From Cary Coutant: More support for generating shared libraries.
[platform/upstream/binutils.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file.  (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 //   http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 //   http://people.redhat.com/drepper/tls.pdf
61 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65  public:
66   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67   // uses only Elf64_Rela relocation entries with explicit addends."
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70   Target_x86_64()
71     : Sized_target<64, false>(&x86_64_info),
72       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73       copy_relocs_(NULL), dynbss_(NULL)
74   { }
75
76   // Scan the relocations to look for symbol adjustments.
77   void
78   scan_relocs(const General_options& options,
79               Symbol_table* symtab,
80               Layout* layout,
81               Sized_relobj<64, false>* object,
82               unsigned int data_shndx,
83               unsigned int sh_type,
84               const unsigned char* prelocs,
85               size_t reloc_count,
86               Output_section* output_section,
87               bool needs_special_offset_handling,
88               size_t local_symbol_count,
89               const unsigned char* plocal_symbols);
90
91   // Finalize the sections.
92   void
93   do_finalize_sections(Layout*);
94
95   // Return the value to use for a dynamic which requires special
96   // treatment.
97   uint64_t
98   do_dynsym_value(const Symbol*) const;
99
100   // Relocate a section.
101   void
102   relocate_section(const Relocate_info<64, false>*,
103                    unsigned int sh_type,
104                    const unsigned char* prelocs,
105                    size_t reloc_count,
106                    Output_section* output_section,
107                    bool needs_special_offset_handling,
108                    unsigned char* view,
109                    elfcpp::Elf_types<64>::Elf_Addr view_address,
110                    off_t view_size);
111
112   // Return a string used to fill a code section with nops.
113   std::string
114   do_code_fill(off_t length);
115
116   // Return whether SYM is defined by the ABI.
117   bool
118   do_is_defined_by_abi(Symbol* sym) const
119   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
121   // Return the size of the GOT section.
122   off_t
123   got_size()
124   {
125     gold_assert(this->got_ != NULL);
126     return this->got_->data_size();
127   }
128
129  private:
130   // The class which scans relocations.
131   struct Scan
132   {
133     inline void
134     local(const General_options& options, Symbol_table* symtab,
135           Layout* layout, Target_x86_64* target,
136           Sized_relobj<64, false>* object,
137           unsigned int data_shndx,
138           Output_section* output_section,
139           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140           const elfcpp::Sym<64, false>& lsym);
141
142     inline void
143     global(const General_options& options, Symbol_table* symtab,
144            Layout* layout, Target_x86_64* target,
145            Sized_relobj<64, false>* object,
146            unsigned int data_shndx,
147            Output_section* output_section,
148            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149            Symbol* gsym);
150
151     static void
152     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154     static void
155     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156                              Symbol*);
157   };
158
159   // The class which implements relocation.
160   class Relocate
161   {
162    public:
163     Relocate()
164       : skip_call_tls_get_addr_(false)
165     { }
166
167     ~Relocate()
168     {
169       if (this->skip_call_tls_get_addr_)
170         {
171           // FIXME: This needs to specify the location somehow.
172           gold_error(_("missing expected TLS relocation"));
173         }
174     }
175
176     // Do a relocation.  Return false if the caller should not issue
177     // any warnings about this relocation.
178     inline bool
179     relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180              const elfcpp::Rela<64, false>&,
181              unsigned int r_type, const Sized_symbol<64>*,
182              const Symbol_value<64>*,
183              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184              off_t);
185
186    private:
187     // Do a TLS relocation.
188     inline void
189     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
190                  size_t relnum, const elfcpp::Rela<64, false>&,
191                  unsigned int r_type, const Sized_symbol<64>*,
192                  const Symbol_value<64>*,
193                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
195     // Do a TLS General-Dynamic to Local-Exec transition.
196     inline void
197     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
198                  Output_segment* tls_segment,
199                  const elfcpp::Rela<64, false>&, unsigned int r_type,
200                  elfcpp::Elf_types<64>::Elf_Addr value,
201                  unsigned char* view,
202                  off_t view_size);
203
204     // Do a TLS General-Dynamic to Local-Exec transition.
205     inline void
206     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
207                  Output_segment* tls_segment,
208                  const elfcpp::Rela<64, false>&, unsigned int r_type,
209                  elfcpp::Elf_types<64>::Elf_Addr value,
210                  unsigned char* view,
211                  off_t view_size);
212
213     // Do a TLS Local-Dynamic to Local-Exec transition.
214     inline void
215     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
216                  Output_segment* tls_segment,
217                  const elfcpp::Rela<64, false>&, unsigned int r_type,
218                  elfcpp::Elf_types<64>::Elf_Addr value,
219                  unsigned char* view,
220                  off_t view_size);
221
222     // Do a TLS Initial-Exec to Local-Exec transition.
223     static inline void
224     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
225                  Output_segment* tls_segment,
226                  const elfcpp::Rela<64, false>&, unsigned int r_type,
227                  elfcpp::Elf_types<64>::Elf_Addr value,
228                  unsigned char* view,
229                  off_t view_size);
230
231     // This is set if we should skip the next reloc, which should be a
232     // PLT32 reloc against ___tls_get_addr.
233     bool skip_call_tls_get_addr_;
234   };
235
236   // Adjust TLS relocation type based on the options and whether this
237   // is a local symbol.
238   static tls::Tls_optimization
239   optimize_tls_reloc(bool is_final, int r_type);
240
241   // Get the GOT section, creating it if necessary.
242   Output_data_got<64, false>*
243   got_section(Symbol_table*, Layout*);
244
245   // Get the GOT PLT section.
246   Output_data_space*
247   got_plt_section() const
248   {
249     gold_assert(this->got_plt_ != NULL);
250     return this->got_plt_;
251   }
252
253   // Create a PLT entry for a global symbol.
254   void
255   make_plt_entry(Symbol_table*, Layout*, Symbol*);
256
257   // Get the PLT section.
258   Output_data_plt_x86_64*
259   plt_section() const
260   {
261     gold_assert(this->plt_ != NULL);
262     return this->plt_;
263   }
264
265   // Get the dynamic reloc section, creating it if necessary.
266   Reloc_section*
267   rela_dyn_section(Layout*);
268
269   // Return true if the symbol may need a COPY relocation.
270   // References from an executable object to non-function symbols
271   // defined in a dynamic object may need a COPY relocation.
272   bool
273   may_need_copy_reloc(Symbol* gsym)
274   {
275     return (!parameters->output_is_shared()
276             && gsym->is_from_dynobj()
277             && gsym->type() != elfcpp::STT_FUNC);
278   }
279
280   // Copy a relocation against a global symbol.
281   void
282   copy_reloc(const General_options*, Symbol_table*, Layout*,
283              Sized_relobj<64, false>*, unsigned int,
284              Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
285
286   // Information about this specific target which we pass to the
287   // general Target structure.
288   static const Target::Target_info x86_64_info;
289
290   // The GOT section.
291   Output_data_got<64, false>* got_;
292   // The PLT section.
293   Output_data_plt_x86_64* plt_;
294   // The GOT PLT section.
295   Output_data_space* got_plt_;
296   // The dynamic reloc section.
297   Reloc_section* rela_dyn_;
298   // Relocs saved to avoid a COPY reloc.
299   Copy_relocs<64, false>* copy_relocs_;
300   // Space for variables copied with a COPY reloc.
301   Output_data_space* dynbss_;
302 };
303
304 const Target::Target_info Target_x86_64::x86_64_info =
305 {
306   64,                   // size
307   false,                // is_big_endian
308   elfcpp::EM_X86_64,    // machine_code
309   false,                // has_make_symbol
310   false,                // has_resolve
311   true,                 // has_code_fill
312   true,                 // is_default_stack_executable
313   "/lib/ld64.so.1",     // program interpreter
314   0x400000,             // default_text_segment_address
315   0x1000,               // abi_pagesize
316   0x1000                // common_pagesize
317 };
318
319 // Get the GOT section, creating it if necessary.
320
321 Output_data_got<64, false>*
322 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
323 {
324   if (this->got_ == NULL)
325     {
326       gold_assert(symtab != NULL && layout != NULL);
327
328       this->got_ = new Output_data_got<64, false>();
329
330       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
332                                       this->got_);
333
334       // The old GNU linker creates a .got.plt section.  We just
335       // create another set of data in the .got section.  Note that we
336       // always create a PLT if we create a GOT, although the PLT
337       // might be empty.
338       this->got_plt_ = new Output_data_space(8);
339       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
340                                       elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
341                                       this->got_plt_);
342
343       // The first three entries are reserved.
344       this->got_plt_->set_current_data_size(3 * 8);
345
346       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
347       symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
348                                     this->got_plt_,
349                                     0, 0, elfcpp::STT_OBJECT,
350                                     elfcpp::STB_LOCAL,
351                                     elfcpp::STV_HIDDEN, 0,
352                                     false, false);
353     }
354
355   return this->got_;
356 }
357
358 // Get the dynamic reloc section, creating it if necessary.
359
360 Target_x86_64::Reloc_section*
361 Target_x86_64::rela_dyn_section(Layout* layout)
362 {
363   if (this->rela_dyn_ == NULL)
364     {
365       gold_assert(layout != NULL);
366       this->rela_dyn_ = new Reloc_section();
367       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
368                                       elfcpp::SHF_ALLOC, this->rela_dyn_);
369     }
370   return this->rela_dyn_;
371 }
372
373 // A class to handle the PLT data.
374
375 class Output_data_plt_x86_64 : public Output_section_data
376 {
377  public:
378   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
379
380   Output_data_plt_x86_64(Layout*, Output_data_space*);
381
382   // Add an entry to the PLT.
383   void
384   add_entry(Symbol* gsym);
385
386   // Return the .rel.plt section data.
387   const Reloc_section*
388   rel_plt() const
389   { return this->rel_; }
390
391  protected:
392   void
393   do_adjust_output_section(Output_section* os);
394
395  private:
396   // The size of an entry in the PLT.
397   static const int plt_entry_size = 16;
398
399   // The first entry in the PLT.
400   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
401   // procedure linkage table for both programs and shared objects."
402   static unsigned char first_plt_entry[plt_entry_size];
403
404   // Other entries in the PLT for an executable.
405   static unsigned char plt_entry[plt_entry_size];
406
407   // Set the final size.
408   void
409   set_final_data_size()
410   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
411
412   // Write out the PLT data.
413   void
414   do_write(Output_file*);
415
416   // The reloc section.
417   Reloc_section* rel_;
418   // The .got.plt section.
419   Output_data_space* got_plt_;
420   // The number of PLT entries.
421   unsigned int count_;
422 };
423
424 // Create the PLT section.  The ordinary .got section is an argument,
425 // since we need to refer to the start.  We also create our own .got
426 // section just for PLT entries.
427
428 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
429                                                Output_data_space* got_plt)
430   : Output_section_data(8), got_plt_(got_plt), count_(0)
431 {
432   this->rel_ = new Reloc_section();
433   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
434                                   elfcpp::SHF_ALLOC, this->rel_);
435 }
436
437 void
438 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
439 {
440   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
441   // linker, and so do we.
442   os->set_entsize(4);
443 }
444
445 // Add an entry to the PLT.
446
447 void
448 Output_data_plt_x86_64::add_entry(Symbol* gsym)
449 {
450   gold_assert(!gsym->has_plt_offset());
451
452   // Note that when setting the PLT offset we skip the initial
453   // reserved PLT entry.
454   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
455
456   ++this->count_;
457
458   off_t got_offset = this->got_plt_->current_data_size();
459
460   // Every PLT entry needs a GOT entry which points back to the PLT
461   // entry (this will be changed by the dynamic linker, normally
462   // lazily when the function is called).
463   this->got_plt_->set_current_data_size(got_offset + 8);
464
465   // Every PLT entry needs a reloc.
466   gsym->set_needs_dynsym_entry();
467   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
468                          got_offset, 0);
469
470   // Note that we don't need to save the symbol.  The contents of the
471   // PLT are independent of which symbols are used.  The symbols only
472   // appear in the relocations.
473 }
474
475 // The first entry in the PLT for an executable.
476
477 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
478 {
479   // From AMD64 ABI Draft 0.98, page 76
480   0xff, 0x35,   // pushq contents of memory address
481   0, 0, 0, 0,   // replaced with address of .got + 4
482   0xff, 0x25,   // jmp indirect
483   0, 0, 0, 0,   // replaced with address of .got + 8
484   0x90, 0x90, 0x90, 0x90   // noop (x4)
485 };
486
487 // Subsequent entries in the PLT for an executable.
488
489 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
490 {
491   // From AMD64 ABI Draft 0.98, page 76
492   0xff, 0x25,   // jmpq indirect
493   0, 0, 0, 0,   // replaced with address of symbol in .got
494   0x68,         // pushq immediate
495   0, 0, 0, 0,   // replaced with offset into relocation table
496   0xe9,         // jmpq relative
497   0, 0, 0, 0    // replaced with offset to start of .plt
498 };
499
500 // Write out the PLT.  This uses the hand-coded instructions above,
501 // and adjusts them as needed.  This is specified by the AMD64 ABI.
502
503 void
504 Output_data_plt_x86_64::do_write(Output_file* of)
505 {
506   const off_t offset = this->offset();
507   const off_t oview_size = this->data_size();
508   unsigned char* const oview = of->get_output_view(offset, oview_size);
509
510   const off_t got_file_offset = this->got_plt_->offset();
511   const off_t got_size = this->got_plt_->data_size();
512   unsigned char* const got_view = of->get_output_view(got_file_offset,
513                                                       got_size);
514
515   unsigned char* pov = oview;
516
517   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
518   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
519
520   memcpy(pov, first_plt_entry, plt_entry_size);
521   if (!parameters->output_is_shared())
522     {
523       // We do a jmp relative to the PC at the end of this instruction.
524       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
525                                                   - (plt_address + 6));
526       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
527                                         - (plt_address + 12));
528     }
529   pov += plt_entry_size;
530
531   unsigned char* got_pov = got_view;
532
533   memset(got_pov, 0, 24);
534   got_pov += 24;
535
536   unsigned int plt_offset = plt_entry_size;
537   unsigned int got_offset = 24;
538   const unsigned int count = this->count_;
539   for (unsigned int plt_index = 0;
540        plt_index < count;
541        ++plt_index,
542          pov += plt_entry_size,
543          got_pov += 8,
544          plt_offset += plt_entry_size,
545          got_offset += 8)
546     {
547       // Set and adjust the PLT entry itself.
548       memcpy(pov, plt_entry, plt_entry_size);
549       if (parameters->output_is_shared())
550         // FIXME(csilvers): what's the right thing to write here?
551         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
552       else
553         elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
554                                                     (got_address + got_offset
555                                                      - (plt_address + plt_offset
556                                                         + 6)));
557
558       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
559       elfcpp::Swap<32, false>::writeval(pov + 12,
560                                         - (plt_offset + plt_entry_size));
561
562       // Set the entry in the GOT.
563       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
564     }
565
566   gold_assert(pov - oview == oview_size);
567   gold_assert(got_pov - got_view == got_size);
568
569   of->write_output_view(offset, oview_size, oview);
570   of->write_output_view(got_file_offset, got_size, got_view);
571 }
572
573 // Create a PLT entry for a global symbol.
574
575 void
576 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
577                               Symbol* gsym)
578 {
579   if (gsym->has_plt_offset())
580     return;
581
582   if (this->plt_ == NULL)
583     {
584       // Create the GOT sections first.
585       this->got_section(symtab, layout);
586
587       this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
588       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
589                                       (elfcpp::SHF_ALLOC
590                                        | elfcpp::SHF_EXECINSTR),
591                                       this->plt_);
592     }
593
594   this->plt_->add_entry(gsym);
595 }
596
597 // Handle a relocation against a non-function symbol defined in a
598 // dynamic object.  The traditional way to handle this is to generate
599 // a COPY relocation to copy the variable at runtime from the shared
600 // object into the executable's data segment.  However, this is
601 // undesirable in general, as if the size of the object changes in the
602 // dynamic object, the executable will no longer work correctly.  If
603 // this relocation is in a writable section, then we can create a
604 // dynamic reloc and the dynamic linker will resolve it to the correct
605 // address at runtime.  However, we do not want do that if the
606 // relocation is in a read-only section, as it would prevent the
607 // readonly segment from being shared.  And if we have to eventually
608 // generate a COPY reloc, then any dynamic relocations will be
609 // useless.  So this means that if this is a writable section, we need
610 // to save the relocation until we see whether we have to create a
611 // COPY relocation for this symbol for any other relocation.
612
613 void
614 Target_x86_64::copy_reloc(const General_options* options,
615                           Symbol_table* symtab,
616                           Layout* layout,
617                           Sized_relobj<64, false>* object,
618                           unsigned int data_shndx,
619                           Output_section* output_section,
620                           Symbol* gsym,
621                           const elfcpp::Rela<64, false>& rela)
622 {
623   Sized_symbol<64>* ssym;
624   ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
625                                                         SELECT_SIZE(64));
626
627   if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
628                                                data_shndx, ssym))
629     {
630       // So far we do not need a COPY reloc.  Save this relocation.
631       // If it turns out that we never need a COPY reloc for this
632       // symbol, then we will emit the relocation.
633       if (this->copy_relocs_ == NULL)
634         this->copy_relocs_ = new Copy_relocs<64, false>();
635       this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
636     }
637   else
638     {
639       // Allocate space for this symbol in the .bss section.
640
641       elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
642
643       // There is no defined way to determine the required alignment
644       // of the symbol.  We pick the alignment based on the size.  We
645       // set an arbitrary maximum of 256.
646       unsigned int align;
647       for (align = 1; align < 512; align <<= 1)
648         if ((symsize & align) != 0)
649           break;
650
651       if (this->dynbss_ == NULL)
652         {
653           this->dynbss_ = new Output_data_space(align);
654           layout->add_output_section_data(".bss",
655                                           elfcpp::SHT_NOBITS,
656                                           (elfcpp::SHF_ALLOC
657                                            | elfcpp::SHF_WRITE),
658                                           this->dynbss_);
659         }
660
661       Output_data_space* dynbss = this->dynbss_;
662
663       if (align > dynbss->addralign())
664         dynbss->set_space_alignment(align);
665
666       off_t dynbss_size = dynbss->current_data_size();
667       dynbss_size = align_address(dynbss_size, align);
668       off_t offset = dynbss_size;
669       dynbss->set_current_data_size(dynbss_size + symsize);
670
671       symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
672
673       // Add the COPY reloc.
674       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
675       rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
676     }
677 }
678
679
680 // Optimize the TLS relocation type based on what we know about the
681 // symbol.  IS_FINAL is true if the final address of this symbol is
682 // known at link time.
683
684 tls::Tls_optimization
685 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
686 {
687   // If we are generating a shared library, then we can't do anything
688   // in the linker.
689   if (parameters->output_is_shared())
690     return tls::TLSOPT_NONE;
691
692   switch (r_type)
693     {
694     case elfcpp::R_X86_64_TLSGD:
695     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
696     case elfcpp::R_X86_64_TLSDESC_CALL:
697       // These are General-Dynamic which permits fully general TLS
698       // access.  Since we know that we are generating an executable,
699       // we can convert this to Initial-Exec.  If we also know that
700       // this is a local symbol, we can further switch to Local-Exec.
701       if (is_final)
702         return tls::TLSOPT_TO_LE;
703       return tls::TLSOPT_TO_IE;
704
705     case elfcpp::R_X86_64_TLSLD:
706       // This is Local-Dynamic, which refers to a local symbol in the
707       // dynamic TLS block.  Since we know that we generating an
708       // executable, we can switch to Local-Exec.
709       return tls::TLSOPT_TO_LE;
710
711     case elfcpp::R_X86_64_DTPOFF32:
712     case elfcpp::R_X86_64_DTPOFF64:
713       // Another Local-Dynamic reloc.
714       return tls::TLSOPT_TO_LE;
715
716     case elfcpp::R_X86_64_GOTTPOFF:
717       // These are Initial-Exec relocs which get the thread offset
718       // from the GOT.  If we know that we are linking against the
719       // local symbol, we can switch to Local-Exec, which links the
720       // thread offset into the instruction.
721       if (is_final)
722         return tls::TLSOPT_TO_LE;
723       return tls::TLSOPT_NONE;
724
725     case elfcpp::R_X86_64_TPOFF32:
726       // When we already have Local-Exec, there is nothing further we
727       // can do.
728       return tls::TLSOPT_NONE;
729
730     default:
731       gold_unreachable();
732     }
733 }
734
735 // Report an unsupported relocation against a local symbol.
736
737 void
738 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
739                                              unsigned int r_type)
740 {
741   gold_error(_("%s: unsupported reloc %u against local symbol"),
742              object->name().c_str(), r_type);
743 }
744
745 // Scan a relocation for a local symbol.
746
747 inline void
748 Target_x86_64::Scan::local(const General_options&,
749                            Symbol_table* symtab,
750                            Layout* layout,
751                            Target_x86_64* target,
752                            Sized_relobj<64, false>* object,
753                            unsigned int data_shndx,
754                            Output_section* output_section,
755                            const elfcpp::Rela<64, false>& reloc,
756                            unsigned int r_type,
757                            const elfcpp::Sym<64, false>& lsym)
758 {
759   switch (r_type)
760     {
761     case elfcpp::R_X86_64_NONE:
762     case elfcpp::R_386_GNU_VTINHERIT:
763     case elfcpp::R_386_GNU_VTENTRY:
764       break;
765
766     case elfcpp::R_X86_64_64:
767       // If building a shared library (or a position-independent
768       // executable), we need to create a dynamic relocation for
769       // this location. The relocation applied at link time will
770       // apply the link-time value, so we flag the location with
771       // an R_386_RELATIVE relocation so the dynamic loader can
772       // relocate it easily.
773       if (parameters->output_is_position_independent())
774         {
775           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
776           rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
777                               output_section, data_shndx,
778                               reloc.get_r_offset(), 0);
779         }
780       break;
781
782     case elfcpp::R_X86_64_32:
783     case elfcpp::R_X86_64_32S:
784     case elfcpp::R_X86_64_16:
785     case elfcpp::R_X86_64_8:
786       // If building a shared library (or a position-independent
787       // executable), we need to create a dynamic relocation for
788       // this location. The relocation applied at link time will
789       // apply the link-time value, so we flag the location with
790       // an R_386_RELATIVE relocation so the dynamic loader can
791       // relocate it easily.
792       if (parameters->output_is_position_independent())
793         {
794           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
795           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
796           rela_dyn->add_local(object, r_sym, r_type, output_section,
797                               data_shndx, reloc.get_r_offset(),
798                               reloc.get_r_addend());
799         }
800       break;
801
802     case elfcpp::R_X86_64_PC64:
803     case elfcpp::R_X86_64_PC32:
804     case elfcpp::R_X86_64_PC16:
805     case elfcpp::R_X86_64_PC8:
806       break;
807
808     case elfcpp::R_X86_64_PLT32:
809       // Since we know this is a local symbol, we can handle this as a
810       // PC32 reloc.
811       break;
812
813     case elfcpp::R_X86_64_GOTPC32:
814     case elfcpp::R_X86_64_GOTOFF64:
815     case elfcpp::R_X86_64_GOTPC64:
816     case elfcpp::R_X86_64_PLTOFF64:
817       // We need a GOT section.
818       target->got_section(symtab, layout);
819       // For PLTOFF64, we'd normally want a PLT section, but since we
820       // know this is a local symbol, no PLT is needed.
821       break;
822
823     case elfcpp::R_X86_64_GOT64:
824     case elfcpp::R_X86_64_GOT32:
825     case elfcpp::R_X86_64_GOTPCREL64:
826     case elfcpp::R_X86_64_GOTPCREL:
827     case elfcpp::R_X86_64_GOTPLT64:
828       {
829         // The symbol requires a GOT entry.
830         Output_data_got<64, false>* got = target->got_section(symtab, layout);
831         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
832         if (got->add_local(object, r_sym))
833           {
834             // If we are generating a shared object, we need to add a
835             // dynamic relocation for this symbol's GOT entry.
836             if (parameters->output_is_position_independent())
837               {
838                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
839                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
840                 if (r_type != elfcpp::R_X86_64_GOT32)
841                   rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
842                                       got, object->local_got_offset(r_sym), 0);
843                 else
844                   rela_dyn->add_local(object, r_sym, r_type,
845                                       got, object->local_got_offset(r_sym), 0);
846               }
847           }
848         // For GOTPLT64, we'd normally want a PLT section, but since
849         // we know this is a local symbol, no PLT is needed.
850       }
851       break;
852
853     case elfcpp::R_X86_64_COPY:
854     case elfcpp::R_X86_64_GLOB_DAT:
855     case elfcpp::R_X86_64_JUMP_SLOT:
856     case elfcpp::R_X86_64_RELATIVE:
857       // These are outstanding tls relocs, which are unexpected when linking
858     case elfcpp::R_X86_64_TPOFF64:
859     case elfcpp::R_X86_64_DTPMOD64:
860     case elfcpp::R_X86_64_TLSDESC:
861       gold_error(_("%s: unexpected reloc %u in object file"),
862                  object->name().c_str(), r_type);
863       break;
864
865       // These are initial tls relocs, which are expected when linking
866     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
867     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
868     case elfcpp::R_X86_64_TLSDESC_CALL:
869     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
870     case elfcpp::R_X86_64_DTPOFF32:
871     case elfcpp::R_X86_64_DTPOFF64:
872     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
873     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
874       {
875         bool output_is_shared = parameters->output_is_shared();
876         const tls::Tls_optimization optimized_type
877             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
878         switch (r_type)
879           {
880           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
881             if (optimized_type == tls::TLSOPT_NONE)
882               {
883                 // Create a pair of GOT entries for the module index and
884                 // dtv-relative offset.
885                 Output_data_got<64, false>* got
886                     = target->got_section(symtab, layout);
887                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
888                 got->add_local_tls_with_rela(object, r_sym,
889                                              lsym.get_st_shndx(), true,
890                                              target->rela_dyn_section(layout),
891                                              elfcpp::R_X86_64_DTPMOD64);
892               }
893             else if (optimized_type != tls::TLSOPT_TO_LE)
894               unsupported_reloc_local(object, r_type);
895             break;
896
897           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
898           case elfcpp::R_X86_64_TLSDESC_CALL:
899             // FIXME: If not relaxing to LE, we need to generate
900             // a GOT entry with a R_x86_64_TLSDESC reloc.
901             if (optimized_type != tls::TLSOPT_TO_LE)
902               unsupported_reloc_local(object, r_type);
903             break;
904
905           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
906             if (optimized_type == tls::TLSOPT_NONE)
907               {
908                 // Create a GOT entry for the module index.
909                 Output_data_got<64, false>* got
910                     = target->got_section(symtab, layout);
911                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
912                 got->add_local_tls_with_rela(object, r_sym,
913                                              lsym.get_st_shndx(), false,
914                                              target->rela_dyn_section(layout),
915                                              elfcpp::R_X86_64_DTPMOD64);
916               }
917             else if (optimized_type != tls::TLSOPT_TO_LE)
918               unsupported_reloc_local(object, r_type);
919             break;
920
921           case elfcpp::R_X86_64_DTPOFF32:
922           case elfcpp::R_X86_64_DTPOFF64:
923             break;
924
925           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
926             if (optimized_type == tls::TLSOPT_NONE)
927               {
928                 // Create a GOT entry for the tp-relative offset.
929                 Output_data_got<64, false>* got
930                     = target->got_section(symtab, layout);
931                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
932                 got->add_local_with_rela(object, r_sym,
933                                          target->rela_dyn_section(layout),
934                                          elfcpp::R_X86_64_TPOFF64);
935               }
936             else if (optimized_type != tls::TLSOPT_TO_LE)
937               unsupported_reloc_local(object, r_type);
938             break;
939
940           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
941             if (output_is_shared)
942               unsupported_reloc_local(object, r_type);
943             break;
944
945           default:
946             gold_unreachable();
947           }
948       }
949       break;
950
951     case elfcpp::R_X86_64_SIZE32:
952     case elfcpp::R_X86_64_SIZE64:
953     default:
954       gold_error(_("%s: unsupported reloc %u against local symbol"),
955                  object->name().c_str(), r_type);
956       break;
957     }
958 }
959
960
961 // Report an unsupported relocation against a global symbol.
962
963 void
964 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
965                                               unsigned int r_type,
966                                               Symbol* gsym)
967 {
968   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
969              object->name().c_str(), r_type, gsym->demangled_name().c_str());
970 }
971
972 // Scan a relocation for a global symbol.
973
974 inline void
975 Target_x86_64::Scan::global(const General_options& options,
976                             Symbol_table* symtab,
977                             Layout* layout,
978                             Target_x86_64* target,
979                             Sized_relobj<64, false>* object,
980                             unsigned int data_shndx,
981                             Output_section* output_section,
982                             const elfcpp::Rela<64, false>& reloc,
983                             unsigned int r_type,
984                             Symbol* gsym)
985 {
986   switch (r_type)
987     {
988     case elfcpp::R_X86_64_NONE:
989     case elfcpp::R_386_GNU_VTINHERIT:
990     case elfcpp::R_386_GNU_VTENTRY:
991       break;
992
993     case elfcpp::R_X86_64_64:
994     case elfcpp::R_X86_64_32:
995     case elfcpp::R_X86_64_32S:
996     case elfcpp::R_X86_64_16:
997     case elfcpp::R_X86_64_8:
998       {
999         // Make a PLT entry if necessary.
1000         if (gsym->needs_plt_entry())
1001           {
1002             target->make_plt_entry(symtab, layout, gsym);
1003             // Since this is not a PC-relative relocation, we may be
1004             // taking the address of a function. In that case we need to
1005             // set the entry in the dynamic symbol table to the address of
1006             // the PLT entry.
1007             if (gsym->is_from_dynobj())
1008               gsym->set_needs_dynsym_value();
1009           }
1010         // Make a dynamic relocation if necessary.
1011         if (gsym->needs_dynamic_reloc(true, false))
1012           {
1013             if (target->may_need_copy_reloc(gsym))
1014               {
1015                 target->copy_reloc(&options, symtab, layout, object,
1016                                    data_shndx, output_section, gsym, reloc);
1017               }
1018             else if (r_type == elfcpp::R_X86_64_64
1019                      && gsym->can_use_relative_reloc(false))
1020               {
1021                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1022                 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1023                                     output_section, data_shndx,
1024                                     reloc.get_r_offset(), 0);
1025               }
1026             else
1027               {
1028                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1029                 rela_dyn->add_global(gsym, r_type, output_section, object,
1030                                      data_shndx, reloc.get_r_offset(),
1031                                      reloc.get_r_addend());
1032               }
1033           }
1034       }
1035       break;
1036
1037     case elfcpp::R_X86_64_PC64:
1038     case elfcpp::R_X86_64_PC32:
1039     case elfcpp::R_X86_64_PC16:
1040     case elfcpp::R_X86_64_PC8:
1041       {
1042         // Make a PLT entry if necessary.
1043         if (gsym->needs_plt_entry())
1044           target->make_plt_entry(symtab, layout, gsym);
1045         // Make a dynamic relocation if necessary.
1046         bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
1047         if (gsym->needs_dynamic_reloc(true, is_function_call))
1048           {
1049             if (target->may_need_copy_reloc(gsym))
1050               {
1051                 target->copy_reloc(&options, symtab, layout, object,
1052                                    data_shndx, output_section, gsym, reloc);
1053               }
1054             else
1055               {
1056                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1057                 rela_dyn->add_global(gsym, r_type, output_section, object,
1058                                      data_shndx, reloc.get_r_offset(),
1059                                      reloc.get_r_addend());
1060               }
1061           }
1062       }
1063       break;
1064
1065     case elfcpp::R_X86_64_GOT64:
1066     case elfcpp::R_X86_64_GOT32:
1067     case elfcpp::R_X86_64_GOTPCREL64:
1068     case elfcpp::R_X86_64_GOTPCREL:
1069     case elfcpp::R_X86_64_GOTPLT64:
1070       {
1071         // The symbol requires a GOT entry.
1072         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1073         if (gsym->final_value_is_known())
1074           got->add_global(gsym);
1075         else
1076           {
1077             // If this symbol is not fully resolved, we need to add a
1078             // dynamic relocation for it.
1079             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1080             if (gsym->is_from_dynobj() || gsym->is_preemptible())
1081               got->add_global_with_rela(gsym, rela_dyn,
1082                                         elfcpp::R_X86_64_GLOB_DAT);
1083             else
1084               {
1085                 if (got->add_global(gsym))
1086                   {
1087                     rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1088                                         got, gsym->got_offset(), 0);
1089                     // Make sure we write the link-time value to the GOT.
1090                     gsym->set_needs_value_in_got();
1091                   }
1092               }
1093           }
1094         // For GOTPLT64, we also need a PLT entry (but only if the
1095         // symbol is not fully resolved).
1096         if (r_type == elfcpp::R_X86_64_GOTPLT64
1097             && !gsym->final_value_is_known())
1098           target->make_plt_entry(symtab, layout, gsym);
1099       }
1100       break;
1101
1102     case elfcpp::R_X86_64_PLT32:
1103       // If the symbol is fully resolved, this is just a PC32 reloc.
1104       // Otherwise we need a PLT entry.
1105       if (gsym->final_value_is_known())
1106         break;
1107       // If building a shared library, we can also skip the PLT entry
1108       // if the symbol is defined in the output file and is protected
1109       // or hidden.
1110       if (gsym->is_defined()
1111           && !gsym->is_from_dynobj()
1112           && !gsym->is_preemptible())
1113         break;
1114       target->make_plt_entry(symtab, layout, gsym);
1115       break;
1116
1117     case elfcpp::R_X86_64_GOTPC32:
1118     case elfcpp::R_X86_64_GOTOFF64:
1119     case elfcpp::R_X86_64_GOTPC64:
1120     case elfcpp::R_X86_64_PLTOFF64:
1121       // We need a GOT section.
1122       target->got_section(symtab, layout);
1123       // For PLTOFF64, we also need a PLT entry (but only if the
1124       // symbol is not fully resolved).
1125       if (r_type == elfcpp::R_X86_64_PLTOFF64
1126           && !gsym->final_value_is_known())
1127         target->make_plt_entry(symtab, layout, gsym);
1128       break;
1129
1130     case elfcpp::R_X86_64_COPY:
1131     case elfcpp::R_X86_64_GLOB_DAT:
1132     case elfcpp::R_X86_64_JUMP_SLOT:
1133     case elfcpp::R_X86_64_RELATIVE:
1134       // These are outstanding tls relocs, which are unexpected when linking
1135     case elfcpp::R_X86_64_TPOFF64:
1136     case elfcpp::R_X86_64_DTPMOD64:
1137     case elfcpp::R_X86_64_TLSDESC:
1138       gold_error(_("%s: unexpected reloc %u in object file"),
1139                  object->name().c_str(), r_type);
1140       break;
1141
1142       // These are initial tls relocs, which are expected for global()
1143     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1144     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1145     case elfcpp::R_X86_64_TLSDESC_CALL:
1146     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1147     case elfcpp::R_X86_64_DTPOFF32:
1148     case elfcpp::R_X86_64_DTPOFF64:
1149     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1150     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1151       {
1152         const bool is_final = gsym->final_value_is_known();
1153         const tls::Tls_optimization optimized_type
1154             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1155         switch (r_type)
1156           {
1157           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1158             if (optimized_type == tls::TLSOPT_NONE)
1159               {
1160                 // Create a pair of GOT entries for the module index and
1161                 // dtv-relative offset.
1162                 Output_data_got<64, false>* got
1163                     = target->got_section(symtab, layout);
1164                 got->add_global_tls_with_rela(gsym,
1165                                               target->rela_dyn_section(layout),
1166                                               elfcpp::R_X86_64_DTPMOD64,
1167                                               elfcpp::R_X86_64_DTPOFF64);
1168               }
1169             else if (optimized_type == tls::TLSOPT_TO_IE)
1170               {
1171                 // Create a GOT entry for the tp-relative offset.
1172                 Output_data_got<64, false>* got
1173                     = target->got_section(symtab, layout);
1174                 got->add_global_with_rela(gsym,
1175                                           target->rela_dyn_section(layout),
1176                                           elfcpp::R_X86_64_TPOFF64);
1177               }
1178             else if (optimized_type != tls::TLSOPT_TO_LE)
1179               unsupported_reloc_global(object, r_type, gsym);
1180             break;
1181
1182           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1183           case elfcpp::R_X86_64_TLSDESC_CALL:
1184             // FIXME: If not relaxing to LE, we need to generate
1185             // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1186             if (optimized_type != tls::TLSOPT_TO_LE)
1187               unsupported_reloc_global(object, r_type, gsym);
1188             break;
1189
1190           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1191             if (optimized_type == tls::TLSOPT_NONE)
1192               {
1193                 // Create a GOT entry for the module index.
1194                 Output_data_got<64, false>* got
1195                     = target->got_section(symtab, layout);
1196                 got->add_global_tls_with_rela(gsym,
1197                                               target->rela_dyn_section(layout),
1198                                               elfcpp::R_X86_64_DTPMOD64);
1199               }
1200             else if (optimized_type != tls::TLSOPT_TO_LE)
1201               unsupported_reloc_global(object, r_type, gsym);
1202             break;
1203
1204           case elfcpp::R_X86_64_DTPOFF32:
1205           case elfcpp::R_X86_64_DTPOFF64:
1206             break;
1207
1208           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1209             if (optimized_type == tls::TLSOPT_NONE)
1210               {
1211                 // Create a GOT entry for the tp-relative offset.
1212                 Output_data_got<64, false>* got
1213                     = target->got_section(symtab, layout);
1214                 got->add_global_with_rela(gsym,
1215                                           target->rela_dyn_section(layout),
1216                                           elfcpp::R_X86_64_TPOFF64);
1217               }
1218             else if (optimized_type != tls::TLSOPT_TO_LE)
1219               unsupported_reloc_global(object, r_type, gsym);
1220             break;
1221
1222           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1223             if (parameters->output_is_shared())
1224               unsupported_reloc_local(object, r_type);
1225             break;
1226
1227           default:
1228             gold_unreachable();
1229           }
1230       }
1231       break;
1232
1233     case elfcpp::R_X86_64_SIZE32:
1234     case elfcpp::R_X86_64_SIZE64:
1235     default:
1236       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1237                  object->name().c_str(), r_type,
1238                  gsym->demangled_name().c_str());
1239       break;
1240     }
1241 }
1242
1243 // Scan relocations for a section.
1244
1245 void
1246 Target_x86_64::scan_relocs(const General_options& options,
1247                            Symbol_table* symtab,
1248                            Layout* layout,
1249                            Sized_relobj<64, false>* object,
1250                            unsigned int data_shndx,
1251                            unsigned int sh_type,
1252                            const unsigned char* prelocs,
1253                            size_t reloc_count,
1254                            Output_section* output_section,
1255                            bool needs_special_offset_handling,
1256                            size_t local_symbol_count,
1257                            const unsigned char* plocal_symbols)
1258 {
1259   if (sh_type == elfcpp::SHT_REL)
1260     {
1261       gold_error(_("%s: unsupported REL reloc section"),
1262                  object->name().c_str());
1263       return;
1264     }
1265
1266   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1267       Target_x86_64::Scan>(
1268     options,
1269     symtab,
1270     layout,
1271     this,
1272     object,
1273     data_shndx,
1274     prelocs,
1275     reloc_count,
1276     output_section,
1277     needs_special_offset_handling,
1278     local_symbol_count,
1279     plocal_symbols);
1280 }
1281
1282 // Finalize the sections.
1283
1284 void
1285 Target_x86_64::do_finalize_sections(Layout* layout)
1286 {
1287   // Fill in some more dynamic tags.
1288   Output_data_dynamic* const odyn = layout->dynamic_data();
1289   if (odyn != NULL)
1290     {
1291       if (this->got_plt_ != NULL)
1292         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1293
1294       if (this->plt_ != NULL)
1295         {
1296           const Output_data* od = this->plt_->rel_plt();
1297           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1298           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1299           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1300         }
1301
1302       if (this->rela_dyn_ != NULL)
1303         {
1304           const Output_data* od = this->rela_dyn_;
1305           odyn->add_section_address(elfcpp::DT_RELA, od);
1306           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1307           odyn->add_constant(elfcpp::DT_RELAENT,
1308                              elfcpp::Elf_sizes<64>::rela_size);
1309         }
1310
1311       if (!parameters->output_is_shared())
1312         {
1313           // The value of the DT_DEBUG tag is filled in by the dynamic
1314           // linker at run time, and used by the debugger.
1315           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1316         }
1317     }
1318
1319   // Emit any relocs we saved in an attempt to avoid generating COPY
1320   // relocs.
1321   if (this->copy_relocs_ == NULL)
1322     return;
1323   if (this->copy_relocs_->any_to_emit())
1324     {
1325       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1326       this->copy_relocs_->emit(rela_dyn);
1327     }
1328   delete this->copy_relocs_;
1329   this->copy_relocs_ = NULL;
1330 }
1331
1332 // Perform a relocation.
1333
1334 inline bool
1335 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1336                                   Target_x86_64* target,
1337                                   size_t relnum,
1338                                   const elfcpp::Rela<64, false>& rela,
1339                                   unsigned int r_type,
1340                                   const Sized_symbol<64>* gsym,
1341                                   const Symbol_value<64>* psymval,
1342                                   unsigned char* view,
1343                                   elfcpp::Elf_types<64>::Elf_Addr address,
1344                                   off_t view_size)
1345 {
1346   if (this->skip_call_tls_get_addr_)
1347     {
1348       if (r_type != elfcpp::R_X86_64_PLT32
1349           || gsym == NULL
1350           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1351         {
1352           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1353                                  _("missing expected TLS relocation"));
1354         }
1355       else
1356         {
1357           this->skip_call_tls_get_addr_ = false;
1358           return false;
1359         }
1360     }
1361
1362   // Pick the value to use for symbols defined in shared objects.
1363   Symbol_value<64> symval;
1364   if (gsym != NULL
1365       && (gsym->is_from_dynobj()
1366           || (parameters->output_is_shared()
1367               && gsym->is_preemptible()))
1368       && gsym->has_plt_offset())
1369     {
1370       symval.set_output_value(target->plt_section()->address()
1371                               + gsym->plt_offset());
1372       psymval = &symval;
1373     }
1374
1375   const Sized_relobj<64, false>* object = relinfo->object;
1376   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1377
1378   // Get the GOT offset if needed.
1379   // The GOT pointer points to the end of the GOT section.
1380   // We need to subtract the size of the GOT section to get
1381   // the actual offset to use in the relocation.
1382   bool have_got_offset = false;
1383   unsigned int got_offset = 0;
1384   switch (r_type)
1385     {
1386     case elfcpp::R_X86_64_GOT32:
1387     case elfcpp::R_X86_64_GOT64:
1388     case elfcpp::R_X86_64_GOTPLT64:
1389     case elfcpp::R_X86_64_GOTPCREL:
1390     case elfcpp::R_X86_64_GOTPCREL64:
1391       if (gsym != NULL)
1392         {
1393           gold_assert(gsym->has_got_offset());
1394           got_offset = gsym->got_offset() - target->got_size();
1395         }
1396       else
1397         {
1398           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1399           gold_assert(object->local_has_got_offset(r_sym));
1400           got_offset = object->local_got_offset(r_sym) - target->got_size();
1401         }
1402       have_got_offset = true;
1403       break;
1404
1405     default:
1406       break;
1407     }
1408
1409   switch (r_type)
1410     {
1411     case elfcpp::R_X86_64_NONE:
1412     case elfcpp::R_386_GNU_VTINHERIT:
1413     case elfcpp::R_386_GNU_VTENTRY:
1414       break;
1415
1416     case elfcpp::R_X86_64_64:
1417       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1418       break;
1419
1420     case elfcpp::R_X86_64_PC64:
1421       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1422                                               address);
1423       break;
1424
1425     case elfcpp::R_X86_64_32:
1426       // FIXME: we need to verify that value + addend fits into 32 bits:
1427       //    uint64_t x = value + addend;
1428       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1429       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1430       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1431       break;
1432
1433     case elfcpp::R_X86_64_32S:
1434       // FIXME: we need to verify that value + addend fits into 32 bits:
1435       //    int64_t x = value + addend;   // note this quantity is signed!
1436       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1437       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1438       break;
1439
1440     case elfcpp::R_X86_64_PC32:
1441       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1442                                               address);
1443       break;
1444
1445     case elfcpp::R_X86_64_16:
1446       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1447       break;
1448
1449     case elfcpp::R_X86_64_PC16:
1450       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1451                                               address);
1452       break;
1453
1454     case elfcpp::R_X86_64_8:
1455       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1456       break;
1457
1458     case elfcpp::R_X86_64_PC8:
1459       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1460                                              address);
1461       break;
1462
1463     case elfcpp::R_X86_64_PLT32:
1464       gold_assert(gsym == NULL
1465                   || gsym->has_plt_offset()
1466                   || gsym->final_value_is_known());
1467       // Note: while this code looks the same as for R_X86_64_PC32, it
1468       // behaves differently because psymval was set to point to
1469       // the PLT entry, rather than the symbol, in Scan::global().
1470       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1471                                               address);
1472       break;
1473
1474     case elfcpp::R_X86_64_PLTOFF64:
1475       {
1476         gold_assert(gsym);
1477         gold_assert(gsym->has_plt_offset()
1478                     || gsym->final_value_is_known());
1479         elfcpp::Elf_types<64>::Elf_Addr got_address;
1480         got_address = target->got_section(NULL, NULL)->address();
1481         Relocate_functions<64, false>::rela64(view, object, psymval,
1482                                               addend - got_address);
1483       }
1484
1485     case elfcpp::R_X86_64_GOT32:
1486       gold_assert(have_got_offset);
1487       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1488       break;
1489
1490     case elfcpp::R_X86_64_GOTPC32:
1491       {
1492         gold_assert(gsym);
1493         elfcpp::Elf_types<64>::Elf_Addr value;
1494         value = target->got_plt_section()->address();
1495         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1496       }
1497       break;
1498
1499     case elfcpp::R_X86_64_GOT64:
1500       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1501       // Since we always add a PLT entry, this is equivalent.
1502     case elfcpp::R_X86_64_GOTPLT64:
1503       gold_assert(have_got_offset);
1504       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1505       break;
1506
1507     case elfcpp::R_X86_64_GOTPC64:
1508       {
1509         gold_assert(gsym);
1510         elfcpp::Elf_types<64>::Elf_Addr value;
1511         value = target->got_plt_section()->address();
1512         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1513       }
1514       break;
1515
1516     case elfcpp::R_X86_64_GOTOFF64:
1517       {
1518         elfcpp::Elf_types<64>::Elf_Addr value;
1519         value = (psymval->value(object, 0)
1520                  - target->got_plt_section()->address());
1521         Relocate_functions<64, false>::rela64(view, value, addend);
1522       }
1523       break;
1524
1525     case elfcpp::R_X86_64_GOTPCREL:
1526       {
1527         gold_assert(have_got_offset);
1528         elfcpp::Elf_types<64>::Elf_Addr value;
1529         value = target->got_plt_section()->address() + got_offset;
1530         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1531       }
1532       break;
1533
1534     case elfcpp::R_X86_64_GOTPCREL64:
1535       {
1536         gold_assert(have_got_offset);
1537         elfcpp::Elf_types<64>::Elf_Addr value;
1538         value = target->got_plt_section()->address() + got_offset;
1539         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1540       }
1541       break;
1542
1543     case elfcpp::R_X86_64_COPY:
1544     case elfcpp::R_X86_64_GLOB_DAT:
1545     case elfcpp::R_X86_64_JUMP_SLOT:
1546     case elfcpp::R_X86_64_RELATIVE:
1547       // These are outstanding tls relocs, which are unexpected when linking
1548     case elfcpp::R_X86_64_TPOFF64:
1549     case elfcpp::R_X86_64_DTPMOD64:
1550     case elfcpp::R_X86_64_TLSDESC:
1551       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1552                              _("unexpected reloc %u in object file"),
1553                              r_type);
1554       break;
1555
1556       // These are initial tls relocs, which are expected when linking
1557     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1558     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1559     case elfcpp::R_X86_64_TLSDESC_CALL:
1560     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1561     case elfcpp::R_X86_64_DTPOFF32:
1562     case elfcpp::R_X86_64_DTPOFF64:
1563     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1564     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1565       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1566                          view, address, view_size);
1567       break;
1568
1569     case elfcpp::R_X86_64_SIZE32:
1570     case elfcpp::R_X86_64_SIZE64:
1571     default:
1572       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1573                              _("unsupported reloc %u"),
1574                              r_type);
1575       break;
1576     }
1577
1578   return true;
1579 }
1580
1581 // Perform a TLS relocation.
1582
1583 inline void
1584 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1585                                       Target_x86_64* target,
1586                                       size_t relnum,
1587                                       const elfcpp::Rela<64, false>& rela,
1588                                       unsigned int r_type,
1589                                       const Sized_symbol<64>* gsym,
1590                                       const Symbol_value<64>* psymval,
1591                                       unsigned char* view,
1592                                       elfcpp::Elf_types<64>::Elf_Addr,
1593                                       off_t view_size)
1594 {
1595   Output_segment* tls_segment = relinfo->layout->tls_segment();
1596
1597   const Sized_relobj<64, false>* object = relinfo->object;
1598
1599   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1600
1601   const bool is_final = (gsym == NULL
1602                          ? !parameters->output_is_position_independent()
1603                          : gsym->final_value_is_known());
1604   const tls::Tls_optimization optimized_type
1605       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1606   switch (r_type)
1607     {
1608     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1609     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1610     case elfcpp::R_X86_64_TLSDESC_CALL:
1611       if (optimized_type == tls::TLSOPT_TO_LE)
1612         {
1613           gold_assert(tls_segment != NULL);
1614           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1615                              rela, r_type, value, view,
1616                              view_size);
1617           break;
1618         }
1619       else
1620         {
1621           unsigned int got_offset;
1622           if (gsym != NULL)
1623             {
1624               gold_assert(gsym->has_tls_got_offset(true));
1625               got_offset = gsym->tls_got_offset(true) - target->got_size();
1626             }
1627           else
1628             {
1629               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1630               gold_assert(object->local_has_tls_got_offset(r_sym, true));
1631               got_offset = (object->local_tls_got_offset(r_sym, true)
1632                             - target->got_size());
1633             }
1634           if (optimized_type == tls::TLSOPT_TO_IE)
1635             {
1636               gold_assert(tls_segment != NULL);
1637               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1638                                  got_offset, view, view_size);
1639               break;
1640             }
1641           else if (optimized_type == tls::TLSOPT_NONE)
1642             {
1643               // Relocate the field with the offset of the pair of GOT
1644               // entries.
1645               Relocate_functions<64, false>::rel64(view, got_offset);
1646               break;
1647             }
1648         }
1649       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1650                              _("unsupported reloc %u"), r_type);
1651       break;
1652
1653     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1654       if (optimized_type == tls::TLSOPT_TO_LE)
1655         {
1656           gold_assert(tls_segment != NULL);
1657           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1658                              value, view, view_size);
1659           break;
1660         }
1661       else if (optimized_type == tls::TLSOPT_NONE)
1662         {
1663           // Relocate the field with the offset of the GOT entry for
1664           // the module index.
1665           unsigned int got_offset;
1666           if (gsym != NULL)
1667             {
1668               gold_assert(gsym->has_tls_got_offset(false));
1669               got_offset = gsym->tls_got_offset(false) - target->got_size();
1670             }
1671           else
1672             {
1673               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1674               gold_assert(object->local_has_tls_got_offset(r_sym, false));
1675               got_offset = (object->local_tls_got_offset(r_sym, false)
1676                             - target->got_size());
1677             }
1678           Relocate_functions<64, false>::rel64(view, got_offset);
1679           break;
1680         }
1681       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1682                              _("unsupported reloc %u"), r_type);
1683       break;
1684
1685     case elfcpp::R_X86_64_DTPOFF32:
1686       gold_assert(tls_segment != NULL);
1687       if (optimized_type == tls::TLSOPT_TO_LE)
1688         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1689       else
1690         value = value - tls_segment->vaddr();
1691       Relocate_functions<64, false>::rel32(view, value);
1692       break;
1693
1694     case elfcpp::R_X86_64_DTPOFF64:
1695       gold_assert(tls_segment != NULL);
1696       if (optimized_type == tls::TLSOPT_TO_LE)
1697         value = value - (tls_segment->vaddr() + tls_segment->memsz());
1698       else
1699         value = value - tls_segment->vaddr();
1700       Relocate_functions<64, false>::rel64(view, value);
1701       break;
1702
1703     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1704       if (optimized_type == tls::TLSOPT_TO_LE)
1705         {
1706           gold_assert(tls_segment != NULL);
1707           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1708                                                 rela, r_type, value, view,
1709                                                 view_size);
1710           break;
1711         }
1712       else if (optimized_type == tls::TLSOPT_NONE)
1713         {
1714           // Relocate the field with the offset of the GOT entry for
1715           // the tp-relative offset of the symbol.
1716           unsigned int got_offset;
1717           if (gsym != NULL)
1718             {
1719               gold_assert(gsym->has_got_offset());
1720               got_offset = gsym->got_offset() - target->got_size();
1721             }
1722           else
1723             {
1724               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1725               gold_assert(object->local_has_got_offset(r_sym));
1726               got_offset = (object->local_got_offset(r_sym)
1727                             - target->got_size());
1728             }
1729           Relocate_functions<64, false>::rel64(view, got_offset);
1730           break;
1731         }
1732       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1733                              _("unsupported reloc type %u"),
1734                              r_type);
1735       break;
1736
1737     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1738       value = value - (tls_segment->vaddr() + tls_segment->memsz());
1739       Relocate_functions<64, false>::rel32(view, value);
1740       break;
1741     }
1742 }
1743
1744 // Do a relocation in which we convert a TLS General-Dynamic to an
1745 // Initial-Exec.
1746
1747 inline void
1748 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1749                                       size_t relnum,
1750                                       Output_segment* tls_segment,
1751                                       const elfcpp::Rela<64, false>& rela,
1752                                       unsigned int,
1753                                       elfcpp::Elf_types<64>::Elf_Addr value,
1754                                       unsigned char* view,
1755                                       off_t view_size)
1756 {
1757   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1758   // .word 0x6666; rex64; call __tls_get_addr
1759   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1760
1761   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1762   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1763
1764   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1765                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1766   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1767                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1768
1769   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1770
1771   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1772   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1773
1774   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1775   // We can skip it.
1776   this->skip_call_tls_get_addr_ = true;
1777 }
1778
1779 // Do a relocation in which we convert a TLS General-Dynamic to a
1780 // Local-Exec.
1781
1782 inline void
1783 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1784                                       size_t relnum,
1785                                       Output_segment* tls_segment,
1786                                       const elfcpp::Rela<64, false>& rela,
1787                                       unsigned int,
1788                                       elfcpp::Elf_types<64>::Elf_Addr value,
1789                                       unsigned char* view,
1790                                       off_t view_size)
1791 {
1792   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1793   // .word 0x6666; rex64; call __tls_get_addr
1794   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1795
1796   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1797   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1798
1799   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1800                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1801   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1802                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1803
1804   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1805
1806   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1807   Relocate_functions<64, false>::rela32(view + 8, value, 0);
1808
1809   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1810   // We can skip it.
1811   this->skip_call_tls_get_addr_ = true;
1812 }
1813
1814 inline void
1815 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1816                                       size_t relnum,
1817                                       Output_segment*,
1818                                       const elfcpp::Rela<64, false>& rela,
1819                                       unsigned int,
1820                                       elfcpp::Elf_types<64>::Elf_Addr,
1821                                       unsigned char* view,
1822                                       off_t view_size)
1823 {
1824   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1825   // ... leq foo@dtpoff(%rax),%reg
1826   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1827
1828   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1829   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1830
1831   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1832                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1833
1834   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1835
1836   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1837
1838   // The next reloc should be a PLT32 reloc against __tls_get_addr.
1839   // We can skip it.
1840   this->skip_call_tls_get_addr_ = true;
1841 }
1842
1843 // Do a relocation in which we convert a TLS Initial-Exec to a
1844 // Local-Exec.
1845
1846 inline void
1847 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1848                                       size_t relnum,
1849                                       Output_segment* tls_segment,
1850                                       const elfcpp::Rela<64, false>& rela,
1851                                       unsigned int,
1852                                       elfcpp::Elf_types<64>::Elf_Addr value,
1853                                       unsigned char* view,
1854                                       off_t view_size)
1855 {
1856   // We need to examine the opcodes to figure out which instruction we
1857   // are looking at.
1858
1859   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
1860   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
1861
1862   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1863   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1864
1865   unsigned char op1 = view[-3];
1866   unsigned char op2 = view[-2];
1867   unsigned char op3 = view[-1];
1868   unsigned char reg = op3 >> 3;
1869
1870   if (op2 == 0x8b)
1871     {
1872       // movq
1873       if (op1 == 0x4c)
1874         view[-3] = 0x49;
1875       view[-2] = 0xc7;
1876       view[-1] = 0xc0 | reg;
1877     }
1878   else if (reg == 4)
1879     {
1880       // Special handling for %rsp.
1881       if (op1 == 0x4c)
1882         view[-3] = 0x49;
1883       view[-2] = 0x81;
1884       view[-1] = 0xc0 | reg;
1885     }
1886   else
1887     {
1888       // addq
1889       if (op1 == 0x4c)
1890         view[-3] = 0x4d;
1891       view[-2] = 0x8d;
1892       view[-1] = 0x80 | reg | (reg << 3);
1893     }
1894
1895   value = value - (tls_segment->vaddr() + tls_segment->memsz());
1896   Relocate_functions<64, false>::rela32(view, value, 0);
1897 }
1898
1899 // Relocate section data.
1900
1901 void
1902 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1903                                 unsigned int sh_type,
1904                                 const unsigned char* prelocs,
1905                                 size_t reloc_count,
1906                                 Output_section* output_section,
1907                                 bool needs_special_offset_handling,
1908                                 unsigned char* view,
1909                                 elfcpp::Elf_types<64>::Elf_Addr address,
1910                                 off_t view_size)
1911 {
1912   gold_assert(sh_type == elfcpp::SHT_RELA);
1913
1914   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1915                          Target_x86_64::Relocate>(
1916     relinfo,
1917     this,
1918     prelocs,
1919     reloc_count,
1920     output_section,
1921     needs_special_offset_handling,
1922     view,
1923     address,
1924     view_size);
1925 }
1926
1927 // Return the value to use for a dynamic which requires special
1928 // treatment.  This is how we support equality comparisons of function
1929 // pointers across shared library boundaries, as described in the
1930 // processor specific ABI supplement.
1931
1932 uint64_t
1933 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1934 {
1935   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1936   return this->plt_section()->address() + gsym->plt_offset();
1937 }
1938
1939 // Return a string used to fill a code section with nops to take up
1940 // the specified length.
1941
1942 std::string
1943 Target_x86_64::do_code_fill(off_t length)
1944 {
1945   if (length >= 16)
1946     {
1947       // Build a jmpq instruction to skip over the bytes.
1948       unsigned char jmp[5];
1949       jmp[0] = 0xe9;
1950       elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1951       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1952               + std::string(length - 5, '\0'));
1953     }
1954
1955   // Nop sequences of various lengths.
1956   const char nop1[1] = { 0x90 };                   // nop
1957   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
1958   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
1959   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
1960   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
1961                          0x00 };                   // leal 0(%esi,1),%esi
1962   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
1963                          0x00, 0x00 };
1964   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
1965                          0x00, 0x00, 0x00 };
1966   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
1967                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1968   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
1969                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
1970                          0x00 };
1971   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1972                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1973                            0x00, 0x00 };
1974   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1975                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1976                            0x00, 0x00, 0x00 };
1977   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1978                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1979                            0x00, 0x00, 0x00, 0x00 };
1980   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1981                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1982                            0x27, 0x00, 0x00, 0x00,
1983                            0x00 };
1984   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1985                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1986                            0xbc, 0x27, 0x00, 0x00,
1987                            0x00, 0x00 };
1988   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1989                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1990                            0x90, 0x90, 0x90, 0x90,
1991                            0x90, 0x90, 0x90 };
1992
1993   const char* nops[16] = {
1994     NULL,
1995     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1996     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1997   };
1998
1999   return std::string(nops[length], length);
2000 }
2001
2002 // The selector for x86_64 object files.
2003
2004 class Target_selector_x86_64 : public Target_selector
2005 {
2006 public:
2007   Target_selector_x86_64()
2008     : Target_selector(elfcpp::EM_X86_64, 64, false)
2009   { }
2010
2011   Target*
2012   recognize(int machine, int osabi, int abiversion);
2013
2014  private:
2015   Target_x86_64* target_;
2016 };
2017
2018 // Recognize an x86_64 object file when we already know that the machine
2019 // number is EM_X86_64.
2020
2021 Target*
2022 Target_selector_x86_64::recognize(int, int, int)
2023 {
2024   if (this->target_ == NULL)
2025     this->target_ = new Target_x86_64();
2026   return this->target_;
2027 }
2028
2029 Target_selector_x86_64 target_selector_x86_64;
2030
2031 } // End anonymous namespace.