gold/x86: Handle output without PLT
[external/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55  public:
56   Output_data_got_plt_x86_64(Layout* layout)
57     : Output_section_data_build(8),
58       layout_(layout)
59   { }
60
61   Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62     : Output_section_data_build(data_size, 8),
63       layout_(layout)
64   { }
65
66  protected:
67   // Write out the PLT data.
68   void
69   do_write(Output_file*);
70
71   // Write to a map file.
72   void
73   do_print_to_mapfile(Mapfile* mapfile) const
74   { mapfile->print_output_data(this, "** GOT PLT"); }
75
76  private:
77   // A pointer to the Layout class, so that we can find the .dynamic
78   // section when we write out the GOT PLT section.
79   Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries.  The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90  public:
91   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93   Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94                          Output_data_got<64, false>* got,
95                          Output_data_got_plt_x86_64* got_plt,
96                          Output_data_space* got_irelative)
97     : Output_section_data(addralign), tlsdesc_rel_(NULL),
98       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99       got_irelative_(got_irelative), count_(0), irelative_count_(0),
100       tlsdesc_got_offset_(-1U), free_list_()
101   { this->init(layout); }
102
103   Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104                          Output_data_got<64, false>* got,
105                          Output_data_got_plt_x86_64* got_plt,
106                          Output_data_space* got_irelative,
107                          unsigned int plt_count)
108     : Output_section_data((plt_count + 1) * plt_entry_size,
109                           plt_entry_size, false),
110       tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112       irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113   {
114     this->init(layout);
115
116     // Initialize the free list and reserve the first entry.
117     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118     this->free_list_.remove(0, plt_entry_size);
119   }
120
121   // Initialize the PLT section.
122   void
123   init(Layout* layout);
124
125   // Add an entry to the PLT.
126   void
127   add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130   unsigned int
131   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132                         Sized_relobj_file<size, false>* relobj,
133                         unsigned int local_sym_index);
134
135   // Add the relocation for a PLT entry.
136   void
137   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138                  unsigned int got_offset);
139
140   // Add the reserved TLSDESC_PLT entry to the PLT.
141   void
142   reserve_tlsdesc_entry(unsigned int got_offset)
143   { this->tlsdesc_got_offset_ = got_offset; }
144
145   // Return true if a TLSDESC_PLT entry has been reserved.
146   bool
147   has_tlsdesc_entry() const
148   { return this->tlsdesc_got_offset_ != -1U; }
149
150   // Return the GOT offset for the reserved TLSDESC_PLT entry.
151   unsigned int
152   get_tlsdesc_got_offset() const
153   { return this->tlsdesc_got_offset_; }
154
155   // Return the offset of the reserved TLSDESC_PLT entry.
156   unsigned int
157   get_tlsdesc_plt_offset() const
158   {
159     return ((this->count_ + this->irelative_count_ + 1)
160             * this->get_plt_entry_size());
161   }
162
163   // Return the .rela.plt section data.
164   Reloc_section*
165   rela_plt()
166   { return this->rel_; }
167
168   // Return where the TLSDESC relocations should go.
169   Reloc_section*
170   rela_tlsdesc(Layout*);
171
172   // Return where the IRELATIVE relocations should go in the PLT
173   // relocations.
174   Reloc_section*
175   rela_irelative(Symbol_table*, Layout*);
176
177   // Return whether we created a section for IRELATIVE relocations.
178   bool
179   has_irelative_section() const
180   { return this->irelative_rel_ != NULL; }
181
182   // Return the number of PLT entries.
183   unsigned int
184   entry_count() const
185   { return this->count_ + this->irelative_count_; }
186
187   // Return the offset of the first non-reserved PLT entry.
188   unsigned int
189   first_plt_entry_offset()
190   { return this->get_plt_entry_size(); }
191
192   // Return the size of a PLT entry.
193   unsigned int
194   get_plt_entry_size() const
195   { return this->do_get_plt_entry_size(); }
196
197   // Reserve a slot in the PLT for an existing symbol in an incremental update.
198   void
199   reserve_slot(unsigned int plt_index)
200   {
201     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202                             (plt_index + 2) * this->get_plt_entry_size());
203   }
204
205   // Return the PLT address to use for a global symbol.
206   uint64_t
207   address_for_global(const Symbol*);
208
209   // Return the PLT address to use for a local symbol.
210   uint64_t
211   address_for_local(const Relobj*, unsigned int symndx);
212
213   // Add .eh_frame information for the PLT.
214   void
215   add_eh_frame(Layout* layout)
216   { this->do_add_eh_frame(layout); }
217
218  protected:
219   // Fill in the first PLT entry.
220   void
221   fill_first_plt_entry(unsigned char* pov,
222                        typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223                        typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226   // Fill in a normal PLT entry.  Returns the offset into the entry that
227   // should be the initial GOT slot value.
228   unsigned int
229   fill_plt_entry(unsigned char* pov,
230                  typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231                  typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232                  unsigned int got_offset,
233                  unsigned int plt_offset,
234                  unsigned int plt_index)
235   {
236     return this->do_fill_plt_entry(pov, got_address, plt_address,
237                                    got_offset, plt_offset, plt_index);
238   }
239
240   // Fill in the reserved TLSDESC PLT entry.
241   void
242   fill_tlsdesc_entry(unsigned char* pov,
243                      typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244                      typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245                      typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246                      unsigned int tlsdesc_got_offset,
247                      unsigned int plt_offset)
248   {
249     this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250                                 tlsdesc_got_offset, plt_offset);
251   }
252
253   virtual unsigned int
254   do_get_plt_entry_size() const = 0;
255
256   virtual void
257   do_fill_first_plt_entry(unsigned char* pov,
258                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260     = 0;
261
262   virtual unsigned int
263   do_fill_plt_entry(unsigned char* pov,
264                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266                     unsigned int got_offset,
267                     unsigned int plt_offset,
268                     unsigned int plt_index) = 0;
269
270   virtual void
271   do_fill_tlsdesc_entry(unsigned char* pov,
272                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275                         unsigned int tlsdesc_got_offset,
276                         unsigned int plt_offset) = 0;
277
278   virtual void
279   do_add_eh_frame(Layout* layout) = 0;
280
281   void
282   do_adjust_output_section(Output_section* os);
283
284   // Write to a map file.
285   void
286   do_print_to_mapfile(Mapfile* mapfile) const
287   { mapfile->print_output_data(this, _("** PLT")); }
288
289   // The CIE of the .eh_frame unwind information for the PLT.
290   static const int plt_eh_frame_cie_size = 16;
291   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293  private:
294   // Set the final size.
295   void
296   set_final_data_size();
297
298   // Write out the PLT data.
299   void
300   do_write(Output_file*);
301
302   // The reloc section.
303   Reloc_section* rel_;
304   // The TLSDESC relocs, if necessary.  These must follow the regular
305   // PLT relocs.
306   Reloc_section* tlsdesc_rel_;
307   // The IRELATIVE relocs, if necessary.  These must follow the
308   // regular PLT relocations and the TLSDESC relocations.
309   Reloc_section* irelative_rel_;
310   // The .got section.
311   Output_data_got<64, false>* got_;
312   // The .got.plt section.
313   Output_data_got_plt_x86_64* got_plt_;
314   // The part of the .got.plt section used for IRELATIVE relocs.
315   Output_data_space* got_irelative_;
316   // The number of PLT entries.
317   unsigned int count_;
318   // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
319   // follow the regular PLT entries.
320   unsigned int irelative_count_;
321   // Offset of the reserved TLSDESC_GOT entry when needed.
322   unsigned int tlsdesc_got_offset_;
323   // List of available regions within the section, for incremental
324   // update links.
325   Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331  public:
332   Output_data_plt_x86_64_standard(Layout* layout,
333                                   Output_data_got<64, false>* got,
334                                   Output_data_got_plt_x86_64* got_plt,
335                                   Output_data_space* got_irelative)
336     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337                                    got, got_plt, got_irelative)
338   { }
339
340   Output_data_plt_x86_64_standard(Layout* layout,
341                                   Output_data_got<64, false>* got,
342                                   Output_data_got_plt_x86_64* got_plt,
343                                   Output_data_space* got_irelative,
344                                   unsigned int plt_count)
345     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346                                    got, got_plt, got_irelative,
347                                    plt_count)
348   { }
349
350  protected:
351   virtual unsigned int
352   do_get_plt_entry_size() const
353   { return plt_entry_size; }
354
355   virtual void
356   do_add_eh_frame(Layout* layout)
357   {
358     layout->add_eh_frame_for_plt(this,
359                                  this->plt_eh_frame_cie,
360                                  this->plt_eh_frame_cie_size,
361                                  plt_eh_frame_fde,
362                                  plt_eh_frame_fde_size);
363   }
364
365   virtual void
366   do_fill_first_plt_entry(unsigned char* pov,
367                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370   virtual unsigned int
371   do_fill_plt_entry(unsigned char* pov,
372                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374                     unsigned int got_offset,
375                     unsigned int plt_offset,
376                     unsigned int plt_index);
377
378   virtual void
379   do_fill_tlsdesc_entry(unsigned char* pov,
380                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383                         unsigned int tlsdesc_got_offset,
384                         unsigned int plt_offset);
385
386  private:
387   // The size of an entry in the PLT.
388   static const int plt_entry_size = 16;
389
390   // The first entry in the PLT.
391   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392   // procedure linkage table for both programs and shared objects."
393   static const unsigned char first_plt_entry[plt_entry_size];
394
395   // Other entries in the PLT for an executable.
396   static const unsigned char plt_entry[plt_entry_size];
397
398   // The reserved TLSDESC entry in the PLT for an executable.
399   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401   // The .eh_frame unwind information for the PLT.
402   static const int plt_eh_frame_fde_size = 32;
403   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 //   http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 //   http://people.redhat.com/drepper/tls.pdf
411 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416  public:
417   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418   // uses only Elf64_Rela relocation entries with explicit addends."
419   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421   Target_x86_64(const Target::Target_info* info = &x86_64_info)
422     : Sized_target<size, false>(info),
423       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425       rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426       got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427       tls_base_symbol_defined_(false)
428   { }
429
430   // Hook for a new output section.
431   void
432   do_new_output_section(Output_section*) const;
433
434   // Scan the relocations to look for symbol adjustments.
435   void
436   gc_process_relocs(Symbol_table* symtab,
437                     Layout* layout,
438                     Sized_relobj_file<size, false>* object,
439                     unsigned int data_shndx,
440                     unsigned int sh_type,
441                     const unsigned char* prelocs,
442                     size_t reloc_count,
443                     Output_section* output_section,
444                     bool needs_special_offset_handling,
445                     size_t local_symbol_count,
446                     const unsigned char* plocal_symbols);
447
448   // Scan the relocations to look for symbol adjustments.
449   void
450   scan_relocs(Symbol_table* symtab,
451               Layout* layout,
452               Sized_relobj_file<size, false>* object,
453               unsigned int data_shndx,
454               unsigned int sh_type,
455               const unsigned char* prelocs,
456               size_t reloc_count,
457               Output_section* output_section,
458               bool needs_special_offset_handling,
459               size_t local_symbol_count,
460               const unsigned char* plocal_symbols);
461
462   // Finalize the sections.
463   void
464   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466   // Return the value to use for a dynamic which requires special
467   // treatment.
468   uint64_t
469   do_dynsym_value(const Symbol*) const;
470
471   // Relocate a section.
472   void
473   relocate_section(const Relocate_info<size, false>*,
474                    unsigned int sh_type,
475                    const unsigned char* prelocs,
476                    size_t reloc_count,
477                    Output_section* output_section,
478                    bool needs_special_offset_handling,
479                    unsigned char* view,
480                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481                    section_size_type view_size,
482                    const Reloc_symbol_changes*);
483
484   // Scan the relocs during a relocatable link.
485   void
486   scan_relocatable_relocs(Symbol_table* symtab,
487                           Layout* layout,
488                           Sized_relobj_file<size, false>* object,
489                           unsigned int data_shndx,
490                           unsigned int sh_type,
491                           const unsigned char* prelocs,
492                           size_t reloc_count,
493                           Output_section* output_section,
494                           bool needs_special_offset_handling,
495                           size_t local_symbol_count,
496                           const unsigned char* plocal_symbols,
497                           Relocatable_relocs*);
498
499   // Scan the relocs for --emit-relocs.
500   void
501   emit_relocs_scan(Symbol_table* symtab,
502                    Layout* layout,
503                    Sized_relobj_file<size, false>* object,
504                    unsigned int data_shndx,
505                    unsigned int sh_type,
506                    const unsigned char* prelocs,
507                    size_t reloc_count,
508                    Output_section* output_section,
509                    bool needs_special_offset_handling,
510                    size_t local_symbol_count,
511                    const unsigned char* plocal_syms,
512                    Relocatable_relocs* rr);
513
514   // Emit relocations for a section.
515   void
516   relocate_relocs(
517       const Relocate_info<size, false>*,
518       unsigned int sh_type,
519       const unsigned char* prelocs,
520       size_t reloc_count,
521       Output_section* output_section,
522       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
523       unsigned char* view,
524       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
525       section_size_type view_size,
526       unsigned char* reloc_view,
527       section_size_type reloc_view_size);
528
529   // Return a string used to fill a code section with nops.
530   std::string
531   do_code_fill(section_size_type length) const;
532
533   // Return whether SYM is defined by the ABI.
534   bool
535   do_is_defined_by_abi(const Symbol* sym) const
536   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
537
538   // Return the symbol index to use for a target specific relocation.
539   // The only target specific relocation is R_X86_64_TLSDESC for a
540   // local symbol, which is an absolute reloc.
541   unsigned int
542   do_reloc_symbol_index(void*, unsigned int r_type) const
543   {
544     gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
545     return 0;
546   }
547
548   // Return the addend to use for a target specific relocation.
549   uint64_t
550   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
551
552   // Return the PLT section.
553   uint64_t
554   do_plt_address_for_global(const Symbol* gsym) const
555   { return this->plt_section()->address_for_global(gsym); }
556
557   uint64_t
558   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
559   { return this->plt_section()->address_for_local(relobj, symndx); }
560
561   // This function should be defined in targets that can use relocation
562   // types to determine (implemented in local_reloc_may_be_function_pointer
563   // and global_reloc_may_be_function_pointer)
564   // if a function's pointer is taken.  ICF uses this in safe mode to only
565   // fold those functions whose pointer is defintely not taken.  For x86_64
566   // pie binaries, safe ICF cannot be done by looking at relocation types.
567   bool
568   do_can_check_for_function_pointers() const
569   { return !parameters->options().pie(); }
570
571   // Return the base for a DW_EH_PE_datarel encoding.
572   uint64_t
573   do_ehframe_datarel_base() const;
574
575   // Adjust -fsplit-stack code which calls non-split-stack code.
576   void
577   do_calls_non_split(Relobj* object, unsigned int shndx,
578                      section_offset_type fnoffset, section_size_type fnsize,
579                      const unsigned char* prelocs, size_t reloc_count,
580                      unsigned char* view, section_size_type view_size,
581                      std::string* from, std::string* to) const;
582
583   // Return the size of the GOT section.
584   section_size_type
585   got_size() const
586   {
587     gold_assert(this->got_ != NULL);
588     return this->got_->data_size();
589   }
590
591   // Return the number of entries in the GOT.
592   unsigned int
593   got_entry_count() const
594   {
595     if (this->got_ == NULL)
596       return 0;
597     return this->got_size() / 8;
598   }
599
600   // Return the number of entries in the PLT.
601   unsigned int
602   plt_entry_count() const;
603
604   // Return the offset of the first non-reserved PLT entry.
605   unsigned int
606   first_plt_entry_offset() const;
607
608   // Return the size of each PLT entry.
609   unsigned int
610   plt_entry_size() const;
611
612   // Return the size of each GOT entry.
613   unsigned int
614   got_entry_size() const
615   { return 8; };
616
617   // Create the GOT section for an incremental update.
618   Output_data_got_base*
619   init_got_plt_for_update(Symbol_table* symtab,
620                           Layout* layout,
621                           unsigned int got_count,
622                           unsigned int plt_count);
623
624   // Reserve a GOT entry for a local symbol, and regenerate any
625   // necessary dynamic relocations.
626   void
627   reserve_local_got_entry(unsigned int got_index,
628                           Sized_relobj<size, false>* obj,
629                           unsigned int r_sym,
630                           unsigned int got_type);
631
632   // Reserve a GOT entry for a global symbol, and regenerate any
633   // necessary dynamic relocations.
634   void
635   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
636                            unsigned int got_type);
637
638   // Register an existing PLT entry for a global symbol.
639   void
640   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
641                             Symbol* gsym);
642
643   // Force a COPY relocation for a given symbol.
644   void
645   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
646
647   // Apply an incremental relocation.
648   void
649   apply_relocation(const Relocate_info<size, false>* relinfo,
650                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
651                    unsigned int r_type,
652                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
653                    const Symbol* gsym,
654                    unsigned char* view,
655                    typename elfcpp::Elf_types<size>::Elf_Addr address,
656                    section_size_type view_size);
657
658   // Add a new reloc argument, returning the index in the vector.
659   size_t
660   add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
661   {
662     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
663     return this->tlsdesc_reloc_info_.size() - 1;
664   }
665
666   Output_data_plt_x86_64<size>*
667   make_data_plt(Layout* layout,
668                 Output_data_got<64, false>* got,
669                 Output_data_got_plt_x86_64* got_plt,
670                 Output_data_space* got_irelative)
671   {
672     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
673   }
674
675   Output_data_plt_x86_64<size>*
676   make_data_plt(Layout* layout,
677                 Output_data_got<64, false>* got,
678                 Output_data_got_plt_x86_64* got_plt,
679                 Output_data_space* got_irelative,
680                 unsigned int plt_count)
681   {
682     return this->do_make_data_plt(layout, got, got_plt, got_irelative,
683                                   plt_count);
684   }
685
686   virtual Output_data_plt_x86_64<size>*
687   do_make_data_plt(Layout* layout,
688                    Output_data_got<64, false>* got,
689                    Output_data_got_plt_x86_64* got_plt,
690                    Output_data_space* got_irelative)
691   {
692     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
693                                                      got_irelative);
694   }
695
696   virtual Output_data_plt_x86_64<size>*
697   do_make_data_plt(Layout* layout,
698                    Output_data_got<64, false>* got,
699                    Output_data_got_plt_x86_64* got_plt,
700                    Output_data_space* got_irelative,
701                    unsigned int plt_count)
702   {
703     return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
704                                                      got_irelative,
705                                                      plt_count);
706   }
707
708  private:
709   // The class which scans relocations.
710   class Scan
711   {
712   public:
713     Scan()
714       : issued_non_pic_error_(false)
715     { }
716
717     static inline int
718     get_reference_flags(unsigned int r_type);
719
720     inline void
721     local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
722           Sized_relobj_file<size, false>* object,
723           unsigned int data_shndx,
724           Output_section* output_section,
725           const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
726           const elfcpp::Sym<size, false>& lsym,
727           bool is_discarded);
728
729     inline void
730     global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
731            Sized_relobj_file<size, false>* object,
732            unsigned int data_shndx,
733            Output_section* output_section,
734            const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
735            Symbol* gsym);
736
737     inline bool
738     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
739                                         Target_x86_64* target,
740                                         Sized_relobj_file<size, false>* object,
741                                         unsigned int data_shndx,
742                                         Output_section* output_section,
743                                         const elfcpp::Rela<size, false>& reloc,
744                                         unsigned int r_type,
745                                         const elfcpp::Sym<size, false>& lsym);
746
747     inline bool
748     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
749                                          Target_x86_64* target,
750                                          Sized_relobj_file<size, false>* object,
751                                          unsigned int data_shndx,
752                                          Output_section* output_section,
753                                          const elfcpp::Rela<size, false>& reloc,
754                                          unsigned int r_type,
755                                          Symbol* gsym);
756
757   private:
758     static void
759     unsupported_reloc_local(Sized_relobj_file<size, false>*,
760                             unsigned int r_type);
761
762     static void
763     unsupported_reloc_global(Sized_relobj_file<size, false>*,
764                              unsigned int r_type, Symbol*);
765
766     void
767     check_non_pic(Relobj*, unsigned int r_type, Symbol*);
768
769     inline bool
770     possible_function_pointer_reloc(unsigned int r_type);
771
772     bool
773     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
774                               unsigned int r_type);
775
776     // Whether we have issued an error about a non-PIC compilation.
777     bool issued_non_pic_error_;
778   };
779
780   // The class which implements relocation.
781   class Relocate
782   {
783    public:
784     Relocate()
785       : skip_call_tls_get_addr_(false)
786     { }
787
788     ~Relocate()
789     {
790       if (this->skip_call_tls_get_addr_)
791         {
792           // FIXME: This needs to specify the location somehow.
793           gold_error(_("missing expected TLS relocation"));
794         }
795     }
796
797     // Do a relocation.  Return false if the caller should not issue
798     // any warnings about this relocation.
799     inline bool
800     relocate(const Relocate_info<size, false>*, unsigned int,
801              Target_x86_64*, Output_section*, size_t, const unsigned char*,
802              const Sized_symbol<size>*, const Symbol_value<size>*,
803              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
804              section_size_type);
805
806    private:
807     // Do a TLS relocation.
808     inline void
809     relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
810                  size_t relnum, const elfcpp::Rela<size, false>&,
811                  unsigned int r_type, const Sized_symbol<size>*,
812                  const Symbol_value<size>*,
813                  unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
814                  section_size_type);
815
816     // Do a TLS General-Dynamic to Initial-Exec transition.
817     inline void
818     tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
819                  const elfcpp::Rela<size, false>&, unsigned int r_type,
820                  typename elfcpp::Elf_types<size>::Elf_Addr value,
821                  unsigned char* view,
822                  typename elfcpp::Elf_types<size>::Elf_Addr,
823                  section_size_type view_size);
824
825     // Do a TLS General-Dynamic to Local-Exec transition.
826     inline void
827     tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
828                  Output_segment* tls_segment,
829                  const elfcpp::Rela<size, false>&, unsigned int r_type,
830                  typename elfcpp::Elf_types<size>::Elf_Addr value,
831                  unsigned char* view,
832                  section_size_type view_size);
833
834     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
835     inline void
836     tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
837                       const elfcpp::Rela<size, false>&, unsigned int r_type,
838                       typename elfcpp::Elf_types<size>::Elf_Addr value,
839                       unsigned char* view,
840                       typename elfcpp::Elf_types<size>::Elf_Addr,
841                       section_size_type view_size);
842
843     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
844     inline void
845     tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
846                       Output_segment* tls_segment,
847                       const elfcpp::Rela<size, false>&, unsigned int r_type,
848                       typename elfcpp::Elf_types<size>::Elf_Addr value,
849                       unsigned char* view,
850                       section_size_type view_size);
851
852     // Do a TLS Local-Dynamic to Local-Exec transition.
853     inline void
854     tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
855                  Output_segment* tls_segment,
856                  const elfcpp::Rela<size, false>&, unsigned int r_type,
857                  typename elfcpp::Elf_types<size>::Elf_Addr value,
858                  unsigned char* view,
859                  section_size_type view_size);
860
861     // Do a TLS Initial-Exec to Local-Exec transition.
862     static inline void
863     tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
864                  Output_segment* tls_segment,
865                  const elfcpp::Rela<size, false>&, unsigned int r_type,
866                  typename elfcpp::Elf_types<size>::Elf_Addr value,
867                  unsigned char* view,
868                  section_size_type view_size);
869
870     // This is set if we should skip the next reloc, which should be a
871     // PLT32 reloc against ___tls_get_addr.
872     bool skip_call_tls_get_addr_;
873   };
874
875   // Check if relocation against this symbol is a candidate for
876   // conversion from
877   // mov foo@GOTPCREL(%rip), %reg
878   // to lea foo(%rip), %reg.
879   static bool
880   can_convert_mov_to_lea(const Symbol* gsym)
881   {
882     gold_assert(gsym != NULL);
883     return (gsym->type() != elfcpp::STT_GNU_IFUNC
884             && !gsym->is_undefined ()
885             && !gsym->is_from_dynobj()
886             && !gsym->is_preemptible()
887             && (!parameters->options().shared()
888                 || (gsym->visibility() != elfcpp::STV_DEFAULT
889                     && gsym->visibility() != elfcpp::STV_PROTECTED)
890                 || parameters->options().Bsymbolic())
891             && strcmp(gsym->name(), "_DYNAMIC") != 0);
892   }
893
894   // Adjust TLS relocation type based on the options and whether this
895   // is a local symbol.
896   static tls::Tls_optimization
897   optimize_tls_reloc(bool is_final, int r_type);
898
899   // Get the GOT section, creating it if necessary.
900   Output_data_got<64, false>*
901   got_section(Symbol_table*, Layout*);
902
903   // Get the GOT PLT section.
904   Output_data_got_plt_x86_64*
905   got_plt_section() const
906   {
907     gold_assert(this->got_plt_ != NULL);
908     return this->got_plt_;
909   }
910
911   // Get the GOT section for TLSDESC entries.
912   Output_data_got<64, false>*
913   got_tlsdesc_section() const
914   {
915     gold_assert(this->got_tlsdesc_ != NULL);
916     return this->got_tlsdesc_;
917   }
918
919   // Create the PLT section.
920   void
921   make_plt_section(Symbol_table* symtab, Layout* layout);
922
923   // Create a PLT entry for a global symbol.
924   void
925   make_plt_entry(Symbol_table*, Layout*, Symbol*);
926
927   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
928   void
929   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
930                              Sized_relobj_file<size, false>* relobj,
931                              unsigned int local_sym_index);
932
933   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
934   void
935   define_tls_base_symbol(Symbol_table*, Layout*);
936
937   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
938   void
939   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
940
941   // Create a GOT entry for the TLS module index.
942   unsigned int
943   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
944                       Sized_relobj_file<size, false>* object);
945
946   // Get the PLT section.
947   Output_data_plt_x86_64<size>*
948   plt_section() const
949   {
950     gold_assert(this->plt_ != NULL);
951     return this->plt_;
952   }
953
954   // Get the dynamic reloc section, creating it if necessary.
955   Reloc_section*
956   rela_dyn_section(Layout*);
957
958   // Get the section to use for TLSDESC relocations.
959   Reloc_section*
960   rela_tlsdesc_section(Layout*) const;
961
962   // Get the section to use for IRELATIVE relocations.
963   Reloc_section*
964   rela_irelative_section(Layout*);
965
966   // Add a potential copy relocation.
967   void
968   copy_reloc(Symbol_table* symtab, Layout* layout,
969              Sized_relobj_file<size, false>* object,
970              unsigned int shndx, Output_section* output_section,
971              Symbol* sym, const elfcpp::Rela<size, false>& reloc)
972   {
973     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
974     this->copy_relocs_.copy_reloc(symtab, layout,
975                                   symtab->get_sized_symbol<size>(sym),
976                                   object, shndx, output_section,
977                                   r_type, reloc.get_r_offset(),
978                                   reloc.get_r_addend(),
979                                   this->rela_dyn_section(layout));
980   }
981
982   // Information about this specific target which we pass to the
983   // general Target structure.
984   static const Target::Target_info x86_64_info;
985
986   // The types of GOT entries needed for this platform.
987   // These values are exposed to the ABI in an incremental link.
988   // Do not renumber existing values without changing the version
989   // number of the .gnu_incremental_inputs section.
990   enum Got_type
991   {
992     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
993     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
994     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
995     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
996   };
997
998   // This type is used as the argument to the target specific
999   // relocation routines.  The only target specific reloc is
1000   // R_X86_64_TLSDESC against a local symbol.
1001   struct Tlsdesc_info
1002   {
1003     Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1004       : object(a_object), r_sym(a_r_sym)
1005     { }
1006
1007     // The object in which the local symbol is defined.
1008     Sized_relobj_file<size, false>* object;
1009     // The local symbol index in the object.
1010     unsigned int r_sym;
1011   };
1012
1013   // The GOT section.
1014   Output_data_got<64, false>* got_;
1015   // The PLT section.
1016   Output_data_plt_x86_64<size>* plt_;
1017   // The GOT PLT section.
1018   Output_data_got_plt_x86_64* got_plt_;
1019   // The GOT section for IRELATIVE relocations.
1020   Output_data_space* got_irelative_;
1021   // The GOT section for TLSDESC relocations.
1022   Output_data_got<64, false>* got_tlsdesc_;
1023   // The _GLOBAL_OFFSET_TABLE_ symbol.
1024   Symbol* global_offset_table_;
1025   // The dynamic reloc section.
1026   Reloc_section* rela_dyn_;
1027   // The section to use for IRELATIVE relocs.
1028   Reloc_section* rela_irelative_;
1029   // Relocs saved to avoid a COPY reloc.
1030   Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1031   // Offset of the GOT entry for the TLS module index.
1032   unsigned int got_mod_index_offset_;
1033   // We handle R_X86_64_TLSDESC against a local symbol as a target
1034   // specific relocation.  Here we store the object and local symbol
1035   // index for the relocation.
1036   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1037   // True if the _TLS_MODULE_BASE_ symbol has been defined.
1038   bool tls_base_symbol_defined_;
1039 };
1040
1041 template<>
1042 const Target::Target_info Target_x86_64<64>::x86_64_info =
1043 {
1044   64,                   // size
1045   false,                // is_big_endian
1046   elfcpp::EM_X86_64,    // machine_code
1047   false,                // has_make_symbol
1048   false,                // has_resolve
1049   true,                 // has_code_fill
1050   true,                 // is_default_stack_executable
1051   true,                 // can_icf_inline_merge_sections
1052   '\0',                 // wrap_char
1053   "/lib/ld64.so.1",     // program interpreter
1054   0x400000,             // default_text_segment_address
1055   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1056   0x1000,               // common_pagesize (overridable by -z common-page-size)
1057   false,                // isolate_execinstr
1058   0,                    // rosegment_gap
1059   elfcpp::SHN_UNDEF,    // small_common_shndx
1060   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1061   0,                    // small_common_section_flags
1062   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1063   NULL,                 // attributes_section
1064   NULL,                 // attributes_vendor
1065   "_start",             // entry_symbol_name
1066   32,                   // hash_entry_size
1067 };
1068
1069 template<>
1070 const Target::Target_info Target_x86_64<32>::x86_64_info =
1071 {
1072   32,                   // size
1073   false,                // is_big_endian
1074   elfcpp::EM_X86_64,    // machine_code
1075   false,                // has_make_symbol
1076   false,                // has_resolve
1077   true,                 // has_code_fill
1078   true,                 // is_default_stack_executable
1079   true,                 // can_icf_inline_merge_sections
1080   '\0',                 // wrap_char
1081   "/libx32/ldx32.so.1", // program interpreter
1082   0x400000,             // default_text_segment_address
1083   0x1000,               // abi_pagesize (overridable by -z max-page-size)
1084   0x1000,               // common_pagesize (overridable by -z common-page-size)
1085   false,                // isolate_execinstr
1086   0,                    // rosegment_gap
1087   elfcpp::SHN_UNDEF,    // small_common_shndx
1088   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
1089   0,                    // small_common_section_flags
1090   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
1091   NULL,                 // attributes_section
1092   NULL,                 // attributes_vendor
1093   "_start",             // entry_symbol_name
1094   32,                   // hash_entry_size
1095 };
1096
1097 // This is called when a new output section is created.  This is where
1098 // we handle the SHF_X86_64_LARGE.
1099
1100 template<int size>
1101 void
1102 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1103 {
1104   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1105     os->set_is_large_section();
1106 }
1107
1108 // Get the GOT section, creating it if necessary.
1109
1110 template<int size>
1111 Output_data_got<64, false>*
1112 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1113 {
1114   if (this->got_ == NULL)
1115     {
1116       gold_assert(symtab != NULL && layout != NULL);
1117
1118       // When using -z now, we can treat .got.plt as a relro section.
1119       // Without -z now, it is modified after program startup by lazy
1120       // PLT relocations.
1121       bool is_got_plt_relro = parameters->options().now();
1122       Output_section_order got_order = (is_got_plt_relro
1123                                         ? ORDER_RELRO
1124                                         : ORDER_RELRO_LAST);
1125       Output_section_order got_plt_order = (is_got_plt_relro
1126                                             ? ORDER_RELRO
1127                                             : ORDER_NON_RELRO_FIRST);
1128
1129       this->got_ = new Output_data_got<64, false>();
1130
1131       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1132                                       (elfcpp::SHF_ALLOC
1133                                        | elfcpp::SHF_WRITE),
1134                                       this->got_, got_order, true);
1135
1136       this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1137       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1138                                       (elfcpp::SHF_ALLOC
1139                                        | elfcpp::SHF_WRITE),
1140                                       this->got_plt_, got_plt_order,
1141                                       is_got_plt_relro);
1142
1143       // The first three entries are reserved.
1144       this->got_plt_->set_current_data_size(3 * 8);
1145
1146       if (!is_got_plt_relro)
1147         {
1148           // Those bytes can go into the relro segment.
1149           layout->increase_relro(3 * 8);
1150         }
1151
1152       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1153       this->global_offset_table_ =
1154         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1155                                       Symbol_table::PREDEFINED,
1156                                       this->got_plt_,
1157                                       0, 0, elfcpp::STT_OBJECT,
1158                                       elfcpp::STB_LOCAL,
1159                                       elfcpp::STV_HIDDEN, 0,
1160                                       false, false);
1161
1162       // If there are any IRELATIVE relocations, they get GOT entries
1163       // in .got.plt after the jump slot entries.
1164       this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1165       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1166                                       (elfcpp::SHF_ALLOC
1167                                        | elfcpp::SHF_WRITE),
1168                                       this->got_irelative_,
1169                                       got_plt_order, is_got_plt_relro);
1170
1171       // If there are any TLSDESC relocations, they get GOT entries in
1172       // .got.plt after the jump slot and IRELATIVE entries.
1173       this->got_tlsdesc_ = new Output_data_got<64, false>();
1174       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1175                                       (elfcpp::SHF_ALLOC
1176                                        | elfcpp::SHF_WRITE),
1177                                       this->got_tlsdesc_,
1178                                       got_plt_order, is_got_plt_relro);
1179     }
1180
1181   return this->got_;
1182 }
1183
1184 // Get the dynamic reloc section, creating it if necessary.
1185
1186 template<int size>
1187 typename Target_x86_64<size>::Reloc_section*
1188 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1189 {
1190   if (this->rela_dyn_ == NULL)
1191     {
1192       gold_assert(layout != NULL);
1193       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1194       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1195                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1196                                       ORDER_DYNAMIC_RELOCS, false);
1197     }
1198   return this->rela_dyn_;
1199 }
1200
1201 // Get the section to use for IRELATIVE relocs, creating it if
1202 // necessary.  These go in .rela.dyn, but only after all other dynamic
1203 // relocations.  They need to follow the other dynamic relocations so
1204 // that they can refer to global variables initialized by those
1205 // relocs.
1206
1207 template<int size>
1208 typename Target_x86_64<size>::Reloc_section*
1209 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1210 {
1211   if (this->rela_irelative_ == NULL)
1212     {
1213       // Make sure we have already created the dynamic reloc section.
1214       this->rela_dyn_section(layout);
1215       this->rela_irelative_ = new Reloc_section(false);
1216       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1217                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1218                                       ORDER_DYNAMIC_RELOCS, false);
1219       gold_assert(this->rela_dyn_->output_section()
1220                   == this->rela_irelative_->output_section());
1221     }
1222   return this->rela_irelative_;
1223 }
1224
1225 // Write the first three reserved words of the .got.plt section.
1226 // The remainder of the section is written while writing the PLT
1227 // in Output_data_plt_i386::do_write.
1228
1229 void
1230 Output_data_got_plt_x86_64::do_write(Output_file* of)
1231 {
1232   // The first entry in the GOT is the address of the .dynamic section
1233   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
1234   // We saved space for them when we created the section in
1235   // Target_x86_64::got_section.
1236   const off_t got_file_offset = this->offset();
1237   gold_assert(this->data_size() >= 24);
1238   unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1239   Output_section* dynamic = this->layout_->dynamic_section();
1240   uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1241   elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1242   memset(got_view + 8, 0, 16);
1243   of->write_output_view(got_file_offset, 24, got_view);
1244 }
1245
1246 // Initialize the PLT section.
1247
1248 template<int size>
1249 void
1250 Output_data_plt_x86_64<size>::init(Layout* layout)
1251 {
1252   this->rel_ = new Reloc_section(false);
1253   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1254                                   elfcpp::SHF_ALLOC, this->rel_,
1255                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1256 }
1257
1258 template<int size>
1259 void
1260 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1261 {
1262   os->set_entsize(this->get_plt_entry_size());
1263 }
1264
1265 // Add an entry to the PLT.
1266
1267 template<int size>
1268 void
1269 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1270                                         Symbol* gsym)
1271 {
1272   gold_assert(!gsym->has_plt_offset());
1273
1274   unsigned int plt_index;
1275   off_t plt_offset;
1276   section_offset_type got_offset;
1277
1278   unsigned int* pcount;
1279   unsigned int offset;
1280   unsigned int reserved;
1281   Output_section_data_build* got;
1282   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1283       && gsym->can_use_relative_reloc(false))
1284     {
1285       pcount = &this->irelative_count_;
1286       offset = 0;
1287       reserved = 0;
1288       got = this->got_irelative_;
1289     }
1290   else
1291     {
1292       pcount = &this->count_;
1293       offset = 1;
1294       reserved = 3;
1295       got = this->got_plt_;
1296     }
1297
1298   if (!this->is_data_size_valid())
1299     {
1300       // Note that when setting the PLT offset for a non-IRELATIVE
1301       // entry we skip the initial reserved PLT entry.
1302       plt_index = *pcount + offset;
1303       plt_offset = plt_index * this->get_plt_entry_size();
1304
1305       ++*pcount;
1306
1307       got_offset = (plt_index - offset + reserved) * 8;
1308       gold_assert(got_offset == got->current_data_size());
1309
1310       // Every PLT entry needs a GOT entry which points back to the PLT
1311       // entry (this will be changed by the dynamic linker, normally
1312       // lazily when the function is called).
1313       got->set_current_data_size(got_offset + 8);
1314     }
1315   else
1316     {
1317       // FIXME: This is probably not correct for IRELATIVE relocs.
1318
1319       // For incremental updates, find an available slot.
1320       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1321                                              this->get_plt_entry_size(), 0);
1322       if (plt_offset == -1)
1323         gold_fallback(_("out of patch space (PLT);"
1324                         " relink with --incremental-full"));
1325
1326       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1327       // can be calculated from the PLT index, adjusting for the three
1328       // reserved entries at the beginning of the GOT.
1329       plt_index = plt_offset / this->get_plt_entry_size() - 1;
1330       got_offset = (plt_index - offset + reserved) * 8;
1331     }
1332
1333   gsym->set_plt_offset(plt_offset);
1334
1335   // Every PLT entry needs a reloc.
1336   this->add_relocation(symtab, layout, gsym, got_offset);
1337
1338   // Note that we don't need to save the symbol.  The contents of the
1339   // PLT are independent of which symbols are used.  The symbols only
1340   // appear in the relocations.
1341 }
1342
1343 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
1344 // the PLT offset.
1345
1346 template<int size>
1347 unsigned int
1348 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1349     Symbol_table* symtab,
1350     Layout* layout,
1351     Sized_relobj_file<size, false>* relobj,
1352     unsigned int local_sym_index)
1353 {
1354   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1355   ++this->irelative_count_;
1356
1357   section_offset_type got_offset = this->got_irelative_->current_data_size();
1358
1359   // Every PLT entry needs a GOT entry which points back to the PLT
1360   // entry.
1361   this->got_irelative_->set_current_data_size(got_offset + 8);
1362
1363   // Every PLT entry needs a reloc.
1364   Reloc_section* rela = this->rela_irelative(symtab, layout);
1365   rela->add_symbolless_local_addend(relobj, local_sym_index,
1366                                     elfcpp::R_X86_64_IRELATIVE,
1367                                     this->got_irelative_, got_offset, 0);
1368
1369   return plt_offset;
1370 }
1371
1372 // Add the relocation for a PLT entry.
1373
1374 template<int size>
1375 void
1376 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1377                                              Layout* layout,
1378                                              Symbol* gsym,
1379                                              unsigned int got_offset)
1380 {
1381   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1382       && gsym->can_use_relative_reloc(false))
1383     {
1384       Reloc_section* rela = this->rela_irelative(symtab, layout);
1385       rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1386                                          this->got_irelative_, got_offset, 0);
1387     }
1388   else
1389     {
1390       gsym->set_needs_dynsym_entry();
1391       this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1392                              got_offset, 0);
1393     }
1394 }
1395
1396 // Return where the TLSDESC relocations should go, creating it if
1397 // necessary.  These follow the JUMP_SLOT relocations.
1398
1399 template<int size>
1400 typename Output_data_plt_x86_64<size>::Reloc_section*
1401 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1402 {
1403   if (this->tlsdesc_rel_ == NULL)
1404     {
1405       this->tlsdesc_rel_ = new Reloc_section(false);
1406       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1407                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1408                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1409       gold_assert(this->tlsdesc_rel_->output_section()
1410                   == this->rel_->output_section());
1411     }
1412   return this->tlsdesc_rel_;
1413 }
1414
1415 // Return where the IRELATIVE relocations should go in the PLT.  These
1416 // follow the JUMP_SLOT and the TLSDESC relocations.
1417
1418 template<int size>
1419 typename Output_data_plt_x86_64<size>::Reloc_section*
1420 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1421                                              Layout* layout)
1422 {
1423   if (this->irelative_rel_ == NULL)
1424     {
1425       // Make sure we have a place for the TLSDESC relocations, in
1426       // case we see any later on.
1427       this->rela_tlsdesc(layout);
1428       this->irelative_rel_ = new Reloc_section(false);
1429       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1430                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
1431                                       ORDER_DYNAMIC_PLT_RELOCS, false);
1432       gold_assert(this->irelative_rel_->output_section()
1433                   == this->rel_->output_section());
1434
1435       if (parameters->doing_static_link())
1436         {
1437           // A statically linked executable will only have a .rela.plt
1438           // section to hold R_X86_64_IRELATIVE relocs for
1439           // STT_GNU_IFUNC symbols.  The library will use these
1440           // symbols to locate the IRELATIVE relocs at program startup
1441           // time.
1442           symtab->define_in_output_data("__rela_iplt_start", NULL,
1443                                         Symbol_table::PREDEFINED,
1444                                         this->irelative_rel_, 0, 0,
1445                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1446                                         elfcpp::STV_HIDDEN, 0, false, true);
1447           symtab->define_in_output_data("__rela_iplt_end", NULL,
1448                                         Symbol_table::PREDEFINED,
1449                                         this->irelative_rel_, 0, 0,
1450                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1451                                         elfcpp::STV_HIDDEN, 0, true, true);
1452         }
1453     }
1454   return this->irelative_rel_;
1455 }
1456
1457 // Return the PLT address to use for a global symbol.
1458
1459 template<int size>
1460 uint64_t
1461 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1462 {
1463   uint64_t offset = 0;
1464   if (gsym->type() == elfcpp::STT_GNU_IFUNC
1465       && gsym->can_use_relative_reloc(false))
1466     offset = (this->count_ + 1) * this->get_plt_entry_size();
1467   return this->address() + offset + gsym->plt_offset();
1468 }
1469
1470 // Return the PLT address to use for a local symbol.  These are always
1471 // IRELATIVE relocs.
1472
1473 template<int size>
1474 uint64_t
1475 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1476                                                 unsigned int r_sym)
1477 {
1478   return (this->address()
1479           + (this->count_ + 1) * this->get_plt_entry_size()
1480           + object->local_plt_offset(r_sym));
1481 }
1482
1483 // Set the final size.
1484 template<int size>
1485 void
1486 Output_data_plt_x86_64<size>::set_final_data_size()
1487 {
1488   unsigned int count = this->count_ + this->irelative_count_;
1489   if (this->has_tlsdesc_entry())
1490     ++count;
1491   this->set_data_size((count + 1) * this->get_plt_entry_size());
1492 }
1493
1494 // The first entry in the PLT for an executable.
1495
1496 template<int size>
1497 const unsigned char
1498 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1499 {
1500   // From AMD64 ABI Draft 0.98, page 76
1501   0xff, 0x35,   // pushq contents of memory address
1502   0, 0, 0, 0,   // replaced with address of .got + 8
1503   0xff, 0x25,   // jmp indirect
1504   0, 0, 0, 0,   // replaced with address of .got + 16
1505   0x90, 0x90, 0x90, 0x90   // noop (x4)
1506 };
1507
1508 template<int size>
1509 void
1510 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1511     unsigned char* pov,
1512     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1513     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1514 {
1515   memcpy(pov, first_plt_entry, plt_entry_size);
1516   // We do a jmp relative to the PC at the end of this instruction.
1517   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1518                                               (got_address + 8
1519                                                - (plt_address + 6)));
1520   elfcpp::Swap<32, false>::writeval(pov + 8,
1521                                     (got_address + 16
1522                                      - (plt_address + 12)));
1523 }
1524
1525 // Subsequent entries in the PLT for an executable.
1526
1527 template<int size>
1528 const unsigned char
1529 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1530 {
1531   // From AMD64 ABI Draft 0.98, page 76
1532   0xff, 0x25,   // jmpq indirect
1533   0, 0, 0, 0,   // replaced with address of symbol in .got
1534   0x68,         // pushq immediate
1535   0, 0, 0, 0,   // replaced with offset into relocation table
1536   0xe9,         // jmpq relative
1537   0, 0, 0, 0    // replaced with offset to start of .plt
1538 };
1539
1540 template<int size>
1541 unsigned int
1542 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1543     unsigned char* pov,
1544     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1545     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1546     unsigned int got_offset,
1547     unsigned int plt_offset,
1548     unsigned int plt_index)
1549 {
1550   // Check PC-relative offset overflow in PLT entry.
1551   uint64_t plt_got_pcrel_offset = (got_address + got_offset
1552                                    - (plt_address + plt_offset + 6));
1553   if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1554     gold_error(_("PC-relative offset overflow in PLT entry %d"),
1555                plt_index + 1);
1556
1557   memcpy(pov, plt_entry, plt_entry_size);
1558   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1559                                               plt_got_pcrel_offset);
1560
1561   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1562   elfcpp::Swap<32, false>::writeval(pov + 12,
1563                                     - (plt_offset + plt_entry_size));
1564
1565   return 6;
1566 }
1567
1568 // The reserved TLSDESC entry in the PLT for an executable.
1569
1570 template<int size>
1571 const unsigned char
1572 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1573 {
1574   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1575   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1576   0xff, 0x35,   // pushq x(%rip)
1577   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1578   0xff, 0x25,   // jmpq *y(%rip)
1579   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
1580   0x0f, 0x1f,   // nop
1581   0x40, 0
1582 };
1583
1584 template<int size>
1585 void
1586 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1587     unsigned char* pov,
1588     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1589     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1590     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1591     unsigned int tlsdesc_got_offset,
1592     unsigned int plt_offset)
1593 {
1594   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1595   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1596                                               (got_address + 8
1597                                                - (plt_address + plt_offset
1598                                                   + 6)));
1599   elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1600                                               (got_base
1601                                                + tlsdesc_got_offset
1602                                                - (plt_address + plt_offset
1603                                                   + 12)));
1604 }
1605
1606 // The .eh_frame unwind information for the PLT.
1607
1608 template<int size>
1609 const unsigned char
1610 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1611 {
1612   1,                            // CIE version.
1613   'z',                          // Augmentation: augmentation size included.
1614   'R',                          // Augmentation: FDE encoding included.
1615   '\0',                         // End of augmentation string.
1616   1,                            // Code alignment factor.
1617   0x78,                         // Data alignment factor.
1618   16,                           // Return address column.
1619   1,                            // Augmentation size.
1620   (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
1621    | elfcpp::DW_EH_PE_sdata4),
1622   elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1623   elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1624   elfcpp::DW_CFA_nop,           // Align to 16 bytes.
1625   elfcpp::DW_CFA_nop
1626 };
1627
1628 template<int size>
1629 const unsigned char
1630 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1631 {
1632   0, 0, 0, 0,                           // Replaced with offset to .plt.
1633   0, 0, 0, 0,                           // Replaced with size of .plt.
1634   0,                                    // Augmentation size.
1635   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
1636   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
1637   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
1638   elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
1639   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
1640   11,                                   // Block length.
1641   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
1642   elfcpp::DW_OP_breg16, 0,              // Push %rip.
1643   elfcpp::DW_OP_lit15,                  // Push 0xf.
1644   elfcpp::DW_OP_and,                    // & (%rip & 0xf).
1645   elfcpp::DW_OP_lit11,                  // Push 0xb.
1646   elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
1647   elfcpp::DW_OP_lit3,                   // Push 3.
1648   elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
1649   elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1650   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
1651   elfcpp::DW_CFA_nop,
1652   elfcpp::DW_CFA_nop,
1653   elfcpp::DW_CFA_nop
1654 };
1655
1656 // Write out the PLT.  This uses the hand-coded instructions above,
1657 // and adjusts them as needed.  This is specified by the AMD64 ABI.
1658
1659 template<int size>
1660 void
1661 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1662 {
1663   const off_t offset = this->offset();
1664   const section_size_type oview_size =
1665     convert_to_section_size_type(this->data_size());
1666   unsigned char* const oview = of->get_output_view(offset, oview_size);
1667
1668   const off_t got_file_offset = this->got_plt_->offset();
1669   gold_assert(parameters->incremental_update()
1670               || (got_file_offset + this->got_plt_->data_size()
1671                   == this->got_irelative_->offset()));
1672   const section_size_type got_size =
1673     convert_to_section_size_type(this->got_plt_->data_size()
1674                                  + this->got_irelative_->data_size());
1675   unsigned char* const got_view = of->get_output_view(got_file_offset,
1676                                                       got_size);
1677
1678   unsigned char* pov = oview;
1679
1680   // The base address of the .plt section.
1681   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1682   // The base address of the .got section.
1683   typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1684   // The base address of the PLT portion of the .got section,
1685   // which is where the GOT pointer will point, and where the
1686   // three reserved GOT entries are located.
1687   typename elfcpp::Elf_types<size>::Elf_Addr got_address
1688     = this->got_plt_->address();
1689
1690   this->fill_first_plt_entry(pov, got_address, plt_address);
1691   pov += this->get_plt_entry_size();
1692
1693   // The first three entries in the GOT are reserved, and are written
1694   // by Output_data_got_plt_x86_64::do_write.
1695   unsigned char* got_pov = got_view + 24;
1696
1697   unsigned int plt_offset = this->get_plt_entry_size();
1698   unsigned int got_offset = 24;
1699   const unsigned int count = this->count_ + this->irelative_count_;
1700   for (unsigned int plt_index = 0;
1701        plt_index < count;
1702        ++plt_index,
1703          pov += this->get_plt_entry_size(),
1704          got_pov += 8,
1705          plt_offset += this->get_plt_entry_size(),
1706          got_offset += 8)
1707     {
1708       // Set and adjust the PLT entry itself.
1709       unsigned int lazy_offset = this->fill_plt_entry(pov,
1710                                                       got_address, plt_address,
1711                                                       got_offset, plt_offset,
1712                                                       plt_index);
1713
1714       // Set the entry in the GOT.
1715       elfcpp::Swap<64, false>::writeval(got_pov,
1716                                         plt_address + plt_offset + lazy_offset);
1717     }
1718
1719   if (this->has_tlsdesc_entry())
1720     {
1721       // Set and adjust the reserved TLSDESC PLT entry.
1722       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1723       this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1724                                tlsdesc_got_offset, plt_offset);
1725       pov += this->get_plt_entry_size();
1726     }
1727
1728   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1729   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1730
1731   of->write_output_view(offset, oview_size, oview);
1732   of->write_output_view(got_file_offset, got_size, got_view);
1733 }
1734
1735 // Create the PLT section.
1736
1737 template<int size>
1738 void
1739 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1740 {
1741   if (this->plt_ == NULL)
1742     {
1743       // Create the GOT sections first.
1744       this->got_section(symtab, layout);
1745
1746       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1747                                        this->got_irelative_);
1748
1749       // Add unwind information if requested.
1750       if (parameters->options().ld_generated_unwind_info())
1751         this->plt_->add_eh_frame(layout);
1752
1753       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1754                                       (elfcpp::SHF_ALLOC
1755                                        | elfcpp::SHF_EXECINSTR),
1756                                       this->plt_, ORDER_PLT, false);
1757
1758       // Make the sh_info field of .rela.plt point to .plt.
1759       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1760       rela_plt_os->set_info_section(this->plt_->output_section());
1761     }
1762 }
1763
1764 // Return the section for TLSDESC relocations.
1765
1766 template<int size>
1767 typename Target_x86_64<size>::Reloc_section*
1768 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1769 {
1770   return this->plt_section()->rela_tlsdesc(layout);
1771 }
1772
1773 // Create a PLT entry for a global symbol.
1774
1775 template<int size>
1776 void
1777 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1778                                     Symbol* gsym)
1779 {
1780   if (gsym->has_plt_offset())
1781     return;
1782
1783   if (this->plt_ == NULL)
1784     this->make_plt_section(symtab, layout);
1785
1786   this->plt_->add_entry(symtab, layout, gsym);
1787 }
1788
1789 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1790
1791 template<int size>
1792 void
1793 Target_x86_64<size>::make_local_ifunc_plt_entry(
1794     Symbol_table* symtab, Layout* layout,
1795     Sized_relobj_file<size, false>* relobj,
1796     unsigned int local_sym_index)
1797 {
1798   if (relobj->local_has_plt_offset(local_sym_index))
1799     return;
1800   if (this->plt_ == NULL)
1801     this->make_plt_section(symtab, layout);
1802   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1803                                                               relobj,
1804                                                               local_sym_index);
1805   relobj->set_local_plt_offset(local_sym_index, plt_offset);
1806 }
1807
1808 // Return the number of entries in the PLT.
1809
1810 template<int size>
1811 unsigned int
1812 Target_x86_64<size>::plt_entry_count() const
1813 {
1814   if (this->plt_ == NULL)
1815     return 0;
1816   return this->plt_->entry_count();
1817 }
1818
1819 // Return the offset of the first non-reserved PLT entry.
1820
1821 template<int size>
1822 unsigned int
1823 Target_x86_64<size>::first_plt_entry_offset() const
1824 {
1825   if (this->plt_ == NULL)
1826     return 0;
1827   return this->plt_->first_plt_entry_offset();
1828 }
1829
1830 // Return the size of each PLT entry.
1831
1832 template<int size>
1833 unsigned int
1834 Target_x86_64<size>::plt_entry_size() const
1835 {
1836   if (this->plt_ == NULL)
1837     return 0;
1838   return this->plt_->get_plt_entry_size();
1839 }
1840
1841 // Create the GOT and PLT sections for an incremental update.
1842
1843 template<int size>
1844 Output_data_got_base*
1845 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1846                                        Layout* layout,
1847                                        unsigned int got_count,
1848                                        unsigned int plt_count)
1849 {
1850   gold_assert(this->got_ == NULL);
1851
1852   this->got_ = new Output_data_got<64, false>(got_count * 8);
1853   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1854                                   (elfcpp::SHF_ALLOC
1855                                    | elfcpp::SHF_WRITE),
1856                                   this->got_, ORDER_RELRO_LAST,
1857                                   true);
1858
1859   // Add the three reserved entries.
1860   this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1861   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1862                                   (elfcpp::SHF_ALLOC
1863                                    | elfcpp::SHF_WRITE),
1864                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
1865                                   false);
1866
1867   // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1868   this->global_offset_table_ =
1869     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1870                                   Symbol_table::PREDEFINED,
1871                                   this->got_plt_,
1872                                   0, 0, elfcpp::STT_OBJECT,
1873                                   elfcpp::STB_LOCAL,
1874                                   elfcpp::STV_HIDDEN, 0,
1875                                   false, false);
1876
1877   // If there are any TLSDESC relocations, they get GOT entries in
1878   // .got.plt after the jump slot entries.
1879   // FIXME: Get the count for TLSDESC entries.
1880   this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1881   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1882                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1883                                   this->got_tlsdesc_,
1884                                   ORDER_NON_RELRO_FIRST, false);
1885
1886   // If there are any IRELATIVE relocations, they get GOT entries in
1887   // .got.plt after the jump slot and TLSDESC entries.
1888   this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1889   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1890                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1891                                   this->got_irelative_,
1892                                   ORDER_NON_RELRO_FIRST, false);
1893
1894   // Create the PLT section.
1895   this->plt_ = this->make_data_plt(layout, this->got_,
1896                                    this->got_plt_,
1897                                    this->got_irelative_,
1898                                    plt_count);
1899
1900   // Add unwind information if requested.
1901   if (parameters->options().ld_generated_unwind_info())
1902     this->plt_->add_eh_frame(layout);
1903
1904   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1905                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1906                                   this->plt_, ORDER_PLT, false);
1907
1908   // Make the sh_info field of .rela.plt point to .plt.
1909   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1910   rela_plt_os->set_info_section(this->plt_->output_section());
1911
1912   // Create the rela_dyn section.
1913   this->rela_dyn_section(layout);
1914
1915   return this->got_;
1916 }
1917
1918 // Reserve a GOT entry for a local symbol, and regenerate any
1919 // necessary dynamic relocations.
1920
1921 template<int size>
1922 void
1923 Target_x86_64<size>::reserve_local_got_entry(
1924     unsigned int got_index,
1925     Sized_relobj<size, false>* obj,
1926     unsigned int r_sym,
1927     unsigned int got_type)
1928 {
1929   unsigned int got_offset = got_index * 8;
1930   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1931
1932   this->got_->reserve_local(got_index, obj, r_sym, got_type);
1933   switch (got_type)
1934     {
1935     case GOT_TYPE_STANDARD:
1936       if (parameters->options().output_is_position_independent())
1937         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1938                                      this->got_, got_offset, 0, false);
1939       break;
1940     case GOT_TYPE_TLS_OFFSET:
1941       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1942                           this->got_, got_offset, 0);
1943       break;
1944     case GOT_TYPE_TLS_PAIR:
1945       this->got_->reserve_slot(got_index + 1);
1946       rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1947                           this->got_, got_offset, 0);
1948       break;
1949     case GOT_TYPE_TLS_DESC:
1950       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1951       // this->got_->reserve_slot(got_index + 1);
1952       // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1953       //                               this->got_, got_offset, 0);
1954       break;
1955     default:
1956       gold_unreachable();
1957     }
1958 }
1959
1960 // Reserve a GOT entry for a global symbol, and regenerate any
1961 // necessary dynamic relocations.
1962
1963 template<int size>
1964 void
1965 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1966                                               Symbol* gsym,
1967                                               unsigned int got_type)
1968 {
1969   unsigned int got_offset = got_index * 8;
1970   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1971
1972   this->got_->reserve_global(got_index, gsym, got_type);
1973   switch (got_type)
1974     {
1975     case GOT_TYPE_STANDARD:
1976       if (!gsym->final_value_is_known())
1977         {
1978           if (gsym->is_from_dynobj()
1979               || gsym->is_undefined()
1980               || gsym->is_preemptible()
1981               || gsym->type() == elfcpp::STT_GNU_IFUNC)
1982             rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1983                                  this->got_, got_offset, 0);
1984           else
1985             rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1986                                           this->got_, got_offset, 0, false);
1987         }
1988       break;
1989     case GOT_TYPE_TLS_OFFSET:
1990       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1991                                     this->got_, got_offset, 0, false);
1992       break;
1993     case GOT_TYPE_TLS_PAIR:
1994       this->got_->reserve_slot(got_index + 1);
1995       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1996                                     this->got_, got_offset, 0, false);
1997       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1998                                     this->got_, got_offset + 8, 0, false);
1999       break;
2000     case GOT_TYPE_TLS_DESC:
2001       this->got_->reserve_slot(got_index + 1);
2002       rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
2003                                     this->got_, got_offset, 0, false);
2004       break;
2005     default:
2006       gold_unreachable();
2007     }
2008 }
2009
2010 // Register an existing PLT entry for a global symbol.
2011
2012 template<int size>
2013 void
2014 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2015                                                Layout* layout,
2016                                                unsigned int plt_index,
2017                                                Symbol* gsym)
2018 {
2019   gold_assert(this->plt_ != NULL);
2020   gold_assert(!gsym->has_plt_offset());
2021
2022   this->plt_->reserve_slot(plt_index);
2023
2024   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2025
2026   unsigned int got_offset = (plt_index + 3) * 8;
2027   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2028 }
2029
2030 // Force a COPY relocation for a given symbol.
2031
2032 template<int size>
2033 void
2034 Target_x86_64<size>::emit_copy_reloc(
2035     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2036 {
2037   this->copy_relocs_.emit_copy_reloc(symtab,
2038                                      symtab->get_sized_symbol<size>(sym),
2039                                      os,
2040                                      offset,
2041                                      this->rela_dyn_section(NULL));
2042 }
2043
2044 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2045
2046 template<int size>
2047 void
2048 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2049                                             Layout* layout)
2050 {
2051   if (this->tls_base_symbol_defined_)
2052     return;
2053
2054   Output_segment* tls_segment = layout->tls_segment();
2055   if (tls_segment != NULL)
2056     {
2057       bool is_exec = parameters->options().output_is_executable();
2058       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2059                                        Symbol_table::PREDEFINED,
2060                                        tls_segment, 0, 0,
2061                                        elfcpp::STT_TLS,
2062                                        elfcpp::STB_LOCAL,
2063                                        elfcpp::STV_HIDDEN, 0,
2064                                        (is_exec
2065                                         ? Symbol::SEGMENT_END
2066                                         : Symbol::SEGMENT_START),
2067                                        true);
2068     }
2069   this->tls_base_symbol_defined_ = true;
2070 }
2071
2072 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2073
2074 template<int size>
2075 void
2076 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2077                                              Layout* layout)
2078 {
2079   if (this->plt_ == NULL)
2080     this->make_plt_section(symtab, layout);
2081
2082   if (!this->plt_->has_tlsdesc_entry())
2083     {
2084       // Allocate the TLSDESC_GOT entry.
2085       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2086       unsigned int got_offset = got->add_constant(0);
2087
2088       // Allocate the TLSDESC_PLT entry.
2089       this->plt_->reserve_tlsdesc_entry(got_offset);
2090     }
2091 }
2092
2093 // Create a GOT entry for the TLS module index.
2094
2095 template<int size>
2096 unsigned int
2097 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2098                                          Sized_relobj_file<size, false>* object)
2099 {
2100   if (this->got_mod_index_offset_ == -1U)
2101     {
2102       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2103       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2104       Output_data_got<64, false>* got = this->got_section(symtab, layout);
2105       unsigned int got_offset = got->add_constant(0);
2106       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2107                           got_offset, 0);
2108       got->add_constant(0);
2109       this->got_mod_index_offset_ = got_offset;
2110     }
2111   return this->got_mod_index_offset_;
2112 }
2113
2114 // Optimize the TLS relocation type based on what we know about the
2115 // symbol.  IS_FINAL is true if the final address of this symbol is
2116 // known at link time.
2117
2118 template<int size>
2119 tls::Tls_optimization
2120 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2121 {
2122   // If we are generating a shared library, then we can't do anything
2123   // in the linker.
2124   if (parameters->options().shared())
2125     return tls::TLSOPT_NONE;
2126
2127   switch (r_type)
2128     {
2129     case elfcpp::R_X86_64_TLSGD:
2130     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2131     case elfcpp::R_X86_64_TLSDESC_CALL:
2132       // These are General-Dynamic which permits fully general TLS
2133       // access.  Since we know that we are generating an executable,
2134       // we can convert this to Initial-Exec.  If we also know that
2135       // this is a local symbol, we can further switch to Local-Exec.
2136       if (is_final)
2137         return tls::TLSOPT_TO_LE;
2138       return tls::TLSOPT_TO_IE;
2139
2140     case elfcpp::R_X86_64_TLSLD:
2141       // This is Local-Dynamic, which refers to a local symbol in the
2142       // dynamic TLS block.  Since we know that we generating an
2143       // executable, we can switch to Local-Exec.
2144       return tls::TLSOPT_TO_LE;
2145
2146     case elfcpp::R_X86_64_DTPOFF32:
2147     case elfcpp::R_X86_64_DTPOFF64:
2148       // Another Local-Dynamic reloc.
2149       return tls::TLSOPT_TO_LE;
2150
2151     case elfcpp::R_X86_64_GOTTPOFF:
2152       // These are Initial-Exec relocs which get the thread offset
2153       // from the GOT.  If we know that we are linking against the
2154       // local symbol, we can switch to Local-Exec, which links the
2155       // thread offset into the instruction.
2156       if (is_final)
2157         return tls::TLSOPT_TO_LE;
2158       return tls::TLSOPT_NONE;
2159
2160     case elfcpp::R_X86_64_TPOFF32:
2161       // When we already have Local-Exec, there is nothing further we
2162       // can do.
2163       return tls::TLSOPT_NONE;
2164
2165     default:
2166       gold_unreachable();
2167     }
2168 }
2169
2170 // Get the Reference_flags for a particular relocation.
2171
2172 template<int size>
2173 int
2174 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2175 {
2176   switch (r_type)
2177     {
2178     case elfcpp::R_X86_64_NONE:
2179     case elfcpp::R_X86_64_GNU_VTINHERIT:
2180     case elfcpp::R_X86_64_GNU_VTENTRY:
2181     case elfcpp::R_X86_64_GOTPC32:
2182     case elfcpp::R_X86_64_GOTPC64:
2183       // No symbol reference.
2184       return 0;
2185
2186     case elfcpp::R_X86_64_64:
2187     case elfcpp::R_X86_64_32:
2188     case elfcpp::R_X86_64_32S:
2189     case elfcpp::R_X86_64_16:
2190     case elfcpp::R_X86_64_8:
2191       return Symbol::ABSOLUTE_REF;
2192
2193     case elfcpp::R_X86_64_PC64:
2194     case elfcpp::R_X86_64_PC32:
2195     case elfcpp::R_X86_64_PC32_BND:
2196     case elfcpp::R_X86_64_PC16:
2197     case elfcpp::R_X86_64_PC8:
2198     case elfcpp::R_X86_64_GOTOFF64:
2199       return Symbol::RELATIVE_REF;
2200
2201     case elfcpp::R_X86_64_PLT32:
2202     case elfcpp::R_X86_64_PLT32_BND:
2203     case elfcpp::R_X86_64_PLTOFF64:
2204       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2205
2206     case elfcpp::R_X86_64_GOT64:
2207     case elfcpp::R_X86_64_GOT32:
2208     case elfcpp::R_X86_64_GOTPCREL64:
2209     case elfcpp::R_X86_64_GOTPCREL:
2210     case elfcpp::R_X86_64_GOTPCRELX:
2211     case elfcpp::R_X86_64_REX_GOTPCRELX:
2212     case elfcpp::R_X86_64_GOTPLT64:
2213       // Absolute in GOT.
2214       return Symbol::ABSOLUTE_REF;
2215
2216     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2217     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2218     case elfcpp::R_X86_64_TLSDESC_CALL:
2219     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2220     case elfcpp::R_X86_64_DTPOFF32:
2221     case elfcpp::R_X86_64_DTPOFF64:
2222     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2223     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2224       return Symbol::TLS_REF;
2225
2226     case elfcpp::R_X86_64_COPY:
2227     case elfcpp::R_X86_64_GLOB_DAT:
2228     case elfcpp::R_X86_64_JUMP_SLOT:
2229     case elfcpp::R_X86_64_RELATIVE:
2230     case elfcpp::R_X86_64_IRELATIVE:
2231     case elfcpp::R_X86_64_TPOFF64:
2232     case elfcpp::R_X86_64_DTPMOD64:
2233     case elfcpp::R_X86_64_TLSDESC:
2234     case elfcpp::R_X86_64_SIZE32:
2235     case elfcpp::R_X86_64_SIZE64:
2236     default:
2237       // Not expected.  We will give an error later.
2238       return 0;
2239     }
2240 }
2241
2242 // Report an unsupported relocation against a local symbol.
2243
2244 template<int size>
2245 void
2246 Target_x86_64<size>::Scan::unsupported_reloc_local(
2247      Sized_relobj_file<size, false>* object,
2248      unsigned int r_type)
2249 {
2250   gold_error(_("%s: unsupported reloc %u against local symbol"),
2251              object->name().c_str(), r_type);
2252 }
2253
2254 // We are about to emit a dynamic relocation of type R_TYPE.  If the
2255 // dynamic linker does not support it, issue an error.  The GNU linker
2256 // only issues a non-PIC error for an allocated read-only section.
2257 // Here we know the section is allocated, but we don't know that it is
2258 // read-only.  But we check for all the relocation types which the
2259 // glibc dynamic linker supports, so it seems appropriate to issue an
2260 // error even if the section is not read-only.  If GSYM is not NULL,
2261 // it is the symbol the relocation is against; if it is NULL, the
2262 // relocation is against a local symbol.
2263
2264 template<int size>
2265 void
2266 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2267                                          Symbol* gsym)
2268 {
2269   switch (r_type)
2270     {
2271       // These are the relocation types supported by glibc for x86_64
2272       // which should always work.
2273     case elfcpp::R_X86_64_RELATIVE:
2274     case elfcpp::R_X86_64_IRELATIVE:
2275     case elfcpp::R_X86_64_GLOB_DAT:
2276     case elfcpp::R_X86_64_JUMP_SLOT:
2277     case elfcpp::R_X86_64_DTPMOD64:
2278     case elfcpp::R_X86_64_DTPOFF64:
2279     case elfcpp::R_X86_64_TPOFF64:
2280     case elfcpp::R_X86_64_64:
2281     case elfcpp::R_X86_64_COPY:
2282       return;
2283
2284       // glibc supports these reloc types, but they can overflow.
2285     case elfcpp::R_X86_64_PC32:
2286     case elfcpp::R_X86_64_PC32_BND:
2287       // A PC relative reference is OK against a local symbol or if
2288       // the symbol is defined locally.
2289       if (gsym == NULL
2290           || (!gsym->is_from_dynobj()
2291               && !gsym->is_undefined()
2292               && !gsym->is_preemptible()))
2293         return;
2294       /* Fall through.  */
2295     case elfcpp::R_X86_64_32:
2296       // R_X86_64_32 is OK for x32.
2297       if (size == 32 && r_type == elfcpp::R_X86_64_32)
2298         return;
2299       if (this->issued_non_pic_error_)
2300         return;
2301       gold_assert(parameters->options().output_is_position_independent());
2302       if (gsym == NULL)
2303         object->error(_("requires dynamic R_X86_64_32 reloc which may "
2304                         "overflow at runtime; recompile with -fPIC"));
2305       else
2306         {
2307           const char *r_name;
2308           switch (r_type)
2309             {
2310             case elfcpp::R_X86_64_32:
2311               r_name = "R_X86_64_32";
2312               break;
2313             case elfcpp::R_X86_64_PC32:
2314               r_name = "R_X86_64_PC32";
2315               break;
2316             case elfcpp::R_X86_64_PC32_BND:
2317               r_name = "R_X86_64_PC32_BND";
2318               break;
2319             default:
2320               gold_unreachable();
2321               break;
2322             }
2323           object->error(_("requires dynamic %s reloc against '%s' "
2324                           "which may overflow at runtime; recompile "
2325                           "with -fPIC"),
2326                         r_name, gsym->name());
2327         }
2328       this->issued_non_pic_error_ = true;
2329       return;
2330
2331     default:
2332       // This prevents us from issuing more than one error per reloc
2333       // section.  But we can still wind up issuing more than one
2334       // error per object file.
2335       if (this->issued_non_pic_error_)
2336         return;
2337       gold_assert(parameters->options().output_is_position_independent());
2338       object->error(_("requires unsupported dynamic reloc %u; "
2339                       "recompile with -fPIC"),
2340                     r_type);
2341       this->issued_non_pic_error_ = true;
2342       return;
2343
2344     case elfcpp::R_X86_64_NONE:
2345       gold_unreachable();
2346     }
2347 }
2348
2349 // Return whether we need to make a PLT entry for a relocation of the
2350 // given type against a STT_GNU_IFUNC symbol.
2351
2352 template<int size>
2353 bool
2354 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2355      Sized_relobj_file<size, false>* object,
2356      unsigned int r_type)
2357 {
2358   int flags = Scan::get_reference_flags(r_type);
2359   if (flags & Symbol::TLS_REF)
2360     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2361                object->name().c_str(), r_type);
2362   return flags != 0;
2363 }
2364
2365 // Scan a relocation for a local symbol.
2366
2367 template<int size>
2368 inline void
2369 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2370                                  Layout* layout,
2371                                  Target_x86_64<size>* target,
2372                                  Sized_relobj_file<size, false>* object,
2373                                  unsigned int data_shndx,
2374                                  Output_section* output_section,
2375                                  const elfcpp::Rela<size, false>& reloc,
2376                                  unsigned int r_type,
2377                                  const elfcpp::Sym<size, false>& lsym,
2378                                  bool is_discarded)
2379 {
2380   if (is_discarded)
2381     return;
2382
2383   // A local STT_GNU_IFUNC symbol may require a PLT entry.
2384   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2385   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2386     {
2387       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2388       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2389     }
2390
2391   switch (r_type)
2392     {
2393     case elfcpp::R_X86_64_NONE:
2394     case elfcpp::R_X86_64_GNU_VTINHERIT:
2395     case elfcpp::R_X86_64_GNU_VTENTRY:
2396       break;
2397
2398     case elfcpp::R_X86_64_64:
2399       // If building a shared library (or a position-independent
2400       // executable), we need to create a dynamic relocation for this
2401       // location.  The relocation applied at link time will apply the
2402       // link-time value, so we flag the location with an
2403       // R_X86_64_RELATIVE relocation so the dynamic loader can
2404       // relocate it easily.
2405       if (parameters->options().output_is_position_independent())
2406         {
2407           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2408           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2409           rela_dyn->add_local_relative(object, r_sym,
2410                                        (size == 32
2411                                         ? elfcpp::R_X86_64_RELATIVE64
2412                                         : elfcpp::R_X86_64_RELATIVE),
2413                                        output_section, data_shndx,
2414                                        reloc.get_r_offset(),
2415                                        reloc.get_r_addend(), is_ifunc);
2416         }
2417       break;
2418
2419     case elfcpp::R_X86_64_32:
2420     case elfcpp::R_X86_64_32S:
2421     case elfcpp::R_X86_64_16:
2422     case elfcpp::R_X86_64_8:
2423       // If building a shared library (or a position-independent
2424       // executable), we need to create a dynamic relocation for this
2425       // location.  We can't use an R_X86_64_RELATIVE relocation
2426       // because that is always a 64-bit relocation.
2427       if (parameters->options().output_is_position_independent())
2428         {
2429           // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2430           if (size == 32 && r_type == elfcpp::R_X86_64_32)
2431             {
2432               unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2433               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2434               rela_dyn->add_local_relative(object, r_sym,
2435                                            elfcpp::R_X86_64_RELATIVE,
2436                                            output_section, data_shndx,
2437                                            reloc.get_r_offset(),
2438                                            reloc.get_r_addend(), is_ifunc);
2439               break;
2440             }
2441
2442           this->check_non_pic(object, r_type, NULL);
2443
2444           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2445           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2446           if (lsym.get_st_type() != elfcpp::STT_SECTION)
2447             rela_dyn->add_local(object, r_sym, r_type, output_section,
2448                                 data_shndx, reloc.get_r_offset(),
2449                                 reloc.get_r_addend());
2450           else
2451             {
2452               gold_assert(lsym.get_st_value() == 0);
2453               unsigned int shndx = lsym.get_st_shndx();
2454               bool is_ordinary;
2455               shndx = object->adjust_sym_shndx(r_sym, shndx,
2456                                                &is_ordinary);
2457               if (!is_ordinary)
2458                 object->error(_("section symbol %u has bad shndx %u"),
2459                               r_sym, shndx);
2460               else
2461                 rela_dyn->add_local_section(object, shndx,
2462                                             r_type, output_section,
2463                                             data_shndx, reloc.get_r_offset(),
2464                                             reloc.get_r_addend());
2465             }
2466         }
2467       break;
2468
2469     case elfcpp::R_X86_64_PC64:
2470     case elfcpp::R_X86_64_PC32:
2471     case elfcpp::R_X86_64_PC32_BND:
2472     case elfcpp::R_X86_64_PC16:
2473     case elfcpp::R_X86_64_PC8:
2474       break;
2475
2476     case elfcpp::R_X86_64_PLT32:
2477     case elfcpp::R_X86_64_PLT32_BND:
2478       // Since we know this is a local symbol, we can handle this as a
2479       // PC32 reloc.
2480       break;
2481
2482     case elfcpp::R_X86_64_GOTPC32:
2483     case elfcpp::R_X86_64_GOTOFF64:
2484     case elfcpp::R_X86_64_GOTPC64:
2485     case elfcpp::R_X86_64_PLTOFF64:
2486       // We need a GOT section.
2487       target->got_section(symtab, layout);
2488       // For PLTOFF64, we'd normally want a PLT section, but since we
2489       // know this is a local symbol, no PLT is needed.
2490       break;
2491
2492     case elfcpp::R_X86_64_GOT64:
2493     case elfcpp::R_X86_64_GOT32:
2494     case elfcpp::R_X86_64_GOTPCREL64:
2495     case elfcpp::R_X86_64_GOTPCREL:
2496     case elfcpp::R_X86_64_GOTPCRELX:
2497     case elfcpp::R_X86_64_REX_GOTPCRELX:
2498     case elfcpp::R_X86_64_GOTPLT64:
2499       {
2500         // The symbol requires a GOT section.
2501         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2502
2503         // If the relocation symbol isn't IFUNC,
2504         // and is local, then we will convert
2505         // mov foo@GOTPCREL(%rip), %reg
2506         // to lea foo(%rip), %reg.
2507         // in Relocate::relocate.
2508         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2509              || r_type == elfcpp::R_X86_64_GOTPCRELX
2510              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2511             && reloc.get_r_offset() >= 2
2512             && !is_ifunc)
2513           {
2514             section_size_type stype;
2515             const unsigned char* view = object->section_contents(data_shndx,
2516                                                                  &stype, true);
2517             if (view[reloc.get_r_offset() - 2] == 0x8b)
2518               break;
2519           }
2520
2521
2522         // The symbol requires a GOT entry.
2523         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2524
2525         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
2526         // lets function pointers compare correctly with shared
2527         // libraries.  Otherwise we would need an IRELATIVE reloc.
2528         bool is_new;
2529         if (is_ifunc)
2530           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2531         else
2532           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2533         if (is_new)
2534           {
2535             // If we are generating a shared object, we need to add a
2536             // dynamic relocation for this symbol's GOT entry.
2537             if (parameters->options().output_is_position_independent())
2538               {
2539                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2540                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2541                 if (r_type != elfcpp::R_X86_64_GOT32)
2542                   {
2543                     unsigned int got_offset =
2544                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2545                     rela_dyn->add_local_relative(object, r_sym,
2546                                                  elfcpp::R_X86_64_RELATIVE,
2547                                                  got, got_offset, 0, is_ifunc);
2548                   }
2549                 else
2550                   {
2551                     this->check_non_pic(object, r_type, NULL);
2552
2553                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2554                     rela_dyn->add_local(
2555                         object, r_sym, r_type, got,
2556                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2557                   }
2558               }
2559           }
2560         // For GOTPLT64, we'd normally want a PLT section, but since
2561         // we know this is a local symbol, no PLT is needed.
2562       }
2563       break;
2564
2565     case elfcpp::R_X86_64_COPY:
2566     case elfcpp::R_X86_64_GLOB_DAT:
2567     case elfcpp::R_X86_64_JUMP_SLOT:
2568     case elfcpp::R_X86_64_RELATIVE:
2569     case elfcpp::R_X86_64_IRELATIVE:
2570       // These are outstanding tls relocs, which are unexpected when linking
2571     case elfcpp::R_X86_64_TPOFF64:
2572     case elfcpp::R_X86_64_DTPMOD64:
2573     case elfcpp::R_X86_64_TLSDESC:
2574       gold_error(_("%s: unexpected reloc %u in object file"),
2575                  object->name().c_str(), r_type);
2576       break;
2577
2578       // These are initial tls relocs, which are expected when linking
2579     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2580     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2581     case elfcpp::R_X86_64_TLSDESC_CALL:
2582     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2583     case elfcpp::R_X86_64_DTPOFF32:
2584     case elfcpp::R_X86_64_DTPOFF64:
2585     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2586     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2587       {
2588         bool output_is_shared = parameters->options().shared();
2589         const tls::Tls_optimization optimized_type
2590             = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2591                                                       r_type);
2592         switch (r_type)
2593           {
2594           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
2595             if (optimized_type == tls::TLSOPT_NONE)
2596               {
2597                 // Create a pair of GOT entries for the module index and
2598                 // dtv-relative offset.
2599                 Output_data_got<64, false>* got
2600                     = target->got_section(symtab, layout);
2601                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2602                 unsigned int shndx = lsym.get_st_shndx();
2603                 bool is_ordinary;
2604                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2605                 if (!is_ordinary)
2606                   object->error(_("local symbol %u has bad shndx %u"),
2607                               r_sym, shndx);
2608                 else
2609                   got->add_local_pair_with_rel(object, r_sym,
2610                                                shndx,
2611                                                GOT_TYPE_TLS_PAIR,
2612                                                target->rela_dyn_section(layout),
2613                                                elfcpp::R_X86_64_DTPMOD64);
2614               }
2615             else if (optimized_type != tls::TLSOPT_TO_LE)
2616               unsupported_reloc_local(object, r_type);
2617             break;
2618
2619           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2620             target->define_tls_base_symbol(symtab, layout);
2621             if (optimized_type == tls::TLSOPT_NONE)
2622               {
2623                 // Create reserved PLT and GOT entries for the resolver.
2624                 target->reserve_tlsdesc_entries(symtab, layout);
2625
2626                 // Generate a double GOT entry with an
2627                 // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
2628                 // is resolved lazily, so the GOT entry needs to be in
2629                 // an area in .got.plt, not .got.  Call got_section to
2630                 // make sure the section has been created.
2631                 target->got_section(symtab, layout);
2632                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2633                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2634                 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2635                   {
2636                     unsigned int got_offset = got->add_constant(0);
2637                     got->add_constant(0);
2638                     object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2639                                                  got_offset);
2640                     Reloc_section* rt = target->rela_tlsdesc_section(layout);
2641                     // We store the arguments we need in a vector, and
2642                     // use the index into the vector as the parameter
2643                     // to pass to the target specific routines.
2644                     uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2645                     void* arg = reinterpret_cast<void*>(intarg);
2646                     rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2647                                             got, got_offset, 0);
2648                   }
2649               }
2650             else if (optimized_type != tls::TLSOPT_TO_LE)
2651               unsupported_reloc_local(object, r_type);
2652             break;
2653
2654           case elfcpp::R_X86_64_TLSDESC_CALL:
2655             break;
2656
2657           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
2658             if (optimized_type == tls::TLSOPT_NONE)
2659               {
2660                 // Create a GOT entry for the module index.
2661                 target->got_mod_index_entry(symtab, layout, object);
2662               }
2663             else if (optimized_type != tls::TLSOPT_TO_LE)
2664               unsupported_reloc_local(object, r_type);
2665             break;
2666
2667           case elfcpp::R_X86_64_DTPOFF32:
2668           case elfcpp::R_X86_64_DTPOFF64:
2669             break;
2670
2671           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
2672             layout->set_has_static_tls();
2673             if (optimized_type == tls::TLSOPT_NONE)
2674               {
2675                 // Create a GOT entry for the tp-relative offset.
2676                 Output_data_got<64, false>* got
2677                     = target->got_section(symtab, layout);
2678                 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2679                 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2680                                         target->rela_dyn_section(layout),
2681                                         elfcpp::R_X86_64_TPOFF64);
2682               }
2683             else if (optimized_type != tls::TLSOPT_TO_LE)
2684               unsupported_reloc_local(object, r_type);
2685             break;
2686
2687           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
2688             layout->set_has_static_tls();
2689             if (output_is_shared)
2690               unsupported_reloc_local(object, r_type);
2691             break;
2692
2693           default:
2694             gold_unreachable();
2695           }
2696       }
2697       break;
2698
2699     case elfcpp::R_X86_64_SIZE32:
2700     case elfcpp::R_X86_64_SIZE64:
2701     default:
2702       gold_error(_("%s: unsupported reloc %u against local symbol"),
2703                  object->name().c_str(), r_type);
2704       break;
2705     }
2706 }
2707
2708
2709 // Report an unsupported relocation against a global symbol.
2710
2711 template<int size>
2712 void
2713 Target_x86_64<size>::Scan::unsupported_reloc_global(
2714     Sized_relobj_file<size, false>* object,
2715     unsigned int r_type,
2716     Symbol* gsym)
2717 {
2718   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2719              object->name().c_str(), r_type, gsym->demangled_name().c_str());
2720 }
2721
2722 // Returns true if this relocation type could be that of a function pointer.
2723 template<int size>
2724 inline bool
2725 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2726 {
2727   switch (r_type)
2728     {
2729     case elfcpp::R_X86_64_64:
2730     case elfcpp::R_X86_64_32:
2731     case elfcpp::R_X86_64_32S:
2732     case elfcpp::R_X86_64_16:
2733     case elfcpp::R_X86_64_8:
2734     case elfcpp::R_X86_64_GOT64:
2735     case elfcpp::R_X86_64_GOT32:
2736     case elfcpp::R_X86_64_GOTPCREL64:
2737     case elfcpp::R_X86_64_GOTPCREL:
2738     case elfcpp::R_X86_64_GOTPCRELX:
2739     case elfcpp::R_X86_64_REX_GOTPCRELX:
2740     case elfcpp::R_X86_64_GOTPLT64:
2741       {
2742         return true;
2743       }
2744     }
2745   return false;
2746 }
2747
2748 // For safe ICF, scan a relocation for a local symbol to check if it
2749 // corresponds to a function pointer being taken.  In that case mark
2750 // the function whose pointer was taken as not foldable.
2751
2752 template<int size>
2753 inline bool
2754 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2755   Symbol_table* ,
2756   Layout* ,
2757   Target_x86_64<size>* ,
2758   Sized_relobj_file<size, false>* ,
2759   unsigned int ,
2760   Output_section* ,
2761   const elfcpp::Rela<size, false>& ,
2762   unsigned int r_type,
2763   const elfcpp::Sym<size, false>&)
2764 {
2765   // When building a shared library, do not fold any local symbols as it is
2766   // not possible to distinguish pointer taken versus a call by looking at
2767   // the relocation types.
2768   return (parameters->options().shared()
2769           || possible_function_pointer_reloc(r_type));
2770 }
2771
2772 // For safe ICF, scan a relocation for a global symbol to check if it
2773 // corresponds to a function pointer being taken.  In that case mark
2774 // the function whose pointer was taken as not foldable.
2775
2776 template<int size>
2777 inline bool
2778 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2779   Symbol_table*,
2780   Layout* ,
2781   Target_x86_64<size>* ,
2782   Sized_relobj_file<size, false>* ,
2783   unsigned int ,
2784   Output_section* ,
2785   const elfcpp::Rela<size, false>& ,
2786   unsigned int r_type,
2787   Symbol* gsym)
2788 {
2789   // When building a shared library, do not fold symbols whose visibility
2790   // is hidden, internal or protected.
2791   return ((parameters->options().shared()
2792            && (gsym->visibility() == elfcpp::STV_INTERNAL
2793                || gsym->visibility() == elfcpp::STV_PROTECTED
2794                || gsym->visibility() == elfcpp::STV_HIDDEN))
2795           || possible_function_pointer_reloc(r_type));
2796 }
2797
2798 // Scan a relocation for a global symbol.
2799
2800 template<int size>
2801 inline void
2802 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2803                             Layout* layout,
2804                             Target_x86_64<size>* target,
2805                             Sized_relobj_file<size, false>* object,
2806                             unsigned int data_shndx,
2807                             Output_section* output_section,
2808                             const elfcpp::Rela<size, false>& reloc,
2809                             unsigned int r_type,
2810                             Symbol* gsym)
2811 {
2812   // A STT_GNU_IFUNC symbol may require a PLT entry.
2813   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2814       && this->reloc_needs_plt_for_ifunc(object, r_type))
2815     target->make_plt_entry(symtab, layout, gsym);
2816
2817   switch (r_type)
2818     {
2819     case elfcpp::R_X86_64_NONE:
2820     case elfcpp::R_X86_64_GNU_VTINHERIT:
2821     case elfcpp::R_X86_64_GNU_VTENTRY:
2822       break;
2823
2824     case elfcpp::R_X86_64_64:
2825     case elfcpp::R_X86_64_32:
2826     case elfcpp::R_X86_64_32S:
2827     case elfcpp::R_X86_64_16:
2828     case elfcpp::R_X86_64_8:
2829       {
2830         // Make a PLT entry if necessary.
2831         if (gsym->needs_plt_entry())
2832           {
2833             target->make_plt_entry(symtab, layout, gsym);
2834             // Since this is not a PC-relative relocation, we may be
2835             // taking the address of a function. In that case we need to
2836             // set the entry in the dynamic symbol table to the address of
2837             // the PLT entry.
2838             if (gsym->is_from_dynobj() && !parameters->options().shared())
2839               gsym->set_needs_dynsym_value();
2840           }
2841         // Make a dynamic relocation if necessary.
2842         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2843           {
2844             if (!parameters->options().output_is_position_independent()
2845                 && gsym->may_need_copy_reloc())
2846               {
2847                 target->copy_reloc(symtab, layout, object,
2848                                    data_shndx, output_section, gsym, reloc);
2849               }
2850             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2851                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2852                      && gsym->type() == elfcpp::STT_GNU_IFUNC
2853                      && gsym->can_use_relative_reloc(false)
2854                      && !gsym->is_from_dynobj()
2855                      && !gsym->is_undefined()
2856                      && !gsym->is_preemptible())
2857               {
2858                 // Use an IRELATIVE reloc for a locally defined
2859                 // STT_GNU_IFUNC symbol.  This makes a function
2860                 // address in a PIE executable match the address in a
2861                 // shared library that it links against.
2862                 Reloc_section* rela_dyn =
2863                   target->rela_irelative_section(layout);
2864                 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2865                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2866                                                        output_section, object,
2867                                                        data_shndx,
2868                                                        reloc.get_r_offset(),
2869                                                        reloc.get_r_addend());
2870               }
2871             else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2872                       || (size == 32 && r_type == elfcpp::R_X86_64_32))
2873                      && gsym->can_use_relative_reloc(false))
2874               {
2875                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2876                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2877                                               output_section, object,
2878                                               data_shndx,
2879                                               reloc.get_r_offset(),
2880                                               reloc.get_r_addend(), false);
2881               }
2882             else
2883               {
2884                 this->check_non_pic(object, r_type, gsym);
2885                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2886                 rela_dyn->add_global(gsym, r_type, output_section, object,
2887                                      data_shndx, reloc.get_r_offset(),
2888                                      reloc.get_r_addend());
2889               }
2890           }
2891       }
2892       break;
2893
2894     case elfcpp::R_X86_64_PC64:
2895     case elfcpp::R_X86_64_PC32:
2896     case elfcpp::R_X86_64_PC32_BND:
2897     case elfcpp::R_X86_64_PC16:
2898     case elfcpp::R_X86_64_PC8:
2899       {
2900         // Make a PLT entry if necessary.
2901         if (gsym->needs_plt_entry())
2902           target->make_plt_entry(symtab, layout, gsym);
2903         // Make a dynamic relocation if necessary.
2904         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2905           {
2906             if (parameters->options().output_is_executable()
2907                 && gsym->may_need_copy_reloc())
2908               {
2909                 target->copy_reloc(symtab, layout, object,
2910                                    data_shndx, output_section, gsym, reloc);
2911               }
2912             else
2913               {
2914                 this->check_non_pic(object, r_type, gsym);
2915                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2916                 rela_dyn->add_global(gsym, r_type, output_section, object,
2917                                      data_shndx, reloc.get_r_offset(),
2918                                      reloc.get_r_addend());
2919               }
2920           }
2921       }
2922       break;
2923
2924     case elfcpp::R_X86_64_GOT64:
2925     case elfcpp::R_X86_64_GOT32:
2926     case elfcpp::R_X86_64_GOTPCREL64:
2927     case elfcpp::R_X86_64_GOTPCREL:
2928     case elfcpp::R_X86_64_GOTPCRELX:
2929     case elfcpp::R_X86_64_REX_GOTPCRELX:
2930     case elfcpp::R_X86_64_GOTPLT64:
2931       {
2932         // The symbol requires a GOT entry.
2933         Output_data_got<64, false>* got = target->got_section(symtab, layout);
2934
2935         // If we convert this from
2936         // mov foo@GOTPCREL(%rip), %reg
2937         // to lea foo(%rip), %reg.
2938         // in Relocate::relocate, then there is nothing to do here.
2939         if ((r_type == elfcpp::R_X86_64_GOTPCREL
2940              || r_type == elfcpp::R_X86_64_GOTPCRELX
2941              || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2942             && reloc.get_r_offset() >= 2
2943             && Target_x86_64<size>::can_convert_mov_to_lea(gsym))
2944           {
2945             section_size_type stype;
2946             const unsigned char* view = object->section_contents(data_shndx,
2947                                                                  &stype, true);
2948             if (view[reloc.get_r_offset() - 2] == 0x8b)
2949               break;
2950           }
2951
2952         if (gsym->final_value_is_known())
2953           {
2954             // For a STT_GNU_IFUNC symbol we want the PLT address.
2955             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2956               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2957             else
2958               got->add_global(gsym, GOT_TYPE_STANDARD);
2959           }
2960         else
2961           {
2962             // If this symbol is not fully resolved, we need to add a
2963             // dynamic relocation for it.
2964             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2965
2966             // Use a GLOB_DAT rather than a RELATIVE reloc if:
2967             //
2968             // 1) The symbol may be defined in some other module.
2969             //
2970             // 2) We are building a shared library and this is a
2971             // protected symbol; using GLOB_DAT means that the dynamic
2972             // linker can use the address of the PLT in the main
2973             // executable when appropriate so that function address
2974             // comparisons work.
2975             //
2976             // 3) This is a STT_GNU_IFUNC symbol in position dependent
2977             // code, again so that function address comparisons work.
2978             if (gsym->is_from_dynobj()
2979                 || gsym->is_undefined()
2980                 || gsym->is_preemptible()
2981                 || (gsym->visibility() == elfcpp::STV_PROTECTED
2982                     && parameters->options().shared())
2983                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2984                     && parameters->options().output_is_position_independent()))
2985               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2986                                        elfcpp::R_X86_64_GLOB_DAT);
2987             else
2988               {
2989                 // For a STT_GNU_IFUNC symbol we want to write the PLT
2990                 // offset into the GOT, so that function pointer
2991                 // comparisons work correctly.
2992                 bool is_new;
2993                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2994                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2995                 else
2996                   {
2997                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2998                     // Tell the dynamic linker to use the PLT address
2999                     // when resolving relocations.
3000                     if (gsym->is_from_dynobj()
3001                         && !parameters->options().shared())
3002                       gsym->set_needs_dynsym_value();
3003                   }
3004                 if (is_new)
3005                   {
3006                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3007                     rela_dyn->add_global_relative(gsym,
3008                                                   elfcpp::R_X86_64_RELATIVE,
3009                                                   got, got_off, 0, false);
3010                   }
3011               }
3012           }
3013       }
3014       break;
3015
3016     case elfcpp::R_X86_64_PLT32:
3017     case elfcpp::R_X86_64_PLT32_BND:
3018       // If the symbol is fully resolved, this is just a PC32 reloc.
3019       // Otherwise we need a PLT entry.
3020       if (gsym->final_value_is_known())
3021         break;
3022       // If building a shared library, we can also skip the PLT entry
3023       // if the symbol is defined in the output file and is protected
3024       // or hidden.
3025       if (gsym->is_defined()
3026           && !gsym->is_from_dynobj()
3027           && !gsym->is_preemptible())
3028         break;
3029       target->make_plt_entry(symtab, layout, gsym);
3030       break;
3031
3032     case elfcpp::R_X86_64_GOTPC32:
3033     case elfcpp::R_X86_64_GOTOFF64:
3034     case elfcpp::R_X86_64_GOTPC64:
3035     case elfcpp::R_X86_64_PLTOFF64:
3036       // We need a GOT section.
3037       target->got_section(symtab, layout);
3038       // For PLTOFF64, we also need a PLT entry (but only if the
3039       // symbol is not fully resolved).
3040       if (r_type == elfcpp::R_X86_64_PLTOFF64
3041           && !gsym->final_value_is_known())
3042         target->make_plt_entry(symtab, layout, gsym);
3043       break;
3044
3045     case elfcpp::R_X86_64_COPY:
3046     case elfcpp::R_X86_64_GLOB_DAT:
3047     case elfcpp::R_X86_64_JUMP_SLOT:
3048     case elfcpp::R_X86_64_RELATIVE:
3049     case elfcpp::R_X86_64_IRELATIVE:
3050       // These are outstanding tls relocs, which are unexpected when linking
3051     case elfcpp::R_X86_64_TPOFF64:
3052     case elfcpp::R_X86_64_DTPMOD64:
3053     case elfcpp::R_X86_64_TLSDESC:
3054       gold_error(_("%s: unexpected reloc %u in object file"),
3055                  object->name().c_str(), r_type);
3056       break;
3057
3058       // These are initial tls relocs, which are expected for global()
3059     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3060     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3061     case elfcpp::R_X86_64_TLSDESC_CALL:
3062     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3063     case elfcpp::R_X86_64_DTPOFF32:
3064     case elfcpp::R_X86_64_DTPOFF64:
3065     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3066     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3067       {
3068         // For the Initial-Exec model, we can treat undef symbols as final
3069         // when building an executable.
3070         const bool is_final = (gsym->final_value_is_known() ||
3071                                (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3072                                 gsym->is_undefined() &&
3073                                 parameters->options().output_is_executable()));
3074         const tls::Tls_optimization optimized_type
3075             = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3076         switch (r_type)
3077           {
3078           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
3079             if (optimized_type == tls::TLSOPT_NONE)
3080               {
3081                 // Create a pair of GOT entries for the module index and
3082                 // dtv-relative offset.
3083                 Output_data_got<64, false>* got
3084                     = target->got_section(symtab, layout);
3085                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3086                                               target->rela_dyn_section(layout),
3087                                               elfcpp::R_X86_64_DTPMOD64,
3088                                               elfcpp::R_X86_64_DTPOFF64);
3089               }
3090             else if (optimized_type == tls::TLSOPT_TO_IE)
3091               {
3092                 // Create a GOT entry for the tp-relative offset.
3093                 Output_data_got<64, false>* got
3094                     = target->got_section(symtab, layout);
3095                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3096                                          target->rela_dyn_section(layout),
3097                                          elfcpp::R_X86_64_TPOFF64);
3098               }
3099             else if (optimized_type != tls::TLSOPT_TO_LE)
3100               unsupported_reloc_global(object, r_type, gsym);
3101             break;
3102
3103           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3104             target->define_tls_base_symbol(symtab, layout);
3105             if (optimized_type == tls::TLSOPT_NONE)
3106               {
3107                 // Create reserved PLT and GOT entries for the resolver.
3108                 target->reserve_tlsdesc_entries(symtab, layout);
3109
3110                 // Create a double GOT entry with an R_X86_64_TLSDESC
3111                 // reloc.  The R_X86_64_TLSDESC reloc is resolved
3112                 // lazily, so the GOT entry needs to be in an area in
3113                 // .got.plt, not .got.  Call got_section to make sure
3114                 // the section has been created.
3115                 target->got_section(symtab, layout);
3116                 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3117                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3118                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3119                                               elfcpp::R_X86_64_TLSDESC, 0);
3120               }
3121             else if (optimized_type == tls::TLSOPT_TO_IE)
3122               {
3123                 // Create a GOT entry for the tp-relative offset.
3124                 Output_data_got<64, false>* got
3125                     = target->got_section(symtab, layout);
3126                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3127                                          target->rela_dyn_section(layout),
3128                                          elfcpp::R_X86_64_TPOFF64);
3129               }
3130             else if (optimized_type != tls::TLSOPT_TO_LE)
3131               unsupported_reloc_global(object, r_type, gsym);
3132             break;
3133
3134           case elfcpp::R_X86_64_TLSDESC_CALL:
3135             break;
3136
3137           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
3138             if (optimized_type == tls::TLSOPT_NONE)
3139               {
3140                 // Create a GOT entry for the module index.
3141                 target->got_mod_index_entry(symtab, layout, object);
3142               }
3143             else if (optimized_type != tls::TLSOPT_TO_LE)
3144               unsupported_reloc_global(object, r_type, gsym);
3145             break;
3146
3147           case elfcpp::R_X86_64_DTPOFF32:
3148           case elfcpp::R_X86_64_DTPOFF64:
3149             break;
3150
3151           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
3152             layout->set_has_static_tls();
3153             if (optimized_type == tls::TLSOPT_NONE)
3154               {
3155                 // Create a GOT entry for the tp-relative offset.
3156                 Output_data_got<64, false>* got
3157                     = target->got_section(symtab, layout);
3158                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3159                                          target->rela_dyn_section(layout),
3160                                          elfcpp::R_X86_64_TPOFF64);
3161               }
3162             else if (optimized_type != tls::TLSOPT_TO_LE)
3163               unsupported_reloc_global(object, r_type, gsym);
3164             break;
3165
3166           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
3167             layout->set_has_static_tls();
3168             if (parameters->options().shared())
3169               unsupported_reloc_global(object, r_type, gsym);
3170             break;
3171
3172           default:
3173             gold_unreachable();
3174           }
3175       }
3176       break;
3177
3178     case elfcpp::R_X86_64_SIZE32:
3179     case elfcpp::R_X86_64_SIZE64:
3180     default:
3181       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3182                  object->name().c_str(), r_type,
3183                  gsym->demangled_name().c_str());
3184       break;
3185     }
3186 }
3187
3188 template<int size>
3189 void
3190 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3191                                        Layout* layout,
3192                                        Sized_relobj_file<size, false>* object,
3193                                        unsigned int data_shndx,
3194                                        unsigned int sh_type,
3195                                        const unsigned char* prelocs,
3196                                        size_t reloc_count,
3197                                        Output_section* output_section,
3198                                        bool needs_special_offset_handling,
3199                                        size_t local_symbol_count,
3200                                        const unsigned char* plocal_symbols)
3201 {
3202   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3203       Classify_reloc;
3204
3205   if (sh_type == elfcpp::SHT_REL)
3206     {
3207       return;
3208     }
3209
3210    gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
3211                            Classify_reloc>(
3212     symtab,
3213     layout,
3214     this,
3215     object,
3216     data_shndx,
3217     prelocs,
3218     reloc_count,
3219     output_section,
3220     needs_special_offset_handling,
3221     local_symbol_count,
3222     plocal_symbols);
3223
3224 }
3225 // Scan relocations for a section.
3226
3227 template<int size>
3228 void
3229 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3230                                  Layout* layout,
3231                                  Sized_relobj_file<size, false>* object,
3232                                  unsigned int data_shndx,
3233                                  unsigned int sh_type,
3234                                  const unsigned char* prelocs,
3235                                  size_t reloc_count,
3236                                  Output_section* output_section,
3237                                  bool needs_special_offset_handling,
3238                                  size_t local_symbol_count,
3239                                  const unsigned char* plocal_symbols)
3240 {
3241   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3242       Classify_reloc;
3243
3244   if (sh_type == elfcpp::SHT_REL)
3245     {
3246       gold_error(_("%s: unsupported REL reloc section"),
3247                  object->name().c_str());
3248       return;
3249     }
3250
3251   gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
3252     symtab,
3253     layout,
3254     this,
3255     object,
3256     data_shndx,
3257     prelocs,
3258     reloc_count,
3259     output_section,
3260     needs_special_offset_handling,
3261     local_symbol_count,
3262     plocal_symbols);
3263 }
3264
3265 // Finalize the sections.
3266
3267 template<int size>
3268 void
3269 Target_x86_64<size>::do_finalize_sections(
3270     Layout* layout,
3271     const Input_objects*,
3272     Symbol_table* symtab)
3273 {
3274   const Reloc_section* rel_plt = (this->plt_ == NULL
3275                                   ? NULL
3276                                   : this->plt_->rela_plt());
3277   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3278                                   this->rela_dyn_, true, false);
3279
3280   // Fill in some more dynamic tags.
3281   Output_data_dynamic* const odyn = layout->dynamic_data();
3282   if (odyn != NULL)
3283     {
3284       if (this->plt_ != NULL
3285           && this->plt_->output_section() != NULL
3286           && this->plt_->has_tlsdesc_entry())
3287         {
3288           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3289           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3290           this->got_->finalize_data_size();
3291           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3292                                         this->plt_, plt_offset);
3293           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3294                                         this->got_, got_offset);
3295         }
3296     }
3297
3298   // Emit any relocs we saved in an attempt to avoid generating COPY
3299   // relocs.
3300   if (this->copy_relocs_.any_saved_relocs())
3301     this->copy_relocs_.emit(this->rela_dyn_section(layout));
3302
3303   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3304   // the .got.plt section.
3305   Symbol* sym = this->global_offset_table_;
3306   if (sym != NULL)
3307     {
3308       uint64_t data_size = this->got_plt_->current_data_size();
3309       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3310     }
3311
3312   if (parameters->doing_static_link()
3313       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3314     {
3315       // If linking statically, make sure that the __rela_iplt symbols
3316       // were defined if necessary, even if we didn't create a PLT.
3317       static const Define_symbol_in_segment syms[] =
3318         {
3319           {
3320             "__rela_iplt_start",        // name
3321             elfcpp::PT_LOAD,            // segment_type
3322             elfcpp::PF_W,               // segment_flags_set
3323             elfcpp::PF(0),              // segment_flags_clear
3324             0,                          // value
3325             0,                          // size
3326             elfcpp::STT_NOTYPE,         // type
3327             elfcpp::STB_GLOBAL,         // binding
3328             elfcpp::STV_HIDDEN,         // visibility
3329             0,                          // nonvis
3330             Symbol::SEGMENT_START,      // offset_from_base
3331             true                        // only_if_ref
3332           },
3333           {
3334             "__rela_iplt_end",          // name
3335             elfcpp::PT_LOAD,            // segment_type
3336             elfcpp::PF_W,               // segment_flags_set
3337             elfcpp::PF(0),              // segment_flags_clear
3338             0,                          // value
3339             0,                          // size
3340             elfcpp::STT_NOTYPE,         // type
3341             elfcpp::STB_GLOBAL,         // binding
3342             elfcpp::STV_HIDDEN,         // visibility
3343             0,                          // nonvis
3344             Symbol::SEGMENT_START,      // offset_from_base
3345             true                        // only_if_ref
3346           }
3347         };
3348
3349       symtab->define_symbols(layout, 2, syms,
3350                              layout->script_options()->saw_sections_clause());
3351     }
3352 }
3353
3354 // For x32, we need to handle PC-relative relocations using full 64-bit
3355 // arithmetic, so that we can detect relocation overflows properly.
3356 // This class overrides the pcrela32_check methods from the defaults in
3357 // Relocate_functions in reloc.h.
3358
3359 template<int size>
3360 class X86_64_relocate_functions : public Relocate_functions<size, false>
3361 {
3362  public:
3363   typedef Relocate_functions<size, false> Base;
3364
3365   // Do a simple PC relative relocation with the addend in the
3366   // relocation.
3367   static inline typename Base::Reloc_status
3368   pcrela32_check(unsigned char* view,
3369                  typename elfcpp::Elf_types<64>::Elf_Addr value,
3370                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3371                  typename elfcpp::Elf_types<64>::Elf_Addr address)
3372   {
3373     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3374     Valtype* wv = reinterpret_cast<Valtype*>(view);
3375     value = value + addend - address;
3376     elfcpp::Swap<32, false>::writeval(wv, value);
3377     return (Bits<32>::has_overflow(value)
3378             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3379   }
3380
3381   // Do a simple PC relative relocation with a Symbol_value with the
3382   // addend in the relocation.
3383   static inline typename Base::Reloc_status
3384   pcrela32_check(unsigned char* view,
3385                  const Sized_relobj_file<size, false>* object,
3386                  const Symbol_value<size>* psymval,
3387                  typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3388                  typename elfcpp::Elf_types<64>::Elf_Addr address)
3389   {
3390     typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3391     Valtype* wv = reinterpret_cast<Valtype*>(view);
3392     typename elfcpp::Elf_types<64>::Elf_Addr value;
3393     if (addend >= 0)
3394       value = psymval->value(object, addend);
3395     else
3396       {
3397         // For negative addends, get the symbol value without
3398         // the addend, then add the addend using 64-bit arithmetic.
3399         value = psymval->value(object, 0);
3400         value += addend;
3401       }
3402     value -= address;
3403     elfcpp::Swap<32, false>::writeval(wv, value);
3404     return (Bits<32>::has_overflow(value)
3405             ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3406   }
3407 };
3408
3409 // Perform a relocation.
3410
3411 template<int size>
3412 inline bool
3413 Target_x86_64<size>::Relocate::relocate(
3414     const Relocate_info<size, false>* relinfo,
3415     unsigned int,
3416     Target_x86_64<size>* target,
3417     Output_section*,
3418     size_t relnum,
3419     const unsigned char* preloc,
3420     const Sized_symbol<size>* gsym,
3421     const Symbol_value<size>* psymval,
3422     unsigned char* view,
3423     typename elfcpp::Elf_types<size>::Elf_Addr address,
3424     section_size_type view_size)
3425 {
3426   typedef X86_64_relocate_functions<size> Reloc_funcs;
3427   const elfcpp::Rela<size, false> rela(preloc);
3428   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
3429
3430   if (this->skip_call_tls_get_addr_)
3431     {
3432       if ((r_type != elfcpp::R_X86_64_PLT32
3433            && r_type != elfcpp::R_X86_64_PLT32_BND
3434            && r_type != elfcpp::R_X86_64_PC32_BND
3435            && r_type != elfcpp::R_X86_64_PC32)
3436           || gsym == NULL
3437           || strcmp(gsym->name(), "__tls_get_addr") != 0)
3438         {
3439           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3440                                  _("missing expected TLS relocation"));
3441         }
3442       else
3443         {
3444           this->skip_call_tls_get_addr_ = false;
3445           return false;
3446         }
3447     }
3448
3449   if (view == NULL)
3450     return true;
3451
3452   const Sized_relobj_file<size, false>* object = relinfo->object;
3453
3454   // Pick the value to use for symbols defined in the PLT.
3455   Symbol_value<size> symval;
3456   if (gsym != NULL
3457       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3458     {
3459       symval.set_output_value(target->plt_address_for_global(gsym));
3460       psymval = &symval;
3461     }
3462   else if (gsym == NULL && psymval->is_ifunc_symbol())
3463     {
3464       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3465       if (object->local_has_plt_offset(r_sym))
3466         {
3467           symval.set_output_value(target->plt_address_for_local(object, r_sym));
3468           psymval = &symval;
3469         }
3470     }
3471
3472   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3473
3474   // Get the GOT offset if needed.
3475   // The GOT pointer points to the end of the GOT section.
3476   // We need to subtract the size of the GOT section to get
3477   // the actual offset to use in the relocation.
3478   bool have_got_offset = false;
3479   // Since the actual offset is always negative, we use signed int to
3480   // support 64-bit GOT relocations.
3481   int got_offset = 0;
3482   switch (r_type)
3483     {
3484     case elfcpp::R_X86_64_GOT32:
3485     case elfcpp::R_X86_64_GOT64:
3486     case elfcpp::R_X86_64_GOTPLT64:
3487     case elfcpp::R_X86_64_GOTPCREL64:
3488       if (gsym != NULL)
3489         {
3490           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3491           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3492         }
3493       else
3494         {
3495           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3496           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3497           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3498                         - target->got_size());
3499         }
3500       have_got_offset = true;
3501       break;
3502
3503     default:
3504       break;
3505     }
3506
3507   typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
3508
3509   switch (r_type)
3510     {
3511     case elfcpp::R_X86_64_NONE:
3512     case elfcpp::R_X86_64_GNU_VTINHERIT:
3513     case elfcpp::R_X86_64_GNU_VTENTRY:
3514       break;
3515
3516     case elfcpp::R_X86_64_64:
3517       Reloc_funcs::rela64(view, object, psymval, addend);
3518       break;
3519
3520     case elfcpp::R_X86_64_PC64:
3521       Reloc_funcs::pcrela64(view, object, psymval, addend,
3522                                               address);
3523       break;
3524
3525     case elfcpp::R_X86_64_32:
3526       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
3527                                           Reloc_funcs::CHECK_UNSIGNED);
3528       break;
3529
3530     case elfcpp::R_X86_64_32S:
3531       rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
3532                                           Reloc_funcs::CHECK_SIGNED);
3533       break;
3534
3535     case elfcpp::R_X86_64_PC32:
3536     case elfcpp::R_X86_64_PC32_BND:
3537       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
3538                                             address);
3539       break;
3540
3541     case elfcpp::R_X86_64_16:
3542       Reloc_funcs::rela16(view, object, psymval, addend);
3543       break;
3544
3545     case elfcpp::R_X86_64_PC16:
3546       Reloc_funcs::pcrela16(view, object, psymval, addend, address);
3547       break;
3548
3549     case elfcpp::R_X86_64_8:
3550       Reloc_funcs::rela8(view, object, psymval, addend);
3551       break;
3552
3553     case elfcpp::R_X86_64_PC8:
3554       Reloc_funcs::pcrela8(view, object, psymval, addend, address);
3555       break;
3556
3557     case elfcpp::R_X86_64_PLT32:
3558     case elfcpp::R_X86_64_PLT32_BND:
3559       gold_assert(gsym == NULL
3560                   || gsym->has_plt_offset()
3561                   || gsym->final_value_is_known()
3562                   || (gsym->is_defined()
3563                       && !gsym->is_from_dynobj()
3564                       && !gsym->is_preemptible()));
3565       // Note: while this code looks the same as for R_X86_64_PC32, it
3566       // behaves differently because psymval was set to point to
3567       // the PLT entry, rather than the symbol, in Scan::global().
3568       rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
3569                                             address);
3570       break;
3571
3572     case elfcpp::R_X86_64_PLTOFF64:
3573       {
3574         gold_assert(gsym);
3575         gold_assert(gsym->has_plt_offset()
3576                     || gsym->final_value_is_known());
3577         typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3578         // This is the address of GLOBAL_OFFSET_TABLE.
3579         got_address = target->got_plt_section()->address();
3580         Reloc_funcs::rela64(view, object, psymval, addend - got_address);
3581       }
3582       break;
3583
3584     case elfcpp::R_X86_64_GOT32:
3585       gold_assert(have_got_offset);
3586       Reloc_funcs::rela32(view, got_offset, addend);
3587       break;
3588
3589     case elfcpp::R_X86_64_GOTPC32:
3590       {
3591         gold_assert(gsym);
3592         typename elfcpp::Elf_types<size>::Elf_Addr value;
3593         value = target->got_plt_section()->address();
3594         Reloc_funcs::pcrela32_check(view, value, addend, address);
3595       }
3596       break;
3597
3598     case elfcpp::R_X86_64_GOT64:
3599     case elfcpp::R_X86_64_GOTPLT64:
3600       // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3601       // GOT64.
3602       gold_assert(have_got_offset);
3603       Reloc_funcs::rela64(view, got_offset, addend);
3604       break;
3605
3606     case elfcpp::R_X86_64_GOTPC64:
3607       {
3608         gold_assert(gsym);
3609         typename elfcpp::Elf_types<size>::Elf_Addr value;
3610         value = target->got_plt_section()->address();
3611         Reloc_funcs::pcrela64(view, value, addend, address);
3612       }
3613       break;
3614
3615     case elfcpp::R_X86_64_GOTOFF64:
3616       {
3617         typename elfcpp::Elf_types<size>::Elf_Addr value;
3618         value = (psymval->value(object, 0)
3619                  - target->got_plt_section()->address());
3620         Reloc_funcs::rela64(view, value, addend);
3621       }
3622       break;
3623
3624     case elfcpp::R_X86_64_GOTPCREL:
3625     case elfcpp::R_X86_64_GOTPCRELX:
3626     case elfcpp::R_X86_64_REX_GOTPCRELX:
3627       {
3628       // Convert
3629       // mov foo@GOTPCREL(%rip), %reg
3630       // to lea foo(%rip), %reg.
3631       // if possible.
3632       if (rela.get_r_offset() >= 2
3633           && view[-2] == 0x8b
3634           && ((gsym == NULL && !psymval->is_ifunc_symbol())
3635               || (gsym != NULL
3636                   && Target_x86_64<size>::can_convert_mov_to_lea(gsym))))
3637         {
3638           view[-2] = 0x8d;
3639           Reloc_funcs::pcrela32(view, object, psymval, addend, address);
3640         }
3641       else
3642         {
3643           if (gsym != NULL)
3644             {
3645               gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3646               got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3647             }
3648           else
3649             {
3650               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3651               gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3652               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3653                             - target->got_size());
3654             }
3655           typename elfcpp::Elf_types<size>::Elf_Addr value;
3656           value = target->got_plt_section()->address() + got_offset;
3657           Reloc_funcs::pcrela32_check(view, value, addend, address);
3658         }
3659       }
3660       break;
3661
3662     case elfcpp::R_X86_64_GOTPCREL64:
3663       {
3664         gold_assert(have_got_offset);
3665         typename elfcpp::Elf_types<size>::Elf_Addr value;
3666         value = target->got_plt_section()->address() + got_offset;
3667         Reloc_funcs::pcrela64(view, value, addend, address);
3668       }
3669       break;
3670
3671     case elfcpp::R_X86_64_COPY:
3672     case elfcpp::R_X86_64_GLOB_DAT:
3673     case elfcpp::R_X86_64_JUMP_SLOT:
3674     case elfcpp::R_X86_64_RELATIVE:
3675     case elfcpp::R_X86_64_IRELATIVE:
3676       // These are outstanding tls relocs, which are unexpected when linking
3677     case elfcpp::R_X86_64_TPOFF64:
3678     case elfcpp::R_X86_64_DTPMOD64:
3679     case elfcpp::R_X86_64_TLSDESC:
3680       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3681                              _("unexpected reloc %u in object file"),
3682                              r_type);
3683       break;
3684
3685       // These are initial tls relocs, which are expected when linking
3686     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3687     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3688     case elfcpp::R_X86_64_TLSDESC_CALL:
3689     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3690     case elfcpp::R_X86_64_DTPOFF32:
3691     case elfcpp::R_X86_64_DTPOFF64:
3692     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3693     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
3694       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3695                          view, address, view_size);
3696       break;
3697
3698     case elfcpp::R_X86_64_SIZE32:
3699     case elfcpp::R_X86_64_SIZE64:
3700     default:
3701       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3702                              _("unsupported reloc %u"),
3703                              r_type);
3704       break;
3705     }
3706
3707   if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
3708     {
3709       if (gsym == NULL)
3710         {
3711           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3712           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3713                                  _("relocation overflow: "
3714                                    "reference to local symbol %u in %s"),
3715                                  r_sym, object->name().c_str());
3716         }
3717       else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
3718         {
3719           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3720                                  _("relocation overflow: "
3721                                    "reference to '%s' defined in %s"),
3722                                  gsym->name(),
3723                                  gsym->object()->name().c_str());
3724         }
3725       else
3726         {
3727           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3728                                  _("relocation overflow: reference to '%s'"),
3729                                  gsym->name());
3730         }
3731     }
3732
3733   return true;
3734 }
3735
3736 // Perform a TLS relocation.
3737
3738 template<int size>
3739 inline void
3740 Target_x86_64<size>::Relocate::relocate_tls(
3741     const Relocate_info<size, false>* relinfo,
3742     Target_x86_64<size>* target,
3743     size_t relnum,
3744     const elfcpp::Rela<size, false>& rela,
3745     unsigned int r_type,
3746     const Sized_symbol<size>* gsym,
3747     const Symbol_value<size>* psymval,
3748     unsigned char* view,
3749     typename elfcpp::Elf_types<size>::Elf_Addr address,
3750     section_size_type view_size)
3751 {
3752   Output_segment* tls_segment = relinfo->layout->tls_segment();
3753
3754   const Sized_relobj_file<size, false>* object = relinfo->object;
3755   const elfcpp::Elf_Xword addend = rela.get_r_addend();
3756   elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3757   bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3758
3759   typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3760
3761   const bool is_final = (gsym == NULL
3762                          ? !parameters->options().shared()
3763                          : gsym->final_value_is_known());
3764   tls::Tls_optimization optimized_type
3765       = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3766   switch (r_type)
3767     {
3768     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
3769       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3770         {
3771           // If this code sequence is used in a non-executable section,
3772           // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3773           // on the assumption that it's being used by itself in a debug
3774           // section.  Therefore, in the unlikely event that the code
3775           // sequence appears in a non-executable section, we simply
3776           // leave it unoptimized.
3777           optimized_type = tls::TLSOPT_NONE;
3778         }
3779       if (optimized_type == tls::TLSOPT_TO_LE)
3780         {
3781           if (tls_segment == NULL)
3782             {
3783               gold_assert(parameters->errors()->error_count() > 0
3784                           || issue_undefined_symbol_error(gsym));
3785               return;
3786             }
3787           this->tls_gd_to_le(relinfo, relnum, tls_segment,
3788                              rela, r_type, value, view,
3789                              view_size);
3790           break;
3791         }
3792       else
3793         {
3794           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3795                                    ? GOT_TYPE_TLS_OFFSET
3796                                    : GOT_TYPE_TLS_PAIR);
3797           unsigned int got_offset;
3798           if (gsym != NULL)
3799             {
3800               gold_assert(gsym->has_got_offset(got_type));
3801               got_offset = gsym->got_offset(got_type) - target->got_size();
3802             }
3803           else
3804             {
3805               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3806               gold_assert(object->local_has_got_offset(r_sym, got_type));
3807               got_offset = (object->local_got_offset(r_sym, got_type)
3808                             - target->got_size());
3809             }
3810           if (optimized_type == tls::TLSOPT_TO_IE)
3811             {
3812               value = target->got_plt_section()->address() + got_offset;
3813               this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
3814                                  value, view, address, view_size);
3815               break;
3816             }
3817           else if (optimized_type == tls::TLSOPT_NONE)
3818             {
3819               // Relocate the field with the offset of the pair of GOT
3820               // entries.
3821               value = target->got_plt_section()->address() + got_offset;
3822               Relocate_functions<size, false>::pcrela32(view, value, addend,
3823                                                         address);
3824               break;
3825             }
3826         }
3827       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3828                              _("unsupported reloc %u"), r_type);
3829       break;
3830
3831     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
3832     case elfcpp::R_X86_64_TLSDESC_CALL:
3833       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3834         {
3835           // See above comment for R_X86_64_TLSGD.
3836           optimized_type = tls::TLSOPT_NONE;
3837         }
3838       if (optimized_type == tls::TLSOPT_TO_LE)
3839         {
3840           if (tls_segment == NULL)
3841             {
3842               gold_assert(parameters->errors()->error_count() > 0
3843                           || issue_undefined_symbol_error(gsym));
3844               return;
3845             }
3846           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3847                                   rela, r_type, value, view,
3848                                   view_size);
3849           break;
3850         }
3851       else
3852         {
3853           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3854                                    ? GOT_TYPE_TLS_OFFSET
3855                                    : GOT_TYPE_TLS_DESC);
3856           unsigned int got_offset = 0;
3857           if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3858               && optimized_type == tls::TLSOPT_NONE)
3859             {
3860               // We created GOT entries in the .got.tlsdesc portion of
3861               // the .got.plt section, but the offset stored in the
3862               // symbol is the offset within .got.tlsdesc.
3863               got_offset = (target->got_size()
3864                             + target->got_plt_section()->data_size());
3865             }
3866           if (gsym != NULL)
3867             {
3868               gold_assert(gsym->has_got_offset(got_type));
3869               got_offset += gsym->got_offset(got_type) - target->got_size();
3870             }
3871           else
3872             {
3873               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3874               gold_assert(object->local_has_got_offset(r_sym, got_type));
3875               got_offset += (object->local_got_offset(r_sym, got_type)
3876                              - target->got_size());
3877             }
3878           if (optimized_type == tls::TLSOPT_TO_IE)
3879             {
3880               value = target->got_plt_section()->address() + got_offset;
3881               this->tls_desc_gd_to_ie(relinfo, relnum,
3882                                       rela, r_type, value, view, address,
3883                                       view_size);
3884               break;
3885             }
3886           else if (optimized_type == tls::TLSOPT_NONE)
3887             {
3888               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3889                 {
3890                   // Relocate the field with the offset of the pair of GOT
3891                   // entries.
3892                   value = target->got_plt_section()->address() + got_offset;
3893                   Relocate_functions<size, false>::pcrela32(view, value, addend,
3894                                                             address);
3895                 }
3896               break;
3897             }
3898         }
3899       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3900                              _("unsupported reloc %u"), r_type);
3901       break;
3902
3903     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
3904       if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3905         {
3906           // See above comment for R_X86_64_TLSGD.
3907           optimized_type = tls::TLSOPT_NONE;
3908         }
3909       if (optimized_type == tls::TLSOPT_TO_LE)
3910         {
3911           if (tls_segment == NULL)
3912             {
3913               gold_assert(parameters->errors()->error_count() > 0
3914                           || issue_undefined_symbol_error(gsym));
3915               return;
3916             }
3917           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3918                              value, view, view_size);
3919           break;
3920         }
3921       else if (optimized_type == tls::TLSOPT_NONE)
3922         {
3923           // Relocate the field with the offset of the GOT entry for
3924           // the module index.
3925           unsigned int got_offset;
3926           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3927                         - target->got_size());
3928           value = target->got_plt_section()->address() + got_offset;
3929           Relocate_functions<size, false>::pcrela32(view, value, addend,
3930                                                     address);
3931           break;
3932         }
3933       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3934                              _("unsupported reloc %u"), r_type);
3935       break;
3936
3937     case elfcpp::R_X86_64_DTPOFF32:
3938       // This relocation type is used in debugging information.
3939       // In that case we need to not optimize the value.  If the
3940       // section is not executable, then we assume we should not
3941       // optimize this reloc.  See comments above for R_X86_64_TLSGD,
3942       // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3943       // R_X86_64_TLSLD.
3944       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3945         {
3946           if (tls_segment == NULL)
3947             {
3948               gold_assert(parameters->errors()->error_count() > 0
3949                           || issue_undefined_symbol_error(gsym));
3950               return;
3951             }
3952           value -= tls_segment->memsz();
3953         }
3954       Relocate_functions<size, false>::rela32(view, value, addend);
3955       break;
3956
3957     case elfcpp::R_X86_64_DTPOFF64:
3958       // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3959       if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3960         {
3961           if (tls_segment == NULL)
3962             {
3963               gold_assert(parameters->errors()->error_count() > 0
3964                           || issue_undefined_symbol_error(gsym));
3965               return;
3966             }
3967           value -= tls_segment->memsz();
3968         }
3969       Relocate_functions<size, false>::rela64(view, value, addend);
3970       break;
3971
3972     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
3973       if (gsym != NULL
3974           && gsym->is_undefined()
3975           && parameters->options().output_is_executable())
3976         {
3977           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3978                                                       NULL, rela,
3979                                                       r_type, value, view,
3980                                                       view_size);
3981           break;
3982         }
3983       else if (optimized_type == tls::TLSOPT_TO_LE)
3984         {
3985           if (tls_segment == NULL)
3986             {
3987               gold_assert(parameters->errors()->error_count() > 0
3988                           || issue_undefined_symbol_error(gsym));
3989               return;
3990             }
3991           Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3992                                                       tls_segment, rela,
3993                                                       r_type, value, view,
3994                                                       view_size);
3995           break;
3996         }
3997       else if (optimized_type == tls::TLSOPT_NONE)
3998         {
3999           // Relocate the field with the offset of the GOT entry for
4000           // the tp-relative offset of the symbol.
4001           unsigned int got_offset;
4002           if (gsym != NULL)
4003             {
4004               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
4005               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
4006                             - target->got_size());
4007             }
4008           else
4009             {
4010               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4011               gold_assert(object->local_has_got_offset(r_sym,
4012                                                        GOT_TYPE_TLS_OFFSET));
4013               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
4014                             - target->got_size());
4015             }
4016           value = target->got_plt_section()->address() + got_offset;
4017           Relocate_functions<size, false>::pcrela32(view, value, addend,
4018                                                     address);
4019           break;
4020         }
4021       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4022                              _("unsupported reloc type %u"),
4023                              r_type);
4024       break;
4025
4026     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
4027       if (tls_segment == NULL)
4028         {
4029           gold_assert(parameters->errors()->error_count() > 0
4030                       || issue_undefined_symbol_error(gsym));
4031           return;
4032         }
4033       value -= tls_segment->memsz();
4034       Relocate_functions<size, false>::rela32(view, value, addend);
4035       break;
4036     }
4037 }
4038
4039 // Do a relocation in which we convert a TLS General-Dynamic to an
4040 // Initial-Exec.
4041
4042 template<int size>
4043 inline void
4044 Target_x86_64<size>::Relocate::tls_gd_to_ie(
4045     const Relocate_info<size, false>* relinfo,
4046     size_t relnum,
4047     const elfcpp::Rela<size, false>& rela,
4048     unsigned int,
4049     typename elfcpp::Elf_types<size>::Elf_Addr value,
4050     unsigned char* view,
4051     typename elfcpp::Elf_types<size>::Elf_Addr address,
4052     section_size_type view_size)
4053 {
4054   // For SIZE == 64:
4055   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4056   //    .word 0x6666; rex64; call __tls_get_addr
4057   //    ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4058   // For SIZE == 32:
4059   //    leaq foo@tlsgd(%rip),%rdi;
4060   //    .word 0x6666; rex64; call __tls_get_addr
4061   //    ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4062
4063   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4064   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4065                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4066
4067   if (size == 64)
4068     {
4069       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4070                        -4);
4071       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4072                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4073       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4074              16);
4075     }
4076   else
4077     {
4078       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4079                        -3);
4080       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4081                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4082       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4083              15);
4084     }
4085
4086   const elfcpp::Elf_Xword addend = rela.get_r_addend();
4087   Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4088                                             address);
4089
4090   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4091   // We can skip it.
4092   this->skip_call_tls_get_addr_ = true;
4093 }
4094
4095 // Do a relocation in which we convert a TLS General-Dynamic to a
4096 // Local-Exec.
4097
4098 template<int size>
4099 inline void
4100 Target_x86_64<size>::Relocate::tls_gd_to_le(
4101     const Relocate_info<size, false>* relinfo,
4102     size_t relnum,
4103     Output_segment* tls_segment,
4104     const elfcpp::Rela<size, false>& rela,
4105     unsigned int,
4106     typename elfcpp::Elf_types<size>::Elf_Addr value,
4107     unsigned char* view,
4108     section_size_type view_size)
4109 {
4110   // For SIZE == 64:
4111   //    .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4112   //    .word 0x6666; rex64; call __tls_get_addr
4113   //    ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4114   // For SIZE == 32:
4115   //    leaq foo@tlsgd(%rip),%rdi;
4116   //    .word 0x6666; rex64; call __tls_get_addr
4117   //    ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4118
4119   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4120   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4121                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4122
4123   if (size == 64)
4124     {
4125       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4126                        -4);
4127       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4128                      (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4129       memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4130              16);
4131     }
4132   else
4133     {
4134       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4135                        -3);
4136       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4137                      (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4138
4139       memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4140              15);
4141     }
4142
4143   value -= tls_segment->memsz();
4144   Relocate_functions<size, false>::rela32(view + 8, value, 0);
4145
4146   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4147   // We can skip it.
4148   this->skip_call_tls_get_addr_ = true;
4149 }
4150
4151 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4152
4153 template<int size>
4154 inline void
4155 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4156     const Relocate_info<size, false>* relinfo,
4157     size_t relnum,
4158     const elfcpp::Rela<size, false>& rela,
4159     unsigned int r_type,
4160     typename elfcpp::Elf_types<size>::Elf_Addr value,
4161     unsigned char* view,
4162     typename elfcpp::Elf_types<size>::Elf_Addr address,
4163     section_size_type view_size)
4164 {
4165   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4166     {
4167       // leaq foo@tlsdesc(%rip), %rax
4168       // ==> movq foo@gottpoff(%rip), %rax
4169       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4170       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4171       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4172                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4173       view[-2] = 0x8b;
4174       const elfcpp::Elf_Xword addend = rela.get_r_addend();
4175       Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4176     }
4177   else
4178     {
4179       // call *foo@tlscall(%rax)
4180       // ==> nop; nop
4181       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4182       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4183       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4184                      view[0] == 0xff && view[1] == 0x10);
4185       view[0] = 0x66;
4186       view[1] = 0x90;
4187     }
4188 }
4189
4190 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4191
4192 template<int size>
4193 inline void
4194 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4195     const Relocate_info<size, false>* relinfo,
4196     size_t relnum,
4197     Output_segment* tls_segment,
4198     const elfcpp::Rela<size, false>& rela,
4199     unsigned int r_type,
4200     typename elfcpp::Elf_types<size>::Elf_Addr value,
4201     unsigned char* view,
4202     section_size_type view_size)
4203 {
4204   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4205     {
4206       // leaq foo@tlsdesc(%rip), %rax
4207       // ==> movq foo@tpoff, %rax
4208       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4209       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4210       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4211                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4212       view[-2] = 0xc7;
4213       view[-1] = 0xc0;
4214       value -= tls_segment->memsz();
4215       Relocate_functions<size, false>::rela32(view, value, 0);
4216     }
4217   else
4218     {
4219       // call *foo@tlscall(%rax)
4220       // ==> nop; nop
4221       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4222       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4223       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4224                      view[0] == 0xff && view[1] == 0x10);
4225       view[0] = 0x66;
4226       view[1] = 0x90;
4227     }
4228 }
4229
4230 template<int size>
4231 inline void
4232 Target_x86_64<size>::Relocate::tls_ld_to_le(
4233     const Relocate_info<size, false>* relinfo,
4234     size_t relnum,
4235     Output_segment*,
4236     const elfcpp::Rela<size, false>& rela,
4237     unsigned int,
4238     typename elfcpp::Elf_types<size>::Elf_Addr,
4239     unsigned char* view,
4240     section_size_type view_size)
4241 {
4242   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4243   // For SIZE == 64:
4244   // ... leq foo@dtpoff(%rax),%reg
4245   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4246   // For SIZE == 32:
4247   // ... leq foo@dtpoff(%rax),%reg
4248   // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4249
4250   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4251   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4252
4253   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4254                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4255
4256   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4257
4258   if (size == 64)
4259     memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4260   else
4261     memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4262
4263   // The next reloc should be a PLT32 reloc against __tls_get_addr.
4264   // We can skip it.
4265   this->skip_call_tls_get_addr_ = true;
4266 }
4267
4268 // Do a relocation in which we convert a TLS Initial-Exec to a
4269 // Local-Exec.
4270
4271 template<int size>
4272 inline void
4273 Target_x86_64<size>::Relocate::tls_ie_to_le(
4274     const Relocate_info<size, false>* relinfo,
4275     size_t relnum,
4276     Output_segment* tls_segment,
4277     const elfcpp::Rela<size, false>& rela,
4278     unsigned int,
4279     typename elfcpp::Elf_types<size>::Elf_Addr value,
4280     unsigned char* view,
4281     section_size_type view_size)
4282 {
4283   // We need to examine the opcodes to figure out which instruction we
4284   // are looking at.
4285
4286   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
4287   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
4288
4289   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4290   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4291
4292   unsigned char op1 = view[-3];
4293   unsigned char op2 = view[-2];
4294   unsigned char op3 = view[-1];
4295   unsigned char reg = op3 >> 3;
4296
4297   if (op2 == 0x8b)
4298     {
4299       // movq
4300       if (op1 == 0x4c)
4301         view[-3] = 0x49;
4302       else if (size == 32 && op1 == 0x44)
4303         view[-3] = 0x41;
4304       view[-2] = 0xc7;
4305       view[-1] = 0xc0 | reg;
4306     }
4307   else if (reg == 4)
4308     {
4309       // Special handling for %rsp.
4310       if (op1 == 0x4c)
4311         view[-3] = 0x49;
4312       else if (size == 32 && op1 == 0x44)
4313         view[-3] = 0x41;
4314       view[-2] = 0x81;
4315       view[-1] = 0xc0 | reg;
4316     }
4317   else
4318     {
4319       // addq
4320       if (op1 == 0x4c)
4321         view[-3] = 0x4d;
4322       else if (size == 32 && op1 == 0x44)
4323         view[-3] = 0x45;
4324       view[-2] = 0x8d;
4325       view[-1] = 0x80 | reg | (reg << 3);
4326     }
4327
4328   if (tls_segment != NULL)
4329     value -= tls_segment->memsz();
4330   Relocate_functions<size, false>::rela32(view, value, 0);
4331 }
4332
4333 // Relocate section data.
4334
4335 template<int size>
4336 void
4337 Target_x86_64<size>::relocate_section(
4338     const Relocate_info<size, false>* relinfo,
4339     unsigned int sh_type,
4340     const unsigned char* prelocs,
4341     size_t reloc_count,
4342     Output_section* output_section,
4343     bool needs_special_offset_handling,
4344     unsigned char* view,
4345     typename elfcpp::Elf_types<size>::Elf_Addr address,
4346     section_size_type view_size,
4347     const Reloc_symbol_changes* reloc_symbol_changes)
4348 {
4349   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4350       Classify_reloc;
4351
4352   gold_assert(sh_type == elfcpp::SHT_RELA);
4353
4354   gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
4355                          gold::Default_comdat_behavior, Classify_reloc>(
4356     relinfo,
4357     this,
4358     prelocs,
4359     reloc_count,
4360     output_section,
4361     needs_special_offset_handling,
4362     view,
4363     address,
4364     view_size,
4365     reloc_symbol_changes);
4366 }
4367
4368 // Apply an incremental relocation.  Incremental relocations always refer
4369 // to global symbols.
4370
4371 template<int size>
4372 void
4373 Target_x86_64<size>::apply_relocation(
4374     const Relocate_info<size, false>* relinfo,
4375     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4376     unsigned int r_type,
4377     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4378     const Symbol* gsym,
4379     unsigned char* view,
4380     typename elfcpp::Elf_types<size>::Elf_Addr address,
4381     section_size_type view_size)
4382 {
4383   gold::apply_relocation<size, false, Target_x86_64<size>,
4384                          typename Target_x86_64<size>::Relocate>(
4385     relinfo,
4386     this,
4387     r_offset,
4388     r_type,
4389     r_addend,
4390     gsym,
4391     view,
4392     address,
4393     view_size);
4394 }
4395
4396 // Scan the relocs during a relocatable link.
4397
4398 template<int size>
4399 void
4400 Target_x86_64<size>::scan_relocatable_relocs(
4401     Symbol_table* symtab,
4402     Layout* layout,
4403     Sized_relobj_file<size, false>* object,
4404     unsigned int data_shndx,
4405     unsigned int sh_type,
4406     const unsigned char* prelocs,
4407     size_t reloc_count,
4408     Output_section* output_section,
4409     bool needs_special_offset_handling,
4410     size_t local_symbol_count,
4411     const unsigned char* plocal_symbols,
4412     Relocatable_relocs* rr)
4413 {
4414   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4415       Classify_reloc;
4416   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4417       Scan_relocatable_relocs;
4418
4419   gold_assert(sh_type == elfcpp::SHT_RELA);
4420
4421   gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
4422     symtab,
4423     layout,
4424     object,
4425     data_shndx,
4426     prelocs,
4427     reloc_count,
4428     output_section,
4429     needs_special_offset_handling,
4430     local_symbol_count,
4431     plocal_symbols,
4432     rr);
4433 }
4434
4435 // Scan the relocs for --emit-relocs.
4436
4437 template<int size>
4438 void
4439 Target_x86_64<size>::emit_relocs_scan(
4440     Symbol_table* symtab,
4441     Layout* layout,
4442     Sized_relobj_file<size, false>* object,
4443     unsigned int data_shndx,
4444     unsigned int sh_type,
4445     const unsigned char* prelocs,
4446     size_t reloc_count,
4447     Output_section* output_section,
4448     bool needs_special_offset_handling,
4449     size_t local_symbol_count,
4450     const unsigned char* plocal_syms,
4451     Relocatable_relocs* rr)
4452 {
4453   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4454       Classify_reloc;
4455   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4456       Emit_relocs_strategy;
4457
4458   gold_assert(sh_type == elfcpp::SHT_RELA);
4459
4460   gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
4461     symtab,
4462     layout,
4463     object,
4464     data_shndx,
4465     prelocs,
4466     reloc_count,
4467     output_section,
4468     needs_special_offset_handling,
4469     local_symbol_count,
4470     plocal_syms,
4471     rr);
4472 }
4473
4474 // Relocate a section during a relocatable link.
4475
4476 template<int size>
4477 void
4478 Target_x86_64<size>::relocate_relocs(
4479     const Relocate_info<size, false>* relinfo,
4480     unsigned int sh_type,
4481     const unsigned char* prelocs,
4482     size_t reloc_count,
4483     Output_section* output_section,
4484     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4485     unsigned char* view,
4486     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4487     section_size_type view_size,
4488     unsigned char* reloc_view,
4489     section_size_type reloc_view_size)
4490 {
4491   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4492       Classify_reloc;
4493
4494   gold_assert(sh_type == elfcpp::SHT_RELA);
4495
4496   gold::relocate_relocs<size, false, Classify_reloc>(
4497     relinfo,
4498     prelocs,
4499     reloc_count,
4500     output_section,
4501     offset_in_output_section,
4502     view,
4503     view_address,
4504     view_size,
4505     reloc_view,
4506     reloc_view_size);
4507 }
4508
4509 // Return the value to use for a dynamic which requires special
4510 // treatment.  This is how we support equality comparisons of function
4511 // pointers across shared library boundaries, as described in the
4512 // processor specific ABI supplement.
4513
4514 template<int size>
4515 uint64_t
4516 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4517 {
4518   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4519   return this->plt_address_for_global(gsym);
4520 }
4521
4522 // Return a string used to fill a code section with nops to take up
4523 // the specified length.
4524
4525 template<int size>
4526 std::string
4527 Target_x86_64<size>::do_code_fill(section_size_type length) const
4528 {
4529   if (length >= 16)
4530     {
4531       // Build a jmpq instruction to skip over the bytes.
4532       unsigned char jmp[5];
4533       jmp[0] = 0xe9;
4534       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4535       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4536               + std::string(length - 5, static_cast<char>(0x90)));
4537     }
4538
4539   // Nop sequences of various lengths.
4540   const char nop1[1] = { '\x90' };                 // nop
4541   const char nop2[2] = { '\x66', '\x90' };         // xchg %ax %ax
4542   const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4543   const char nop4[4] = { '\x0f', '\x1f', '\x40',   // nop 0(%rax)
4544                          '\x00'};
4545   const char nop5[5] = { '\x0f', '\x1f', '\x44',   // nop 0(%rax,%rax,1)
4546                          '\x00', '\x00' };
4547   const char nop6[6] = { '\x66', '\x0f', '\x1f',   // nopw 0(%rax,%rax,1)
4548                          '\x44', '\x00', '\x00' };
4549   const char nop7[7] = { '\x0f', '\x1f', '\x80',   // nopl 0L(%rax)
4550                          '\x00', '\x00', '\x00',
4551                          '\x00' };
4552   const char nop8[8] = { '\x0f', '\x1f', '\x84',   // nopl 0L(%rax,%rax,1)
4553                          '\x00', '\x00', '\x00',
4554                          '\x00', '\x00' };
4555   const char nop9[9] = { '\x66', '\x0f', '\x1f',   // nopw 0L(%rax,%rax,1)
4556                          '\x84', '\x00', '\x00',
4557                          '\x00', '\x00', '\x00' };
4558   const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4559                            '\x1f', '\x84', '\x00',
4560                            '\x00', '\x00', '\x00',
4561                            '\x00' };
4562   const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4563                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4564                            '\x00', '\x00', '\x00',
4565                            '\x00', '\x00' };
4566   const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4567                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4568                            '\x84', '\x00', '\x00',
4569                            '\x00', '\x00', '\x00' };
4570   const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4571                            '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4572                            '\x1f', '\x84', '\x00',
4573                            '\x00', '\x00', '\x00',
4574                            '\x00' };
4575   const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4576                            '\x66', '\x66', '\x2e', // data16
4577                            '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4578                            '\x00', '\x00', '\x00',
4579                            '\x00', '\x00' };
4580   const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4581                            '\x66', '\x66', '\x66', // data16; data16
4582                            '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4583                            '\x84', '\x00', '\x00',
4584                            '\x00', '\x00', '\x00' };
4585
4586   const char* nops[16] = {
4587     NULL,
4588     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4589     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4590   };
4591
4592   return std::string(nops[length], length);
4593 }
4594
4595 // Return the addend to use for a target specific relocation.  The
4596 // only target specific relocation is R_X86_64_TLSDESC for a local
4597 // symbol.  We want to set the addend is the offset of the local
4598 // symbol in the TLS segment.
4599
4600 template<int size>
4601 uint64_t
4602 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4603                                      uint64_t) const
4604 {
4605   gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4606   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4607   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4608   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4609   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4610   gold_assert(psymval->is_tls_symbol());
4611   // The value of a TLS symbol is the offset in the TLS segment.
4612   return psymval->value(ti.object, 0);
4613 }
4614
4615 // Return the value to use for the base of a DW_EH_PE_datarel offset
4616 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4617 // assembler can not write out the difference between two labels in
4618 // different sections, so instead of using a pc-relative value they
4619 // use an offset from the GOT.
4620
4621 template<int size>
4622 uint64_t
4623 Target_x86_64<size>::do_ehframe_datarel_base() const
4624 {
4625   gold_assert(this->global_offset_table_ != NULL);
4626   Symbol* sym = this->global_offset_table_;
4627   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4628   return ssym->value();
4629 }
4630
4631 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4632 // compiled with -fsplit-stack.  The function calls non-split-stack
4633 // code.  We have to change the function so that it always ensures
4634 // that it has enough stack space to run some random function.
4635
4636 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4637 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4638 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4639
4640 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4641 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4642 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4643
4644 template<int size>
4645 void
4646 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4647                                         section_offset_type fnoffset,
4648                                         section_size_type fnsize,
4649                                         const unsigned char*,
4650                                         size_t,
4651                                         unsigned char* view,
4652                                         section_size_type view_size,
4653                                         std::string* from,
4654                                         std::string* to) const
4655 {
4656   const char* const cmp_insn = reinterpret_cast<const char*>
4657       (size == 32 ? cmp_insn_32 : cmp_insn_64);
4658   const char* const lea_r10_insn = reinterpret_cast<const char*>
4659       (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4660   const char* const lea_r11_insn = reinterpret_cast<const char*>
4661       (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4662
4663   const size_t cmp_insn_len =
4664       (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4665   const size_t lea_r10_insn_len =
4666       (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4667   const size_t lea_r11_insn_len =
4668       (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4669   const size_t nop_len = (size == 32 ? 7 : 8);
4670
4671   // The function starts with a comparison of the stack pointer and a
4672   // field in the TCB.  This is followed by a jump.
4673
4674   // cmp %fs:NN,%rsp
4675   if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4676       && fnsize > nop_len + 1)
4677     {
4678       // We will call __morestack if the carry flag is set after this
4679       // comparison.  We turn the comparison into an stc instruction
4680       // and some nops.
4681       view[fnoffset] = '\xf9';
4682       this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4683     }
4684   // lea NN(%rsp),%r10
4685   // lea NN(%rsp),%r11
4686   else if ((this->match_view(view, view_size, fnoffset,
4687                              lea_r10_insn, lea_r10_insn_len)
4688             || this->match_view(view, view_size, fnoffset,
4689                                 lea_r11_insn, lea_r11_insn_len))
4690            && fnsize > 8)
4691     {
4692       // This is loading an offset from the stack pointer for a
4693       // comparison.  The offset is negative, so we decrease the
4694       // offset by the amount of space we need for the stack.  This
4695       // means we will avoid calling __morestack if there happens to
4696       // be plenty of space on the stack already.
4697       unsigned char* pval = view + fnoffset + 4;
4698       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4699       val -= parameters->options().split_stack_adjust_size();
4700       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4701     }
4702   else
4703     {
4704       if (!object->has_no_split_stack())
4705         object->error(_("failed to match split-stack sequence at "
4706                         "section %u offset %0zx"),
4707                       shndx, static_cast<size_t>(fnoffset));
4708       return;
4709     }
4710
4711   // We have to change the function so that it calls
4712   // __morestack_non_split instead of __morestack.  The former will
4713   // allocate additional stack space.
4714   *from = "__morestack";
4715   *to = "__morestack_non_split";
4716 }
4717
4718 // The selector for x86_64 object files.  Note this is never instantiated
4719 // directly.  It's only used in Target_selector_x86_64_nacl, below.
4720
4721 template<int size>
4722 class Target_selector_x86_64 : public Target_selector_freebsd
4723 {
4724 public:
4725   Target_selector_x86_64()
4726     : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4727                               (size == 64
4728                                ? "elf64-x86-64" : "elf32-x86-64"),
4729                               (size == 64
4730                                ? "elf64-x86-64-freebsd"
4731                                : "elf32-x86-64-freebsd"),
4732                               (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4733   { }
4734
4735   Target*
4736   do_instantiate_target()
4737   { return new Target_x86_64<size>(); }
4738
4739 };
4740
4741 // NaCl variant.  It uses different PLT contents.
4742
4743 template<int size>
4744 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4745 {
4746  public:
4747   Output_data_plt_x86_64_nacl(Layout* layout,
4748                               Output_data_got<64, false>* got,
4749                               Output_data_got_plt_x86_64* got_plt,
4750                               Output_data_space* got_irelative)
4751     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4752                                    got, got_plt, got_irelative)
4753   { }
4754
4755   Output_data_plt_x86_64_nacl(Layout* layout,
4756                               Output_data_got<64, false>* got,
4757                               Output_data_got_plt_x86_64* got_plt,
4758                               Output_data_space* got_irelative,
4759                               unsigned int plt_count)
4760     : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4761                                    got, got_plt, got_irelative,
4762                                    plt_count)
4763   { }
4764
4765  protected:
4766   virtual unsigned int
4767   do_get_plt_entry_size() const
4768   { return plt_entry_size; }
4769
4770   virtual void
4771   do_add_eh_frame(Layout* layout)
4772   {
4773     layout->add_eh_frame_for_plt(this,
4774                                  this->plt_eh_frame_cie,
4775                                  this->plt_eh_frame_cie_size,
4776                                  plt_eh_frame_fde,
4777                                  plt_eh_frame_fde_size);
4778   }
4779
4780   virtual void
4781   do_fill_first_plt_entry(unsigned char* pov,
4782                           typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4783                           typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4784
4785   virtual unsigned int
4786   do_fill_plt_entry(unsigned char* pov,
4787                     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4788                     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4789                     unsigned int got_offset,
4790                     unsigned int plt_offset,
4791                     unsigned int plt_index);
4792
4793   virtual void
4794   do_fill_tlsdesc_entry(unsigned char* pov,
4795                         typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4796                         typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4797                         typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4798                         unsigned int tlsdesc_got_offset,
4799                         unsigned int plt_offset);
4800
4801  private:
4802   // The size of an entry in the PLT.
4803   static const int plt_entry_size = 64;
4804
4805   // The first entry in the PLT.
4806   static const unsigned char first_plt_entry[plt_entry_size];
4807
4808   // Other entries in the PLT for an executable.
4809   static const unsigned char plt_entry[plt_entry_size];
4810
4811   // The reserved TLSDESC entry in the PLT for an executable.
4812   static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4813
4814   // The .eh_frame unwind information for the PLT.
4815   static const int plt_eh_frame_fde_size = 32;
4816   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4817 };
4818
4819 template<int size>
4820 class Target_x86_64_nacl : public Target_x86_64<size>
4821 {
4822  public:
4823   Target_x86_64_nacl()
4824     : Target_x86_64<size>(&x86_64_nacl_info)
4825   { }
4826
4827   virtual Output_data_plt_x86_64<size>*
4828   do_make_data_plt(Layout* layout,
4829                    Output_data_got<64, false>* got,
4830                    Output_data_got_plt_x86_64* got_plt,
4831                    Output_data_space* got_irelative)
4832   {
4833     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4834                                                  got_irelative);
4835   }
4836
4837   virtual Output_data_plt_x86_64<size>*
4838   do_make_data_plt(Layout* layout,
4839                    Output_data_got<64, false>* got,
4840                    Output_data_got_plt_x86_64* got_plt,
4841                    Output_data_space* got_irelative,
4842                    unsigned int plt_count)
4843   {
4844     return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4845                                                  got_irelative,
4846                                                  plt_count);
4847   }
4848
4849   virtual std::string
4850   do_code_fill(section_size_type length) const;
4851
4852  private:
4853   static const Target::Target_info x86_64_nacl_info;
4854 };
4855
4856 template<>
4857 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4858 {
4859   64,                   // size
4860   false,                // is_big_endian
4861   elfcpp::EM_X86_64,    // machine_code
4862   false,                // has_make_symbol
4863   false,                // has_resolve
4864   true,                 // has_code_fill
4865   true,                 // is_default_stack_executable
4866   true,                 // can_icf_inline_merge_sections
4867   '\0',                 // wrap_char
4868   "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4869   0x20000,              // default_text_segment_address
4870   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4871   0x10000,              // common_pagesize (overridable by -z common-page-size)
4872   true,                 // isolate_execinstr
4873   0x10000000,           // rosegment_gap
4874   elfcpp::SHN_UNDEF,    // small_common_shndx
4875   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4876   0,                    // small_common_section_flags
4877   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4878   NULL,                 // attributes_section
4879   NULL,                 // attributes_vendor
4880   "_start",             // entry_symbol_name
4881   32,                   // hash_entry_size
4882 };
4883
4884 template<>
4885 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4886 {
4887   32,                   // size
4888   false,                // is_big_endian
4889   elfcpp::EM_X86_64,    // machine_code
4890   false,                // has_make_symbol
4891   false,                // has_resolve
4892   true,                 // has_code_fill
4893   true,                 // is_default_stack_executable
4894   true,                 // can_icf_inline_merge_sections
4895   '\0',                 // wrap_char
4896   "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4897   0x20000,              // default_text_segment_address
4898   0x10000,              // abi_pagesize (overridable by -z max-page-size)
4899   0x10000,              // common_pagesize (overridable by -z common-page-size)
4900   true,                 // isolate_execinstr
4901   0x10000000,           // rosegment_gap
4902   elfcpp::SHN_UNDEF,    // small_common_shndx
4903   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
4904   0,                    // small_common_section_flags
4905   elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
4906   NULL,                 // attributes_section
4907   NULL,                 // attributes_vendor
4908   "_start",             // entry_symbol_name
4909   32,                   // hash_entry_size
4910 };
4911
4912 #define NACLMASK        0xe0            // 32-byte alignment mask.
4913
4914 // The first entry in the PLT.
4915
4916 template<int size>
4917 const unsigned char
4918 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4919 {
4920   0xff, 0x35,                         // pushq contents of memory address
4921   0, 0, 0, 0,                         // replaced with address of .got + 8
4922   0x4c, 0x8b, 0x1d,                   // mov GOT+16(%rip), %r11
4923   0, 0, 0, 0,                         // replaced with address of .got + 16
4924   0x41, 0x83, 0xe3, NACLMASK,         // and $-32, %r11d
4925   0x4d, 0x01, 0xfb,                   // add %r15, %r11
4926   0x41, 0xff, 0xe3,                   // jmpq *%r11
4927
4928   // 9-byte nop sequence to pad out to the next 32-byte boundary.
4929   0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4930
4931   // 32 bytes of nop to pad out to the standard size
4932   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4933   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4934   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4935   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4936   0x66,                                  // excess data32 prefix
4937   0x90                                   // nop
4938 };
4939
4940 template<int size>
4941 void
4942 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4943     unsigned char* pov,
4944     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4945     typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4946 {
4947   memcpy(pov, first_plt_entry, plt_entry_size);
4948   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4949                                               (got_address + 8
4950                                                - (plt_address + 2 + 4)));
4951   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4952                                               (got_address + 16
4953                                                - (plt_address + 9 + 4)));
4954 }
4955
4956 // Subsequent entries in the PLT.
4957
4958 template<int size>
4959 const unsigned char
4960 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4961 {
4962   0x4c, 0x8b, 0x1d,              // mov name@GOTPCREL(%rip),%r11
4963   0, 0, 0, 0,                    // replaced with address of symbol in .got
4964   0x41, 0x83, 0xe3, NACLMASK,    // and $-32, %r11d
4965   0x4d, 0x01, 0xfb,              // add %r15, %r11
4966   0x41, 0xff, 0xe3,              // jmpq *%r11
4967
4968   // 15-byte nop sequence to pad out to the next 32-byte boundary.
4969   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4970   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4971
4972   // Lazy GOT entries point here (32-byte aligned).
4973   0x68,                       // pushq immediate
4974   0, 0, 0, 0,                 // replaced with index into relocation table
4975   0xe9,                       // jmp relative
4976   0, 0, 0, 0,                 // replaced with offset to start of .plt0
4977
4978   // 22 bytes of nop to pad out to the standard size.
4979   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
4980   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4981   0x0f, 0x1f, 0x80, 0, 0, 0, 0,          // nopl 0x0(%rax)
4982 };
4983
4984 template<int size>
4985 unsigned int
4986 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4987     unsigned char* pov,
4988     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4989     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4990     unsigned int got_offset,
4991     unsigned int plt_offset,
4992     unsigned int plt_index)
4993 {
4994   memcpy(pov, plt_entry, plt_entry_size);
4995   elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4996                                               (got_address + got_offset
4997                                                - (plt_address + plt_offset
4998                                                   + 3 + 4)));
4999
5000   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
5001   elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
5002                                               - (plt_offset + 38 + 4));
5003
5004   return 32;
5005 }
5006
5007 // The reserved TLSDESC entry in the PLT.
5008
5009 template<int size>
5010 const unsigned char
5011 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
5012 {
5013   0xff, 0x35,                   // pushq x(%rip)
5014   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
5015   0x4c, 0x8b, 0x1d,             // mov y(%rip),%r11
5016   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
5017   0x41, 0x83, 0xe3, NACLMASK,   // and $-32, %r11d
5018   0x4d, 0x01, 0xfb,             // add %r15, %r11
5019   0x41, 0xff, 0xe3,             // jmpq *%r11
5020
5021   // 41 bytes of nop to pad out to the standard size.
5022   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5023   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5024   0x66, 0x66, 0x66, 0x66, 0x66, 0x66,    // excess data32 prefixes
5025   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5026   0x66, 0x66,                            // excess data32 prefixes
5027   0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5028 };
5029
5030 template<int size>
5031 void
5032 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
5033     unsigned char* pov,
5034     typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5035     typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5036     typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5037     unsigned int tlsdesc_got_offset,
5038     unsigned int plt_offset)
5039 {
5040   memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
5041   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5042                                               (got_address + 8
5043                                                - (plt_address + plt_offset
5044                                                   + 2 + 4)));
5045   elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5046                                               (got_base
5047                                                + tlsdesc_got_offset
5048                                                - (plt_address + plt_offset
5049                                                   + 9 + 4)));
5050 }
5051
5052 // The .eh_frame unwind information for the PLT.
5053
5054 template<int size>
5055 const unsigned char
5056 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5057 {
5058   0, 0, 0, 0,                           // Replaced with offset to .plt.
5059   0, 0, 0, 0,                           // Replaced with size of .plt.
5060   0,                                    // Augmentation size.
5061   elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
5062   elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
5063   elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
5064   elfcpp::DW_CFA_advance_loc + 58,      // Advance 58 to __PLT__ + 64.
5065   elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
5066   13,                                   // Block length.
5067   elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
5068   elfcpp::DW_OP_breg16, 0,              // Push %rip.
5069   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
5070   elfcpp::DW_OP_and,                    // & (%rip & 0x3f).
5071   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
5072   elfcpp::DW_OP_ge,                     // >= ((%rip & 0x3f) >= 0x25)
5073   elfcpp::DW_OP_lit3,                   // Push 3.
5074   elfcpp::DW_OP_shl,                    // << (((%rip & 0x3f) >= 0x25) << 3)
5075   elfcpp::DW_OP_plus,                   // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5076   elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
5077   elfcpp::DW_CFA_nop
5078 };
5079
5080 // Return a string used to fill a code section with nops.
5081 // For NaCl, long NOPs are only valid if they do not cross
5082 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5083 template<int size>
5084 std::string
5085 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5086 {
5087   return std::string(length, static_cast<char>(0x90));
5088 }
5089
5090 // The selector for x86_64-nacl object files.
5091
5092 template<int size>
5093 class Target_selector_x86_64_nacl
5094   : public Target_selector_nacl<Target_selector_x86_64<size>,
5095                                 Target_x86_64_nacl<size> >
5096 {
5097  public:
5098   Target_selector_x86_64_nacl()
5099     : Target_selector_nacl<Target_selector_x86_64<size>,
5100                            Target_x86_64_nacl<size> >("x86-64",
5101                                                       size == 64
5102                                                       ? "elf64-x86-64-nacl"
5103                                                       : "elf32-x86-64-nacl",
5104                                                       size == 64
5105                                                       ? "elf_x86_64_nacl"
5106                                                       : "elf32_x86_64_nacl")
5107   { }
5108 };
5109
5110 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5111 Target_selector_x86_64_nacl<32> target_selector_x32;
5112
5113 } // End anonymous namespace.