         Output_data_got<64, false>* got = target->got_section(symtab, layout);
3054
3055         // If the relocation symbol isn't IFUNC,
3056         // and is local, then we will convert
3057         // mov foo@GOTPCREL(%rip), %reg
3058         // to lea foo(%rip), %reg.
3059         // in Relocate::relocate.
3060         if ((r_type == elfcpp::R_X86_64_GOTPCREL
3061              || r_type == elfcpp::R_X86_64_GOTPCRELX
3062              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
3063             && reloc.get_r_offset() >= 2
3064             && !is_ifunc)
3065           {
3066             section_size_type stype;
3067             const unsigned char* view = object->section_contents(data_shndx,
3068                                                                  &stype, true);
3069             if (view[reloc.get_r_offset() - 2] == 0x8b)
3070               break;
3071           }
3072
3073
3074         // The symbol requires a GOT entry.
3075         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3076
3077         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3078         // lets function pointers compare correctly with shared
3079         // libraries.  Otherwise we would need an IRELATIVE reloc.
3080         bool is_new;
3081         if (is_ifunc)
3082           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3083         else
3084           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3085         if (is_new)
3086           {
3087             // If we are generating a shared object, we need to add a
3088             // dynamic relocation for this symbol's GOT entry.
3089             if (parameters->options().output_is_position_independent())
3090               {
3091                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3092                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
3093                 if (r_type != elfcpp::R_X86_64_GOT32)
3094                   {
3095                     unsigned int got_offset =
3096                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3097                     rela_dyn->add_local_relative(object, r_sym,
3098                                                  elfcpp::R_X86_64_RELATIVE,
3099                                                  got, got_offset, 0, is_ifunc);
3100                   }
3101                 else
3102                   {
3103                     this->check_non_pic(object, r_type, NULL);
3104
3105                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3106                     rela_dyn->add_local(
3107                         object, r_sym, r_type, got,
3108                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
3109                   }
3110               }
3111           }
3112         // For GOTPLT64, we'd normally want a PLT section, but since
3113         // we know this is a local symbol, no PLT is needed.
3114       }
3115       break;
3116
3117     case elfcpp::R_X86_64_COPY:
3118     case elfcpp::R_X86_64_GLOB_DAT:
3119     case elfcpp::R_X86_64_JUMP_SLOT:
3120     case elfcpp::R_X86_64_RELATIVE:
3121     case elfcpp::R_X86_64_IRELATIVE:
3122       // These are outstanding tls relocs, which are unexpected when linking
3123     case elfcpp::R_X86_64_TPOFF64:
3124     case elfcpp::R_X86_64_DTPMOD64:
3125     case elfcpp::R_X86_64_TLSDESC:
3126       gold_error(_("%s: unexpected reloc %u in object file"),
3127                  object->name().c_str(), r_type);
3128       break;
3129
3130       // These are initial tls relocs, which are expected when linking
3131     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3132     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3133     case elfcpp::R_X86_64_TLSDESC_CALL:
3134     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3135     case elfcpp::R_X86_64_DTPOFF32:
3136     case elfcpp::R_X86_64_DTPOFF64:
3137     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3138     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3139       {
3140         bool output_is_shared = parameters->options().shared();
3141         const tls::Tls_optimization optimized_type
3142             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
3143                                                       r_type);
3144         switch (r_type)
3145           {
3146           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3147             if (optimized_type == tls::TLSOPT_NONE)
3148               {
3149                 // Create a pair of GOT entries for the module index and
3150                 // dtv-relative offset.
3151                 Output_data_got<64, false>* got
3152                     = target->got_section(symtab, layout);
3153                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3154                 unsigned int shndx = lsym.get_st_shndx();
3155                 bool is_ordinary;
3156                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
3157                 if (!is_ordinary)
3158                   object->error(_("local symbol %u has bad shndx %u"),
3159                               r_sym, shndx);
3160                 else
3161                   got->add_local_pair_with_rel(object, r_sym,
3162                                                shndx,
3163                                                GOT_TYPE_TLS_PAIR,
3164                                                target->rela_dyn_section(layout),
3165                                                elfcpp::R_X86_64_DTPMOD64);
3166               }
3167             else if (optimized_type != tls::TLSOPT_TO_LE)
3168               unsupported_reloc_local(object, r_type);
3169             break;
3170
3171           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3172             target->define_tls_base_symbol(symtab, layout);
3173             if (optimized_type == tls::TLSOPT_NONE)
3174               {
3175                 // Create reserved PLT and GOT entries for the resolver.
3176                 target->reserve_tlsdesc_entries(symtab, layout);
3177
3178                 // Generate a double GOT entry with an
3179                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
3180                 // is resolved lazily, so the GOT entry needs to be in
3181                 // an area in .got.plt, not .got.  Call got_section to
3182                 // make sure the section has been created.
3183                 target->got_section(symtab, layout);
3184                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3185                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3186                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
3187                   {
3188                     unsigned int got_offset = got->add_constant(0);
3189                     got->add_constant(0);
3190                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
3191                                                  got_offset);
3192                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
3193                     // We store the arguments we need in a vector, and
3194                     // use the index into the vector as the parameter
3195                     // to pass to the target specific routines.
3196                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
3197                     void* arg = reinterpret_cast<void*>(intarg);
3198                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
3199                                             got, got_offset, 0);
3200                   }
3201               }
3202             else if (optimized_type != tls::TLSOPT_TO_LE)
3203               unsupported_reloc_local(object, r_type);
3204             break;
3205
3206           case elfcpp::R_X86_64_TLSDESC_CALL:
3207             break;
3208
3209           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3210             if (optimized_type == tls::TLSOPT_NONE)
3211               {
3212                 // Create a GOT entry for the module index.
3213                 target->got_mod_index_entry(symtab, layout, object);
3214               }
3215             else if (optimized_type != tls::TLSOPT_TO_LE)
3216               unsupported_reloc_local(object, r_type);
3217             break;
3218
3219           case elfcpp::R_X86_64_DTPOFF32:
3220           case elfcpp::R_X86_64_DTPOFF64:
3221             break;
3222
3223           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3224             layout->set_has_static_tls();
3225             if (optimized_type == tls::TLSOPT_NONE)
3226               {
3227                 // Create a GOT entry for the tp-relative offset.
3228                 Output_data_got<64, false>* got
3229                     = target->got_section(symtab, layout);
3230                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3231                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
3232                                         target->rela_dyn_section(layout),
3233                                         elfcpp::R_X86_64_TPOFF64);
3234               }
3235             else if (optimized_type != tls::TLSOPT_TO_LE)
3236               unsupported_reloc_local(object, r_type);
3237             break;
3238
3239           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3240             layout->set_has_static_tls();
3241             if (output_is_shared)
3242               unsupported_reloc_local(object, r_type);
3243             break;
3244
3245           default:
3246             gold_unreachable();
3247           }
3248       }
3249       break;
3250
3251     case elfcpp::R_X86_64_SIZE32:
3252     case elfcpp::R_X86_64_SIZE64:
3253     default:
3254       gold_error(_("%s: unsupported reloc %u against local symbol"),
3255                  object->name().c_str(), r_type);
3256       break;
3257     }
3258 }
3259
3260
3261 // Report an unsupported relocation against a global symbol.
3262
3263 template<int size>
3264 void
3265 Target_x86_64<size>::Scan::unsupported_reloc_global(
3266     Sized_relobj_file<size, false>* object,
3267     unsigned int r_type,
3268     Symbol* gsym)
3269 {
3270   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3271              object->name().c_str(), r_type, gsym->demangled_name().c_str());
3272 }
3273
3274 // Returns true if this relocation type could be that of a function pointer.
3275 template<int size>
3276 inline bool
3277 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3278 {
3279   switch (r_type)
3280     {
3281     case elfcpp::R_X86_64_64:
3282     case elfcpp::R_X86_64_32:
3283     case elfcpp::R_X86_64_32S:
3284     case elfcpp::R_X86_64_16:
3285     case elfcpp::R_X86_64_8:
3286     case elfcpp::R_X86_64_GOT64:
3287     case elfcpp::R_X86_64_GOT32:
3288     case elfcpp::R_X86_64_GOTPCREL64:
3289     case elfcpp::R_X86_64_GOTPCREL:
3290     case elfcpp::R_X86_64_GOTPCRELX:
3291     case elfcpp::R_X86_64_REX_GOTPCRELX:
3292     case elfcpp::R_X86_64_GOTPLT64:
3293       {
3294         return true;
3295       }
3296     }
3297   return false;
3298 }
3299
3300 // For safe ICF, scan a relocation for a local symbol to check if it
3301 // corresponds to a function pointer being taken.  In that case mark
3302 // the function whose pointer was taken as not foldable.
3303
3304 template<int size>
3305 inline bool
3306 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
3307   Symbol_table* ,
3308   Layout* ,
3309   Target_x86_64<size>* ,
3310   Sized_relobj_file<size, false>* ,
3311   unsigned int ,
3312   Output_section* ,
3313   const elfcpp::Rela<size, false>& ,
3314   unsigned int r_type,
3315   const elfcpp::Sym<size, false>&)
3316 {
3317   // When building a shared library, do not fold any local symbols as it is
3318   // not possible to distinguish pointer taken versus a call by looking at
3319   // the relocation types.
3320   return (parameters->options().shared()
3321           || possible_function_pointer_reloc(r_type));
3322 }
3323
3324 // For safe ICF, scan a relocation for a global symbol to check if it
3325 // corresponds to a function pointer being taken.  In that case mark
3326 // the function whose pointer was taken as not foldable.
3327
3328 template<int size>
3329 inline bool
3330 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
3331   Symbol_table*,
3332   Layout* ,
3333   Target_x86_64<size>* ,
3334   Sized_relobj_file<size, false>* ,
3335   unsigned int ,
3336   Output_section* ,
3337   const elfcpp::Rela<size, false>& ,
3338   unsigned int r_type,
3339   Symbol* gsym)
3340 {
3341   // When building a shared library, do not fold symbols whose visibility
3342   // is hidden, internal or protected.
3343   return ((parameters->options().shared()
3344            && (gsym->visibility() == elfcpp::STV_INTERNAL
3345                || gsym->visibility() == elfcpp::STV_PROTECTED
3346                || gsym->visibility() == elfcpp::STV_HIDDEN))
3347           || possible_function_pointer_reloc(r_type));
3348 }
3349
3350 // Scan a relocation for a global symbol.
3351
3352 template<int size>
3353 inline void
3354 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
3355                             Layout* layout,
3356                             Target_x86_64<size>* target,
3357                             Sized_relobj_file<size, false>* object,
3358                             unsigned int data_shndx,
3359                             Output_section* output_section,
3360                             const elfcpp::Rela<size, false>& reloc,
3361                             unsigned int r_type,
3362                             Symbol* gsym)
3363 {
3364   // A STT_GNU_IFUNC symbol may require a PLT entry.
3365   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3366       && this->reloc_needs_plt_for_ifunc(object, r_type))
3367     target->make_plt_entry(symtab, layout, gsym);
3368
3369   switch (r_type)
3370     {
3371     case elfcpp::R_X86_64_NONE:
3372     case elfcpp::R_X86_64_GNU_VTINHERIT:
3373     case elfcpp::R_X86_64_GNU_VTENTRY:
3374       break;
3375
3376     case elfcpp::R_X86_64_64:
3377     case elfcpp::R_X86_64_32:
3378     case elfcpp::R_X86_64_32S:
3379     case elfcpp::R_X86_64_16:
3380     case elfcpp::R_X86_64_8:
3381       {
3382         // Make a PLT entry if necessary.
3383         if (gsym->needs_plt_entry())
3384           {
3385             target->make_plt_entry(symtab, layout, gsym);
3386             // Since this is not a PC-relative relocation, we may be
3387             // taking the address of a function. In that case we need to
3388             // set the entry in the dynamic symbol table to the address of
3389             // the PLT entry.
3390             if (gsym->is_from_dynobj() && !parameters->options().shared())
3391               gsym->set_needs_dynsym_value();
3392           }
3393         // Make a dynamic relocation if necessary.
3394         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3395           {
3396             if (!parameters->options().output_is_position_independent()
3397                 && gsym->may_need_copy_reloc())
3398               {
3399                 target->copy_reloc(symtab, layout, object,
3400                                    data_shndx, output_section, gsym, reloc);
3401               }
3402             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
3403                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
3404                      && gsym->type() == elfcpp::STT_GNU_IFUNC
3405                      && gsym->can_use_relative_reloc(false)
3406                      && !gsym->is_from_dynobj()
3407                      && !gsym->is_undefined()
3408                      && !gsym->is_preemptible())
3409               {
3410                 // Use an IRELATIVE reloc for a locally defined
3411                 // STT_GNU_IFUNC symbol.  This makes a function
3412                 // address in a PIE executable match the address in a
3413                 // shared library that it links against.
3414                 Reloc_section* rela_dyn =
3415                   target->rela_irelative_section(layout);
3416                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
3417                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
3418                                                        output_section, object,
3419                                                        data_shndx,
3420                                                        reloc.get_r_offset(),
3421                                                        reloc.get_r_addend());
3422               }
3423             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
3424                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
3425                      && gsym->can_use_relative_reloc(false))
3426               {
3427                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3428                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
3429                                               output_section, object,
3430                                               data_shndx,
3431                                               reloc.get_r_offset(),
3432                                               reloc.get_r_addend(), false);
3433               }
3434             else
3435               {
3436                 this->check_non_pic(object, r_type, gsym);
3437                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3438                 rela_dyn->add_global(gsym, r_type, output_section, object,
3439                                      data_shndx, reloc.get_r_offset(),
3440                                      reloc.get_r_addend());
3441               }
3442           }
3443       }
3444       break;
3445
3446     case elfcpp::R_X86_64_PC64:
3447     case elfcpp::R_X86_64_PC32:
3448     case elfcpp::R_X86_64_PC32_BND:
3449     case elfcpp::R_X86_64_PC16:
3450     case elfcpp::R_X86_64_PC8:
3451       {
3452         // Make a PLT entry if necessary.
3453         if (gsym->needs_plt_entry())
3454           target->make_plt_entry(symtab, layout, gsym);
3455         // Make a dynamic relocation if necessary.
3456         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3457           {
3458             if (parameters->options().output_is_executable()
3459                 && gsym->may_need_copy_reloc())
3460               {
3461                 target->copy_reloc(symtab, layout, object,
3462                                    data_shndx, output_section, gsym, reloc);
3463               }
3464             else
3465               {
3466                 this->check_non_pic(object, r_type, gsym);
3467                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3468                 rela_dyn->add_global(gsym, r_type, output_section, object,
3469                                      data_shndx, reloc.get_r_offset(),
3470                                      reloc.get_r_addend());
3471               }
3472           }
3473       }
3474       break;
3475
3476     case elfcpp::R_X86_64_GOT64:
3477     case elfcpp::R_X86_64_GOT32:
3478     case elfcpp::R_X86_64_GOTPCREL64:
3479     case elfcpp::R_X86_64_GOTPCREL:
3480     case elfcpp::R_X86_64_GOTPCRELX:
3481     case elfcpp::R_X86_64_REX_GOTPCRELX:
3482     case elfcpp::R_X86_64_GOTPLT64:
3483       {
3484         // The symbol requires a GOT entry.
3485         Output_data_got<64, false>* got = target->got_section(symtab, layout);
3486
3487         // If we convert this from
3488         // mov foo@GOTPCREL(%rip), %reg
3489         // to lea foo(%rip), %reg.
3490         // OR
3491         // if we convert
3492         // (callq|jmpq) *foo@GOTPCRELX(%rip) to
3493         // (callq|jmpq) foo
3494         // in Relocate::relocate, then there is nothing to do here.
3495
3496         Lazy_view<size> view(object, data_shndx);
3497         size_t r_offset = reloc.get_r_offset();
3498         if (r_offset >= 2
3499             && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
3500                                                            r_offset, &view))
3501           break;
3502
3503         if (r_offset >= 2
3504             && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
3505                                                                 r_offset,
3506                                                                 &view))
3507           break;
3508
3509         if (gsym->final_value_is_known())
3510           {
3511             // For a STT_GNU_IFUNC symbol we want the PLT address.
3512             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3513               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3514             else
3515               got->add_global(gsym, GOT_TYPE_STANDARD);
3516           }
3517         else
3518           {
3519             // If this symbol is not fully resolved, we need to add a
3520             // dynamic relocation for it.
3521             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3522
3523             // Use a GLOB_DAT rather than a RELATIVE reloc if:
3524             //
3525             // 1) The symbol may be defined in some other module.
3526             //
3527             // 2) We are building a shared library and this is a
3528             // protected symbol; using GLOB_DAT means that the dynamic
3529             // linker can use the address of the PLT in the main
3530             // executable when appropriate so that function address
3531             // comparisons work.
3532             //
3533             // 3) This is a STT_GNU_IFUNC symbol in position dependent
3534             // code, again so that function address comparisons work.
3535             if (gsym->is_from_dynobj()
3536                 || gsym->is_undefined()
3537                 || gsym->is_preemptible()
3538                 || (gsym->visibility() == elfcpp::STV_PROTECTED
3539                     && parameters->options().shared())
3540                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3541                     && parameters->options().output_is_position_independent()))
3542               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3543                                        elfcpp::R_X86_64_GLOB_DAT);
3544             else
3545               {
3546                 // For a STT_GNU_IFUNC symbol we want to write the PLT
3547                 // offset into the GOT, so that function pointer
3548                 // comparisons work correctly.
3549                 bool is_new;
3550                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3551                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3552                 else
3553                   {
3554                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3555                     // Tell the dynamic linker to use the PLT address
3556                     // when resolving relocations.
3557                     if (gsym->is_from_dynobj()
3558                         && !parameters->options().shared())
3559                       gsym->set_needs_dynsym_value();
3560                   }
3561                 if (is_new)
3562                   {
3563                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3564                     rela_dyn->add_global_relative(gsym,
3565                                                   elfcpp::R_X86_64_RELATIVE,
3566                                                   got, got_off, 0, false);
3567                   }
3568               }
3569           }
3570       }
3571       break;
3572
3573     case elfcpp::R_X86_64_PLT32:
3574     case elfcpp::R_X86_64_PLT32_BND:
3575       // If the symbol is fully resolved, this is just a PC32 reloc.
3576       // Otherwise we need a PLT entry.
3577       if (gsym->final_value_is_known())
3578         break;
3579       // If building a shared library, we can also skip the PLT entry
3580       // if the symbol is defined in the output file and is protected
3581       // or hidden.
3582       if (gsym->is_defined()
3583           && !gsym->is_from_dynobj()
3584           && !gsym->is_preemptible())
3585         break;
3586       target->make_plt_entry(symtab, layout, gsym);
3587       break;
3588
3589     case elfcpp::R_X86_64_GOTPC32:
3590     case elfcpp::R_X86_64_GOTOFF64:
3591     case elfcpp::R_X86_64_GOTPC64:
3592     case elfcpp::R_X86_64_PLTOFF64:
3593       // We need a GOT section.
3594       target->got_section(symtab, layout);
3595       // For PLTOFF64, we also need a PLT entry (but only if the
3596       // symbol is not fully resolved).
3597       if (r_type == elfcpp::R_X86_64_PLTOFF64
3598           && !gsym->final_value_is_known())
3599         target->make_plt_entry(symtab, layout, gsym);
3600       break;
3601
3602     case elfcpp::R_X86_64_COPY:
3603     case elfcpp::R_X86_64_GLOB_DAT:
3604     case elfcpp::R_X86_64_JUMP_SLOT:
3605     case elfcpp::R_X86_64_RELATIVE:
3606     case elfcpp::R_X86_64_IRELATIVE:
3607       // These are outstanding tls relocs, which are unexpected when linking
3608     case elfcpp::R_X86_64_TPOFF64:
3609     case elfcpp::R_X86_64_DTPMOD64:
3610     case elfcpp::R_X86_64_TLSDESC:
3611       gold_error(_("%s: unexpected reloc %u in object file"),
3612                  object->name().c_str(), r_type);
3613       break;
3614
3615       // These are initial tls relocs, which are expected for global()
3616     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3617     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3618     case elfcpp::R_X86_64_TLSDESC_CALL:
3619     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3620     case elfcpp::R_X86_64_DTPOFF32:
3621     case elfcpp::R_X86_64_DTPOFF64:
3622     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3623     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3624       {
3625         // For the Initial-Exec model, we can treat undef symbols as final
3626         // when building an executable.
3627         const bool is_final = (gsym->final_value_is_known() ||
3628                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3629                                 gsym->is_undefined() &&
3630                                 parameters->options().output_is_executable()));
3631         const tls::Tls_optimization optimized_type
3632             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3633         switch (r_type)
3634           {
3635           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3636             if (optimized_type == tls::TLSOPT_NONE)
3637               {
3638                 // Create a pair of GOT entries for the module index and
3639                 // dtv-relative offset.
3640                 Output_data_got<64, false>* got
3641                     = target->got_section(symtab, layout);
3642                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3643                                               target->rela_dyn_section(layout),
3644                                               elfcpp::R_X86_64_DTPMOD64,
3645                                               elfcpp::R_X86_64_DTPOFF64);
3646               }
3647             else if (optimized_type == tls::TLSOPT_TO_IE)
3648               {
3649                 // Create a GOT entry for the tp-relative offset.
3650                 Output_data_got<64, false>* got
3651                     = target->got_section(symtab, layout);
3652                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3653                                          target->rela_dyn_section(layout),
3654                                          elfcpp::R_X86_64_TPOFF64);
3655               }
3656             else if (optimized_type != tls::TLSOPT_TO_LE)
3657               unsupported_reloc_global(object, r_type, gsym);
3658             break;
3659
3660           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3661             target->define_tls_base_symbol(symtab, layout);
3662             if (optimized_type == tls::TLSOPT_NONE)
3663               {
3664                 // Create reserved PLT and GOT entries for the resolver.
3665                 target->reserve_tlsdesc_entries(symtab, layout);
3666
3667                 // Create a double GOT entry with an R_X86_64_TLSDESC
3668                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3669                 // lazily, so the GOT entry needs to be in an area in
3670                 // .got.plt, not .got.  Call got_section to make sure
3671                 // the section has been created.
3672                 target->got_section(symtab, layout);
3673                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3674                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3675                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3676                                               elfcpp::R_X86_64_TLSDESC, 0);
3677               }
3678             else if (optimized_type == tls::TLSOPT_TO_IE)
3679               {
3680                 // Create a GOT entry for the tp-relative offset.
3681                 Output_data_got<64, false>* got
3682                     = target->got_section(symtab, layout);
3683                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3684                                          target->rela_dyn_section(layout),
3685                                          elfcpp::R_X86_64_TPOFF64);
3686               }
3687             else if (optimized_type != tls::TLSOPT_TO_LE)
3688               unsupported_reloc_global(object, r_type, gsym);
3689             break;
3690
3691           case elfcpp::R_X86_64_TLSDESC_CALL:
3692             break;
3693
3694           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3695             if (optimized_type == tls::TLSOPT_NONE)
3696               {
3697                 // Create a GOT entry for the module index.
3698                 target->got_mod_index_entry(symtab, layout, object);
3699               }
3700             else if (optimized_type != tls::TLSOPT_TO_LE)
3701               unsupported_reloc_global(object, r_type, gsym);
3702             break;
3703
3704           case elfcpp::R_X86_64_DTPOFF32:
3705           case elfcpp::R_X86_64_DTPOFF64:
3706             break;
3707
3708           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3709             layout->set_has_static_tls();
3710             if (optimized_type == tls::TLSOPT_NONE)
3711               {
3712                 // Create a GOT entry for the tp-relative offset.
3713                 Output_data_got<64, false>* got
3714                     = target->got_section(symtab, layout);
3715                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3716                                          target->rela_dyn_section(layout),
3717                                          elfcpp::R_X86_64_TPOFF64);
3718               }
3719             else if (optimized_type != tls::TLSOPT_TO_LE)
3720               unsupported_reloc_global(object, r_type, gsym);
3721             break;
3722
3723           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3724             layout->set_has_static_tls();
3725             if (parameters->options().shared())
3726               unsupported_reloc_global(object, r_type, gsym);
3727             break;
3728
3729           default:
3730             gold_unreachable();
3731           }
3732       }
3733       break;
3734
3735     case elfcpp::R_X86_64_SIZE32:
3736     case elfcpp::R_X86_64_SIZE64:
3737     default:
3738       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3739                  object->name().c_str(), r_type,
3740                  gsym->demangled_name().c_str());
3741       break;
3742     }
3743 }
3744
3745 template<int size>
3746 void
3747 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3748                                        Layout* layout,
3749                                        Sized_relobj_file<size, false>* object,
3750                                        unsigned int data_shndx,
3751                                        unsigned int sh_type,
3752                                        const unsigned char* prelocs,
3753                                        size_t reloc_count,
3754                                        Output_section* output_section,
3755                                        bool needs_special_offset_handling,
3756                                        size_t local_symbol_count,
3757                                        const unsigned char* plocal_symbols)
3758 {
3759   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3760       Classify_reloc;
3761
3762   if (sh_type == elfcpp::SHT_REL)
3763     {
3764       return;
3765     }
3766
3767    gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
3768                            Classify_reloc>(
3769     symtab,
3770     layout,
3771     this,
3772     object,
3773     data_shndx,
3774     prelocs,
3775     reloc_count,
3776     output_section,
3777     needs_special_offset_handling,
3778     local_symbol_count,
3779     plocal_symbols);
3780
3781 }
3782 // Scan relocations for a section.
3783
3784 template<int size>
3785 void
3786 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3787                                  Layout* layout,
3788                                  Sized_relobj_file<size, false>* object,
3789                                  unsigned int data_shndx,
3790                                  unsigned int sh_type,
3791                                  const unsigned char* prelocs,
3792                                  size_t reloc_count,
3793                                  Output_section* output_section,
3794                                  bool needs_special_offset_handling,
3795                                  size_t local_symbol_count,
3796                                  const unsigned char* plocal_symbols)
3797 {
3798   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3799       Classify_reloc;
3800
3801   if (sh_type == elfcpp::SHT_REL)
3802     {
3803       gold_error(_("%s: unsupported REL reloc section"),
3804                  object->name().c_str());
3805       return;
3806     }
3807
3808   gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
3809     symtab,
3810     layout,
3811     this,
3812     object,
3813     data_shndx,
3814     prelocs,
3815     reloc_count,
3816     output_section,
3817     needs_special_offset_handling,
3818     local_symbol_count,
3819     plocal_symbols);
3820 }
3821
3822 // Finalize the sections.
3823
3824 template<int size>
3825 void
3826 Target_x86_64<size>::do_finalize_sections(
3827     Layout* layout,
3828     const Input_objects*,
3829     Symbol_table* symtab)
3830 {
3831   const Reloc_section* rel_plt = (this->plt_ == NULL
3832                                   ? NULL
3833                                   : this->plt_->rela_plt());
3834   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3835                                   this->rela_dyn_, true, false);
3836
3837   // Fill in some more dynamic tags.
3838   Output_data_dynamic* const odyn = layout->dynamic_data();
3839   if (odyn != NULL)
3840     {
3841       if (this->plt_ != NULL
3842           && this->plt_->output_section() != NULL
3843           && this->plt_->has_tlsdesc_entry())
3844         {
3845           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3846           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3847           this->got_->finalize_data_size();
3848           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3849                                         this->plt_, plt_offset);
3850           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3851                                         this->got_, got_offset);
3852         }
3853     }
3854
3855   // Emit any relocs we saved in an attempt to avoid generating COPY
3856   // relocs.
3857   if (this->copy_relocs_.any_saved_relocs())
3858     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3859
3860   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3861   // the .got.plt section.
3862   Symbol* sym = this->global_offset_table_;
3863   if (sym != NULL)
3864     {
3865       uint64_t data_size = this->got_plt_->current_data_size();
3866       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3867     }
3868
3869   if (parameters->doing_static_link()
3870       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3871     {
3872       // If linking statically, make sure that the __rela_iplt symbols
3873       // were defined if necessary, even if we didn't create a PLT.
3874       static const Define_symbol_in_segment syms[] =
3875         {
3876           {
3877             "__rela_iplt_start",        // name
3878             elfcpp::PT_LOAD,            // segment_type
3879             elfcpp::PF_W,               // segment_flags_set
3880             elfcpp::PF(0),              // segment_flags_clear
3881             0,                          // value
3882             0,                          // size
3883             elfcpp::STT_NOTYPE,         // type
3884             elfcpp::STB_GLOBAL,         // binding
3885             elfcpp::STV_HIDDEN,         // visibility
3886             0,                          // nonvis
3887             Symbol::SEGMENT_START,      // offset_from_base
3888             true                        // only_if_ref
3889           },
3890           {
3891             "__rela_iplt_end",          // name
3892             elfcpp::PT_LOAD,            // segment_type
3893             elfcpp::PF_W,               // segment_flags_set
3894             elfcpp::PF(0),              // segment_flags_clear
3895             0,                          // value
3896             0,                          // size
3897             elfcpp::STT_NOTYPE,         // type
3898             elfcpp::STB_GLOBAL,         // binding
3899             elfcpp::STV_HIDDEN,         // visibility
3900             0,                          // nonvis
3901             Symbol::SEGMENT_START,      // offset_from_base
3902             true                        // only_if_ref
3903           }
3904         };
3905
3906       symtab->define_symbols(layout, 2, syms,
3907                              layout->script_options()->saw_sections_clause());
3908     }
3909 }
3910
3911 // For x32, we need to handle PC-relative relocations using full 64-bit
3912 // arithmetic, so that we can detect relocation overflows properly.
3913 // This class overrides the pcrela32_check methods from the defaults in
3914 // Relocate_functions in reloc.h.
3915
3916 template<int size>
3917 class X86_64_relocate_functions : public Relocate_functions<size, false>
3918 {
3919  public:
3920   typedef Relocate_functions<size, false> Base;
3921
3922   // Do a simple PC relative relocation with the addend in the
3923   // relocation.
3924   static inline typename Base::Reloc_status
3925   pcrela32_check(unsigned char* view,
3926                  typename elfcpp::Elf_types<64>::Elf_Addr value,
3927                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3928                  typename elfcpp::Elf_types<64>::Elf_Addr address)
3929   {
3930     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3931     Valtype* wv = reinterpret_cast<Valtype*>(view);
3932     value = value + addend - address;
3933     elfcpp::Swap<32, false>::writeval(wv, value);
3934     return (Bits<32>::has_overflow(value)
3935             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3936   }
3937
3938   // Do a simple PC relative relocation with a Symbol_value with the
3939   // addend in the relocation.
3940   static inline typename Base::Reloc_status
3941   pcrela32_check(unsigned char* view,
3942                  const Sized_relobj_file<size, false>* object,
3943                  const Symbol_value<size>* psymval,
3944                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3945                  typename elfcpp::Elf_types<64>::Elf_Addr address)
3946   {
3947     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3948     Valtype* wv = reinterpret_cast<Valtype*>(view);
3949     typename elfcpp::Elf_types<64>::Elf_Addr value;
3950     if (addend >= 0)
3951       value = psymval->value(object, addend);
3952     else
3953       {
3954         // For negative addends, get the symbol value without
3955         // the addend, then add the addend using 64-bit arithmetic.
3956         value = psymval->value(object, 0);
3957         value += addend;
3958       }
3959     value -= address;
3960     elfcpp::Swap<32, false>::writeval(wv, value);
3961     return (Bits<32>::has_overflow(value)
3962             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3963   }
3964 };
3965
3966 // Perform a relocation.
3967
3968 template<int size>
3969 inline bool
3970 Target_x86_64<size>::Relocate::relocate(
3971     const Relocate_info<size, false>* relinfo,
3972     unsigned int,
3973     Target_x86_64<size>* target,
3974     Output_section*,
3975     size_t relnum,
3976     const unsigned char* preloc,
3977     const Sized_symbol<size>* gsym,
3978     const Symbol_value<size>* psymval,
3979     unsigned char* view,
3980     typename elfcpp::Elf_types<size>::Elf_Addr address,
3981     section_size_type view_size)
3982 {
3983   typedef X86_64_relocate_functions<size> Reloc_funcs;
3984   const elfcpp::Rela<size, false> rela(preloc);
3985   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
3986
3987   if (this->skip_call_tls_get_addr_)
3988     {
3989       if ((r_type != elfcpp::R_X86_64_PLT32
3990            && r_type != elfcpp::R_X86_64_GOTPCREL
3991            && r_type != elfcpp::R_X86_64_GOTPCRELX
3992            && r_type != elfcpp::R_X86_64_PLT32_BND
3993            && r_type != elfcpp::R_X86_64_PC32_BND
3994            && r_type != elfcpp::R_X86_64_PC32)
3995           || gsym == NULL
3996           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3997         {
3998           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3999                                  _("missing expected TLS relocation"));
4000           this->skip_call_tls_get_addr_ = false;
4001         }
4002       else
4003         {
4004           this->skip_call_tls_get_addr_ = false;
4005           return false;
4006         }
4007     }
4008
4009   if (view == NULL)
4010     return true;
4011
4012   const Sized_relobj_file<size, false>* object = relinfo->object;
4013
4014   // Pick the value to use for symbols defined in the PLT.
4015   Symbol_value<size> symval;
4016   if (gsym != NULL
4017       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4018     {
4019       symval.set_output_value(target->plt_address_for_global(gsym));
4020       psymval = &symval;
4021     }
4022   else if (gsym == NULL && psymval->is_ifunc_symbol())
4023     {
4024       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4025       if (object->local_has_plt_offset(r_sym))
4026         {
4027           symval.set_output_value(target->plt_address_for_local(object, r_sym));
4028           psymval = &symval;
4029         }
4030     }
4031
4032   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4033
4034   // Get the GOT offset if needed.
4035   // The GOT pointer points to the end of the GOT section.
4036   // We need to subtract the size of the GOT section to get
4037   // the actual offset to use in the relocation.
4038   bool have_got_offset = false;
4039   // Since the actual offset is always negative, we use signed int to
4040   // support 64-bit GOT relocations.
4041   int got_offset = 0;
4042   switch (r_type)
4043     {
4044     case elfcpp::R_X86_64_GOT32:
4045     case elfcpp::R_X86_64_GOT64:
4046     case elfcpp::R_X86_64_GOTPLT64:
4047     case elfcpp::R_X86_64_GOTPCREL64:
4048       if (gsym != NULL)
4049         {
4050           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4051           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4052         }
4053       else
4054         {
4055           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4056           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4057           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4058                         - target->got_size());
4059         }
4060       have_got_offset = true;
4061       break;
4062
4063     default:
4064       break;
4065     }
4066
4067   typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
4068
4069   switch (r_type)
4070     {
4071     case elfcpp::R_X86_64_NONE:
4072     case elfcpp::R_X86_64_GNU_VTINHERIT:
4073     case elfcpp::R_X86_64_GNU_VTENTRY:
4074       break;
4075
4076     case elfcpp::R_X86_64_64:
4077       Reloc_funcs::rela64(view, object, psymval, addend);
4078       break;
4079
4080     case elfcpp::R_X86_64_PC64:
4081       Reloc_funcs::pcrela64(view, object, psymval, addend,
4082                                               address);
4083       break;
4084
4085     case elfcpp::R_X86_64_32:
4086       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4087                                           Reloc_funcs::CHECK_UNSIGNED);
4088       break;
4089
4090     case elfcpp::R_X86_64_32S:
4091       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
4092                                           Reloc_funcs::CHECK_SIGNED);
4093       break;
4094
4095     case elfcpp::R_X86_64_PC32:
4096     case elfcpp::R_X86_64_PC32_BND:
4097       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4098                                             address);
4099       break;
4100
4101     case elfcpp::R_X86_64_16:
4102       Reloc_funcs::rela16(view, object, psymval, addend);
4103       break;
4104
4105     case elfcpp::R_X86_64_PC16:
4106       Reloc_funcs::pcrela16(view, object, psymval, addend, address);
4107       break;
4108
4109     case elfcpp::R_X86_64_8:
4110       Reloc_funcs::rela8(view, object, psymval, addend);
4111       break;
4112
4113     case elfcpp::R_X86_64_PC8:
4114       Reloc_funcs::pcrela8(view, object, psymval, addend, address);
4115       break;
4116
4117     case elfcpp::R_X86_64_PLT32:
4118     case elfcpp::R_X86_64_PLT32_BND:
4119       gold_assert(gsym == NULL
4120                   || gsym->has_plt_offset()
4121                   || gsym->final_value_is_known()
4122                   || (gsym->is_defined()
4123                       && !gsym->is_from_dynobj()
4124                       && !gsym->is_preemptible()));
4125       // Note: while this code looks the same as for R_X86_64_PC32, it
4126       // behaves differently because psymval was set to point to
4127       // the PLT entry, rather than the symbol, in Scan::global().
4128       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
4129                                             address);
4130       break;
4131
4132     case elfcpp::R_X86_64_PLTOFF64:
4133       {
4134         gold_assert(gsym);
4135         gold_assert(gsym->has_plt_offset()
4136                     || gsym->final_value_is_known());
4137         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
4138         // This is the address of GLOBAL_OFFSET_TABLE.
4139         got_address = target->got_plt_section()->address();
4140         Reloc_funcs::rela64(view, object, psymval, addend - got_address);
4141       }
4142       break;
4143
4144     case elfcpp::R_X86_64_GOT32:
4145       gold_assert(have_got_offset);
4146       Reloc_funcs::rela32(view, got_offset, addend);
4147       break;
4148
4149     case elfcpp::R_X86_64_GOTPC32:
4150       {
4151         gold_assert(gsym);
4152         typename elfcpp::Elf_types<size>::Elf_Addr value;
4153         value = target->got_plt_section()->address();
4154         Reloc_funcs::pcrela32_check(view, value, addend, address);
4155       }
4156       break;
4157
4158     case elfcpp::R_X86_64_GOT64:
4159     case elfcpp::R_X86_64_GOTPLT64:
4160       // R_X86_64_GOTPLT64 is obsolete and treated the the same as
4161       // GOT64.
4162       gold_assert(have_got_offset);
4163       Reloc_funcs::rela64(view, got_offset, addend);
4164       break;
4165
4166     case elfcpp::R_X86_64_GOTPC64:
4167       {
4168         gold_assert(gsym);
4169         typename elfcpp::Elf_types<size>::Elf_Addr value;
4170         value = target->got_plt_section()->address();
4171         Reloc_funcs::pcrela64(view, value, addend, address);
4172       }
4173       break;
4174
4175     case elfcpp::R_X86_64_GOTOFF64:
4176       {
4177         typename elfcpp::Elf_types<size>::Elf_Addr value;
4178         value = (psymval->value(object, 0)
4179                  - target->got_plt_section()->address());
4180         Reloc_funcs::rela64(view, value, addend);
4181       }
4182       break;
4183
4184     case elfcpp::R_X86_64_GOTPCREL:
4185     case elfcpp::R_X86_64_GOTPCRELX:
4186     case elfcpp::R_X86_64_REX_GOTPCRELX:
4187       {
4188       // Convert
4189       // mov foo@GOTPCREL(%rip), %reg
4190       // to lea foo(%rip), %reg.
4191       // if possible.
4192        if ((gsym == NULL
4193              && rela.get_r_offset() >= 2
4194              && view[-2] == 0x8b
4195              && !psymval->is_ifunc_symbol())
4196             || (gsym != NULL
4197                 && rela.get_r_offset() >= 2
4198                 && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
4199                                                                0, &view)))
4200         {
4201           view[-2] = 0x8d;
4202           Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4203         }
4204       // Convert
4205       // callq *foo@GOTPCRELX(%rip) to
4206       // addr32 callq foo
4207       // and jmpq *foo@GOTPCRELX(%rip) to
4208       // jmpq foo
4209       // nop
4210       else if (gsym != NULL
4211                && rela.get_r_offset() >= 2
4212                && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
4213                                                                    r_type,
4214                                                                    0, &view))
4215         {
4216           if (view[-1] == 0x15)
4217             {
4218               // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
4219               // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
4220               view[-2] = 0x67;
4221               view[-1] = 0xe8;
4222               // Convert GOTPCRELX to 32-bit pc relative reloc.
4223               Reloc_funcs::pcrela32(view, object, psymval, addend, address);
4224             }
4225           else
4226             {
4227               // Convert jmpq *foo@GOTPCRELX(%rip) to
4228               // jmpq foo
4229               // nop
4230               // The opcode of direct jmpq is 0xe9.
4231               view[-2] = 0xe9;
4232               // The opcode of nop is 0x90.
4233               view[3] = 0x90;
4234               // Convert GOTPCRELX to 32-bit pc relative reloc.  jmpq is rip
4235               // relative and since the instruction following the jmpq is now
4236               // the nop, offset the address by 1 byte.  The start of the
4237               // relocation also moves ahead by 1 byte.
4238               Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
4239                                     address - 1);
4240             }
4241         }
4242       else
4243         {
4244           if (gsym != NULL)
4245             {
4246               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4247               got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
4248             }
4249           else
4250             {
4251               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4252               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4253               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4254                             - target->got_size());
4255             }
4256           typename elfcpp::Elf_types<size>::Elf_Addr value;
4257           value = target->got_plt_section()->address() + got_offset;
4258           Reloc_funcs::pcrela32_check(view, value, addend, address);
4259         }
4260       }
4261       break;
4262
4263     case elfcpp::R_X86_64_GOTPCREL64:
4264       {
4265         gold_assert(have_got_offset);
4266         typename elfcpp::Elf_types<size>::Elf_Addr value;
4267         value = target->got_plt_section()->address() + got_offset;
4268         Reloc_funcs::pcrela64(view, value, addend, address);
4269       }
4270       break;
4271
4272     case elfcpp::R_X86_64_COPY:
4273     case elfcpp::R_X86_64_GLOB_DAT:
4274     case elfcpp::R_X86_64_JUMP_SLOT:
4275     case elfcpp::R_X86_64_RELATIVE:
4276     case elfcpp::R_X86_64_IRELATIVE:
4277       // These are outstanding tls relocs, which are unexpected when linking
4278     case elfcpp::R_X86_64_TPOFF64:
4279     case elfcpp::R_X86_64_DTPMOD64:
4280     case elfcpp::R_X86_64_TLSDESC:
4281       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4282                              _("unexpected reloc %u in object file"),
4283                              r_type);
4284       break;
4285
4286       // These are initial tls relocs, which are expected when linking
4287     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4288     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4289     case elfcpp::R_X86_64_TLSDESC_CALL:
4290     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4291     case elfcpp::R_X86_64_DTPOFF32:
4292     case elfcpp::R_X86_64_DTPOFF64:
4293     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4294     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4295       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
4296                          view, address, view_size);
4297       break;
4298
4299     case elfcpp::R_X86_64_SIZE32:
4300     case elfcpp::R_X86_64_SIZE64:
4301     default:
4302       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4303                              _("unsupported reloc %u"),
4304                              r_type);
4305       break;
4306     }
4307
4308   if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
4309     {
4310       if (gsym == NULL)
4311         {
4312           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4313           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4314                                  _("relocation overflow: "
4315                                    "reference to local symbol %u in %s"),
4316                                  r_sym, object->name().c_str());
4317         }
4318       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
4319         {
4320           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4321                                  _("relocation overflow: "
4322                                    "reference to '%s' defined in %s"),
4323                                  gsym->name(),
4324                                  gsym->object()->name().c_str());
4325         }
4326       else
4327         {
4328           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4329                                  _("relocation overflow: reference to '%s'"),
4330                                  gsym->name());
4331         }
4332     }
4333
4334   return true;
4335 }
4336
4337 // Perform a TLS relocation.
4338
4339 template<int size>
4340 inline void
4341 Target_x86_64<size>::Relocate::relocate_tls(
4342     const Relocate_info<size, false>* relinfo,
4343     Target_x86_64<size>* target,
4344     size_t relnum,
4345     const elfcpp::Rela<size, false>& rela,
4346     unsigned int r_type,
4347     const Sized_symbol<size>* gsym,
4348     const Symbol_value<size>* psymval,
4349     unsigned char* view,
4350     typename elfcpp::Elf_types<size>::Elf_Addr address,
4351     section_size_type view_size)
4352 {
4353   Output_segment* tls_segment = relinfo->layout->tls_segment();
4354
4355   const Sized_relobj_file<size, false>* object = relinfo->object;
4356   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4357   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
4358   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
4359
4360   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
4361
4362   const bool is_final = (gsym == NULL
4363                          ? !parameters->options().shared()
4364                          : gsym->final_value_is_known());
4365   tls::Tls_optimization optimized_type
4366       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
4367   switch (r_type)
4368     {
4369     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
4370       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4371         {
4372           // If this code sequence is used in a non-executable section,
4373           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
4374           // on the assumption that it's being used by itself in a debug
4375           // section.  Therefore, in the unlikely event that the code
4376           // sequence appears in a non-executable section, we simply
4377           // leave it unoptimized.
4378           optimized_type = tls::TLSOPT_NONE;
4379         }
4380       if (optimized_type == tls::TLSOPT_TO_LE)
4381         {
4382           if (tls_segment == NULL)
4383             {
4384               gold_assert(parameters->errors()->error_count() > 0
4385                           || issue_undefined_symbol_error(gsym));
4386               return;
4387             }
4388           this->tls_gd_to_le(relinfo, relnum, tls_segment,
4389                              rela, r_type, value, view,
4390                              view_size);
4391           break;
4392         }
4393       else
4394         {
4395           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
4396                                    ? GOT_TYPE_TLS_OFFSET
4397                                    : GOT_TYPE_TLS_PAIR);
4398           unsigned int got_offset;
4399           if (gsym != NULL)
4400             {
4401               gold_assert(gsym->has_got_offset(got_type));
4402               got_offset = gsym->got_offset(got_type) - target->got_size();
4403             }
4404           else
4405             {
4406               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4407               gold_assert(object->local_has_got_offset(r_sym, got_type));
4408               got_offset = (object->local_got_offset(r_sym, got_type)
4409                             - target->got_size());
4410             }
4411           if (optimized_type == tls::TLSOPT_TO_IE)
4412             {
4413               value = target->got_plt_section()->address() + got_offset;
4414               this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
4415                                  value, view, address, view_size);
4416               break;
4417             }
4418           else if (optimized_type == tls::TLSOPT_NONE)
4419             {
4420               // Relocate the field with the offset of the pair of GOT
4421               // entries.
4422               value = target->got_plt_section()->address() + got_offset;
4423               Relocate_functions<size, false>::pcrela32(view, value, addend,
4424                                                         address);
4425               break;
4426             }
4427         }
4428       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4429                              _("unsupported reloc %u"), r_type);
4430       break;
4431
4432     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
4433     case elfcpp::R_X86_64_TLSDESC_CALL:
4434       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4435         {
4436           // See above comment for R_X86_64_TLSGD.
4437           optimized_type = tls::TLSOPT_NONE;
4438         }
4439       if (optimized_type == tls::TLSOPT_TO_LE)
4440         {
4441           if (tls_segment == NULL)
4442             {
4443               gold_assert(parameters->errors()->error_count() > 0
4444                           || issue_undefined_symbol_error(gsym));
4445               return;
4446             }
4447           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
4448                                   rela, r_type, value, view,
4449                                   view_size);
4450           break;
4451         }
4452       else
4453         {
4454           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
4455                                    ? GOT_TYPE_TLS_OFFSET
4456                                    : GOT_TYPE_TLS_DESC);
4457           unsigned int got_offset = 0;
4458           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
4459               && optimized_type == tls::TLSOPT_NONE)
4460             {
4461               // We created GOT entries in the .got.tlsdesc portion of
4462               // the .got.plt section, but the offset stored in the
4463               // symbol is the offset within .got.tlsdesc.
4464               got_offset = (target->got_size()
4465                             + target->got_plt_section()->data_size());
4466             }
4467           if (gsym != NULL)
4468             {
4469               gold_assert(gsym->has_got_offset(got_type));
4470               got_offset += gsym->got_offset(got_type) - target->got_size();
4471             }
4472           else
4473             {
4474               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4475               gold_assert(object->local_has_got_offset(r_sym, got_type));
4476               got_offset += (object->local_got_offset(r_sym, got_type)
4477                              - target->got_size());
4478             }
4479           if (optimized_type == tls::TLSOPT_TO_IE)
4480             {
4481               value = target->got_plt_section()->address() + got_offset;
4482               this->tls_desc_gd_to_ie(relinfo, relnum,
4483                                       rela, r_type, value, view, address,
4484                                       view_size);
4485               break;
4486             }
4487           else if (optimized_type == tls::TLSOPT_NONE)
4488             {
4489               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4490                 {
4491                   // Relocate the field with the offset of the pair of GOT
4492                   // entries.
4493                   value = target->got_plt_section()->address() + got_offset;
4494                   Relocate_functions<size, false>::pcrela32(view, value, addend,
4495                                                             address);
4496                 }
4497               break;
4498             }
4499         }
4500       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4501                              _("unsupported reloc %u"), r_type);
4502       break;
4503
4504     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
4505       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4506         {
4507           // See above comment for R_X86_64_TLSGD.
4508           optimized_type = tls::TLSOPT_NONE;
4509         }
4510       if (optimized_type == tls::TLSOPT_TO_LE)
4511         {
4512           if (tls_segment == NULL)
4513             {
4514               gold_assert(parameters->errors()->error_count() > 0
4515                           || issue_undefined_symbol_error(gsym));
4516               return;
4517             }
4518           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
4519                              value, view, view_size);
4520           break;
4521         }
4522       else if (optimized_type == tls::TLSOPT_NONE)
4523         {
4524           // Relocate the field with the offset of the GOT entry for
4525           // the module index.
4526           unsigned int got_offset;
4527           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
4528                         - target->got_size());
4529           value = target->got_plt_section()->address() + got_offset;
4530           Relocate_functions<size, false>::pcrela32(view, value, addend,
4531                                                     address);
4532           break;
4533         }
4534       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4535                              _("unsupported reloc %u"), r_type);
4536       break;
4537
4538     case elfcpp::R_X86_64_DTPOFF32:
4539       // This relocation type is used in debugging information.
4540       // In that case we need to not optimize the value.  If the
4541       // section is not executable, then we assume we should not
4542       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
4543       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
4544       // R_X86_64_TLSLD.
4545       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4546         {
4547           if (tls_segment == NULL)
4548             {
4549               gold_assert(parameters->errors()->error_count() > 0
4550                           || issue_undefined_symbol_error(gsym));
4551               return;
4552             }
4553           value -= tls_segment->memsz();
4554         }
4555       Relocate_functions<size, false>::rela32(view, value, addend);
4556       break;
4557
4558     case elfcpp::R_X86_64_DTPOFF64:
4559       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
4560       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4561         {
4562           if (tls_segment == NULL)
4563             {
4564               gold_assert(parameters->errors()->error_count() > 0
4565                           || issue_undefined_symbol_error(gsym));
4566               return;
4567             }
4568           value -= tls_segment->memsz();
4569         }
4570       Relocate_functions<size, false>::rela64(view, value, addend);
4571       break;
4572
4573     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
4574       if (gsym != NULL
4575           && gsym->is_undefined()
4576           && parameters->options().output_is_executable())
4577         {
4578           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4579                                                       NULL, rela,
4580                                                       r_type, value, view,
4581                                                       view_size);
4582           break;
4583         }
4584       else if (optimized_type == tls::TLSOPT_TO_LE)
4585         {
4586           if (tls_segment == NULL)
4587             {
4588               gold_assert(parameters->errors()->error_count() > 0
4589                           || issue_undefined_symbol_error(gsym));
4590               return;
4591             }
4592           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4593                                                       tls_segment, rela,
4594                                                       r_type, value, view,
4595                                                       view_size);
4596           break;
4597         }
4598       else if (optimized_type == tls::TLSOPT_NONE)
4599         {
4600           // Relocate the field with the offset of the GOT entry for
4601           // the tp-relative offset of the symbol.
4602           unsigned int got_offset;
4603           if (gsym != NULL)
4604             {
4605               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
4606               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
4607                             - target->got_size());
4608             }
4609           else
4610             {
4611               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4612               gold_assert(object->local_has_got_offset(r_sym,
4613                                                        GOT_TYPE_TLS_OFFSET));
4614               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
4615                             - target->got_size());
4616             }
4617           value = target->got_plt_section()->address() + got_offset;
4618           Relocate_functions<size, false>::pcrela32(view, value, addend,
4619                                                     address);
4620           break;
4621         }
4622       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4623                              _("unsupported reloc type %u"),
4624                              r_type);
4625       break;
4626
4627     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4628       if (tls_segment == NULL)
4629         {
4630           gold_assert(parameters->errors()->error_count() > 0
4631                       || issue_undefined_symbol_error(gsym));
4632           return;
4633         }
4634       value -= tls_segment->memsz();
4635       Relocate_functions<size, false>::rela32(view, value, addend);
4636       break;
4637     }
4638 }
4639
4640 // Do a relocation in which we convert a TLS General-Dynamic to an
4641 // Initial-Exec.
4642
4643 template<int size>
4644 inline void
4645 Target_x86_64<size>::Relocate::tls_gd_to_ie(
4646     const Relocate_info<size, false>* relinfo,
4647     size_t relnum,
4648     const elfcpp::Rela<size, false>& rela,
4649     unsigned int,
4650     typename elfcpp::Elf_types<size>::Elf_Addr value,
4651     unsigned char* view,
4652     typename elfcpp::Elf_types<size>::Elf_Addr address,
4653     section_size_type view_size)
4654 {
4655   // For SIZE == 64:
4656   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4657   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4658   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4659   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4660   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4661   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4662   // For SIZE == 32:
4663   //    leaq foo@tlsgd(%rip),%rdi;
4664   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4665   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4666   //    leaq foo@tlsgd(%rip),%rdi;
4667   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4668   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4669
4670   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4671   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4672                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
4673                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
4674
4675   if (size == 64)
4676     {
4677       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4678                        -4);
4679       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4680                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4681       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4682              16);
4683     }
4684   else
4685     {
4686       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4687                        -3);
4688       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4689                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4690       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4691              15);
4692     }
4693
4694   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4695   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4696                                             address);
4697
4698   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4699   // We can skip it.
4700   this->skip_call_tls_get_addr_ = true;
4701 }
4702
4703 // Do a relocation in which we convert a TLS General-Dynamic to a
4704 // Local-Exec.
4705
4706 template<int size>
4707 inline void
4708 Target_x86_64<size>::Relocate::tls_gd_to_le(
4709     const Relocate_info<size, false>* relinfo,
4710     size_t relnum,
4711     Output_segment* tls_segment,
4712     const elfcpp::Rela<size, false>& rela,
4713     unsigned int,
4714     typename elfcpp::Elf_types<size>::Elf_Addr value,
4715     unsigned char* view,
4716     section_size_type view_size)
4717 {
4718   // For SIZE == 64:
4719   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4720   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4721   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4722   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4723   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4724   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4725   // For SIZE == 32:
4726   //    leaq foo@tlsgd(%rip),%rdi;
4727   //    .word 0x6666; rex64; call __tls_get_addr@PLT
4728   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4729   //    leaq foo@tlsgd(%rip),%rdi;
4730   //    .word 0x66; rex64; call *__tls_get_addr@GOTPCREL(%rip)
4731   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4732
4733   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4734   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4735                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0
4736                   || memcmp(view + 4, "\x66\x48\xff", 3) == 0));
4737
4738   if (size == 64)
4739     {
4740       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4741                        -4);
4742       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4743                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4744       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4745              16);
4746     }
4747   else
4748     {
4749       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4750                        -3);
4751       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4752                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4753
4754       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4755              15);
4756     }
4757
4758   value -= tls_segment->memsz();
4759   Relocate_functions<size, false>::rela32(view + 8, value, 0);
4760
4761   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4762   // We can skip it.
4763   this->skip_call_tls_get_addr_ = true;
4764 }
4765
4766 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4767
4768 template<int size>
4769 inline void
4770 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4771     const Relocate_info<size, false>* relinfo,
4772     size_t relnum,
4773     const elfcpp::Rela<size, false>& rela,
4774     unsigned int r_type,
4775     typename elfcpp::Elf_types<size>::Elf_Addr value,
4776     unsigned char* view,
4777     typename elfcpp::Elf_types<size>::Elf_Addr address,
4778     section_size_type view_size)
4779 {
4780   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4781     {
4782       // leaq foo@tlsdesc(%rip), %rax
4783       // ==> movq foo@gottpoff(%rip), %rax
4784       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4785       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4786       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4787                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4788       view[-2] = 0x8b;
4789       const elfcpp::Elf_Xword addend = rela.get_r_addend();
4790       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4791     }
4792   else
4793     {
4794       // call *foo@tlscall(%rax)
4795       // ==> nop; nop
4796       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4797       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4798       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4799                      view[0] == 0xff && view[1] == 0x10);
4800       view[0] = 0x66;
4801       view[1] = 0x90;
4802     }
4803 }
4804
4805 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4806
4807 template<int size>
4808 inline void
4809 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4810     const Relocate_info<size, false>* relinfo,
4811     size_t relnum,
4812     Output_segment* tls_segment,
4813     const elfcpp::Rela<size, false>& rela,
4814     unsigned int r_type,
4815     typename elfcpp::Elf_types<size>::Elf_Addr value,
4816     unsigned char* view,
4817     section_size_type view_size)
4818 {
4819   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4820     {
4821       // leaq foo@tlsdesc(%rip), %rax
4822       // ==> movq foo@tpoff, %rax
4823       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4824       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4825       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4826                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4827       view[-2] = 0xc7;
4828       view[-1] = 0xc0;
4829       value -= tls_segment->memsz();
4830       Relocate_functions<size, false>::rela32(view, value, 0);
4831     }
4832   else
4833     {
4834       // call *foo@tlscall(%rax)
4835       // ==> nop; nop
4836       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4837       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4838       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4839                      view[0] == 0xff && view[1] == 0x10);
4840       view[0] = 0x66;
4841       view[1] = 0x90;
4842     }
4843 }
4844
4845 template<int size>
4846 inline void
4847 Target_x86_64<size>::Relocate::tls_ld_to_le(
4848     const Relocate_info<size, false>* relinfo,
4849     size_t relnum,
4850     Output_segment*,
4851     const elfcpp::Rela<size, false>& rela,
4852     unsigned int,
4853     typename elfcpp::Elf_types<size>::Elf_Addr,
4854     unsigned char* view,
4855     section_size_type view_size)
4856 {
4857   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4858   // For SIZE == 64:
4859   // ... leq foo@dtpoff(%rax),%reg
4860   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4861   // For SIZE == 32:
4862   // ... leq foo@dtpoff(%rax),%reg
4863   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4864   // leaq foo@tlsld(%rip),%rdi; call *__tls_get_addr@GOTPCREL(%rip)
4865   // For SIZE == 64:
4866   // ... leq foo@dtpoff(%rax),%reg
4867   // ==> .word 0x6666; .byte 0x6666; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4868   // For SIZE == 32:
4869   // ... leq foo@dtpoff(%rax),%reg
4870   // ==> nopw 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4871
4872   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4873   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4874
4875   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4876                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4877
4878   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4879                  view[4] == 0xe8 || view[4] == 0xff);
4880
4881   if (view[4] == 0xe8)
4882     {
4883       if (size == 64)
4884         memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4885       else
4886         memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4887     }
4888   else
4889     {
4890       if (size == 64)
4891         memcpy(view - 3, "\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0",
4892                13);
4893       else
4894         memcpy(view - 3, "\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0",
4895                13);
4896     }
4897
4898   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4899   // We can skip it.
4900   this->skip_call_tls_get_addr_ = true;
4901 }
4902
4903 // Do a relocation in which we convert a TLS Initial-Exec to a
4904 // Local-Exec.
4905
4906 template<int size>
4907 inline void
4908 Target_x86_64<size>::Relocate::tls_ie_to_le(
4909     const Relocate_info<size, false>* relinfo,
4910     size_t relnum,
4911     Output_segment* tls_segment,
4912     const elfcpp::Rela<size, false>& rela,
4913     unsigned int,
4914     typename elfcpp::Elf_types<size>::Elf_Addr value,
4915     unsigned char* view,
4916     section_size_type view_size)
4917 {
4918   // We need to examine the opcodes to figure out which instruction we
4919   // are looking at.
4920
4921   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4922   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4923
4924   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4925   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4926
4927   unsigned char op1 = view[-3];
4928   unsigned char op2 = view[-2];
4929   unsigned char op3 = view[-1];
4930   unsigned char reg = op3 >> 3;
4931
4932   if (op2 == 0x8b)
4933     {
4934       // movq
4935       if (op1 == 0x4c)
4936         view[-3] = 0x49;
4937       else if (size == 32 && op1 == 0x44)
4938         view[-3] = 0x41;
4939       view[-2] = 0xc7;
4940       view[-1] = 0xc0 | reg;
4941     }
4942   else if (reg == 4)
4943     {
4944       // Special handling for %rsp.
4945       if (op1 == 0x4c)
4946         view[-3] = 0x49;
4947       else if (size == 32 && op1 == 0x44)
4948         view[-3] = 0x41;
4949       view[-2] = 0x81;
4950       view[-1] = 0xc0 | reg;
4951     }
4952   else
4953     {
4954       // addq
4955       if (op1 == 0x4c)
4956         view[-3] = 0x4d;
4957       else if (size == 32 && op1 == 0x44)
4958         view[-3] = 0x45;
4959       view[-2] = 0x8d;
4960       view[-1] = 0x80 | reg | (reg << 3);
4961     }
4962
4963   if (tls_segment != NULL)
4964     value -= tls_segment->memsz();
4965   Relocate_functions<size, false>::rela32(view, value, 0);
4966 }
4967
4968 // Relocate section data.
4969
4970 template<int size>
4971 void
4972 Target_x86_64<size>::relocate_section(
4973     const Relocate_info<size, false>* relinfo,
4974     unsigned int sh_type,
4975     const unsigned char* prelocs,
4976     size_t reloc_count,
4977     Output_section* output_section,
4978     bool needs_special_offset_handling,
4979     unsigned char* view,
4980     typename elfcpp::Elf_types<size>::Elf_Addr address,
4981     section_size_type view_size,
4982     const Reloc_symbol_changes* reloc_symbol_changes)
4983 {
4984   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4985       Classify_reloc;
4986
4987   gold_assert(sh_type == elfcpp::SHT_RELA);
4988
4989   gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
4990                          gold::Default_comdat_behavior, Classify_reloc>(
4991     relinfo,
4992     this,
4993     prelocs,
4994     reloc_count,
4995     output_section,
4996     needs_special_offset_handling,
4997     view,
4998     address,
4999     view_size,
5000     reloc_symbol_changes);
5001 }
5002
5003 // Apply an incremental relocation.  Incremental relocations always refer
5004 // to global symbols.
5005
5006 template<int size>
5007 void
5008 Target_x86_64<size>::apply_relocation(
5009     const Relocate_info<size, false>* relinfo,
5010     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
5011     unsigned int r_type,
5012     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
5013     const Symbol* gsym,
5014     unsigned char* view,
5015     typename elfcpp::Elf_types<size>::Elf_Addr address,
5016     section_size_type view_size)
5017 {
5018   gold::apply_relocation<size, false, Target_x86_64<size>,
5019                          typename Target_x86_64<size>::Relocate>(
5020     relinfo,
5021     this,
5022     r_offset,
5023     r_type,
5024     r_addend,
5025     gsym,
5026     view,
5027     address,
5028     view_size);
5029 }
5030
5031 // Scan the relocs during a relocatable link.
5032
5033 template<int size>
5034 void
5035 Target_x86_64<size>::scan_relocatable_relocs(
5036     Symbol_table* symtab,
5037     Layout* layout,
5038     Sized_relobj_file<size, false>* object,
5039     unsigned int data_shndx,
5040     unsigned int sh_type,
5041     const unsigned char* prelocs,
5042     size_t reloc_count,
5043     Output_section* output_section,
5044     bool needs_special_offset_handling,
5045     size_t local_symbol_count,
5046     const unsigned char* plocal_symbols,
5047     Relocatable_relocs* rr)
5048 {
5049   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5050       Classify_reloc;
5051   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
5052       Scan_relocatable_relocs;
5053
5054   gold_assert(sh_type == elfcpp::SHT_RELA);
5055
5056   gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
5057     symtab,
5058     layout,
5059     object,
5060     data_shndx,
5061     prelocs,
5062     reloc_count,
5063     output_section,
5064     needs_special_offset_handling,
5065     local_symbol_count,
5066     plocal_symbols,
5067     rr);
5068 }
5069
5070 // Scan the relocs for --emit-relocs.
5071
5072 template<int size>
5073 void
5074 Target_x86_64<size>::emit_relocs_scan(
5075     Symbol_table* symtab,
5076     Layout* layout,
5077     Sized_relobj_file<size, false>* object,
5078     unsigned int data_shndx,
5079     unsigned int sh_type,
5080     const unsigned char* prelocs,
5081     size_t reloc_count,
5082     Output_section* output_section,
5083     bool needs_special_offset_handling,
5084     size_t local_symbol_count,
5085     const unsigned char* plocal_syms,
5086     Relocatable_relocs* rr)
5087 {
5088   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5089       Classify_reloc;
5090   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
5091       Emit_relocs_strategy;
5092
5093   gold_assert(sh_type == elfcpp::SHT_RELA);
5094
5095   gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
5096     symtab,
5097     layout,
5098     object,
5099     data_shndx,
5100     prelocs,
5101     reloc_count,
5102     output_section,
5103     needs_special_offset_handling,
5104     local_symbol_count,
5105     plocal_syms,
5106     rr);
5107 }
5108
5109 // Relocate a section during a relocatable link.
5110
5111 template<int size>
5112 void
5113 Target_x86_64<size>::relocate_relocs(
5114     const Relocate_info<size, false>* relinfo,
5115     unsigned int sh_type,
5116     const unsigned char* prelocs,
5117     size_t reloc_count,
5118     Output_section* output_section,
5119     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5120     unsigned char* view,
5121     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
5122     section_size_type view_size,
5123     unsigned char* reloc_view,
5124     section_size_type reloc_view_size)
5125 {
5126   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
5127       Classify_reloc;
5128
5129   gold_assert(sh_type == elfcpp::SHT_RELA);
5130
5131   gold::relocate_relocs<size, false, Classify_reloc>(
5132     relinfo,
5133     prelocs,
5134     reloc_count,
5135     output_section,
5136     offset_in_output_section,
5137     view,
5138     view_address,
5139     view_size,
5140     reloc_view,
5141     reloc_view_size);
5142 }
5143
5144 // Return the value to use for a dynamic which requires special
5145 // treatment.  This is how we support equality comparisons of function
5146 // pointers across shared library boundaries, as described in the
5147 // processor specific ABI supplement.
5148
5149 template<int size>
5150 uint64_t
5151 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
5152 {
5153   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5154   return this->plt_address_for_global(gsym);
5155 }
5156
5157 // Return a string used to fill a code section with nops to take up
5158 // the specified length.
5159
5160 template<int size>
5161 std::string
5162 Target_x86_64<size>::do_code_fill(section_size_type length) const
5163 {
5164   if (length >= 16)
5165     {
5166       // Build a jmpq instruction to skip over the bytes.
5167       unsigned char jmp[5];
5168       jmp[0] = 0xe9;
5169       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
5170       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
5171               + std::string(length - 5, static_cast<char>(0x90)));
5172     }
5173
5174   // Nop sequences of various lengths.
5175   const char nop1[1] = { '\x90' };                 // nop
5176   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
5177   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
5178   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
5179                          '\x00'};
5180   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
5181                          '\x00', '\x00' };
5182   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
5183                          '\x44', '\x00', '\x00' };
5184   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
5185                          '\x00', '\x00', '\x00',
5186                          '\x00' };
5187   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
5188                          '\x00', '\x00', '\x00',
5189                          '\x00', '\x00' };
5190   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
5191                          '\x84', '\x00', '\x00',
5192                          '\x00', '\x00', '\x00' };
5193   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5194                            '\x1f', '\x84', '\x00',
5195                            '\x00', '\x00', '\x00',
5196                            '\x00' };
5197   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
5198                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5199                            '\x00', '\x00', '\x00',
5200                            '\x00', '\x00' };
5201   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
5202                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5203                            '\x84', '\x00', '\x00',
5204                            '\x00', '\x00', '\x00' };
5205   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
5206                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
5207                            '\x1f', '\x84', '\x00',
5208                            '\x00', '\x00', '\x00',
5209                            '\x00' };
5210   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
5211                            '\x66', '\x66', '\x2e', // data16
5212                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
5213                            '\x00', '\x00', '\x00',
5214                            '\x00', '\x00' };
5215   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
5216                            '\x66', '\x66', '\x66', // data16; data16
5217                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
5218                            '\x84', '\x00', '\x00',
5219                            '\x00', '\x00', '\x00' };
5220
5221   const char* nops[16] = {
5222     NULL,
5223     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
5224     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
5225   };
5226
5227   return std::string(nops[length], length);
5228 }
5229
5230 // Return the addend to use for a target specific relocation.  The
5231 // only target specific relocation is R_X86_64_TLSDESC for a local
5232 // symbol.  We want to set the addend is the offset of the local
5233 // symbol in the TLS segment.
5234
5235 template<int size>
5236 uint64_t
5237 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
5238                                      uint64_t) const
5239 {
5240   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
5241   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5242   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5243   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5244   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5245   gold_assert(psymval->is_tls_symbol());
5246   // The value of a TLS symbol is the offset in the TLS segment.
5247   return psymval->value(ti.object, 0);
5248 }
5249
5250 // Return the value to use for the base of a DW_EH_PE_datarel offset
5251 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
5252 // assembler can not write out the difference between two labels in
5253 // different sections, so instead of using a pc-relative value they
5254 // use an offset from the GOT.
5255
5256 template<int size>
5257 uint64_t
5258 Target_x86_64<size>::do_ehframe_datarel_base() const
5259 {
5260   gold_assert(this->global_offset_table_ != NULL);
5261   Symbol* sym = this->global_offset_table_;
5262   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
5263   return ssym->value();
5264 }
5265
5266 // FNOFFSET in section SHNDX in OBJECT is the start of a function
5267 // compiled with -fsplit-stack.  The function calls non-split-stack
5268 // code.  We have to change the function so that it always ensures
5269 // that it has enough stack space to run some random function.
5270
5271 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
5272 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
5273 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
5274
5275 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
5276 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
5277 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
5278
5279 template<int size>
5280 void
5281 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
5282                                         section_offset_type fnoffset,
5283                                         section_size_type fnsize,
5284                                         const unsigned char*,
5285                                         size_t,
5286                                         unsigned char* view,
5287                                         section_size_type view_size,
5288                                         std::string* from,
5289                                         std::string* to) const
5290 {
5291   const char* const cmp_insn = reinterpret_cast<const char*>
5292       (size == 32 ? cmp_insn_32 : cmp_insn_64);
5293   const char* const lea_r10_insn = reinterpret_cast<const char*>
5294       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
5295   const char* const lea_r11_insn = reinterpret_cast<const char*>
5296       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
5297
5298   const size_t cmp_insn_len =
5299       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
5300   const size_t lea_r10_insn_len =
5301       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
5302   const size_t lea_r11_insn_len =
5303       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
5304   const size_t nop_len = (size == 32 ? 7 : 8);
5305
5306   // The function starts with a comparison of the stack pointer and a
5307   // field in the TCB.  This is followed by a jump.
5308
5309   // cmp %fs:NN,%rsp
5310   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
5311       && fnsize > nop_len + 1)
5312     {
5313       // We will call __morestack if the carry flag is set after this
5314       // comparison.  We turn the comparison into an stc instruction
5315       // and some nops.
5316       view[fnoffset] = '\xf9';
5317       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
5318     }
5319   // lea NN(%rsp),%r10
5320   // lea NN(%rsp),%r11
5321   else if ((this->match_view(view, view_size, fnoffset,
5322                              lea_r10_insn, lea_r10_insn_len)
5323             || this->match_view(view, view_size, fnoffset,
5324                                 lea_r11_insn, lea_r11_insn_len))
5325            && fnsize > 8)
5326     {
5327       // This is loading an offset from the stack pointer for a
5328       // comparison.  The offset is negative, so we decrease the
5329       // offset by the amount of space we need for the stack.  This
5330       // means we will avoid calling __morestack if there happens to
5331       // be plenty of space on the stack already.
5332       unsigned char* pval = view + fnoffset + 4;
5333       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
5334       val -= parameters->options().split_stack_adjust_size();
5335       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
5336     }
5337   else
5338     {
5339       if (!object->has_no_split_stack())
5340         object->error(_("failed to match split-stack sequence at "
5341                         "section %u offset %0zx"),
5342                       shndx, static_cast<size_t>(fnoffset));
5343       return;
5344     }
5345
5346   // We have to change the function so that it calls
5347   // __morestack_non_split instead of __morestack.  The former will
5348   // allocate additional stack space.
5349   *from = "__morestack";
5350   *to = "__morestack_non_split";
5351 }
5352
5353 // The selector for x86_64 object files.  Note this is never instantiated
5354 // directly.  It's only used in Target_selector_x86_64_nacl, below.
5355
5356 template<int size>
5357 class Target_selector_x86_64 : public Target_selector_freebsd
5358 {
5359 public:
5360   Target_selector_x86_64()
5361     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
5362                               (size == 64
5363                                ? "elf64-x86-64" : "elf32-x86-64"),
5364                               (size == 64
5365                                ? "elf64-x86-64-freebsd"
5366                                : "elf32-x86-64-freebsd"),
5367                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
5368   { }
5369
5370   Target*
5371   do_instantiate_target()
5372   { return new Target_x86_64<size>(); }
5373
5374 };
5375
5376 // NaCl variant.  It uses different PLT contents.
5377
5378 template<int size>
5379 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
5380 {
5381  public:
5382   Output_data_plt_x86_64_nacl(Layout* layout,
5383                               Output_data_got<64, false>* got,
5384                               Output_data_got_plt_x86_64* got_plt,
5385                               Output_data_space* got_irelative)
5386     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
5387                                    got, got_plt, got_irelative)
5388   { }
5389
5390   Output_data_plt_x86_64_nacl(Layout* layout,
5391                               Output_data_got<64, false>* got,
5392                               Output_data_got_plt_x86_64* got_plt,
5393                               Output_data_space* got_irelative,
5394                               unsigned int plt_count)
5395     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
5396                                    got, got_plt, got_irelative,
5397                                    plt_count)
5398   { }
5399
5400  protected:
5401   virtual unsigned int
5402   do_get_plt_entry_size() const
5403   { return plt_entry_size; }
5404
5405   virtual void
5406   do_add_eh_frame(Layout* layout)
5407   {
5408     layout->add_eh_frame_for_plt(this,
5409                                  this->plt_eh_frame_cie,
5410                                  this->plt_eh_frame_cie_size,
5411                                  plt_eh_frame_fde,
5412                                  plt_eh_frame_fde_size);
5413   }
5414
5415   virtual void
5416   do_fill_first_plt_entry(unsigned char* pov,
5417                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
5418                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
5419
5420   virtual unsigned int
5421   do_fill_plt_entry(unsigned char* pov,
5422                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5423                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5424                     unsigned int got_offset,
5425                     unsigned int plt_offset,
5426                     unsigned int plt_index);
5427
5428   virtual void
5429   do_fill_tlsdesc_entry(unsigned char* pov,
5430                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5431                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5432                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5433                         unsigned int tlsdesc_got_offset,
5434                         unsigned int plt_offset);
5435
5436  private:
5437   // The size of an entry in the PLT.
5438   static const int plt_entry_size = 64;
5439
5440   // The first entry in the PLT.
5441   static const unsigned char first_plt_entry[plt_entry_size];
5442
5443   // Other entries in the PLT for an executable.
5444   static const unsigned char plt_entry[plt_entry_size];
5445
5446   // The reserved TLSDESC entry in the PLT for an executable.
5447   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
5448
5449   // The .eh_frame unwind information for the PLT.
5450   static const int plt_eh_frame_fde_size = 32;
5451   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
5452 };
5453
5454 template<int size>
5455 class Target_x86_64_nacl : public Target_x86_64<size>
5456 {
5457  public:
5458   Target_x86_64_nacl()
5459     : Target_x86_64<size>(&x86_64_nacl_info)
5460   { }
5461
5462   virtual Output_data_plt_x86_64<size>*
5463   do_make_data_plt(Layout* layout,
5464                    Output_data_got<64, false>* got,
5465                    Output_data_got_plt_x86_64* got_plt,
5466                    Output_data_space* got_irelative)
5467   {
5468     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
5469                                                  got_irelative);
5470   }
5471
5472   virtual Output_data_plt_x86_64<size>*
5473   do_make_data_plt(Layout* layout,
5474                    Output_data_got<64, false>* got,
5475                    Output_data_got_plt_x86_64* got_plt,
5476                    Output_data_space* got_irelative,
5477                    unsigned int plt_count)
5478   {
5479     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
5480                                                  got_irelative,
5481                                                  plt_count);
5482   }
5483
5484   virtual std::string
5485   do_code_fill(section_size_type length) const;
5486
5487  private:
5488   static const Target::Target_info x86_64_nacl_info;
5489 };
5490
5491 template<>
5492 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
5493 {
5494   64,                   // size
5495   false,                // is_big_endian
5496   elfcpp::EM_X86_64,    // machine_code
5497   false,                // has_make_symbol
5498   false,                // has_resolve
5499   true,                 // has_code_fill
5500   true,                 // is_default_stack_executable
5501   true,                 // can_icf_inline_merge_sections
5502   '\0',                 // wrap_char
5503   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
5504   0x20000,              // default_text_segment_address
5505   0x10000,              // abi_pagesize (overridable by -z max-page-size)
5506   0x10000,              // common_pagesize (overridable by -z common-page-size)
5507   true,                 // isolate_execinstr
5508   0x10000000,           // rosegment_gap
5509   elfcpp::SHN_UNDEF,    // small_common_shndx
5510   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
5511   0,                    // small_common_section_flags
5512   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
5513   NULL,                 // attributes_section
5514   NULL,                 // attributes_vendor
5515   "_start",             // entry_symbol_name
5516   32,                   // hash_entry_size
5517 };
5518
5519 template<>
5520 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
5521 {
5522   32,                   // size
5523   false,                // is_big_endian
5524   elfcpp::EM_X86_64,    // machine_code
5525   false,                // has_make_symbol
5526   false,                // has_resolve
5527   true,                 // has_code_fill
5528   true,                 // is_default_stack_executable
5529   true,                 // can_icf_inline_merge_sections
5530   '\0',                 // wrap_char
5531   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
5532   0x20000,              // default_text_segment_address
5533   0x10000,              // abi_pagesize (overridable by -z max-page-size)
5534   0x10000,              // common_pagesize (overridable by -z common-page-size)
5535   true,                 // isolate_execinstr
5536   0x10000000,           // rosegment_gap
5537   elfcpp::SHN_UNDEF,    // small_common_shndx
5538   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
5539   0,                    // small_common_section_flags
5540   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
5541   NULL,                 // attributes_section
5542   NULL,                 // attributes_vendor
5543   "_start",             // entry_symbol_name
5544   32,                   // hash_entry_size
5545 };
5546
5547 #define NACLMASK        0xe0            // 32-byte alignment mask.
5548
5549 // The first entry in the PLT.
5550
5551 template<int size>
5552 const unsigned char
5553 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
5554 {
5555   0xff, 0x35,                         // pushq contents of memory address
5556   0, 0, 0, 0,                         // replaced with address of .got + 8
5557   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
5558   0, 0, 0, 0,                         // replaced with address of .got + 16
5559   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
5560   0x4d, 0x01, 0xfb,                   // add %r15, %r11
5561   0x41, 0xff, 0xe3,                   // jmpq *%r11
5562
5563   // 9-byte nop sequence to pad out to the next 32-byte boundary.
5564   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
5565
5566   // 32 bytes of nop to pad out to the standard size
5567   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5568   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5569   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5570   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5571   0x66,                                  // excess data32 prefix
5572   0x90                                   // nop
5573 };
5574
5575 template<int size>
5576 void
5577 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
5578     unsigned char* pov,
5579     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5580     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
5581 {
5582   memcpy(pov, first_plt_entry, plt_entry_size);
5583   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5584                                               (got_address + 8
5585                                                - (plt_address + 2 + 4)));
5586   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5587                                               (got_address + 16
5588                                                - (plt_address + 9 + 4)));
5589 }
5590
5591 // Subsequent entries in the PLT.
5592
5593 template<int size>
5594 const unsigned char
5595 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
5596 {
5597   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
5598   0, 0, 0, 0,                    // replaced with address of symbol in .got
5599   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
5600   0x4d, 0x01, 0xfb,              // add %r15, %r11
5601   0x41, 0xff, 0xe3,              // jmpq *%r11
5602
5603   // 15-byte nop sequence to pad out to the next 32-byte boundary.
5604   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5605   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5606
5607   // Lazy GOT entries point here (32-byte aligned).
5608   0x68,                       // pushq immediate
5609   0, 0, 0, 0,                 // replaced with index into relocation table
5610   0xe9,                       // jmp relative
5611   0, 0, 0, 0,                 // replaced with offset to start of .plt0
5612
5613   // 22 bytes of nop to pad out to the standard size.
5614   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5615   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5616   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
5617 };
5618
5619 template<int size>
5620 unsigned int
5621 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
5622     unsigned char* pov,
5623     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5624     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5625     unsigned int got_offset,
5626     unsigned int plt_offset,
5627     unsigned int plt_index)
5628 {
5629   memcpy(pov, plt_entry, plt_entry_size);
5630   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
5631                                               (got_address + got_offset
5632                                                - (plt_address + plt_offset
5633                                                   + 3 + 4)));
5634
5635   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
5636   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
5637                                               - (plt_offset + 38 + 4));
5638
5639   return 32;
5640 }
5641
5642 // The reserved TLSDESC entry in the PLT.
5643
5644 template<int size>
5645 const unsigned char
5646 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
5647 {
5648   0xff, 0x35,                   // pushq x(%rip)
5649   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
5650   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
5651   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
5652   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
5653   0x4d, 0x01, 0xfb,             // add %r15, %r11
5654   0x41, 0xff, 0xe3,             // jmpq *%r11
5655
5656   // 41 bytes of nop to pad out to the standard size.
5657   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5658   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5659   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5660   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5661   0x66, 0x66,                            // excess data32 prefixes
5662   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5663 };
5664
5665 template<int size>
5666 void
5667 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
5668     unsigned char* pov,
5669     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5670     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5671     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5672     unsigned int tlsdesc_got_offset,
5673     unsigned int plt_offset)
5674 {
5675   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
5676   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5677                                               (got_address + 8
5678                                                - (plt_address + plt_offset
5679                                                   + 2 + 4)));
5680   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5681                                               (got_base
5682                                                + tlsdesc_got_offset
5683                                                - (plt_address + plt_offset
5684                                                   + 9 + 4)));
5685 }
5686
5687 // The .eh_frame unwind information for the PLT.
5688
5689 template<int size>
5690 const unsigned char
5691 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5692 {
5693   0, 0, 0, 0,                           // Replaced with offset to .plt.
5694   0, 0, 0, 0,                           // Replaced with size of .plt.
5695   0,                                    // Augmentation size.
5696   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
5697   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
5698   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
5699   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
5700   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
5701   13,                                   // Block length.
5702   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
5703   elfcpp::DW_OP_breg16, 0,              // Push %rip.
5704   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
5705   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
5706   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
5707   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
5708   elfcpp::DW_OP_lit3,                   // Push 3.
5709   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
5710   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5711   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
5712   elfcpp::DW_CFA_nop
5713 };
5714
5715 // Return a string used to fill a code section with nops.
5716 // For NaCl, long NOPs are only valid if they do not cross
5717 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5718 template<int size>
5719 std::string
5720 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5721 {
5722   return std::string(length, static_cast<char>(0x90));
5723 }
5724
5725 // The selector for x86_64-nacl object files.
5726
5727 template<int size>
5728 class Target_selector_x86_64_nacl
5729   : public Target_selector_nacl<Target_selector_x86_64<size>,
5730                                 Target_x86_64_nacl<size> >
5731 {
5732  public:
5733   Target_selector_x86_64_nacl()
5734     : Target_selector_nacl<Target_selector_x86_64<size>,
5735                            Target_x86_64_nacl<size> >("x86-64",
5736                                                       size == 64
5737                                                       ? "elf64-x86-64-nacl"
5738                                                       : "elf32-x86-64-nacl",
5739                                                       size == 64
5740                                                       ? "elf_x86_64_nacl"
5741                                                       : "elf32_x86_64_nacl")
5742   { }
5743 };
5744
5745 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5746 Target_selector_x86_64_nacl<32> target_selector_x32;
5747
5748 } // End anonymous namespace.